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CONTINUUM POPULATION DYNAMICS
WITH AN APPLICATION TO DAPHNIA MAGRA

O. DIEKMANN. JAJ. METZ, SALM. KOOIUMAN & HJ.AM. HEIJMANS

ABSTRACT

The paper starts by discussing the formulation of models for the dynamics
of populations with physiological structure in the language of continuum
mechanics. Subsequently it is indicated how the spectral theory of positive
semigroups of operators yields results about stable distributions in linear
models. It is shown how the formalism can be used to deduce the population
consequences of the physiological effects of toxic chemicals on individuals
of, for imstance Daphinia magna. Finally, the need for mathematical machinery

which is well suited to analyse nonlinear problems 1s stressed.
1. INTRODUCTION

The partial differential equations of continuum mechanics describe the
evolution in the course of time of the density of particles in an elastic
material, a fluid or a gas. They are derived by combining a mathematical
description of the physical forces that act upon the particles with book-
keeping arguments based on conservation of mass, etc. .

A first and crude description of the state of a population is given by
the number of individuals. As a next step one may distinguish individuals
from each other according to relevant physiological traits (a large codfish
is not the same as a small codfish when one considers reproduction and
predation). The present paper is concerned with this "mext step'. Exploiting
the similarity with the bookkeeping part of continuum mechanics we shall
describe, in section 2, the mathematical structure of a large class of models.

The aim of these models is to describe the behaviour of populations in
terms of the behaviour of individuals (such that, for instance, the impact
of toxic substances on populations can be inferred from the impact on the

individuals). In later sections it will be argued that the explicit
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incorporation of physiological structure enables one to describe density
dependence on the basis of biological facts (or, at least, biologically
plausible arguments) as opposed to ad hoc mathematical assumptions in un-
structured models.

In section 3 we shall sketch how spectral theory, compactness arguments,
positivity arguments and the theory of semigroups of operators can be com—
bined to yield resuls about stable distributions in lZnear models. Without
much disadvantage most of this section may be skipped by those readers which
are not interested in functional analysis. In section 4 we show how the
mathematical machinery (both the existing and some which still has to be
developed) is of value for deriving the ecological consequences from phys-
iological effects of toxic chemicals on the individual members of a popula-
tion. In section 5 we observe that there exists, as yet, no systematic
theory for monlinear problems, even if we have some idea how to proceed in
some special cases.

This paper describes an odd concoction of mathematical modelling,
(functional) analysis and biological experiments, but deliberately so. Among
other things we intend to demonstrate that the interplay of mathematics and

biology can be profitable for both fields simultaneously.
2. BOOKKEEPING AND MODEL SPECIFICATION

Let the physiological state of each individual be given by the value
of an N-vector x. Thus the state space of the individuals is Q, some subset
of ]RN . The individuals trace orbits in Q. The beginning and the end of
such orbits are the physiological state at birth and death, respectively
("birth" and '"death" have to be interpreted broadly as we shall see in the
examples later on). We assume that in between the orbits are determined
by an ordinary differential equation
2.1) E =,
where v: 0 > R describes the veloctZty with which the individuals move
through Q. Of course v may depend on other variables but we do not, at this
point, include this explicitly in our notation.

Let n(t,.): Q > ]R+ be the density function at time t, i.e., for each
QO c Q the number of individuals at time t with physiological state belonging

to QO is given by
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J n(t,x)dx.
&0
Then vn is the flux of individuals and a standard application of the diver-

gence theorem leads to the balance law
(2.2) —?E + div(vn) = sources - sinks s

where sources and sinks describe birth and death (see, for instance, Lin &
Segel (1974), Segel (1977) and the papers by Segel and Oster in DiPrima
(1977)). We shall assume that the number of individuals in the relevant
states is so large that we can use a deterministic approximation to describe
inherently stochastic processes. Or, in other words, we shall describe the
birth and death processes which involve some element of chance in terms of
rates. Formulating a mathematical model now amounts to specifying Q, v, the
sources and sinks, and -v.vn (where v is the outward unit normal) at that
part of the boundary 3Q where v.v < 0 (i.e., where newborn individuals can
enter Q). In order to illustrate the formalism we present two sets of exam—
ples which concern unicellular organisms reproducing by fission and ecto-

thermic animals having weight dependant fertility.

Example 1: Multiplication by division. For simplicity we shall assume that
the organisms do not die. The necessary modifications to incorporate deaths
are immediate.

a: Let the cells be characterized by their age (i.e., the time elapsed since
the cell was created by a division of her mother). Let b(a) denote the rate
at which cells of age a divide into two daughters. Since da _ 1 and all cells

dt
are born with age zero we obtain

—Ba?n(t,a) + -;é—n(t,a) = - b(a) n(t,a),
@.1 ' w
n(t,0) =2 Jb(c) n(t,o)do.
0

b: Instead of age we now use "size" s to characterize the cells. If cells

divide into two identical daughters exactly when reaching size one we have

2 0(6,8) + = (v($)n(t,s)) = 0,
2.2)

v($)n(t,§) = 2 v(n(t,1) .



