
Internal Report 2011–01 May 2011

Universiteit Leiden

Opleiding Informatica

Deploying active objects

onto

multicore

Behrooz Nobakht

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 2
1.1 The Problem . 2
1.2 Cacoj . 3
1.3 Organization of the Thesis . 4

2 Cacoj 5
2.1 Overview . 5

2.1.1 Creol . 5
2.1.2 Concurrent Java . 6

2.2 Concurrency API . 7
2.3 Cacoj Compiler . 12

2.3.1 From Creol To Java . 13
2.3.2 Compilation Process . 15

3 Case Studies 17
3.1 Prime Sieve . 17
3.2 Lazy Fibonacci . 21

4 Extension Points 23
4.1 Prioritized Concurrent Objects 23

4.1.1 Priority Scheduling . 23
4.1.2 Abstract Multicore Machine 26

4.2 Cacoj Compiler . 27
4.2.1 Creol Extension’s Implementation 27
4.2.2 Active Object Profiling 27

5 Related Work 29
5.1 Concurrent Programming Paradigms 29

5.1.1 Actor Model . 29
5.1.2 Software Transactional Memory 30
5.1.3 Data Flow Programming 33

5.2 Languages and Libraries . 34
5.2.1 Actor Model . 34
5.2.2 Software Transtactional Memory 36

1

5.2.3 Data Flow Programming 37
5.2.4 All-in-one solutions . 37

Haskell . 37
GPars . 38

5.2.5 Hybrid solutions . 38
Akka . 38
MPI . 38

6 Conclusion 39

2

Abstract

The performance of a program on multicore platform crucially depends on the
scheduling of its tasks; existing high-level programming languages, however,
offer limited control over scheduling. In this thesis, we develop Cacoj as an
extensible tool set to transform Creol’s active concurrent objects into Java to
be deployed on multicore through standard Java Runtime Environment. The
concurrent object paradigm is a promising trend for multicore programming
because each object may conceptually encapsulate a processor. Cacoj introduces
a higher-level abstraction of concurrency API and a Creol compiler in which
the translated object in Java takes control over the scheduling of the incoming
messages through a per-object approach in contrast with current mainstream
trend. Cacoj brings about the required grounds to extend Creol syntax to
additionally specify different levels of priority and integrate them into the notion
of active concurrent objects.

Acknowledgements

Every work is successful with the effort of all invovled directly or indirectly in
the path. I am wordlessly grateful to my parents and my sister and brother who
constantly fed me with remote yet deep support and care.

I worked on this thesis for about a year under the supervision of Professor
Frank S. de Boer. His support for my interests along with his constructive
guidance through the research was the key for my susccess. I deeply thank him
and wish him all the best in life for him.

1

Chapter 1

Introduction

1.1 The Problem

One of the major challenges of multicore programming in object-oriented lan-
guages is how to help the programmer optimally use potentially many cores. At
the operating system level, efficiency is greatly affected by scheduling which is
largely beyond the control of most existing high-level programming languages.
Therefore, for optimal use of the hardware, we cannot avoid leveraging schedul-
ing and performance related issues from the underlying operating system to the
application level. However, the very nature of high-level languages is to provide
suitable abstractions that allow the programmer to be free of irrelevant imple-
mentation details. The main challenge in designing programming languages for
multicore processors is to find a balance between these two conflicting require-
ments.

Looking at a mainstream language such as Java, it introduces concurrency
API in package java.util.concurrent to be used in multicore programming. How-
ever, the approach taken in this library does not seem to be in line with high-level
concepts in object orientation; i.e. as an orthogonal supplement to other fea-
tures of the language, the programmer has to get involved in the implementation
details how to leverage the library in the domain of multicore programming. In
contrast, languages such as Erlang [22] or Scala [49] take further steps to intro-
duce, for multicore, interesting abstractions such as actors. In Scala [29], actors
are scheduled using a scheduling manager that takes advantage of a thread pool
of worker threads. Additionally, Scala introduces both thread-based actors and
event-based actors. However, similar to Java, Scala uses a system-wide schedul-
ing mechanism. Objects themselves do not control the scheduling policies used
to select and execute the messages they receive; i.e. the priority management
and the scheduling of the object’s messages are centrally performed outside the
objects.

In this thesis, we investigate how active concurrent objects in a high-level
object-oriented language can be deployed onto multicore technology. We use

2

the notion of concurrent objects in Creol [35, 21]. An active concurrent object
in Creol has control over one processor; i.e. it has control over a thread pool
of execution of asynchronous messages. Thus, a concurrent object provides
a natural basis for multicore deployment where each object ideally possesses
one processor. The object itself manages the behavior in which messages are
scheduled for execution. We develop Cacoj as an extensible tool set to translate
active objects in Creol into their equivalent active objects in Java. To achieve
the deployment on multicore, we need to think differently how to use the Java
concurrency library to provide a higher-level abstraction for per-active-object
scheduling control over the concurrency of messages.

The Cacoj tool set breaks down into two major components: an active ob-
ject API based on Java’s concurrency API and a compiler tool. The active
object API is a generic architecture to be developed and leveraged to deploy
Java objects onto multicore using a high level abstraction to allow each object
take control over the scheduling of the asynchronous/synchronous messages for
execution. The compiler component takes advantage of Cacoj API to translate
Creol’s objects into equivalent Java objects. Every active object in Creol is
transformed to an object in Java that possesses a pool of execution threads on
a separate processor. It may use a priority manager and scheduler to respond
to the incoming messages from other objects. Besides, through this transforma-
tion, we allow the programmer to seamlessly use, in the original Creol program,
Java’s standard libraries including the data types. Thus, this moves Creol from
just a modeling language to a full-fledged “programming” language. Through
Cacoj, the programmer is provided with a higher-level abstraction as in Creol
to model concurrency and then it is transformed to a mainstream language such
as Java to deployed onto multicore.

1.2 Cacoj

In this thesis, we propose and develop Cacoj to deploy concurrent active objects
onto multicore using Java platform. Essentially, Cacoj is designed in two major
components:

1. Concurrency API is a generic architecture that can be used to deploy ac-
tive objects onto multicore. It provides per-object priority and scheduling
featuers and the support of asynchronous messages and future computa-
tion. We discuss the notation of thread binding to messages in this thesis
and how they are used to realize the active object pattern. Additionally,
we introduce an event-based mechanism to control how the processor is
used and released.

2. Creol to Java compiler that provides a base ground to compiler Creol pro-
grams into concurrent Java taking advantage of the concurrency API in
Cacoj. The concurrency API provides the grounds for a modeling lan-
guage such as Creol to abstract away the implementation details of the
concurrency API from the user. Moreover, in future, the extensions to

3

the Creol language will introduce syntax for priority scheduling that are
implemented in Cacoj Concurrent API.

Cacoj project is freely available at http://www.sourceforge.net/projects/
cacoj. All the user documentation and details on how to use and develop Ca-
coj can be found at the project page. In this thesis, we discuss the main ideas
behind the design of Cacoj.

1.3 Organization of the Thesis

In this thesis, we introduced the general problem in Chapter 1. We elaborate
on how Cacoj is designed and implemented in Chapter 2. We discuss two
samples, Prime Sieve and Fibonacci, in Chapter 3. We provide an overview
of the extensions planned for Cacoj in Chapter 4. We present an overview of
related work in Chapter 5. Eventually, we conclude the thesis in Chapter 6.

4

http://www.sourceforge.net/projects/cacoj
http://www.sourceforge.net/projects/cacoj

Chapter 2

Cacoj

2.1 Overview

2.1.1 Creol

Creol [35] (Concurrent Reflective Object-oriented Language) is an object ori-
ented modeling language designed for specifying distributed systems. A Creol
object implicitly has a dedicated processor and thus encapsulates a line of exe-
cution. Different objects communicate only by asynchronous method calls, i.e.,
similar to message passing in Actor models [20]; however in Creol, the caller can
poll or wait for return values or termination of the called method. This can be
used to simulate synchronous method calls.

Creol objects are typed by interfaces, whereas classes can implement as many
interfaces as necessary. An interface may restrict the type of objects that can
call each of its methods via the notion of co-interfaces; thus knowing the type
of the caller, a method implementation can safely call back. A co-interface is
specified by the keyword with; Line 3 in Listing 1 uses Any to allow all types as
co-interface. Creol supports multiple inheritance; inheritance among interfaces
can be used to create sub-type hierarchies, whereas inheritance between classes
is only used for code reuse.

Each object in Creol, upon creation, starts its active behavior by executing
its run method if defined (e.g., in class User). When receiving a method call a new
process is created to execute the method. Methods can have processor release
points which define interleaving points explicitly. When a process is executing,
it is not interrupted until it finishes or reaches a release point. Release points
can be conditional, e.g. await t?(res) in Listing 1 checks for termination of t!

fib(n). If the guard at a release point evaluates to true, the process keeps the
control, otherwise, it releases the processor and becomes disabled as long as
the guard is not true. Whenever the processor is free, an enabled process is
nondeterministically selected for execution, i.e., scheduling is left unspecified in
Creol to enable more abstract modeling. In a future work, we extend Creol to
support mechanisms for priority specifications of method calls in different levels.

