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CONTINUUM POPULATION DYNAMICS 
WITH AN APPLICATION TO DAPHNIA MAGRA 

o. DIEKMANN. J.AJ. METZ, S.A.l.M. KOOJJMAN & HJ.AM. HEIJMANS 

ABSTRACT 

The paper starts by discussing the formulation of models for the dynamics 

of populations with physiological structure in the language of continuum 

mechanics. Subsequently it is indicated how the spectral theory of positive 

semigroups of operators yields results about stable distributions in linear 

models. It is shown how the formalism can be used to deduce the population 

consequences of the physiological effects of toxic chemicals on individuals 

of, for instance Daphnia magna. Finally, the need for mathematical machinery 

which is well suited to analyse nonlinear problems is stressed. 

1 • INTRODUCTION 

The partial differential equations of continuum mechanics describe the 

evolution in the course of time of the density of particles in an elastic 

material, a fluid or a gas. They are derived by combining a mathematical 

description of the physical forces that act upon the particles with book­

keeping arguments based on conservation of mass, etc •• 

A first and crude description of the state of a population is given by 

the number of individuals. As a next step one may distinguish individuals 

from each other according to relevant physiological traits (a large codfish 

is not the same as a small codfish when one considers reproduction and 

predation). The present paper is concerned with this "next step". Exploiting 

the similarity with the bookkeeping part of continuum mechanics we shall 

describe, in section 2, the mathematical structure of a large class of models. 

The aim of these models is to describe the behaviour of populations in 

terms of the behaviour of individuals (such that, for instance, the impact 

of toxic substances on populations can be inferred from the impact on the 

individuals). In later sections it will be argued that the explicit 
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incorporation of physiological structure enables one to describe density 

dependence on the basis of biological facts (or, at least, biologically 

plausible arguments) as opposed to ad hoe mathematical assumptions in un­

structured models. 
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In section 3 we shall sketch how spectral theory, compactness arguments, 

positivity arguments and the theory of semigroups of operators can be com­

bined to yield resuls about stable distributions in iinear models. Without 

much disadvantage most of this section may be skipped by those readers which 

are not interested in functional analysis. In section 4 we show how the 

mathematical machinery (both the existing and some which still has to be 

developed) is of value for deriving the ecological consequences from phys­

iological effects of toxic chemicals on the individual members of a popula­

tion. In section 5 we observe that there exists, as yet, no systematic 

theory for noniinear problems, even if we have some idea how to proceed in 

some special cases. 

This paper describes an odd concoction of mathematical modelling~ 

(functional) analysis and biological experiments, but deliberately so. Among 

other things we intend to demonstrate that the interplay of mathematics and 

biology can be profitable for both fields simultaneously. 

2. BOOKKEEPING AND MODEL SPECIFICATION 

Let the physiological state of each individual be given by the value 

of an N-vector x. Thus the state space of the individuals is n, some subset 

of lR.N • The individuals trace orbits in n. The beginning and the end of 

such orbits are the physiological state at birth and death, respectively 

("birth" and "death" have to be interpreted broadly as we shall see in the 

examples later on). We assume that in between the orbits are determined 

by an ordinary differential equation 

(2. I) dx 
dt = v(x) 

where v: n + ]RN describes the vefoaity with which the individuals move 

through n. Of course v may depend on other variables but we do not, at this 

point, include this explicitly in our notation. 

Let n(t,.): n + :JR.+ be the density function at time t, i.e., for each 

no c n the number of individuals at time t with physiological state belonging 

to no is given by 
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J n(t,x)dx. 

110 
Then vn is the flux of individuals and a standard application of the diver-

gence theorem leads to the balance lauJ 

(2.2) + div(vn) sources - sinks 

where sources and sinks describe birth and death (see, for instance, Lin & 
Segel (1974), Segel (1977) and the papers by Segel and Oster in DiPrima 

(1977)). We shall assume that the number of individuals in the relevant 

states is so large that we can use a deterministic approximation to describe 

inherently stochastic processes. Or, in other words, we shall describe the 

birth and death processes which involve some element of chance in terms of 

rates. Formulating a mathematical model now amounts to specifying 11, v, the 

sources and sinks, and -v.vn (where v is the outward unit normal) at that 

part of the boundary an where v.v < 0 (i.e., where newborn individuals can 

enter 11). In order to illustrate the formalism we present two sets of exam­

ples which concern unicellular organisms reproducing by fission and ecto­

thermic animals having weight dependant fertility. 