CONTINUUM POPULATION DYNAMICS 85

Here v(s), the growth rate of cells of size s, is assumed to be positive.
c: Again suppose that cells divide exactly when reaching size one, but now
assume that the two daughters are not necessarily identical.

Let the probability that fission results into onme daughter of size s

and one of size I-s be described by the nonnegative function D which is sym—

metric about { and has integral 1. Then

;E n(t,s) + ;5 (v(s)n(t,s)) = 2v(1) D(s) n(t,1)
(2.3)

v(0) n(t,0) =0

d: Let b(s) denote the rate at which cells of size s divide into two iden~—

tical daughters of size js. Then

é% n(t,s) + é% (v(s) n(t,s)) = - b(s) n(t,s) + 4b(2s) n(t,2s),
(2.4)

v(0) n(t,0) = 0.

Exercise: explain the factor 4.
e: Asymmetric division into a part of fixed size So (the daughter) and a

part of size s—s, (the mother) is described by

] 3

5t n(t,s) + ey (v(s) n(t,s)) = = b(s) n(t,s) + b(s+so) n(t,s+so),
(2.5)

v(so) n(t,so) = J b(o) n(t,o)do.
0

f: Combining the examples a and d we arrive at the equations

é% n(t,a,s) + é% n(t,a,s) + é% (v(a,s) n(t,a,s)) = - b(a,s) n(t,a,s)
(2.6) o
n(t,0,s) = 4 j b(o,2s) n(t,0,2s)do.
0

for the age-size density.

REMARKS. 1. These examples clearly illustrate jump phenomena and non-local
coupling: individuals may jump instantaneously from one position in the
physiological state space to another or they may produce offspring at some

other position. This feature is characteristic for models from population
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dynamics and it is perhaps the main reason why continuum population problems
are, despite many similarities so different from problems in continuum

mechanics.

2. In these models both the individual growth rate as well as the division
rate may depend on environmental conditions. This will be made more explicit
in the next example. When the individuals themselves contribute to the
(change in) environmental conditions we end up with a (set of) nonlinear

equation(s).

Example 2: Size dependent reproduction in ectothermic antmals.

In contrast with the previous example we shall immediately specify all the
functions involved from first principles. The model was derived with the
waterflea Daphnia magna in mind as the experimental animal. (However, its
applicability appears to be much more general.) More details on the individ-
ual level as well as empirical evidence for the correctness of our assump-
tions can be found in Kooyman & Metz (in press).

a will again denote age, w will denote weight, £ ~ w]/3 length and x food
density.

We start with individual growth. It is assumed that ingestion equals
vf(x)£2 = \)f(x)wz/3 with f(x) = ‘—%. The basis for this assumption is
that the maximum rate of food intake of an animal should equal the maximum
digestion rate which scales with the surface area of the digestive apparatus.
Moreover, for filter feeders (and also for many other feeding types) the
food intake at low food densities is proportional to food density times the
surface area of the food catching apparatus. A hyperbolic relation between
food density and intake rate results from many micro models of the food
catching process (Holling, 1959; Rashevsky, 1959; Metz & van Batenburg, in
press). In the ecological literature it is known as the Holling functional
response, in the biochemical and microbiological literature as the Monod
curve. ‘Figure la shows the fit of the assumed relation between food density,
body size and amount eaten per unit of time for some literature data on
Daphnia magna.

We assume, moreover, that a fraction k of the ingested energy is chan-
nelled to maintenance and growth, and a fraction l-k to reproduction.
Finally, maintenance is assumed to be proportional to weight. The result is
a growth equation of so~called von Bertalanffy type (Von Bertalanffy, 1934)

dw

rro rf-l (kvE (x)wZ/3

_Cw)_'_ 5
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Fig. 1: Left: Feeding rate at 20 C of the waterflea Daphnia magna on the

alga Chlorella as a function of food density x and body length £. The fit-
ted curves are given by y = v—@zf(x) with f(x) = £x/(1+£x), with

v o= 0.75x105 cells /h.mmz), £ =0.7x 10~5m1/ce11. Data from McMacon & Rigler
(1963), reproduced by Wulff (1980).