5

Listing 1: Fibonacci in Creol

1 interface IFibonacci

2 begin

3 with Any

4 op fibonacci(in n: Int; out f: Int)

5 end

6

7 class Fibonacci(n:Int) implements IFibonacci

8 begin

9 op init == skip

10

11 op run ==

12 var res: Int; var t: Label[Int]; t!fib(n); await t?; t?(res)

13

14 op fib(in n:Int; out f:Int) ==

15 var a:Int; var b:Int; var s: Label[Int]; var t:Label[Int];

16 if n = 0 then

17 f := 1

18 else

19 if n = 1 then

20 f := 1

21 else

22 s!fib(n - 1); t!fib(n - 2); s?(a); t?(b); f := a + b

23 end

24 end

25

26 with Any

27 op fibonacci(in n:Int; out f:Int) ==

28 var t:Label[Int]; t!fib(n); t?(f)

29

30 end

2.1.2 Concurrent Java

Inside the classical object-oriented paradigm, Java proposes to think in terms
of “tasks” in “objects”. To utilize multicore, the programmer should spread
the workload in different objects in terms of tasks. JVM then knows how to
map different tasks to different processing cores. The concept of task is in
analogy with the concept of java.lang.Runnable in multi-threading paradigm.
Conceptually, the granularity of the task is dependent on the requirements and
properties of the program.

Simply put, a task object is an implementation of Callable1 to provide the
call method returning an instance of Future. The call method to accomplish its
job may use a set of Java statements, call other methods in the same object, or
even invoke methods from as many objects required.

Concurrent Java introduces “thread pool”: a repository of task objects (ob-
jects of type Callable) in the memory at runtime to store and schedule for
execution on different processors if available. Along with thread pool, Java

1java.util.concurrent.Callable

6

introduces a central ExecutorService2 interface that is used to manage, run or
schedule different task objects. Based on the requirements of the tasks in the
program, there may be the need to have different types of implementations of
ExecutorService. For instance, a ThreadPoolExecutor3 is an implementation that
tries to run and spread the tasks on a queue-based thread pool to be executed
in different cores.

2.2 Concurrency API

Each Creol class is translated to a corresponding Java class and each method is
also translated to the equivalent method in Java that exposes the same behavior
as the concurrent active object in Creol. To achieve this pattern in Java, we
developed a concurrency API package based on java.util.concurrent package to
enable a Java class expose asynchronous and active behavior properties. In this
design, each active object is composed on the following components (Figure 2.1).

MethodInvocation is the central data structure that encapsulates an asyn-
chronous method call. It holds a reference to the caller object. In future works,
it will carry the priority information if provided by the caller. It is a subclass of
FutureTask4. It holds the eventual result of the method call. It can be awaited or
signaled based on the program requirements during runtime; thus, it is aware of
the corresponding “thread” in which it is running. When an instance is created
by the caller, there are two options how to store the it in the callee’s process
store:

1. The caller calls a method from the callee to store the instance. This
approach may have concurrency issues. When the method invocation is
to be stored at the callee’s process store, the callee may be busy doing
something else; the caller should wait until the callee is free to store the
instance of method invocation in its process store.

2. The callee directly stores the method invocation into the process store of
the callee. Each active object exposes its process store as an immutable
public property such that the clients of the active object may directly
store the messages. Thus, the actual code executed to put the method
invocation instance in the callee’s process store is run in the execution
thread of the caller. We adopt this approach.

ProcessStore is the storage data structure used to maintain the incoming
method call invocations to an active object. The ProcessStore is an implemen-
tation of the BlockingQueue interface in java.util.concurrent package, the imple-
mentations of which are thread-safe, i.e. all methods in this interface operate
atomically using internal locks encapsulating the implementation details for the
user. It holds a reference to an instance of PriorityManager and SchedulingManager

2java.util.concurrent.ExecutorService
3java.util.concurrent.ThreadPoolExecutor
4java.util.concurrent.FutureTask

7

��������	A�����������	A���

���������	������������	���

��A��A	B�CDEDF����A��A	B�CDEDF��

C�	����
�E���D	A�E

C�	����
�E���D	A�E

�E	�����	A����
�������

�E	�����	A����
�������

����D�
�D�	��B

����D�
�D�	��B

�AFED����	A�E�AFED����	A�E

����D������
�����	���
����A��

����D������
�����	���
����A��

��A��A	A�D�����A��A	A�D���

�������A�E
������

�������A�E
������

�������AEF�
CDEDF��

�������AEF�
CDEDF��

� � �!�"���A	A�E

� � �#���E��E�B

� � ��E	��$D��

Figure 2.1: Cacoj Concurrency API Architecture

if specified (see below). It provides methods such as preAdd and postAdd along
with preTake and postTake respectively to enable the further customization of the
behavior before/after adding or taking a method invocation to/from the storage.
These are extension points to enable the customization of priority or scheduling
management of the method invocations. The PriorityManager component is a
future extension to this work.

PriorityManager is an interface the implementations of which are supposed
to provide a function to determine and resolve a final priority value in case there
are different levels of priorities specified for a method invocation. This feature
is used, if specified, by the process store to compute the “resolved priority” of
the method invocation based on different levels of priorities specified and then
add it to the storage. PriorityManager is a planned future extension of this work
in line with the Creol language extensions.

SchedulingManager is an interface the implementations of which introduce
a function to select a method invocation based on different possible criteria
(such as time or data) that is either predefined or customized by the user.
The scheduler manager is a component used by process store when asked to

8

remove and provide an instance of method invocation to be executed. Thus,
the implementation of the scheduling manager is responsible how to choose one
method invocation out of the ones currently stored in the process store of the
active object. Different flavors of the scheduling manager may include time-
based, deadline-based, data-centric, or a mixture.

ExecutorService is an implementation of ExecutorService5 that is respon-
sible for the execution of method invocations. Each active object holds one
reference of one executor service instance. We develop an executor service to
take advantage of a “thread pool” implementation; thus, each active object sub-
mits the selected method invocation by the scheduling manager to its executor
service to be executed. The executor service takes advantage of the a thread
factory to maintain a pool of threads to run the requested code of method in-
vocations. The thread pool may use caching or other optimization techniques
to minimize resource allocation and usage costs.

ThreadFactory is an interface used by the executor service to initiate a new
thread when new resources are required. We cache the threads so that we can
control and tune the performance of resource allocation. The thread factory
create a new instance of an “interruptible process” upon its factory call.

InterruptibleProcess is an extension of Java Thread6 class. A method
invocation is assigned a Java thread for execution. In the original scenario
in Java concurrency API, when a method is asked to await, it waits on the
condition but actually releases the thread in JVM. This means that some of
local information attached to the method execution and the thread are lost
since the thread may be used for some other execution request. Thus, we need
to have a version of thread that is aware of its running method invocation and
vice versa. This relation helps us to preserve the thread through the time of
awaiting so that the method invocation can continue just from the awaiting
state. To achieve this, when the executor service is to delegate the execution to
the method invocation, it notifies both the method invocation and the thread
of each other’s presence so that this relation will be preserved through the time
till the method invocation is signalled to continue the execution.

SignalAction is an event-based mechanism to control how the method invo-
cations are signalled after awaiting. When a method invocation is preparing to
await, first, it adds an instance of a signal action to the active object’s process
store. The signal action gets selected sometime in future and its job it to check
whether the original method invocation may continue execution based on some
“conditional expression” provided by ExpressionHolder. If it can, it signals the
original method invocation. Otherwise, it stores another copy of itself to the ac-
tive object’s process store as another future method invocation. The mechanism
is event-based and non-blocking having the advantage that it is also transparent
from the view of the scheduling manager and priority manager.

One of the significant ideas in the concurrency designed in Cacoj API is
the relation amongst MethodInvocation, InterruptibleProcess, and SignalAction.

5java.util.concurrent.ExecutorService
6java.lang.Thread

9

From the user’s viewpoint, an instance of a method invocation is interrupt-
ible; i.e. MethodInvocation exposes await and signal through Interruptible in-
terface. Actually, however, these methods are delegated to the corresponding
InterruptibleProcess. Besides, InterruptibleProcess takes advantage of ReentrantLock
7 and Condition 8 to expose the “await” and “signal” features (Listing 2).

Listing 2: InterruptibleProcess await and signal methods

1 public boolean await () throws RuntimeException {

2 try {

3 awaitLock.lock();

4 while (this.mi.isSuspended ())

5 blockedCondition.await ();

6 } catch (InterruptedException e) {

7 interrupt ();

8 } finally {

9 awaitLock.unlock ();

10 }

11 return false;

12 }

13

14 public boolean signal () throws RuntimeException {

15 try {

16 awaitLock.lock();

17 blockedCondition.signalAll ();

18 } finally {

19 awaitLock.unlock ();

20 }

21 return false;

22 }

In Listing 2, mi refers to the enclosing instance of MethodInvocation; thus, the
interruptible process awaits as long as the corresponding method invocation is
suspended. Other than that, it signals the method invocation to continue from
the awaiting point of the execution.