Example 1: Multiplication by division. For simplicity we shall assume that 

the organisms do not die. The necessary modifications to incorporate deaths 

are immediate. 

a: Let the cells be characterized by their age (i.e., the time elapsed since 

the cell was created by a division of her mother). Let b(a) denote the rate 

h . h 11 f d' 'd . d h s· da at w 1c ce s o age a 1v1 e into two aug ters. 1nce dt = I and all cells 

are born with age zero we obtain 

(2. l) 

a a at n(t,a) + aa n(t,a) - b(a) n(t,a), 

n(t,O) 

co 

2 J b(o) n(t,o)do. 

0 

b: Instead of age we now use "size" s to characterize the cells. If cells 

divide into two identical daughters exactly when reaching size one we have 

a a at n(t,s) +as (v(s)n(t,s)) 0, 

(2. 2) 

v(Dn(t, D 2 v(l)n(t, l) . 
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Here v(s), the growth rate of cells of sizes, is assumed to be positive. 

c: Again suppose that cells divide exactly when reaching size one, but now 

assume that the two daughters are not necessarily identical. 

Let the probability that fission results into one daughter of size s 

and one of size 1-s be described by the nonnegative function D which is sym­

metric about 4 and has integral I. Then 

d d at n(t,s) +as (v(s)n(t,s)) 2v(J) D(s) n(t,I) 

(2. 3) 

v(O) n(t,O) 0 

d: Let b(s) denote the rate at which cells of size s divide into two iden­

tical daughters of size ~s. Then 

odt n(t,s) + ads (v(s) n(t,s)) - b(s) n(t,s) + 4b(2s) n(t,2s), 

(2.4) 

v(O) n(t,O) = 0. 

Exercise: explain the factor 4. 

e: Asymmetric division into a part of fixed size s 0 (the daughter) and a 

part of size s-s0 (the mother) is described by 

d d 
at n(t,s) +as (v(s) n(t,s)) = - b(s) n(t,s) + b(s+so) n(t,s+so)' 

(2.5) 

v(s0 ) n(t,s0) = J b(o) n(t,o)do. 

0 

f: Combining the examples a and d we arrive at the equations 

(2. 6) 

d~ n(t,a,s) + a: n(t,a,s) + a: (v(a,s) n(t,a,s)) 

n(t,O,s) 4 I b(o,2s) n(t,o,2s)do. 

0 

for the age-size density. 

- b (a, s) n ( t, a , s) 

REMARKS. I. These examples clearly illustrate jump phenomena and non-local 

coupling: individuals may jump instantaneously from one position in the 

physiological state space to another or they may produce offspring at some 

other position. This feature is characteristic for models from population 
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dynamics and it is perhaps the main reason why continuum population problems 

are, despite many similarities so different from problems in continuum 

mechanics. 

2. In these models both the individual growth rate as well as the division 

rate may depend on environmental conditions. This will be made more explicit 

in the next example. When the individuals themselves contribute to the 

(change in) environmental conditions we end up with a (set of) nonlinear 

equation(s). 

Example 2: Size dependent reproduction in ectothermic animals. 

In contrast with the previous example we shall immediately specify all the 

functions involved from first principles. The model was derived with the 

waterflea Daphnia magna in mind as the experimental animal. (However, its 

applicability appears to be much more general.) More details on the individ­

ual level as well as empirical evidence for the correctness of our assump­

tions can be found in Kooyman & Metz (in press). 

a will again denote age, w will denote weight, l 

density. 

1/3 w length and x food 

We start with individual growth. It is assumed that ingestion equals 

\Jf(x)l2 = \Jf(x)w213 with f(x) = 1 :~x. The basis for this assumption is 

that the maximum rate of food intake of an animal should equal the maximum 

digestion rate which scales with the surface area of the digestive apparatus. 

Moreover, for filter feeders (and also for many other feeding types) the 

food intake at low food densities is proportional to food density times the 

surface area of the food catching apparatus. A hyperbolic relation between 

food density and intake rate results from many micro models of the food 

catching process (Holling, 1959; Rashevsky, 1959; Metz & van Batenburg, in 

press). In the ecological literature it is known as the Holling functional 

response, in the biochemical and microbiological literature as the Monod 

curve. Figure la shows the fit of the assumed relation between food density, 

body size and amount eaten per unit of time for some literature data on 

Dcrphnia magna. 

We assume, moreover, that a fraction K of the ingested energy is chan­

nelled to maintenance and growth, and a fraction 1-K to reproduction. 

Finally, maintenance is assumed to be proportional to weight. The result is 

a growth equation of so-called von Bertalanffy type (Von Bertalanffy, 1934) 

dw 
da 

-I 2/3 n (Kvf(x)w - ~w) 
+ 
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Fig. 1: Left: Feeding rate at zo 0 c of the waterflea Daphnia magna on the 

alga ChloreZZa as a function of food density x and body length l. The fit­

ted curves are given by y = vl2 f(x) with f(x) = E,;x/(l+E;x), with 

v = 0.75xJ05 cells /h.rrnn2), E; = 0.7x l0-5ml/cell. Data from McMacon & Rigler 

(1963), reproduced by Wulff (1980). 