Right: length £ of Daphnia magna as a function of age a for various food
densities x. The fitted curves are given by

L = f(x)ﬂm-[f(x)ﬂm-—ﬂb] exp (-ya), with f(x)ﬂm = 2.89, 3.24, 3.72, 4.17,

4.31 mm, £ = 0.8mm, vy = 0.17d" .

b

where n denotes the energy cost of growth. The + accounts for the fact
that large animals stop growing, but do not shrink, when food density drops

(z+ := max (z,0)). Transforming to length we find

Lo, ?]ﬁ (v (x) - 20), =t g(x,8)
2.7)
2(0) =2,

where Kb’ the length at birth, is assumed to be fixed. Figure 1b shows the
fit of the solution to (2.7) at various constant values of x for some lab~-
oratory observations on the growth of Daphnia magna.

To calculate the birth rate we recall that a fraction I-«x of the inges-
ted energy is channelled to reproduction. Nevertheless we assume that the
animals only start making young when their length has reached a certain
value, to be called ZJ, since they first have to build up their reproductive

apparatus. Moreover, there is an exception to the k-rule: when food density
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suddenly drops very far, maintenance takes priority for otherwise the animal
would die. More precisely we assume that the individual reproductive rate

B(x,£) is given by

0 YARS ZJ
- 2
2.8) 8D = (G (m0vi) £ Lcl<t
@)™ eGIE" -2t [PV

where (i) wwy is the energy needed to produce one young; (ii) é i= Z;—lva(x)
is the size (at the current food density) at which exactly the fraction «

of the ingested energy is needed for maintenance; 7= C-l vE(x) is the size
at which all ingested energy is needed for maintenance. Animals for which

£ > T are assumed to die.

Finally we need the death rate. It appears that, except for death from

starvation, this quantity is largely determined by age (and not by size).
Some possible choises are

(a : u(,d) =d

d, a<a
(2.9) (b]) :u(a,d) = { _ n , where a_ is the maximum possibl e
®, a=a, m
age.
(bz) s ula,d) =d + y(@) , with for instance, y(a) = S ]—a .
m

The last formula was found empirically in preliminary laboratory observations
on individual Daphnia.

Our mext step is writing down the population equations. In the case of

(2.9a) the death rate is not age dependent and we may describe the population
completely by its size distribution:

%n(t,f,) + -;7 (g(x,)n(t, L)) = - dn(t,L) for £ < Z(x)

n(t,2) =0 for £ = £(x)

g(stb)n(t,ﬂb) = JB(X,[) n(t,L)de
Q
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with Q@ = [Kb,ﬂm] , with Km = §~1Kv the upper bound to the individual lengths.
When death does depend on age we might naively write

%n(t,a,ﬂ) + 'a%' n(t,a,f) + % (g(x,£) n (t,a,4)) =

= - u(a,?) n(t,a,d)

with Q@ = [O,am] x[ﬂb,ﬂm].

However, when we try to formulate the boundary condition we run into some

trouble: since both age and size are fixed at birth, we need a delta "function"

a(e,0,0) = 8-t | B0 n (£,2,0) da at.
Q
Moreover, the deterministic individual growth pushes this delta "function"
from the boundary into the interior of Q: all mass will always be concen-
trated on some (varying) curve in Q.
Thus we prefer to work with a function of one variable, for which

we choose age, and to do some extra bookkeeping in order to know the relation
between age and length. Murphy (1983) has recently introduced a convenient
trick to do the latter: to write down a separate partial differential equation

for £(t,a), the age-length relation at time t

g% L(t,a) + é%-@(t,a) = g(x,£(t,a))

£(t,0) = P_b
(2.10) ‘;E n(t,a) + _395 n(t,a)=-u(a,l(t,a)n(t,a) ,  L(t,a) < L(x)
n(t,a) =0 , L(t,a) 2 L)

n(t,0)

J B(x,2(t,a)) n(t,a)da
Q

where Q = [O,am]. This equation also encompasses the former case of (2.9a)

if we allow a = .
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REMARKS. 1. Equations (2.10) can easily be generalized, e.g. to take care

f deaths as a result of the accumulation of toxic compound by introduction
of dea

£ additional equations for the internal concentrations of toxic compounds
of addi

a function of a and to let u depend on these concentrations as well.
as

2. In our derivation we have implicitly assumed that the animal has no energy
reserves, so that it dies as soon as energy intake cannot keep pace with
3
maintenance. A more detailed model on the individual level, which takes

account of energy reserves, is developed in Kooijman (in press).