In the same line, SignalAction takes an event-based approach to enable the
pair of MethodInvocation and InterruptibleProcess act in a non-blocking manner.
SignalAction holds a reference to the original MethodInvocation and an instance
of ExpressionHolder the second of which is used to check whether the original
method invocation is ready to continue the execution. If not, a copy of the
current signal action is again stored in the process store of the corresponding
active object for future checking. And, if the method invocation is ready to
continue, the signal action “signals” it so that it can continue execution. This
procedure is done in a non-blocking and event-based way. Listing 3 presents the
code in which executor is the enclosing active object and copy() creates a copy
instance of the same signal action instance.

Listing 3: SignalAction call method

1 public Object call() throws Exception {

7java.util.concurrent.locks.ReentrantLock
8java.util.concurrent.locks.Condition

10

2 if (this.expressionHolder.getValue ()) {

3 this.originalMI.signal ();

4 } else {

5 this.executor.getProcessStore ().add(copy());

6 }

7 return null;

8 }

We now discuss how in overall an active object operates on a multicore
architecture. We take a “client/server” approach here since each active object
essentially behaves as a server to all the other objects as its clients that request
a method to be executed.

In the client’s viewpoint, a method call is needed to be published to the server
but in an asynchronous way. First, the client needs to construct an instance of
method invocation that wraps around the original method call from the server.
Then, the client needs to directly fetch the ProcessStore of the server and adds the
instance of the method invocation to the server. The method or policy used to
store the method invocation in the process store of the server is totally up to the
server’s process store implementation details. Storing a method invocation in
the process store of the server takes place in the client side thread of execution.
Listing 6 presents a sample generated Java code for an asynchronous method call
in Listing 1. Thus, through time, there are concurrent clients that are storing
instances of method invocation into the server’s process store and since the
process store implementation encapsulate the mechanisms for concurrency and
data safety, the clients have no concern on data synchronization and concurrency
issues such as mutual exclusion.

In a parallel side of the story, when an active object comes to life, it con-
stantly tries to fetch an instance of method invocation from its process store for
execution. The process store uses its instance of SchedulingManager to choose one
of the method invocations. Although, there are predefined scheduling managers
in Cacoj, it can be easily developed and customized based on the requirements
by the user. Listing 4 presents the main loop for the active object. Each
ActiveObject also implements Runnable 9. So, when an active object gets ini-
tialized, it simply adds this (itself) to its executor service component. This
procedure deploys the active object onto the executor service corresponding to
the underlying multicore platform.

Listing 4: Main run loop of an ActiveObject

1 public void init() {

2 this.es.submit(this);

3 }

4

5 public void run() {

6 for (;;) {

7 try {

8 MethodInvocation mi = this.ps.take();

9 this.currentProcess = mi;

9java.lang.Runnable

11

Figure 2.2: Sequence of Executions in Cacoj API

10 this.es.submit(mi);

11 } catch (InterruptedException e) {

12 e.printStackTrace ();

13 }

14 }

15 }

The sequence of events in this API is depicted in Figure 2.2. It should
be noted that the two parallel lines of executions are presented in the same
diagram just to present the ideas but as it was described client and server run
independently.

In this section, we elaborated on how the concurrency API in Cacoj is de-
signed and developed. In the following sections, we describe how this API is
entangled into Cacoj compiler to translate Creol programs into their correspond-
ing Java code.

2.3 Cacoj Compiler

In this section, we first present how different constructs are translated to their
equivalent Java ones. Then, we describe the overall compilation process in

12

Cacoj.

2.3.1 From Creol To Java

Each Creol class is translated to a corresponding Java class. The Java class
contains a public immutable field ps of type ProcessStore to store the method
invocations from the clients. The Java class also owns a private field es of type
ExecutorService; the component in control of the thread pool of interruptible
processes. Thus, generally, a class Fibonacci in Listing 1 will be translated into
Listing 5 in Java:

Listing 5: General structure of the translated Creol Fibonacci into Java

1 class Fibonacci implements IFibonacci , ActiveObject {

2 private final AbstractProcessStore ps = new SimpleProcessStore

();

3 private final ExecutorService es = new

InterruptibleProcessPoolExecutor(

4 new InterruptibleProcessFactory ());

5 private MethodInvocation currentProcess;

6

7 // translations in between

8

9 public AbstractProcessStore getProcessStore () {

10 return ps;

11 }

12

13 }

Each method in the Creol class is translated to one method in Java. Each
method invocation in Creol, on the other hand, will involve the construction
of an instance of an anonymous implementation of the interface Callable. For
instance, the method fibonacci (n; f) along with its method calls in Listing 1 is
translated to the following Java in Listing 6:

Listing 6: Translated fibonacci method to Java

1 public Integer fibonacci(final Integer n) {

2 Integer f;

3 final Future <Integer > t;

4 MethodInvocation mi4 = new MethodInvocation(new Callable () {

5 public Integer call() {

6 return fib(n);

7 }

8 }, this);

9 getProcessStore ().add(mi4);

10 t = mi4;

11 try {

12 f = t.get();

13 } catch (InterruptedException e) {

14 throw new RuntimeException(e);

15 } catch (ExecutionException e) {

16 throw new RuntimeException(e);

17 }

13

18 return f;

19 }

The variable mi4, as an instance of MethodInvocation, wraps the original method
invocation and is added to the process store of the callee object (Line 9 using the
add method in getProcessStore()). Note that mi4 provides a Future return value
that can be used to fetch the eventual result of the original method invocation.
The corresponding redefinition of call method provides the actual trigger for
the execution of fib(n) method (Line 6). As it can be seen in this sample, the
concept of a Label in Creol in translated to an instance of a Future in Java. The
Future in Java has the property that when get() (Line 12) is called, it releases
the processor until the value is ready or the process is cancelled. Thus, the
encapsulation corresponds to the same in Creol with Label.

In this regards, it is interesting to see how await in Creol is translated to Java
using Cacoj compiler. The init method in Listing 1 makes a perfect sample
to elaborate on it. In this method, there is a need to wait for the result of
Fibonacci computation and then return the final result of this call. However,
until the intermediate results are ready, the process should release and wait.
The corresponding translated code in Java is shown in Listing 7.

Listing 7: await in Creol and SignalAction in Cacoj

1 Integer res;

2 final Future <Integer > t;

3 MethodInvocation mi1 = new MethodInvocation(new Callable () {

4 public Integer call() {

5 return fib(n);

6 }

7 }, this);

8 ps.add(mi1);

9 t = mi1;

10 while (!(t.isDone ())) {

11 addSignalActionNotifier(currentProcess , new ExpressionHolder ()

{

public Boolean getValue () {

12 return (t.isDone ());

13 }

14 });

15 ((Interruptible) currentProcess).await ();

16 }

17 try {

18 res = t.get();

19 } catch (InterruptedException e) {

20 throw new RuntimeException(e);

21 } catch (ExecutionException e) {

22 throw new RuntimeException(e);

23 }

In Line 11, an instance of SignalAction is created and stored in the process
store for future execution. The expression that this instance should check is that
whether the Future value for t is ready or not. Thus, whenever the signal action
gets a chance to execute, it checks whether the final result is ready or not. If

14

not, it again queues a copy of itself to the process store. Otherwise, the result is
ready and the method call finishes. Note that in Line 10, while is a not a busy
wait loop. When the processor is given back, it tries to check the condition
and if it is not satisfied it should again release the processor. Additionally,
currentProcess is always the current method invocation that is being processed.
On the other hand, the method addSignalActionNotifier is a template method
that is included for every active object during translation (Listing 8).

Listing 8: addSignalActionNotifier template method

1 private void addSignalActionNotifier(MethodInvocation mi ,

ExpressionHolder expressionHolder) {

2 SignalAction sa = new SignalAction(mi , expressionHolder , this)

;

3 MethodInvocation saMI = new MethodInvocation(sa , mi);

4 this.ps.add(saMI);

5 }

In this section, we went through different samples of how language constructs
in Creol are translated into their equivalent Java ones. In the next section, we
introduce the general compilation process in Cacoj compiler.

2.3.2 Compilation Process

The Cacoj compiler is actually an aggregator and integrator of different com-
ponents in the compilation process of Creol into Java. The compiler first uses
ANTLR v3 [42] to generate the language recognizer. Then, it uses a transfor-
mation engine and a set of code templates to generate the equivalent target
program such as Java based on the concurrency API:

1. The Creol language is expressed in a grammar in ANTLR. This is used to
generate a standard ANTLR lexer and parser for the Creol language.

2. An instance of an abstract syntax tree (AST) is constructed when a Creol
program is input to the Creol Parser.

3. The AST object is preprocessed to construct a set of intermediate lan-
guage information, compilation context, that is used in the time of code
generation. This phase is line with similar concepts in LLVM. This phase
also introduces future extension points as it is not part of the standard
ANTLR framework.

4. A tree grammar is developed for the Creol language used to walk through
the generated AST tree of the Creol source and generate the equivalent
Java code. A Creol tree walker is generated that walks through the gen-
erated AST and generates the final code.

5. Through code generation, the Creol walker takes advantage of the compila-
tion context that is built before to fetch the required information including
meta method information and class properties.

15

6. For code generation, a set of code template are developed in ANTLR
framework using StringTemplate[43] library. Essentially, each construct
in Creol has an equivalent code template snippet (as discussed in previous
section) that given the required information outputs the equivalent Java
construct. The Creol walker uses the set of code templates along with the
compilation context to generate the final Java code.