Right: length i of Daphnia magna as a function of age a for various food 

densities x. The fitted curves are given by 

i = f(x)i - [f(x)i -fb] exp (-ya), with f(x).t'. 
m m _ 1 m 

4.31 nun, lb= 0.8nnn, y = 0.17d 

2.89, 3.24, 3.72, 4.17, 

where n denotes the energy cost of growth. The + accounts for the fact 

that large animals stop growing, but do not shrink, when food density drops 

(z+ := max (z,O)), Transforming to length we' find 

di dw 1 
dw da = 3il (Kvf(x) - z;i)+ =: g(x,i) 

(2. 7) 

where ~· the length at birth, is assumed to be fixed .• Figure lb shows the 

fit of the solution to (2.7) at various constant values of x for some lab­

oratory observations on the growth of Daphnia magna. 
To calculate the birth rate we recall that a fraction 1-K of the inges-

ted energy is channelled to reproduction. Nevertheless we assume that the 

animals only start making young when their length has reached a certain 

value, to be called iJ, since they first have to build up their reproductive 

apparatus. Moreover, there is an exception to the K-rule: when food density 
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Very far' maintenance takes priority for otherwise the animal.­suddenly drops 
would die. More precisely we assume that the individual reproductive rate 

$(x,l) is given by 

0 l < .tJ 

-I 2 
.tJ l < l (2 .8) B(x,l) (wwb) (1-K)vf(x) l $ 

-I 2 3 .t $ l < l (wwb) (vf (x).l - r;.t ) 

where (i) ww is the energy needed to produce one young; (ii) l := i;-lKvf(,c) b -
is the size (at the current food density) at which exactly the fraction K 

- -I of the ingested energy is needed for maintenance; l = i; vf(x) is the size 
at which all ingested energy is needed for maintenance. Animals for which 
l ~ l are assumed to die. 

Finally we need the death rate. It appears that, except for death from 
starvation, this quantity is largely determined by age (and not by size). 
Some possible chaises are 

(a) µ(a,.f.) d 

{ d a $ a 
(2.9) (b I) µ (a,.t) Ill 

where is the maximum possible a 
"' ' a a m 

ID 
age. 

(b2) µ (a,.f.) d + ~(a) , with for instance, ~(a) 
a -a 

m 

The last formula was found empirically in preliminary laboratory observations 
on individual Dcrphnia. 

Our next step is writing down the population equations. In the case of 
(2. 9a) the death rate is not age dependent and we may describe the population 
completely by its size distribution: 

a a at: n(t,l) + az (g(x,.l)n(t,l)) - dn(t,.t'.) 

n(t,l) = 0 

I S(x,l) n(t,l)dl 

Q 

for l < f(x) 

for l 2 .t'.(x) 
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with ~ = [f ,l ] , with l = ~-JKV the upper bound to the individual lengths. o m m 
When death does depend on age we might naively write 

a c o +~ o a o o at n t,a,-1.-) aa n(t,a,-1.-) +al (g(x,-1.-) n (t,a,-1.-)) 

= - µ(a,f) n(t,a,f) 

with Q = [0,a ] x [fb,f ]. 
m rn 

However, when we try to formulate the boundary condition we run into some 

trouble: since both age and size are fixed at birth, we need a delta "function" 

n(t,O,l) = 6(£.-fb) J S(x,l) n (t,a,f) da dl. 

Q 

Moreover, the deterministic individual growth pushes this delta "function" 

from the boundary into the interior of rl: all mass will always be concen­

trated on some (varying) curve in Q, 

Thus we prefer to work with a function of one variable, for which 

we choose age, and to do some extra bookkeeping in order to know the relation 

between age and length. Murphy (1983) has recently introduced a convenient 

trick to do the latter: to write down a separate partial differential equation 

for l(t,a), the age-length relation at time t 

(2. I 0) 

a a at f(t,a) + aa f(t,a) g(x,l(t,a)) 

l(t,O) = lb 

d 3t n(t,a) + aa n(t,a) = -µ(a,f(t,a))n (t,a) 

n(t,a) 

n(t,0) 

0 

J S(x,f(t,a)) n(t,a)da 

Q 

f(t,a) < L(x) 

f(t,a) ;,, f(x) 

where Q = [O,a ]. This equation also encompasses the former case of (2.9a) 
m 

if we allow a 
m 
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Equations (2.10) can easily be generalized, e.g. to take care 
REMARKS. I. 
of deaths as a result of the accumulation of toxic compound by introduction 

of additional equations for the internal concentrations of toxic compounds 

as a function of a and to let µ depend on these concentrations as well. 