3. The derivation contains one hidden assumption which is slightly embarras-
sing from a biological point of view: the production of young is assumed
to depend instantaneously on energy intake. In other words, an individual
needs not accumulate the necessary emergy ww, . Thus we implicitly assume
that all individuals at each time add some infinitesimal amount of young
tissue to a communal pool from which, by some miracle, the individual
young are created. This assumption is commonly made in the literature
of mathematical biology, but always implicitly. A rigorous justification
of the resulting equations is possible, however, by assuming that the
size of the young is very small, that very many young are produced, but

that most of them die at a very early age (Heijmans & Metz, in prep.).
3. POSITIVE SEMIGROUPS AND STABLE DISTRIBUTIONS

In this section we assume that the environment is constant and that
the equation is linear. If the model specification is complete, adding an
initial condition n(0,x) = ¢ (x) should single out a unique solution
n = n(t,x;¢). So a first mathematical task is proving existence and unique-
ness of a solution to the initial value problem. A frequent approach is to
use tntegration along characteristics (i.e, along curves in the (t,x) — space
determined by the ordinary differential equations %g— =1, —2{(— = v(x)) to
transform the problem to one to which the contraction mapping principle
can be applied (the corresponding construction of a solution by successive
approximations has the biological interpretation of a "generation" expansion).
So usually the first task can be fulfilled without much difficul ty, although

the precise meaning of "solution" needs further explanation (see below).
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It is convenient to conceive of ¢ and n(t,.;¢) as elements of a Banach

function space X (the population state space, e.g.LZ(Q) or C(Q)) and to write
3.0 n(t,.;¢) = T(e)p ,

where {T(t)} is a strongly continuous semigroup of bounded linear operators

on X, i.e.,

i) T =1,

(3.2) (ii) T(t) T(r) = T(t+t), t, Tt =20
(i1i) lim IT(t) ¢-9¢ I =0, Vv ¢ ¢ X.
t+0

The tnfinitesimal generator A is defined by

(3.3) Ag = lim ¢ (T(6) §-9)
£v0

for those ¢ ¢ X for which this limit exists. The original partial differen-
tial equation can now be interpreted as the abstract ordinary differential

equation
(3.4) — = An,

and thus one can define '"'solution" in terms of a semigroup and its gemerator
(Pazy, 1983).

REMARK : For parabolic partial differential equations it is customary to
start by defining A and to prove, by verifying the Hille-Yoshida conditions,
that it generates a semigroup. However, for the present class of first order
equations it is usually much easier to first construct a semigroup directly
and only later re—interpret the original equation as one involving the

generator.

Example. We illustrate the general remarks above by elaborating in some
detail the very simple example la. We begin by specifying the assumptions
on b and by making a preliminary transformation.

Suppose that each cell has to divide before reaching a maximal age,

say a = 1. Since the probability that a newborn cell does not divide before
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reaching age a is given by
a

(3.5) F(a) = exp(~ [ b(o)do),
0

we assume

b is nonnegative and integrable on [0,1-e] for each e ¢ (0,1) but

b has a non—integrable singularity in a = I,

The transformation

(3.6) n(t,a) = m(t,a) F(a)

leads to

3 3 B
P m(t,a) + 7 m(t,a) = 0

(3.7) m(t,0) = | K(¢) m (t,0)do

o——

m(0,a) = ¥(a)

where
(3.8) K(a) = 2b(a) F(a)

is nonnegative and integrable on [0,1] (and zero for a > 1) and where

o0 - 43

We assume that § e L][O,IJ. Since F(1) = 0 this is, among other things, an

assumption on the behaviour of ¢ mear a = 1, Define
1

(3.10) y(t) := { K(o) m(t,0)do ,
0

and pretend that y is known. Then m is readily expressed in terms of y and
y:

Y(a-t) , azt,
(3.11) m(t,a3v) =

y(t-a) , a < t.
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Substituting this result into (3.10) we find the renewal equation

t

(3.12) y(t) = J K(o) y (t-o)do + £(t)
0

where
1

(3.13) £(t) = J K(o)y(o-t)do.

t
Existence and uniqueness of an integrable solution y is easy to prove and
this solution is represented by the infinite series

(3.14) y=f+Kx*f+K*xKxf+ ..,

td

where * denotes the convolution product (see, for instance, Miller 1971).

Define
(3.15) S(t) v = m(t,.;¥)

with m given by (3.11), y being the solution of (3.12). It is rather straight-
forward to verify that {S(t)} is a strongly continuous semigroup on

Ll[O,I] with infinitesimal generator

(3.16)
DB) = {V ¢ L1[0,1]|w is absolutely continuous and
1
v(0) = J K(o) ¢ (0)do}
0
(the generator of translation is always differentiation). Let X denote the

weighted L - space

1
37D x={se1,00,1]] a »i‘f%) is in L, [0,13}

with norm

1

_ ¢ ()
uq,ux_[ ]—leda,
0
and define L : X - L][O,l] by (L¢) (a) = (a)

Fla) °
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The semigroup T(t) is defined on X by

-1
(3.18) T(t) =L  S(t) L

-1 .
and its generator A is given by A = L 'BL with D) = {¢|Lde DB)}. Hence

A
Ap = Ia bs
(3.19)
D) ={seX| am iga; is absolutely continuous and
a
6(0) = 2 J b(c) ¢ (o)dol. End of example.
0

The next mathematical problem is to analyse the asymptotic behaviour
for t + =, Fortunately a powerful mathematical tool, spectral theory, is at
our disposal. The standard approach involves two steps:
(i) the derivation of certain relations between the spectra of T(t) and A,
(ii) an analysis of the spectrum of A.
(Note that the constructive definition of the semigroup is, in general, not
suited at all to determine the spectrum of T(t) directly.) We shall first
describe some general results for step (i) and we shall formulate a theorem
which implies, under some compactness condition, the convergence towards a
stable distribution. Subsequently we discuss the influence of positivity
on the position of the spectra.