The compilation process partially includes a set of standard routines for lan-
guage compilation and transformation. However, the Creol compiler basically
takes advantage of two loosely-coupled components in the process: the concur-
rency API and the code templates. These two make Cacoj an extensible and
pluggable compiler tool for the Creol language. In the first place, the concur-
rency API designed for Creol in Java includes the fundamental data structures
and services that are required to deploy an active object in Java using the uti-
tilies provided in java.util.concurrent package. This is a major extension point
for further development since the developer may introduce different flavors of
method invocation storage, method invocation priority assignment, and method
invocation scheduling management. These are the building blocks of the actual
runtime environment based on which a translated Creol program into Java takes
advantage of to be deployed onto multicore in JVM platform. Additionally, the
set of code templates are actually maintained out of Creol compiler code. Thus,
it provides another extension point for the users so that they can customize
or develop different code templates based on their requirements in the compi-
lation process. The separation of concerns in the design of Cacoj makes it an
extensible and pluggable tool set.

16

Chapter 3

Case Studies

3.1 Prime Sieve

A prime sieve [51] or prime number sieve is a fast type of algorithm for finding
primes. A prime sieve works by creating a list of all integers up to a desired
limit and progressively removing composite numbers until only primes are left.
One sample method to implement a prime sieve is “Sieve of Eratosthenes” [52].

To generate the prime numbers, we use the Creol code in Listing 9.

Listing 9: Prime Sieve in Creol

1 interface ISieve

2 begin

3 with Any

4 op send(in x: Int; out r: Bool)

5 end

6

7 class Generator

8 begin

9 var n: Int

10 var s: Sieve

11 op init ==

12 gen := new Sieve (2);

13 n := 3

14 op run ==

15 var r: Bool;

16 !s.send(n; r);

17 if n < 1000 then

18 n := n + 1;

19 !run()

20 else

21 s.printl (;)

22 end

23 end

24

25 class Sieve(p: Int) implements ISieve

26 begin

27 var next: Sieve

17

28

29 with Any

30 op send(in n: Int; out res: Boolean) ==

31 var d: Int := n / p;

32 var r: Int := n - d * p;

33 res := false;

34 if r = 0 then

35 res := false

36 else

37 if next /= null then

38 !next.send(n; res)

39 else

40 res := true;

41 next := new Sieve(n)

42 end

43 end

44

45 op printl ==

46 println(p + " ");

47 if next /= null then

48 next.printl (;)

49 end

50 end

51

52 class Test

53 begin

54 var g : Generator

55 op run ==

56 g := new Generator

57 end

In Listing 9, we generate a linked list of primes each of which holds a reference
to the next prime number. In each step through generating the primes, in each
Sieve object:

1. The field p is a prime number.

2. Parameter n in send method is received to test against the next prime
number.

3. If r = 0 so n is not a prime.

4. If r 6= 0 and next == null, it means that we have found a new prime number
that is the “next” prime number to p. We create the next prime number
in the linked list.

5. If r 6= 0 and next != null, we delegate the computation of n being a prime
to the next prime in the chain until either r = 0 or n will be a next prime
in the chain.

Listing 9 proivdes a concurrent asynchronous approach to generate a se-
quence of prime numbers using asynchronous method calls such as in !s.send(n

; r) or !next.send(n; r). At each step of the computation through time:

18

1. The object g may be composing a new message for the next n sent to
object s

2. The object s is continuously receiving a messages with known n to be
tested for a prime number

Considering these two criteria, the object s is faced with a pool of messages
containing a random order of n’s for the computation. Consequently, there is
chance that larger n’s may be processed before smaller ones are processed; this
is a source of error since it may corrupt the prime number test. Thus, we need
to guarantee that the incoming n numbers are processed in an ascending order
no matter the order in which they are added to the message store of the object
s.

Using Cacoj, we propose a two-step solution. In the first step, we propose a
custom priority manager to prioritize the incoming messages to objects of type
Sieve. A final priority value is assigned to each message (method invocation)
being added to the active object’s process store. In the next step, we introduce
a custom scheduling manager to select the next method invocation from the
active object’s process store based on the previously-assigned priorities by the
priority manager. We use the actual parameter n in send method for the basis of
this prioritization and scheduling of the messages. We guarantee that the next
message chosen for processing has the smallest available n among the method
invocations in the process store of the active object.

We introduce PrimeSievePriorityManager that uses the parameter n to assign a
priority value to each method invocation carrying a call to send method. Listing
10 demonstrates the code.

Listing 10: Prime Sieve Priority Manager

1 public class PrimeSievePriorityManager implements

PriorityManager {

2 public Priority resolve(MethodInvocation <?> mi) {

3 MethodInvocationMetaData md = mi.getMetaData ();

4 final Integer n = (Integer) md.getActualParameters ().get (0);

5 return new Priority () {

6 public Number getValue () {

7 return n;

8 }

9 };

10 }

11 }

In Cacoj, each MethodInvocation carries a set of meta information about the
actual method call including the actual parameters of the method call. We
use the meta data to assign the priority of the method invocation. Addition-
ally, we introduce PrimeSieveSchedulingManager that uses the priority assigned by
PrimeSievePriorityManager to select the next method invocation instance that has
the smallest parameter n. Listing 11 depicts the code.

Listing 11: Prime Sieve Priority Manager

19

1 public class PrimeSieveSchedulingManager extends

AbstractSchedulingManager {

2 public Boolean isPrior(MethodInvocation <?> mi1 ,

MethodInvocation <?> mi2) {

3 Integer n1 = (Integer) mi1.getResolvedPriority ().getValue ();

4 Integer n2 = (Integer) mi2.getResolvedPriority ().getValue ();

5 boolean result = n1 >= n2;

6 return result;

7 }

8 }

In Listing 11, the scheduling manager uses the “resolved” priorities assigned by
the priority managet to select the next method invocation that will be processed.
Since the implementation uses a minimum-heap, we use n1 ≥ n2 to select the
next smaller n. The case result = true means that mi1 is the one to be selected;
otherwise mi2 is selected.

The case of Sieve(p=2) is of more interest. As presented in Listing 9 Line
16, the generator g is sending consecutive n values to Sieve2. Then, Sieve2
decides to delegate the computation of n being prime to the next sieve and so
on until the next prime number is found that becomes the next sieve in the
chain. However, in the case of p > 2, the sieve normally receives one message
to test whether the current n is prime or not; so, the load of messages on the
intermediate sieves are much more less. To evaluate the correctness of the prime
sieve code generated by Cacoj, we modified the generated the code to create
a situation in which Sieve2 is faced with the pool of all messages contataining
the test process for all values of n in the desired range. To achieve this way,
we added the following manual code in the code generated for init method of
Generator:

Listing 12: Prime Sieve Modification

1 private List <MethodInvocation <?>> mis = new ArrayList <

MethodInvocation <?>>();

2

3 public void preRun () {

4 Boolean r;

5 nn = n.incrementAndGet ();

6 final int ln = nn;

7 MethodInvocation mi1 = new MethodInvocation(new Callable () {

8 public Object call() {

9 gen.send(ln);

10 return null;

11 }

12 }, this);

13 mi1.initMetaData("send", null , nn);

14 mis.add(mi1);

15 if (nn < 1000) {

16 // go for the next value of n

17 } else {

18 Collections.shuffle(mis);

19 ((ProcessStoreAware) gen).getProcessStore ().addAll(mis);

20 gen.init();

21 }

20

22 }

In Listing 12, mis is the collection of all method invocations that compose
a test for some n being prime. All of the method invocation instances are sent
altogether to Sieve2 at once the collection up to the desired limit is ready.
When gen.init() is activated. Sieve2 starts to process all the messages. Thus,
the generated sequence of n’s from Sieve2 determines the correctness of this
approach.

We operated different runs of prime sieve with the modification described
above and without it. We captured the output for the two different cases of the
runs that is reprensented in Table 3.1:

Using priority and scheduling
managers

Without using priority and
scheduling manager

executing: 6
(n, p, r, next.p) = (5,2,1,3)
(n, p, r, next.p) = (5,2,1,3)
executing: 7
(n, p, r, next.p) = (6,2,0,3)
(n, p, r, next.p) = (6,2,0,3)
executing: 8
(n, p, r, next.p) = (7,2,1,3)
(n, p, r, next.p) = (7,2,1,3)
executing: 9
(n, p, r, next.p) = (8,2,0,3)
(n, p, r, next.p) = (8,2,0,3)

executing: 27
(n, p, r, next.p) = (25,7,4,11)
(n, p, r, next.p) = (25,7,4,11)
executing: 25
(n, p, r, next.p) = (23,11,1,13)
(n, p, r, next.p) = (23,11,1,13)
executing: 23
(n, p, r, next.p) = (19,15,4,)
(n, p, r, next.p) = (17,15,2,17)
executing: 16
(n, p, r, next.p) = (29,2,1,7)
(n, p, r, next.p) = (29,2,1,7)

Table 3.1: Prime Sieve Generated Sequence

3.2 Lazy Fibonacci

In this section, we study the sample of Fibonacci given in Listing 1. It is a lazy
version of Fibonacci since to compute the value of fib(n), we do not re-use the
values computed for fib(n−1) and fib(n−2); we actually recompute them. This
implementation of Fibonacci in a concurrent asychronous manner represents a
case in which:

1. Since each method invocation is bound to a thread creation for processing,
a large number of thread are created is in direct correlation with resource
allocation such as memory.