2. In our derivation we have implicitly assumed that the animal has no energy 

that l't dies as soon as energy intake cannot keep pace with 
reserves, so 
maintenance. A more detailed model on the individual leve 1, which takes 

account of energy reserves, is developed in Kooijman (in press). 

3. The derivation contains one hidden assumption which is slightly embarras­

sing from a biological point of view: the production of young is assumed 

to depend instantaneously on energy intake. In other words, an individual 

needs not accumulate the necessary energy wwb. Thus we implicitly assume 

that all individuals at each time add some infinitesimal amount of young 

tissue to a communal pool from which, by some miracle, the individual 

young are created. This assumption is commonly made in the literature 

of mathematical biology, but always implicitly. A rigorous justification 

of the resulting equations is possible, however, by assuming that the 

size of the young is very small, that very many young are produced, but 

that most of them die at a very early age (Heijmans & Metz, in prep.). 

3. POSITIVE SEMIGROUPS AND STABLE DISTRIBUTIONS 

In this section we assume that the environment is constant and that 

the equation is linear. If the model specification is complete, adding an 

initial, condition n(O,x) = ~ (x) should single out a unique solution 

n = n(t,x;~). So a first mathematical task is proving existence and unique­

ness of a solution to the initial value problem. A frequent approach is to 

use integration along aha:i'acteristios (i.e. along curves in the (t,x) - space 

determined by the ordinary differential equations dt = 1 dx = v (x)) to 
ds ' ds 

transform the problem to one to which the contraction mapping princ:iple 

can be applied (the corresponding construction of a solution by successive 

approximations has the biological interpretation of a "gener;ition" Pxpansion). 

So usually the first task can be fulfilled without much difficulty, although 

the precise meaning of "solution" needs further explanation (see below). 
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It is convenient to conceive of cjJ and n(t,.;cjJ) as elements of a Banach 

function space X (the population state space, e.g.L2(n) or C(n)) and to write 

(3. 1) n(t,. ;cjJ) T ( t)<P 

where {T(t)} is a strongly continuous semigroup of bounded linear operators 

on X, i.e., 

(3.2) 

(i) T(O)=I, 

(ii) T(t) T(T) = T(t+T), 

(iii) limllT(t) cjJ-<j> II 
ti-0 

t, T ~ 0 

0, V <j> E X. 

The infinitesimal generator A is defined by 

(3. 3) A <j> lim t (T(t) cjJ -cjl) 
t-1-0 

for those cjJ E X for which this limit exists. The original partial differen­

tial equation can now be interpreted as the abstract ordinary differential 

equation 

(3.4) dn 
dt An, 

and thus one can define "solution" in tenns of a semigroup and its generator 

(Pazy, 1983). 

REMARK: For parabolic partial differential equations it is customary to 

start by defining A and to prove, by verifying the Hille-Yoshida conditions, 

that it generates a semigroup. However, for the present class of first order 

equations it is usually much easier to first construct a semigroup directly 

and only later re-interpret the original equation as one involving the 

generator. 

Example. We illustrate the general remarks above by elaborating in some 

detail the very simple example Ja. We begin by specifying the assumptions 

on b and by making a preliminary transformation. 

Suppose that each cell has to divide before reaching a maximal age, 

say a = I. Since the probability that a newborn cell does not divide before 
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reaching age a is given by 

(3.5) F(a) 

we assume 

a 

exp(- f b(o)do), 

0 

b is nonnegative and integrable on [0,1-E] for each E E (0, I) but 
b has a non-integrable singularity in a = I. 

The transf orrnation 

(3.6) n(t,a) = rn(t,a) F(a) 

leads to 

a a at m(t,a) + aa rn(t,a) 0 

I 

(3. 7) m(t,O) = I K(a) m (t,o)do 

0 

m(O,a) = ij! (a) 

where 

(3.8) K(a) 2b (a) F (a) 

is nonnegative and integrable on [0,J] (and zero for a> I) and where 

(3.9) n(O,a) ~(a) 
ljJ(a) = ~ = nar 

We assume that 1jJ € L1[0, IJ. Since F(l) = 0 this is, among other things, an 

assumption on the behaviour of$ near a= I. Define 

(3. JO) y(t) 

I 

r 
:= J 

0 

K(o) m(t,o)dcr , 

and pretend that y is known. Then m is readily expressed in terms of ij! and 
y: 

(3. 11) m(t,a;i)!) I ljJ (a-t) 

y(t-a) , 

a ~ t , 

a < t. 
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Substituting this result into (3.10) we find the renewal equation 

t 

(3. 12) y (t) f K(o) y (t-o)do + f(t) 

0 

where 

I 

(3. 13) f (t) J K(o)iv(o-t)do. 

t 

Existence and uniqueness of an integrable solution y is easy to prove and 

this solution is represented by the infinite series 

(3. 14) y f + K * f + K * K * f + ••. , 

where* denotes the convolution product (see, for instance, Miller 1971). 