The point spectra of A and T(t) are related by

tPo(A) tPo (A)
e c Po(T(t) c (e u {0}h).

A similar relation exists for the residual spectrum, but the continuous
spectrum may not be "faithful" (Pazy, 1983). In the present context, how-
ever, another subdivision of the spectrum is more useful. The essential
spectrum Ge(L) (in the sense of Browder) of a closed operator L is defined

as the set of those ) ¢ o(L) for which at least one of the following con—
ditions is satisfied

(a) R(I-1) is not closed,

(b) X is an accumulation point of o(L),

(c) the generalized eigenspace corresponding to A is infinite-dimen-—
sional.
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If x € o (1) \ oe(L) then ) is an isolated pole of finite order of the re-

solvent. Let p be the order of the pole, then

X = N(OI-1)P) @ R((AI-L)P).

The elements of o (1) \oe(L) are called normal eigenvalues.

The measure—of-noncompactness a(V) of a bounded set V < X is the in-
fimum of the positive numbers d for which V can be covered by finitely many
sets of diameter less than or equal to d. The measure-of-noncompactness
Y(L) of a bounded linear operator L : X ~ X is the infimum of the positive

numbers k for which
a(L(V)) € k a(V)

for all bounded sets V ¢ X.
For a bounded operator L we have the well-known identity
1
r(L) = lim IL™™

n->o«

for the spectral radius of L. Nussbaum (1970) has proved the analogue for
the essential spectral radius:
1
ro(L) = lim (y@™H™.

n->

Here the essential spectral radius is of course defined by
r (L) = sup{|r] | 2 ece(L)}.

Let A be the generator of the strongly continuous semigroup T(t). We define

wy = w,(A) = lim = log IT(t)!

0~ % o € B ’

w; = wl(A) = lim — log vy (T(t)).
£

(with the convention log 0 = - =)
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It can be proved that

T(T(t))

1]
m
-

r (T(t)) =

i
o

. -0
(with the convention e = Q)

The relation between By s 0y and the spectrum of A is rather complicated.

There are examples, even of positive semigroups, where
wy # sup {(Rer |2 ea(B)}.

(See Greiner, Voigt & Wolf (1981).)

However, it can be shown that
= max {m] , m?_} ,

Yo

where

wy mz(A) = sup {Re A|A is a normal eigenvalue of A}.

(See Webb (in press), and Priss (1983)). Thus one can characterize Wy
precisely in terms of A provided a suitable estimate for w, can be given.

And knowledge of W yields exponential estimates for the semigroup.

THEOREM A, Assume that

1) A has a simple real eigenvalue A which is a pole of the resolvent.
2) There exists an € > 0 such that

a(A) n{)\IRe)\z)\d-—e} = Oyl

3 T(t) = U(t) + V(t) where U(t) <s compact, and for some n > 0, M > 0
Iv(e)l < Mexp(A-m)t, t >0
: Agt -
then T(t) ¢ =e ¢ p ¢+ O(E(Ad \))t), t >», where v = min {e,n} and P

18 the spectral projection om the eigenvector corresponding to >‘d'
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PROOF. Since P commutes with T(t), the restriction T(t) to the subspace
R(I-P) defines a strongly continuous semigroup having generator A which is
the restriction of A to R(I-P). It follows directly that

m](A) = wl(A) < xd— n and wz(K) < Ad - €. Therefore wO(K) < A

a~ Vv from
which we conclude that for all t > 0 I (I-P)T(t) ¢ I = IT(t)(I-P) ¢
(Ad—v)t (Ad—v)t
< Ke I(1-P) ¢ I < Re I ol,
for some positive constant K. Aot
Since T(t) ¢ = T(t) ((I-P) ¢+ P¢) = (I-P)T(t) ¢ +e d P¢, the result follows,

0

An implication of the theorem is that, as t -+ «, the dynamics becomes
one-dimensional: the population will grow or decay (depending on the sign
of kd) exponentially while the x~distribution becomes stationary. The eigen-—

is

vector corresponding to the so-called strictly dominant eigenvalue Ad

called the stable x~distribution.
This theorem covers many population problems, although there exist
cases, such as example lb, which exhibit a different type of asymptotic

behaviour.