2. Each computation fib(k) should release the processor and wait for the
computatio of fib(k − 1) and fib(k − 2). As there are a set of active

21

objects computing their own values, the case represents a good sample for
synchronization of messages.

The hardware specification we used for this sample is as follow:

� A Centrino Duo Geniune Intel(R) CPU: 2 × T2500 @ 2.00GHz

� 2GB of Main Memory

� Java memory options for the heap: -XX:MaxPermSize=128m

We managed to compute the values up to n = 20 with the hardware. Figure
3.1 depicts how the number of threads generated for each method invocation
computation rises in proportion to n.

Figure 3.1: Thread Generation and Time with Fibonacci in Cacoj

22

Chapter 4

Extension Points

4.1 Prioritized Concurrent Objects

In this section, we first discuss how to extend Creol to provide different levels
of priority scheduling by introducing high-level abstract constructs that can be
used to constrain the nondeterministic selection of a method in an object for
execution. Then, we briefly touch the other issue which is how to select one
object for the purpose of resource allocation and load balancing.

4.1.1 Priority Scheduling

In this section, we investigate an extension to the Creol language that allows
“priority scheduling” of messages in active concurrent objects. In this context,
scheduling refers to the process of how to select a message in an object for ex-
ecution based on a notion of priority. Priority is defined as a range of natural
numbers to denote the importance of the scheduling requirement. In compliance
with client/server model, we view each caller object as the client for the callee
object as the server. Clients send messages that are queued in the server. The
server is responsible to select a message at a time based on how different mes-
sages are prioritized for execution. We provide priority scheduling of method
invocations through extensions to Creol language to express different levels of
priorities in client and server objects.

Please note that the syntax used in this thesis is exemplary and is aimed to
present the ideas. Throughout this section, we take advantage of the sample
presented in Listing 13: an exclusive resource; i.e. a resource that can be
exclusively allocated to one object at a time to behave as a mutual exclusion
token.

On the client side, method calls may be naturally extended with priorities
that are provided in the server interface as a range:

@priority(7) o ! request;

23

Listing 13: Exclusive Resource in Creol

1 interface Resource begin

2

3 with User

4 op request ()

5 op release ()

6 with StatusPoller

7 op isFree (; out isfree)

8 end

9

10 class ExclusiveResource implements Resource

11 begin

12 var taken := false;

13

14 op request () ==

15 await ∼taken;

16 taken := true;

17 op release () ==

18 taken := false

19 op isTaken (; out isfree) ==

20 isfree := taken

21 end

22

23 class User begin

24 op run (Resource mutex) ==

25 await mutex.request ();

26 skip;

27 release;

28 end

The priority on a method invocation is optional; so the default priority for
the method calls without it is a default priority with minimum value.

On the server side, therefore, an interface may introduce a priority range
that is available to all clients. For instance, in Line 2 of Resource in Listing 13,
we can define a priority range:

priority range 0..9

If the method invocations are scheduled only on the basis of the clients’
priority requirements, the server object would be completely at the mercy of
its clients; i.e. clients that put their highest priority only on request will cause
the server to fail to schedule release which means that it will block assuming
a proper behavior of the clients; e.g. never calling release after a completed
request.

In this particular example, we can solve this problem by allowing the server
to define a further priority on the methods themselves. We propose the following
sample syntax to be added to the implementation of the ExclusiveResource server:

24

priority method order ("release" > "request")

The above syntax means that "release" has a higher priority than "request".
A general high-level specification for reconciling the different levels of priorities
will be discussed later in this section. First, we discuss more refined levels of
priorities.

In terms of co-interfaces, each object may also impose a priority ordering on
the types of its co-interfaces. If there are method invocations from different co-
interfaces, the object may decide which to serve first based on the priority of the
co-interface. For instance, we add the following to Line 2 of ExclusiveResource

in Listing 13):

priority interface order ("StatusPoller", "User")

As a final example, the server may also introduce priorities on certain char-
acteristics of a method invocation such as the kind of “release statement” being
executed. This involves the definition of a priority range in the server code and
assigning different priorities to corresponding release points. So, we may rewrite
Line 15 of ExclusiveResource in Listing 13 by adding an identifying label to the
await statement:

@@important: await ∼taken;

We assume the following extension of the above qualitative ordering of
method with this new label for this labeling of the await statement.

priority method order ("release" > "important" > "request")

The priority used in this syntax involves a declaration of a priority range
generally depending on the structure of the class.

We discussed different levels of application-specific priorities. Note that now
each method invocation in the queue of the object involves in general a tuple
of priorities corresponding to different characteristics of callee, method name,
await statement, etc. Therefore, we now introduce a high-level specification of
an “abstract priority manager” which synthesizes different levels of priorities.
We define a general function, δ, to allow the object to map different levels of
priority into one priority value. The mapped value is used to order messages in
the object’s queue:

δ : P1 × P2 × P3 × . . .× Pn −→ P

In other words, δ is a function that maps different levels of priority in the
object ({P1, . . . , Pn}) to a priority value in P that is internally used by the
object to order all the messages that are queued for execution. In an extended
version of δ, it can also involve the internal state of the object, S, including the
values of the field of the object that allows the definition of dynamic priorities.

25

For example, in ExclusiveResource, we have two different levels of priorities
namely the client’s priority and the priority on the methods’ names. The range
of client’s priority is P1 = {0, . . . , 9}. Also, in method name priorities, they
are internally translated into a numerical range; i.e. ("release" > "important" >

"request") is respectively translated to P2 = {0, 1, 2}. So, we define δ : P1×P2 →
P as:

δ(p1, p2) = p1 + p2 × |P1|

As an example, if we have two method invocations such as (pa
1
, pa

2
) = (5,-

"release") and (pb
1
, pb

2
) = (5, "request"), then δ(pa

1
, pa

2
) = 25 and δ(pb

1
, pb

2
) = 5

showing that how method name priorities are respected. It is obvious that the
range of the final priority value is P = {0, . . . , 29}.

Note that the abstract priority manager in general does not completely fix
the “choice” of the method invocation to be executed. For example, there may
be many method invocations with the same priority the selection of which one
is still unspecified. Further, the abstract priority manager does not in gen-
eral enforce strong or weak fairness. In our envisioned tool architecture, we
include an extensible library of predefined scheduling policies such as strong
or weak fairness that further refine the application-specific multi-level priority
scheduling. The policies provided by the library are available to the user to
annotate the classes. We may declare a predefined scheduling policy in Line 13
of ExclusiveResource in Listing 13:

uses scheduling policy StronglyFairScheduler;

These scheduling policies will also be represented in terms of a corresponding
priority range in the δ function. In summary, there will be, first, priorities that
directly stem from the model and are statically specified by the client or the
server and, second, there will be priorities that dynamically change through
time based on the runtime information of the application. In the latter case,
a scheduling policy may use runtime information to re-compute the dynamic
priorities and ensure properties such as fairness of the selected messages; for
instance, it may take advantage of “aging” technique. Thus, δ will take into
consideration all the different concerns when assigning a final priority value to
a message.

4.1.2 Abstract Multicore Machine

In the previous section, we discussed how we extend Creol to provide different
levels of priority scheduling in order to resolve the scheduling issue of selecting
one method of a given object to execute. However, there is another issue of how
to select an object for resource allocation.

In the application level, objects need to be monitored for runtime informa-
tion to optimize resource utilization. Additionally, load balancing techniques
are heavily useful in this context as they maintain runtime information about

26

objects. The “Abstract Multicore Machine” (AMM) provides a model of the
shared resources, including the number of cores, caches, bandwidth, etc., and
will be used to specify strategies for load balancing and scheduling of resources
including memory components. At this level, we need to profile each object to
maintain different information on its execution including memory consumption,
I/O communications, processor utilization and such forth. This information is
an oracle used by AMM in conjunction with operating system to manage and
balance the load among different objects.

AMM is orthogonal but complementary to concurrent objects priority schedul-
ing. As objects internally determine how to express different priority require-
ments they also externally provide a model to obtain various information for a
higher-level model that uses such information to inter-operate with operating
system in the task of load balancing. Moreover, this division of perspectives
brings in a separation of concerns along the line of following two major research
directions. First is to investigate how to involve and allow active concurrent ob-
jects to cooperate in the process of scheduling. And, second is how to develop
and implement AMM in regards with operating system API.

We do not investigate AMM in this thesis. Figure 4.1 depicts the overall
structure of a multicore deployment using Creol language.