Define 

(3. 15) S(t) iv m(t,. ;l/i) 
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with m given by (3.11), y being the solution of (3. 12). It is rather straight­

forward to verify that {S(t)} is a strongly continuous semigroup on 

L1[0,l] with infinitesimal generator 

(3. 16) 

Bl/i 
dl/i 

- da 

V(B) {ljJ E L1[0,1Jlw is absolutely continuous and 

I 

iJi (0) f K(o) iv (o) do} 

0 

(the generator of translation is always differentiation). Let X denote the 

weighted L 1 - space 

(3. 17) I <fi (a) 
X = {<fi E L 1[0,I] ai+T\a) 

with norm 

I 

I I <Pea> I II q, II x = Tea) da , 

0 

and define L : X + L1[0,I] by (L<fi) (a) 

is inL 1 [0,1]} 

<fi (a) 
T(a) 
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The semigroup T(t) is defined on X by 

(3. 18) T(t) L-l S(t) L 

and its generator A is given by A L- 1BL with V(A) {~ jL ~ E D(B)}. Hence 

M - da - b~ 

(3.19) 

V (A) {~ E X j a 1+ Ha) is absolutely continuous and 
F(a) 

~ (0) 

l 

2 J b(cr) ~ (cr)dcr}. 

0 

End of example. 

The next mathematical problem is to analyse the asymptotic behaviour 

for t ..,. "'· Fortunately a powerful mathematical tool, speat:r>aZ theo:r>y, is at 

our disposal, The standard approach involves two steps: 

(i) the derivation of certain relations between the spectra of T(t) and A, 

(ii) an analysis of the spectrum of A. 

(Note that the constructive definition of the semi group is, in general, not 

suited at all to determine the spectrum of T(t) directly.) We shall first 

describe some general results for step (i) and we shall formulate a theorem 

which implies, under some aompaatness condition, the convergence towards a 

stable dist:r>ibution. Subsequently we discuss the influence of positivit;y 

on the position of the spectra. 

The point spectra of A and T(t) are related by 

tPcr(A) tPcr(A) 
e c Pa (T ( t)) c (e u { O}). 

A similar relation exists for the residual spectrum, but the continuous 

spectrum may not be "faithful" (Pazy, 1983). In the present context, how­

ever, a.nother subdivision of the spectrum is more useful. The essential 

speat:r'Wll cre(L) (in the sense of Browder) of a closed operator L is defined 

as the set of those A E cr(L) for which at least one of the following con­

ditions is satisfied 

(a) R(n - L) is not closed, 

(b) A is an accumulation point of cr(L), 

(c) the generalized eigenspace corresponding to A is infinite-dimen­

sional. 
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If A E o(l) \a (L) then A is an isolated pole of finite order of the re­
e 

solvent. Let p be the order of the pole, then 

The elements of a ( l) \a (L) are called noY'mal eigenvalues. 
e 

The measure-of-noncompactness a(V) of a bounded set V c X is the in-

fimum of the positive numbers d for which V can be covered by finitely many 

sets of diameter less than or equal to d. The measure-of-noncompactness 

y(L) of a bounded linear operator L : X ~ X is the infimum of the positive 

numbers k for which 

a(L(V)) ~ k a(V) 

for all bounded sets V c X. 

For a bounded operator L we have the well-known identity 

r (L) lim II L nun 
n-+oo 

for the spectral radius of L. Nussbaum (1970) has proved the analogue for 

the essential spectral radius: 

I 

re(L) = lim (y(Ln))n. 
n-+oo 

Here the essential spectral radius is of course defined by 

Let A be the generator of the strongly continuous semigroup T(t). We define 

WO (A) lim I llT(t)ll, WO t log 
t-+co 

WI = w I (A) lim 
t-><x> t 

log y (T(t)). 

(with the convention log 0 = - oo) 
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It can be proved that 

r(T(t)) 

-oo 
(with the convention e 0) 

The relation between w0 , w1 and the spectrum of A is rather complicated. 

There are examples, even of positive semigroups, where 

w0 f. sup {Rd I A E a (A)} 

(See Greiner, Voigt & Wolf (1981).) 

However, it can be shown that 

where 

sup {Re A [A is a normal eigenvalue of A}. 

(See Webb (in press), and Pruss ( 1983)). Thus one can characterize w0 
precisely in terms of A provided a suitable estimate for w1 can be given. 