The assumptions 1) and 2) of theorem A may seem, at first sight, rather
special and restrictive. So let us now briefly explain how in many problems
from population dynamics, positive operator theory can be exploited to prove
that these assumptions are satisfied.

Let us first give some definitions. Let X, be a convex closed cone in
the Banach space X. A bounded operator L : X -+ X is called positive if it

leaves X_ invariant, i.e.
L(X+)_C_X+-
We denote by Xi the dual cone, i.e.
* * N
X, ={f eX | <f£, $>>0,V¢ée X}

For an introduction to positive operator theory we refer to Schaeffer (1974)

v
and Krasnosel'skii (1964).
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In our models from population dynamics the interpretation of T(t) ¢ as

a population density requires that T(t) leaves the cone
X+ =1{¢ e Xl $(x) 20, Vxe Q}

invariant. Now the identity

4

(AI—A)—1¢ = J et T(t) ¢ dt, Re ) large,

0
(See Pazy (1983)) yields that the resolvent (AI—A)—] defines a positive

operator for every large real ).

The famous Krein-Rutman theorem and its variants describe the spectrum
of a bounded, positive operator on the circle with radius equal to the
spectral radius, thus generalizing the Perron-Frobenius theorem on the eigen-

values of a positive matrix.

THEOREM B. Let X, be reproducing, (i.e. {o-p |0,y € X,} = X) and normal
(i.e. 36>0 V¢’ bex, c g vyl 28 Hol).

Let L be a bounded, positive operator such that for all ¢ e X, ¢ # 0 and
fe X:, f # 0 there exists an integer p such that <, 1" 9> 0 for all
n 2 p. Moreover let A = r(L) be a pole of the resolvent of L (which is true
if L s compact) Then
(1) r(L) ©Zs an algebraically simple eigenvalue
and the corresponding eigenvector belongs to X, .
(ii) No other eigenvector belongs to X, .
(11D If » e 6 (L) and X # r(L) then |A| < r(L).

This theorem is formulated in Marek (1970). We refer to Krasnosel'skiy

(1964) for similar theorems for so-called Y, - positive operators.

In several cases it is possible to show that the resolvent of A satis-
fies the hypotheses of theorem B and subsequently the correctness of the
assumptions 1) and 2) of theorem A is a straightforward consequence of the
relation between the spectra of A and it's resolvent. We refer to Heijmans

(in press) for more details in a specific example.
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If we do not have some kind of strong positivity (such as <f,Ln¢>>0)
conclusion (iii) of theorem B has to be weakened in the sense that the
spectrum of L on the circle of radius r(L) is a cyclic set, i.e. if
r(L)eie € (L), then r(L)eike e o(L), for all k € Z . We refer to Schaefer
(1974) for precise formulations. Greiner (1981) has shown that, under certain
conditions, the spectrum of the generator A of a positive semigroup on the

vertical line Re ) = A is necessarily additive cyclic (i.e. if Ad+iy € a(A)

then Xd-+iky e 0 (A) for all k € Z ; also see Davies (1980)), and that
Ad = ug- This result is comsistent with the g;%tiplicative cyclicity of the
spectrum of T(t) on the circle with radius e . In such a situation the
asymptotic behaviour for t - « is determined by the projection onto an
infinite dimensional subspace of X (i.e. infinitely many 'properties' of

the initial condition remain manifest for all time). A trivial example of

this type of behaviour is provided by example 1b, and a more subtle one by
example 1d with v(x) = cx, for some constant c. (See Diekmann, Heijmans &
Thieme, (in press).)

In many cases (with x one-dimensional) it is actual possible to derive
a (transcendental) characteristic equation from which the eigenvalues of A
can be computed. In that case one finds the necessary information about
the spectrum of A directly, and any appeal to general results can be avoided.
(See Heijmans (in press)). Nevertheless these general results are important

for putting things in their true perspective.

Example. Again we illustrate the general outline by analysing example la.
We formulate the results in terms of S(t) and B. The abstract equation

(AI-B) v = f implies
¢'(@) = - 2(a) + £(a)

and consequently
a
-\a
Yp(a) = e "TY(0) + J
0

e_x(a-o)f(c)dc

However, ¥ is an element of D(B) iff

e—A(a—r)

I

ag

v(0) = f(], K(o)enwdo P (0) + j K(G)J 0 f(t)dt do.
0
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. . 1 -Ao
ation can be solved for y(0) iff IO K(o)e do # 1. We conclude

This equ . 1 -\o
(B), the resolvent set of B, if IO K(o) e do # 1 and that the

that A € ¢ ° ) 1
1 -\0 les of the resolvent of ord
zeros of I- ‘[0 K(o)e ~ do of order p are po order

p and eigenvalues of B. The fact that K(a) 2 0 implies that there exists

one Simp
e > 0 (use the analyticity and the lemma of Riemann-Lebesque).

le real zero )\d and that all other zeros satisfy Re X< )‘d_ ¢ for
some

For t 2 1 the influence of the initial condition Y on the solution m
in (3.11) is through y defined by (3.12) only. One can use standard esti-
mates to show that, as a consequence, T(t) is compact for t = 1.