4.2 Cacoj Compiler

4.2.1 Creol Extension’s Implementation

4.2.2 Active Object Profiling

27

��������	�A�BC�����

DCE�F

��A����������	�A�BC�����

����������������������

������	��ABCB������D�E��B	F�E������	��ABCB������D�E��B	F�E

java.util.concurrent

��B��E��CCF��B��E��CCF�������� 	�����CB

��BA���

	�����CB

��BA���

ABCB��F�	�B���B��FE�ABCB��F�	�B���B��FE�

����B	FE�����	����
����E������������

����B	FE�����	����
����E������������

���	F�������B	�������	F�������B	����

������

Figure 4.1: Abstract Multicore Machine

28

Chapter 5

Related Work

5.1 Concurrent Programming Paradigms

5.1.1 Actor Model

Agha, in [20], introduces “Actors” as an inherently concurrent programming
model. According to [36], in the Actor model, systems comprise of concurrent
and autonomous entities called actors and messages. Actors communicate by
sending asynchronous messages to other actors for which they should be aware
of the destination actor name (mailbox). Each actor in response to the receiving
messages can display different behavior as [20] proposes:

1. Send a finite set of messages to other known actors;

2. Create a a finite set of new actors; and

3. Define how it will behave in relation to the next incoming messages

To realize the actor model characteristics, [20, 36] propose that each actor se-
mantics should provide:

Encapsulation In this model, there are basically two concerns:

1. State Encapsulation: An actor cannot directly access the internal
state of another actor. An actor may affect other actors’ internal
state through messages that it sends to them [20, 36].

2. Safe Messaging: As [36] mentions, there is no shared state between
actors. Therefore, message passing should be done through call-by-
value semantics.

Fair Scheduling [36] proposes the notion of fairness in actor model meaning
that each message is eventually delivered to its destination actor. This
infers that no actor can be starved for ever.

29

Location Transparency As described in [20, 36], actors communicate through
their mail box address. Thus the actor’s name should not be dependent
on its physical address. This also affects the mobility of actors in case of
location transparency.

Transparent Migrations This property falls into two types of mobility: strong
and weak [20]. Strong mobility refers to the possibility of migrating both
execution state and code while weak mobility refers to the movement of
the actor code.

In actor model, there is an extensive usage of “pattern matching” for mes-
sages that are entrant to the mail box of an actor. This is also important
in case of an internal representation of actor. When a programmer is writing
an actor, she needs to specify the messages to which the actor will respond.
Thus, actor model supporters also tend to take much advantage of “functional
programming” concepts [25, 22, 50, 29].

[36] provides a good comparison of the frameworks implemented for JVM
platform.

5.1.2 Software Transactional Memory

Shavit and Touitou [47] introduce software transactional memory as a novel
method for supporting transactional programming of synchronized operations.
They use STM to provide a general concurrent method for translating sequential
object implementations to non-blocking ones. The most important property of
STM is its non-blocking nature as opposed to lock-based programming models.

According to [47], the challenge of STM is to eliminate the deadlocks for
transactions for which they propose the “helping” methodology. In helping
methodology, each transaction tries to help the owner transaction complete its
works to release the location others are waiting for.

Technically, a transaction is a finite sequence of local and shared memory
machine instructions [47]. Transactions are either read-transactional or write-
transactional ; in the former, there is a read operation from a shared location
while in the latter there is a write operation into a shared location [47]. Each
transaction may either fail or success; in the case of success, the changes are
atomically visible to other processes. Additionally, transactions are isolated and
atomic; the former means that each transactions runs as if others are suspended
while it runs and the latter means that they are all-or-nothing operations [19].
Thus, they give the programmer the illusion of a serial execution.

Accordingly, [47] proposes that a software transactional memory is shared ob-
ject that behaves like a memory that supports multiple changes to its addresses
by means of transactions. A transaction is a thread of control that applies a
finite sequence of primitive operations to memory. This is why software trans-
actional memory is believed to bring in the concept of database transactions on
data into object-oriented paradigm. In this model, each object provides a set of
primitive operations only through which the underlying object (shared memory)

30

can be manipulated. [47] introduces wait-free, non-blocking, and swap-tolerant
transactions as types of STM.

To reason about STM, [47] introduces “real-time order” of processes in a
system; i.e. operation A precedes operation B if A’s response occurs before
B’s response. With this definition, two operations are concurrent if they are
unrelated according to real-time order. A sequence of invocations and responses
is called history. A sequential history is a history in which each invocation is
followed by its corresponding response. The correctness requirement of STM is
based on linearizability of a concurrent history being equivalent to some legal
sequential history that is consistent to some real-time order induced by the
concurrent history.

In an evaluation, in [23], they propose that the promise of STM may likely
be undermined by its overheads and workload applications. They believe that
STM introduces new issues into programming models:

Interaction with non-transactional codes that includes accessing data that
is outside the transaction.

Exceptions and serializability that is a question on how to handle excep-
tions and propagate them within the context of transactions to outside.

Interaction with code that cannot be transactionalized that can be a
requirement in specific circumstances.

Livelock that is a property to ensure that all transactions are making progress
through time.

Based on these issues, they believe that STM has not yet matured and will
not by itself solve the challenges of parallel programming, however, they are
useful in the context of concurrent data structures. They also argue that STM
introduces nontrivial drawbacks with respect to performance and programming
semantics:

Overheads. STM approach inherently introduces overhead that is in direct
opposition with performance.

Semantics that falls into:

1. Weak Atomicity that occurs when there is no detection of conflicts
based on transactional and non-transactional regions.

2. Privatization: Being in the context of a transaction or being used in
private by the underlying object can make the design decision more
complex.

3. Memory Reclamation: Some designs restrict the use of memory ac-
cessing constructs directly that becomes a burden.

Legacy Binaries. STMs that take advantage of code instrumentation on the
original code face difficulties to be used with legacy programs for which
the original code is not available.

31

They conclude that there are a lot of challenges in STM field including lower-
ing the overheads of STMs and the elimination of unnecessary read and write
operations. Finally, they believe that TM programming model introduces com-
plexities that limit the expected productivity gains and reduces the tendency
towards its usage.

In another research, [19], they provide some implementation and evalua-
tion in favor of STM. They start by proposing the concept and requirement for
languages to introduce new constructs to support software transactional mem-
ory. They reason that unlike coarse-grained locking, STM provides fine-grained
locking mechanisms and boost scalability through:

1. Allowing concurrent read operations on the same variable since basic mu-
tual exclusion locks do not permit concurrent readers.

2. Allowing concurrent read and write operations on disjoint variables that
may comprise two or more active threads of control.

However, they also mention that in modular software engineering fine-grained
locks are not feasible when modules are composed together. They conclude that
yet STM is not the best solution in parallel programming but with the help of
other technologies such as task decomposition or mapping, it has taken concrete
step in making parallel programming easier.

In another research, [39], they provide a good overview of design and imple-
mentation issues in STM and they introduce RSTM. They propose that major
design issues include:

Metadata Organization that is mainly about how to maintain information
about acquired objects in a transactional system that is referred to as
transactional metadata. They compare two approaches that are per-object
metadata as used in DSTM [31] and per-transaction metadata as used in
OSTM [28]. RSTM uses per-object metadata.

Conflict Detection. There are two approaches that existing STMs use for
conflict detection. In eager approach, the objects are acquired at the
soonest open time (DSTM). However, in lazy approach it is delayed until
the commit time of the object (OSTM). RSTM supports both. Each
approach has its own advantages and disadvantages. With eager detection
there could be prevention of unnecessary future operations in close future
while also taking the chance to ruin related work that is already performed.
And, obviously, lazy detection may have the opposite properties.

Contention Management introduces the concept of competing objects and
their circular dependencies that may lead to deadlocks. As proposed in
[47], helping is used, however, it may also result in heavy interconnect
contention and high cache miss ratio. Thus, some use the concept of
obstruction freedom [30] that prevents livelock and starvation; RSTM is
obstruction free.

32

Validating Readers talks about the inconsistency that may be caused in lazy
approaches when some private data objects are created to be used later in
write operations and in case of abortion they may still expose inconsistent
data to other transactions.

Memory Management. There is always need for memory reclamation in soft-
ware transactional memory. A general purpose garbage collector helps,
however, in languages such as C++ in which direct access to memory is
present the reclamation policy should be decided by the programmer.

Also, they summarize that what could be the source of overhead in STM im-
plementations:

Bookkeeping talks about the maintenance of the objects to facilitate the fetch
and write by objects.

Memory Management for metadata and private date objects that cooperate
in the implementation of STM principles.

Conflict Resolution. There should be some speculation over the avoidance
and resolution along with the operations required for helping concept.

Validation. As discussed before validating reader may introduce new and costly
operations for the STM.

Copying. When to-be-written data object are created the copying process may
not be so costly, however, in the case of large objects that only require a
small change this could become a heavy cost.

They conclude with strengthening features of RSTM over other implementa-
tions, however, as this is an optimization approach, it also implies that STM
has much of overhead and challenges that should be faced with.

5.1.3 Data Flow Programming

Data flow programming [3], that can be considered a branch of flow-based pro-
gramming [5], focuses on facilitating parallel computation through division, con-
querence and merging of a program based on the data it processes. The division
occurs such that parallel flows of computation can be managed and directed af-
ter which the results are again merged to yield the final output of the program.
Much of the decisions in the phases are upon the programmer but not the syn-
chronization and parallelization parts.

Based on data flow programming, in [26], they propose MapReduce that is
basically based on one map and one reduce function. It is originally proposed
and extensively used at Google.

The user writes two function. “Map” takes an input pair and produces a
set of intermediate key/value pairs. When the computation is done, the library
groups together all intermediate values associated with the same intermediate

33

key and passes them to reduce function. “Reduce” function accepts an inter-
mediate key and all the grouped associated values and it is supposed to merge
the values to possibly form a smaller set of values. For instance, in [24], they
use MapReduce in Machine Learning purposes.