And knowledge of w0 yields exponential estimates for the semi group. 

THEOREM A. Assume that 

l) A has a sirrrple real eigenvalue Ad which is a pole of the re.solvent. 

2) There exists an £ > 0 such that 

3) T(t) = U(t) + V(t) where U(t) is corrrpact, and fop come r1 > 0, M > 0 

RV(t)ll s Mexp(i.d-n) t, t ? 0 

then T(t) ~ = /'dt P ~ + O(e(Ad-v)t), t -+oo, wher·e v = min {rc,n} and P 

is the spectral projection on the eigenvector oorr>eDpondi'.ng to Ad. 
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PROOF. Since P commutes with T(t), the restriction T(t) to the subspace 

R(I-P) defines a strongly continuous semigroup having generator A which is 

the restriction of A to R(I-P). It follows directly that 

wlcA) = wl(A) s Ad- nand w2(A) s Ad - E. Therefore wo(A) s Ad-\)' from 

which we conclude that for all t ~ O II (I-P)T(t) q, II= II T(t) (I-P) q, II 

(A -v)t 
s Ke d ll(I-P) <j> II s 

for some positive constant K. 

Since T(t) <I>= T(t) ((I-P) q, + P <j>) 
Adt 

(I-P)T(t) <I> + e P <I>, the result follows. 

D 

An implication of the theorem is that, as t + 00 , the dynamics becomes 

one-dimensional: the population will grow or decay (depending on the sign 

of Ad) exponentially while the x-distribution becomes stationary. The eigen­

vector corresponding to the so-called strictly dominant eigenvalue Ad is 

called the stable x-distribution. 

This theorem covers many population problems, although there exist 

cases, such as example lb, which exhibit a different type of asymptotic 

behaviour. 

The assumptions I) and 2) of theorem A may seem, at first sight, rather 

special and restrictive. So let us now briefly explain how in· many problems 

from population dynamics, positive operator theory can be exploited to prove 

that these assumptions are satisfied. 

Let us first give some definitions. Let X+ be a convex closed cone in 

the Banach space X. A bounded operator L : X + X is called positive if it 

leaves x+ invariant, i.e. 

We denote by x: the dual cone, i.e. 

X: {f E x* I < f, q, > :> o, v q, E x+}. 

For an introduction to positive operator theory we refer to Schaeffer (1974) 
v 

and Krasnosel'skii (1964). 
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In our models from population dynamics the interpretation of T(t) cp as 

a population density requires that T(t) leaves the cone 

x+ { cp E x I cp (x) 2: 0, 'Vx E Q} 

invariant. Now the identity 

(AI-A)-I cp = J 
0 

e-At T(t) cp dt, Re A large, 

(See Pazy (1983)) yields that the resolvent (AI-A)-I defines a positive 

operator for every large real A. 

The famous Krein-Rutman theorem and its variants describe the spectrum 

of a bounded, positive operator on the circle with radius equal to the 

spectral radius, thus generalizing the Perron-Frobenius theorem on the eigen­

values of a positive matrix. 

THEOREM B. Let X+ be reproducing, (i.e. {cp-ljJjcp,~ EX+} X) and normal 

(i.e. 3 v llcp+1fJll2allq,ll). 
o>O q,, 1/J Ex+ 

Let L be a bounded, positive operator such that for all cp E X+, cp # 0 a:nd 

f E x: , f # O thePe exists an integer p such that <f, L n cp > O for all. 

n 2: p. Moreover let A = r(L) be a pole of the resolvent of L (which is true 

if L is aompaat) Then 

(i) r(L) is an algebraically simple eigenvalue 

and the corresponding eigenvector belongs to X+. 

(ii) No other eigenveator belongs to X+. 

(iif) If ). E o (L) and ). # r (L) then JA J < r (L) • 

This theorem is formulated in Marek (1970). We refer to Krasnosel'skit 

(1964) for similar theorems for so-called u0 -positive operators. 

In several cases it is possible to show that the resolvent of A satis­

fies the hypotheses of theorem B and subsequently the correctness of the 

assumptions I) and 2) of theorem A is a straightforward consequence of the 

relation between the spectra of A and it's resolvent. We refer to Heijmans 

(in press) for more details in a specific example. 
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If we do not have some kind of strong positivity (such as <f,Ln~>>O) 

conclusion (iii) of theorem B has to be weakened in the sense that the 

spectrum of L on the circle of radius r(L) is a cyclic set, i.e. if 

99 

ie ike r(L)e E cr(L), then r(L)e E cr(L), for all k E 7l. We refer to Schaefer 

(1974) for precise formulations. Greiner (1981) has shown that, under certain 

conditions, the spectrum of the generator A of a positive semigroup on the 

vertical line Re A = Ad is necessarily additive cyclic (i.e. if Ad+iy E cr(A) 

then Ad+ iky E cr (A) for all k E 7l ; also see Davies ( 1980)), and that 

Ad = w0 . This result is consistent with the multiplicative cyclicity of the 

f ( ) h . 1 . h d' WQ t I h . . h spectrum o T t on t e circ e wit ra ius e • n sue a situation t e 

asymptotic behaviour for t + oo is determined by the projection onto an 

infinite dimensional subspace of X (i.e. infinitely many 'properties' of 

the initial condition remain manifest for all time). A trivial example of 

this type of behaviour is provided by example lb, and a more subtle one by 

example Id with v(x) 