REMARKS 1. Of course the conclusion can, for this simple example, also be

derived directly from (3.12) using Laplace transformation.

2. If we study example | with a ¢ [0,»), i.e. without maximal age, the direct
influence of the initial condition on the solution remains for all times
although, under suitable conditions on b, its "strength" diminishes as
t » », In such a case one can exploit a representation T(t) = U(t) + V(t)
(see Webb, in press, and Pruf, 1981 and in press).

3. In the case of example 1d the compactness as well as the existence of a
nontrivial additive group of eigenvalues on the line Reix = >‘d hinge upon
the behaviour of the function v(2x) - 2v(x). We refer to Diekmann,
Heijmans & Thieme (in press) for the details and the biological inter-
pretation of the "cyclic" case,

4. In certain situations the choice of topology is of some importance.
Heijmans (in prep.) uses the weak * topology and duality to demonstrate
the existence of a stable distribution for a model of predatory behaviour

introduced in Metz & van Batenburg (in press).
4, THE POPULATION DYNAMICS OF ECTOTHERMS

In this section we shall concentrate on the second example from section
2. In order to simplify the discussion we shall assume that a <. For the

sake of convenience we repeat formula (2.10) as formula (4.1):

(4.1a) -a%li(t,a) + -a—agl(t,a) = g(x,L(t,a)) , L(t,0) = zb
;t_ n(t,a) + _3% n(t,a) = -u(a,L (t,a)) n(t,a), for L(t,a) < )
(4.1b) n(t,a) =0 , for L(t,a) = Z(x)

n(t,0) = [ B(x,£(t,a)) n(t,a)da .

Q
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‘When x is constant, equation (4.la) has a stationary (i.e. time independent)
solution and any solution of an initial value problem will be identical to
the stationary one after finite time. Therefore we can restrict the attention
to the linear (4.1b) and apply the theory of the last section. In Kooijman

& Metz (in press) the value of the dominant eigenvalue A, was studied as

d
a function of x.

fraction of
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Fig. 2: Dominant eigenvalue A, for the waterflea Daphnia magna feeding on

d
the alga Chlorella at 20°C as a function of food density.

Figure 2 shows the result for the growth parameters of Daphnia magna and
with formula (2.9 bl) with d = 0 for the death rate. It can be seen from

theis figure that near X rit defined by Ad(x ) = 0 the dependence of

Ad on x is very steep indeed. This means thazr;zr Daphnia and ecologically
similar organisms a small fluctuation in the food density x in the neigh-
bourhood of Xrit has a very drastic effect on population growth. This is
one possible explanation for the frequently erratic appearance of population

counts of daphnids recorded in the literature.

Since in the Daphnia model all parameters have a direct physiological
interpretation it becomes possible to study the population effects of toxic
compounds affecting these parameters in dependence on the food density x.
This is very important since routine laboratory toxicity testing is almost
always done at high food densities whereas in nature food is generally

scarce. Figure 3 shows the result of such an exercise for Daphnia magna.
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——= blank pop growth rate

0
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Fig. 3: Dominant eigenvalue >‘d under stressed conditions as a function of
Ad(x) under unstressed conditions for compounds affecting (1) feeding rate
£, (2) digestion v, (3) basal metabolism t, (4) growth n, (5) reproductive
rate w, and (6) survival a- Except for the feeding rate the concentration
of the toxic compound is chosen such that the maximum stressed value of

X, is 907 of the maximum blank value Adm; parameter values of the waterflea

d
Daphnia magna feeding on the alga Chlorella at 20°C.

In this figure the value of Ad(x) under chemically stressed conditions is
plotted as a function of ).d(x) in the unstressed situation (that is, we
vary x but put )\d(x) on the horizontal axis) for various types of physiolog-
ical effects, The level of chemical stress is (arbitrarily) chosen such that
)‘d is reduced by 10% at very high food densities (in the case of an effect
on the filtering rate which manifests itself in a lowering of £ another
choice is made since this effect never manifests itself in )‘d at high food
densities). It can be seen from Figure 3 that for effects on growth and
reproduction the relative reduction of >‘d is hardly depending on x (extra-
polation is "safe"). On the contrary compounds affecting survival bring about
a far more drastic relative reduction of A, at lower food densities. These

d
predictions are consolidated for all regions of the parameter space which ve

have explored so far.