[44] introduces Phoenix as an implementation of MapReduce on shared mem-
ory. They do an evaluation of MapReduce feasibility on multicore and multi-
processor systems. They start by arguing that the main feature of MapReduce
approach is its simplicity. The programmer thinks about the functionality rather
than parallelization concerns. However, they propose the question that “how
widely applicable is the MapReduce model” is not studied in the research. They
conclude that MapReduce is a useful programming and concurrency manage-
ment approach for shared-memory systems that are heavily data-centric.

5.2 Languages and Libraries

5.2.1 Actor Model

A number of languages have been developed that either specifically or as-a-part
support actor programming model:

Erlang [22] is a dynamically typed functional language that was developed at
Ericsson Computer Science Laboratory with telecommunication purposes
[25]. Erlang has a process-based model of concurrency. Concurrency is
explicit and the user can precisely control which computations are per-
formed sequentially and which are performed in parallel. Message passing
between processes is asynchronous, that is, the sending process continues
as soon as a message has been sent.

SALSA [50] is an actor-based language for mobile and Internet computing
that provides three significant mechanisms based on actor model: token-
passing continuations, join continuations, and first-class continuations.
Essentially, a continuation is an executable behavior that is used when
an actor completes its asynchronous response to a message.

In token-passing continuation, a concept of “customer” actor is defined
that is part of a message sent to an actor. When the actor completes
processing the message, it will pass by the token to the customer actor
that will continue the processing the result.

In join continuation, a customer actor receives an array with the tokens
returned by multiple actors once they have all finished processing their
messages.

First-class continuation is a smart way to delegate computation to a third-
party independent of the message processing context. In this type of
continuation, a continuation is assigned to an object to be used when
some processing is finished.

34

E Language [4] is a lambda-language such as Smalltalk that mainly comprises
of the language and ELib; ELib provides is a pure Java library that pro-
vides distributed programming concepts. It provides inter-process messag-
ing with security and encryption, event-loop concurrency and deadlock-
free distributed object computing. E runs on JVM.

Ptolemy [37] is an actor-oriented open architecture and platform that is used
to design, model and simulate embedded software. Their approach is
hardware software co-design. It provides a platform framework along with
a set of tools.

Axum [40] is a language that builds upon the architecture of the Web and
principles of isolation, actors, and message-passing to increase application
safety, responsiveness, scalability, and developer productivity.

Another stream of effort has been into developing libraries and frameworks
for existing languages:

Java: Scala Actors Library [29, 17] : Scala is a hybrid object-oriented and
functional programming language inspired by Java in which a famous Ac-
tors library exists that mimics the Erlang implementation. The most im-
portant concept introduced in [29, 17] is that Scala Actors unifies thread-
based and event-based programming model to fill the gap for concurrency
programming. In this model, an actor is a thread that can also react to
events that come from other actors; i.e. it provides both “receive” and
“react” features. “React” is a compliment to “receive” that is proposed
in the original actor model.

Java: Kilim [48] is a framework used to create robust and massively concur-
rent actor systems in Java. It uses a bytecode post-processor called Weaver
[48]. Kilim takes advantage of code annotations on bytecode to provide
the facility.

Java: ActorFoundry [36] is a Java framework that brings the actor model
implementation to the developer through the use of code annotations. It
provides fair scheduling, actor mobility, and safe messaging out of the
actor semantics.

Java: Jetlang [45] provides a high performance Java threading library. The
library is based upon Retlang [46] for C#. The library is a complement
to the java.util.concurrent package introduced in 1.5 and should be
used for message based concurrency similar to event based actors in Scala.
The library does not provide remote messaging capabilities. It is designed
specifically for high performance in-memory messaging.

Java: JavAct [33] platform is based on the actor model and open implemen-
tation principles. With JavaAct, users write high-level Java standard code
without considering low-level mechanisms such as threads, synchroniza-
tion, RMI, Corba, etc. JavaAct has been designed in order to be minimal

35

in terms of code and so maintainable at low cost, portable, and easy-to-use
for Java junior programmers who know a little of actors. It does not need
any preprocessing and can be used with any standard Java toolkit.1

Java: AJ [53] is a software system for writing distributed programs in Java,
and is based on the actor model. In AJ, an actor is an extension of
an object: where objects communicate by calling each others methods,
actors communicate by sending asynchronous messages to each other. AJ
provides the messaging layers that allow actors to communicate with each
other, no matter if the actors are on the same computer, or scattered
across a network. AJ design goal has been experimentation in terms of
clarity and modularity rather than performance.

Java: Jsasb. The project homepage has been removed.

C++: Act++ [38] is a class library for concurrent programming in C++
using actors model. Theron [16] is a lightweight, portable C++ class
library for developing parallel applications. It implements a simple service-
oriented model of concurrent processing based on the Actor Model.

Other implementations include Broadway, and Thal for C/C++, Stackless
for Python, MS Asynchronous Agents Library and Retlang [46] for .NET, Stage
for Ruby, and Actalk for Smalltalk.

5.2.2 Software Transtactional Memory

Mutiverse [15] is a Java based STM implementation that aims at seamless in-
tegration in the language and language independence in the form a frame-
work.

Clojure [32, 2] is a dynamic programming language as a dialect of LISP that
target the Java Virtual Machine. Clojure provides concurrent program-
ming constructs based on STM concepts.

JVSTM [13] , another Java based STM library, introduces two core concepts
as “transactions” and “versioned boxes”. The goal is to allow transac-
tion programming at the programming language level, independent of an
external transaction manager.

Intel C++ STM Compiler [10] is a C++ platform that provides STM con-
cepts of isolation and atomic executions in a C++ compiler. Transac-
tional Locking II (TL2) [27] is an STM algorithm based on a combination
of commit-time locking and a novel global version-clock based validation
technique.

1The documentation seems to be only in French.

36

Java C++ Python C#

Actors

Scala, Erlang,
SALSA, Axum,
Ptolemy, Kilim,
ActorFoundry,
Jetlang, JavAct,
AJ

Theron, Act++
Stackless,
V3.2+

Retlang

STM
Multiverse, Clojure,
DSTM2 (Fortress),
Deuce, JVSTM

TL2 (Sun), Intel
C++ STM

Durus SXM

Data
Flow

Java 7+ JSR 166y
Fork/Join, Hadoop

OpenMP,
TBoost.STM,
Hadoop Stream-
ing

Disco (Nokia)
Dryad, Hadoop
Streaming

Figure 5.1: Summary of different libraries and languages for different paradigms

5.2.3 Data Flow Programming

Java 7 [11] is supposed to provide language-level features for data flow pro-
gramming as proposed in JSR 166y [12] including fork/join.

Apache Hadoop project [7] develops software for reliable, scalable, distributed
computing proposing several frameworks among which is MapReduce [8]
that is a framework for distributed processing of large data sets on com-
puter clusters.

Figure 5.1 summarizes some of the most current works for languages Java,
C++, Python, and C# in the three discussed paradigms.

5.2.4 All-in-one solutions

There are also some interesting languages that have tried to provide all the
different approaches in one library or language including Haskell and GPars.

Haskell

Haskell [9] is an advanced purely functional programming language which, among
others, seems to have implemented more than one approach towards providing
built-in multicore programming features. These , according to [18, 41], include a
primitive type MVar that is a primitive in the language to provide asynchronous
channels, an ability to spawn new concurrent threads via forkIO primitive, and
software transactional memory through TVars and retry and orElse primi-
tives. Additionally, it provides an actor model implementation that is internally
dependent on Haskell’s STM implementation.

37

GPars

GPars [6] is a Groovy/Java library that aims to provide easier techniques to
programmers to handle concurrency tasks. The main areas include concurrent
collection processing and fork/join abstraction, asynchronous operations, Ac-
tor model, data flow concurrency data structures, agent-oriented programming
primitives and a planned2 STM implementation.

5.2.5 Hybrid solutions

In another perspective, some have started to create a blend of different ap-
proaches to provide solutions and techniques for multicore programming.

Akka

Actor model is based on asynchronous message passing. That is why Scala, for
instance, favors the use of immutable objects in message passing mechanisms.
However, immutable objects make it so hard to actually have a shared state so
that multiple threads and objects can manipulate.

Software transactional memory (STM) makes it simple to synchronize shared
state manipulation with object transactions. It also has the advantage that
transactions are composable. However, asynchronous communication is compli-
cated with STM.

Akka [1] is a platform that provides a simple way to develop concurrent
and fault-tolerant applications using a mixture of Actors and STM. It proposes
the notion of Transactors that are Actors which support STM in their be-
havior, so, they provide transactional, compositional, asynchronous, event-based
actors. Akka already takes advantage of another library Multiverse [15] that
is an STM implementation for Java, Groovy, and Scala. The platform is still
under development but working.

MPI

The MPI [14] standard includes point-to-point message-passing, collective com-
munications, group and communicator concepts, process topologies, environ-
mental management, process creation and management, one-sided communi-
cations, extended collective operations, external interfaces, I/O, some miscel-
laneous topics, and a profiling interface. Language bindings for C, C++ and
Fortran are defined. This standard has an assumption that it will be used on
a distributed memory architecture. On the contrary, the multicore architec-
ture is commonly assumed to be based on a shared memory architecture. The
difference should be noticed in this line for the applications.