Thieme, (in press).) 

ex, for some constant c. (See Diekmann, Heijmans & 

In many cases (with x one-dimensional) it is actual possible to derive 

a (transcendental) aharaater>istia equation from which the eigenvalues of A 

can be computed. In that case one finds the necessary information about 

the spectrum of A directly, and any appeal to general results can be avoided. 

(See Heijmans (in press)). Nevertheless these general results are important 

for putting things in their true perspective. 

Example. Again we illustrate the general outline by analysing example la. 

We formulate the results in terms of S(t) and B. The abstract equation 

(AI-B) 1)! = f implies 

1)!' (a) - Ai)! (a) + f (a) 

and consequently 

a 

i)!(a) e-Aai)!(O) + J e-A(a-o)f(cr)dcr 

0 

However, 1)! is an element of V(B) iff 

I -AO 
1)!(0) = f0 K(o)e do i)!(O) -A(a-T) e f(T)dT do. 
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. 1 -lcr 
This equation can be solved for w(O) iff f0 K(cr)e dcr f 1. We conclude 

1 -lo 
that 1 E p(B), the resolvent set of B, if f0 K(cr) e dcr f I and that the 

zeros of I- fb K(cr)e-Acr do of order p are poles of the resolvent of order 

P and eigenvalues of B. The fact that K(a) ?. 0 implies that there exists 

one simple real zero Ad and that all other zeros satisfy Re A s; Ad - e: for 

some e: > o (use the analyticity and the lennna of Riemann-Lebesque). 

For t ?. I the influence of the initial condition W on the solution m 

in (3.11) is through y defined by (3.12) only. One can use standard esti­

mates to show that, as a consequence, T(t) is compact for t <: I. 

REMARKS 1. Of course the conclusion can, for this simple example, also be -derived directly from (3.12) using Laplace transformation. 

2. If we study example I with a € C.0, 00), i.e. without maximal age, the direct 

influence of the initial condition on the solution remains for all times 

although, under suitable conditions on b, its "strength" diminishes as 

t + "'• In such a case one can exploit a representation T(t) = U(t) + V(t) 

(see Webb, in press, and PriiS, 1981 and in press). 

3. In the case of example Id the compactness as well as the existence of a 

nontrivial additive group of eigenvalues on the line Ref. = Ad hinge upon 

the behaviour of the function v (2x) - 2v (x) • We re fer to Diekmann, 

Heijmans & Thieme (in press) for the details and the biological inter­

pretation of the "cyclic" case. 

4. In certain situations the choice of topology is of some importance. 

Heijmans (in prep.) uses the weak * topology and duality to demonstrate 

the existence of a stable distribution for a model of predatory behaviour 

introduced in Metz & van Batenburg (in press). 

4. THE POPULATION DYNAMICS OF ECTOTHERMS 

In this section we shall concentrate on the second example from section 

2. In order to simplify the discussion we shall assume that a < ""· For the . m 
sake of convenience we repeat formula (2.10) as formula (4. I): 

(4. la) 

(4. lb) 

a a at l(t,a) + aa- l(t,a) = g(x,l(t,a)) 

! 
aat n(t,a) 

n(t,a) = 0 

n(t,O) = J 
n 

a 
+ aB:" n(t,a) - µ(a,l (t,a)) n(t,a), 

S(x,l(t,a)) n(t,a)da • 

l(t,O) =lb 

for l(t,a) < l(x) 

for l(t,a) ?. l(x) 



CONTINUUM POPULATION DYNAMICS IOI 

When x is constant, equation (4, la) has a stationary (i.e. time independent) 

solution and any solution of an initial value problem will be identical to 

the stationary one after finite time. There fore we can restrict the attention 

to the linear (4. lb) and apply the theory of the last section. In Kooijman 

& Metz (in press) the value of the dominant eigenvalue Ad was studied as 

a function of x. 

08 
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!ii;~: Dominant eigenvalue Ad for the waterflea Daphnia magna feeding on 

the alga Chlorella at 20°c as a function of food density. 