As yet we have not done any laboratory experiments on Japhnia magna
to test the theory.
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Fig. 4: Observed population growth rates ()

a’ vertical in d_l) at ZOOC

of the rotator Brachionus rubens for various concentrations of 3,4-dich-
loroaniline (left) and potassium dichromate (right) (horizontal) feeding
at various Chlorella densities (backwards). The leftmost concentration

is the blank and should be positioned at minus infinity.

Figure 4 shows the results of laboratory experiments with another animal,
the rotifer Brachionus rubens, for which population experiments are more
easily done. It can be concluded that the predictions are borne out by the
data, at least qualitatively.

In many population dynamical experiments x 1s not a given quantity but
it is dynamically dependent on the population trajectory (consumption!). Some

possible simple assumptions about the dynamics of x are

(4.2a) g% =0 - yx - vE(x)p
or
(4.2b) %% = ox - sz - vE(x)p

where in both cases

p(t) = J Zz(t,a) n(t,a)da.
Q
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To arrive at (4.2a) we assume that we feed the population at a constant rate
and that uneaten food deteriorates at a constant relative rate, e.g. through
sinking to the bottom of the experimental container or through overflow in
chemostat-like set ups. Equation (4.2b) corresponds to the so-called logis-
tic growth of the food population.

Together (4.1) and (4.2) form a nonlinear pair of equations which we
only just began studying. We shall finish this section with a short over-
view of our present lines of approach.

To find all possible equilibria the time derivatives in (4.1) and (4.2)
are set equal to zero. Not unexpectedly it turns out that there is a unique
nontrivial equilibrium 2, fi, 8 with i > 0 if and only if the trivial equi-
librium (3 = 0, % = y_la) is unstable. This in turn happens if and only if
the dominant eigenvalue A, of the linear problem which results from setting
x equal to Y_la for all time, is positive.

For the nontrivial equilibrium Z increases with a and Z(am) < &(i), i.e.
we remain well away from the kink in g. Therefore we can study, at least
formally, local stability by using a linearization procedure. This leads
to a characteristic equation (of a type which one also encounters in delay
differential equations) which is far more difficult than the one correspon-
ding to the trivial equilibrium. Some idea of the behaviour of the roots of
the characteristic equation can be got already from the experimental results
reproduced in Figure 5: the oscillations resulting from a temperature change

from 18% to 25% strongly suggest the occurrence of a Hopf bifurcation.
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Fig. 5: Population growth in the waterflea Daplmia Magna at (a) 180C, and
(b) 25°C in 50 cc of pond water. (Reproduced from Pratt (1943), reproduced
by Krebs (1972), reproduced by Nisbet & Gurney (1982).)

5. DENSITY DEPENDENCE: GENERAL REMARKS

Unlimited population growth does not exist. A growing population in-
fluences its environment and therefore its own growth. Many such biological
feedback loops can only be described properly in terms of the interaction
of the physiological processes within the individuals (e.g. growth, repro-
duction) and environmental factors (e.g. the availability of food). Con-
sequently models of the type described in section 2 are an ideal tool to
give a realistic mathematical formulation of density dependence (Streifer,
1974). Once one knows the general structure of the models it is hardly more
difficult to formulate a nonlinear model than a linear one(there are, how-

ever, some subtilities and pitfalls; see Diekmann, Lauwerier, Aldenberg &
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Metz, 1983, for an example), but unfortunately this resemblance ceases when
we consider the mathematical anmalysis of the resulting problems.

If the conditions at the beginning of section 3 are relaxed one usually
still can solve the problem of the existence and uniqueness of a solution
for the initial value problem and subsequently define a semigroup of non-
linear operators (possibly only on a closed subset W of X such that solutions
starting in W remain in W and do not blow up in finite time; for instance,
the definition of W may involve nomnegativity). However, the catalogue of
possible asymptotic behaviour is much richer now and, in fact, so rich that
we cannot say anything in general. We expect that progress will be made
by analysing specific problems in detail using bifurcation theory (Chow &
Hale, 1982, Guckenheimer & Holmes, 1983) and numerical experiments (Gurney
& Nisbet, in press). Much work has to be done in order to generalize such
basic theoretical results as the principle of linearized stability and the
Hopf bifurcation theorem to the present class of dynamical systems (Webb,
in press, Cushing, 1983, and Pruss, 1981, 1983, contain results
for age~dependent population growth which is a rather special case since
the growth rate %% is always one and never density dependent). However, a
perhaps much more pressing problem is the development of powerful methods
to derive results about roots of characteristic equations which are not of
the simple kind discussed in section 3 (Cooke & Grossman, 1982). These arise
when linearizing about some non-zero steady state.

Anyhow, except for the case of age dependence there exists at this
moment no general nonlinear mathematical theory at all and we've had our

say on this matter.
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