2As of the date of this report

38

Chapter 6

Conclusion

In this thesis, we developed Cacoj that introduces a concurrency API for active
objects in Java and a compiler tool to translate Creol’s active objects into Java.
We adopt a per-active-object control over scheduling of messages in contrast
with related languages and frameworks; that is also why we choose Creol since
it provides a natural approach towards multicore deployment using concurrent
active objects. We discussed how the overall architecture of Cacoj facilitates the
deployment of Creol objects into concurrent Java Runtime Environment. Ca-
coj’s project web could be accessed at http://sourceforge.net/apps/trac/
cacoj/.

As the major future work, we work on the Creol language extension to enable
the support to specify different levels of priorities for method invocation includ-
ing method invocation priority, priority ordering on methods/co-interfaces, and
other levels prioritizing method invocations on statement levels. We will inte-
grate this language extension into Cacoj through a priority management mech-
anism in line with the current scheduling management features. In addition,
we intend to extend and integrate into our tool set the model checking engine
Modere [34] that was earlier developed for an actor-based language. Moreover,
another future work may involve profiling and monitoring objects at runtime
for optimization and improving performance.

39

http://sourceforge.net/apps/trac/cacoj/
http://sourceforge.net/apps/trac/cacoj/

Bibliography

[1] Akka Project. http://akkasource.org/.

[2] Clojure concurrent programming. http://clojure.org/concurrent_

programming.

[3] Data Flow Programming. http://en.wikipedia.org/wiki/Dataflow_

programming.

[4] The E Language. http://erights.org/.

[5] Flow-based Programming. http://en.wikipedia.org/wiki/Flow-based_
programming.

[6] GPars. http://gpars.codehaus.org/.

[7] Hadoop. http://hadoop.apache.org/.

[8] Hadoop MapReduce. http://hadoop.apache.org/mapreduce/.

[9] Haskell. http://www.haskell.org/.

[10] Intel C++ STM Compiler. http://software.intel.com/en-us/

articles/intel-c-stm-compiler-prototype-edition/.

[11] Java 7. https://jdk7.dev.java.net/.

[12] JSR 166: Java concurrency utilities. http://www.jcp.org/jsr/detail/

166.jsp.

[13] JVSTM. http://web.ist.utl.pt/~joao.cachopo/jvstm/.

[14] MPI. http://www.mpi-forum.org/.

[15] Multiverse: Software Transactional Memory for Java.
http://multiverse.codehaus.org/overview.html.

[16] Theron. http://theron.ashtonmason.net/index.php.

[17] Coordination Models and Languages, chapter Actors That Unify Threads
and Events. Springer Berlin / Heidelberg, 2007.

40

http://clojure.org/concurrent_programming
http://clojure.org/concurrent_programming
http://en.wikipedia.org/wiki/Dataflow_programming
http://en.wikipedia.org/wiki/Dataflow_programming
http://erights.org/
http://en.wikipedia.org/wiki/Flow-based_programming
http://en.wikipedia.org/wiki/Flow-based_programming
http://gpars.codehaus.org/
http://hadoop.apache.org/
http://hadoop.apache.org/mapreduce/
http://www.haskell.org/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
https://jdk7.dev.java.net/
http://www.jcp.org/jsr/detail/166.jsp
http://www.jcp.org/jsr/detail/166.jsp
http://web.ist.utl.pt/~joao.cachopo/jvstm/
http://www.mpi-forum.org/
http://theron.ashtonmason.net/index.php

[18] Multicore Haskell Now!, DEFUN 2009. http://donsbot.wordpress.com/
2009/09/05/defun-2009-multicore-programming-in-haskell-now/.

[19] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Unlocking
concurrency. Queue, 4:24–33, December 2006.

[20] Gul A. Agha. Actors: a model of concurrent computation in distributed
systems. PhD thesis, MIT, 1986.

[21] G.R. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley, 2000.

[22] Joe Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[23] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Software transactional mem-
ory: why is it only a research toy? Commun. ACM, 51:40–46, November
2008.

[24] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on
multicore. In NIPS, pages 281–288. MIT Press, 2006.

[25] Fábio Corrêa. Actors in a new ”highly parallel” world. In Proceedings
of the Warm Up Workshop for ACM/IEEE ICSE 2010, WUP ’09, pages
21–24. ACM, 2009.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51:107–113, January 2008.

[27] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Shlomi
Dolev, editor, Distributed Computing, volume 4167 of Lecture Notes in
Computer Science, pages 194–208. Springer Berlin / Heidelberg, 2006.

[28] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM
Trans. Comput. Syst., 25, May 2007.

[29] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 410(2–3):202
– 220, 2009.

[30] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
double-ended queues as an example. In Distributed Computing Systems,
pages 522–529. IEEE, May 2003.

[31] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures. In
Proceedings of the twenty-second annual symposium on Principles of dis-
tributed computing, PODC ’03, pages 92–101. ACM, 2003.

41

http://donsbot.wordpress.com/2009/09/05/defun-2009-multicore-programming-in-haskell-now/
http://donsbot.wordpress.com/2009/09/05/defun-2009-multicore-programming-in-haskell-now/

[32] Rich Hicky. Clojure. http://clojure.org/.

[33] S. Rougemaille J.-P. Arcangeli, F. Migeon. JavaAct. http://www.javact.
org/JavAct.html.

[34] Mohammad Mahdi Jaghoori, Ali Movaghar, and Marjan Sirjani. Modere:
the model-checking engine of rebeca. In Proceedings of the 2006 ACM Sym-
posium on Applied Computing (SAC), Dijon, France, April 23-27, 2006,
pages 1810–1815, 2006.

[35] Einar Broch Johnsen and Olaf Owe. An Asynchronous Communication
Model for Distributed Concurrent Objects. Software and Systems Modeling,
2007.

[36] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks for the
JVM platform: a comparative analysis. In Proceedings of the 7th Inter-
national Conference on Principles and Practice of Programming in Java,
PPPJ ’09, pages 11–20. ACM, 2009.

[37] Edward A. Lee. Overview of the Ptolemy Project. Technical report, Uni-
versity of California, Berkeley, 2003.

[38] Loch M., Mukherji M., and Lavendar G. Act++ 2.0: A class library for
concurrent programming in C++ using actors. Journal of Object-Oriented
Programming, 1993.

[39] Vriendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,
David Esienstat, William N. Scherer III, and Michael L. Scot. Lowering
the overhead of nonblocking software transactional memory. In Proceedings
ACM SIGPLAN, TRANSACT ’01. ACM, 2006.

[40] Microsoft Corporation. Axum Programming Language. http://msdn.

microsoft.com/en-us/devlabs/dd795202.aspx.

[41] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real World
Haskell, chapter (24) Concurrent and multicore programming. O’Reilly,
2008.

[42] Terence Parr. Antlr. http://antlr.org/.

[43] Terence Parr. StringTemplate Library.

[44] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and
Christos Kozyrakis. Evaluating mapreduce for multi-core and multiproces-
sor systems. In Proceedings of the 2007 IEEE 13th International Sym-
posium on High Performance Computer Architecture, pages 13–24. IEEE
Computer Society, 2007.

[45] Mike Rettig. Jetlang. http://code.google.com/p/jetlang/.

42

http://clojure.org/
http://www.javact.org/JavAct.html
http://www.javact.org/JavAct.html
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx
http://antlr.org/
http://code.google.com/p/jetlang/

[46] Mike Rettig and Graham Nash. Retlang. http://code.google.com/p/

retlang/.

[47] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10:99–116, 1997.

[48] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors for
Java. In ECOOP 2008 Object-Oriented Programming, volume 5142, pages
104–128. Springer Berlin / Heidelberg, 2008.

[49] Venkat Subramaniam. Programming Scala: Tackle Multi-Core Complexity
on the Java Virtual Machine. Pragmatic Bookshelf, 1 edition, July 2009.

[50] Carlos Varela and Gul Agha. Programming dynamically reconfigurable
open systems with salsa. SIGPLAN Not., 36:20–34, December 2001.

[51] Wikipedia. Generating primes.

[52] Wikipedia. Sieve of Eratosthenes.

[53] Wililla Zwicky. AJ: A system for building actors with Java. PhD thesis,
University of Illinois at Urbana-Champaign, 2008.

43

http://code.google.com/p/retlang/
http://code.google.com/p/retlang/

	Introduction
	The Problem
	Cacoj
	Organization of the Thesis

	Cacoj
	Overview
	Creol
	Concurrent Java

	Concurrency API
	Cacoj Compiler
	From Creol To Java
	Compilation Process

	Case Studies
	Prime Sieve
	Lazy Fibonacci

	Extension Points
	Prioritized Concurrent Objects
	Priority Scheduling
	Abstract Multicore Machine

	Cacoj Compiler
	Creol Extension's Implementation
	Active Object Profiling

	Related Work
	Concurrent Programming Paradigms
	Actor Model
	Software Transactional Memory
	Data Flow Programming

	Languages and Libraries
	Actor Model
	Software Transtactional Memory
	Data Flow Programming
	All-in-one solutions
	Haskell
	GPars

	Hybrid solutions
	Akka
	MPI

	Conclusion