Figure 2 shows the result for the growth parameters of Daphnia magna and 

with formula (2.9 bi) with d = 0 for the death rate. It can be seen from 

the is figure that near x crit defined by Ad(xcrit) = 0 the dependence of 

Ad on x is very steep indeed. This means that for Daphnia and ecologically 

similar organisms a small fluctuation in the food density x in the neigh-

bourhood of xcrit has a very drastic effect on population growth. This is 

one possible explanation for the frequently erratic appearance of population 

counts of daphnids recorded in the literature. 

Since in the Daphnia model all parameters have a direct physiological 

interpretation it becomes possible to study the population effects of toxic 

compounds affecting these parameters in dependence on the food density x. 

This is very important since routine laboratory toxicity testing is almost 

always done at high food densities whereas in nature food is generally 

scarce. Figure 3 shows the result of such an exercise for Daphnia magna. 
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Fig. 3: Dominant eigenvalue Ad under stressed conditions as a function of 

). (x) under unstressed conditions for compounds affecting (I) feeding rate 
d 

e;, (2) digestion v, (3) basal metabolism ~. (4) growth 11, (5) reproductive 

rate w, and (6) survival am. Except for the feeding rate the concentration 

of the toxic compound is chosen such that the maximum stressed value of 

Ad is 90% of the maximum blank value Adm; parameter values of the waterflea 

Daphnia magna feeding on the alga ChZoreZZa at 20°C. 

In this figure the value of Ad(x) under chemically stressed conditions is 

plotted as a function of Ad(x) in the unstressed situation (that is, we 

vary x but put 1'd(x) on the horizontal axis) for various types of physiolog­

ical effects, The level of chemical stress is (arbitrarily) chosen such that 

Ad is reduced by 10% at very high food densities (in the case of an effect 

on the filtering rate which manifests itself in a lowering of €; another 

choice is made since this effect never manifests itself in Ad at high food 

densities). It can be seen from Figure 3 that for effects on growth and 

reproduction the relative reduction of Ad is hardly depending on x (extra­

polation is "safe"). On the contrary compounds affecting survival bring about 

a far more drastic relative reduction of Ad at lower food densities. These 

predictions are consolidated for all regions of the parameter space which we 

have explored so far. 

As yet we have not done any laboratory experiments on /kiphnio magna 
to test the theory. 
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:.!l 06 
I~ 

~ Ol. 

~ 0.2 

& 

tn cone OCAN (10" 6gtl) 

~: Observed population growth rates (Ad' vertical in d-I) at 20°c 

of the rotator Brachionus r•ubens for various concentrations of 3,4-dich­

loroaniline (left) and potassium dichromate (right) (horizontal) feeding 

at various Chlorella densities (backwards). The leftmost concentration 

is the blank and should be positioned at minus infinity. 

Figure 4 shows the results of laboratory experiments with another animal, 

the rotifer Brachionus rubens, for which population experiments are more 

easily done. It can be concluded that the predictions are borne out by the 

data, at least qualitatively. 

In many population dynamical experiments x is not a given quantity but 

it is dynamically dependent on the population trajectory (consumption!). Some 

possible simple assumptions about the dynamics of x are 

(4. 2a) dx a - yx - vf(x)p 
dt 

or 

(4. 2b) dx 2 - vf(x)p dt CIX - yx 

where in both cases 

p (t) J 
2 l (t,a) n(t,a)da. 

n 
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To arrive at (4.2a) we assume that we feed the population at a constant rate 

and that uneaten food deteriorates at a constant relative rate, e.g. through 

sinking to the bottom of the experimental container or through overflow in 

chemostat-like set ups. Equation (4.2b) corresponds to the so-called logis­

tic growth of the food population. 

Together (4.1) and (4.2) form a nonlinear pair of equations which we 

only just began studying. We shall finish this section with a short over­

view of our present lines of approach. 

To find all possible equilibria the time derivatives in (4. I) and (4.2) 

are set equal to zero. Not unexpectedly it turns out that there is a unique 

nontrivial equilibrium l, fi, x with n > 0 if and only if the trivial equi­
-1 librium (fi = 0, x = y cr) is unstable. This in turn happens if and only if 

the dominant eigenvalue Ad of the linear problem which results from setting 
-I x equal to y cr for all time, is positive. 

For the nontrivial equilibrium l increases with a and t(am) < i_(x), i.e. 

we remain well away from the kink in g. Therefore we can study, at least 

formally, local stability by using a linearization procedure. This leads 

to a characteristic equation (of a type which one also encounters in delay 

differential equations) which is far more difficult than the one correspon­

ding to the trivial equilibrium. Some idea of the behaviour of the roots of 

the characteristic equation can be got already from the experimental results 

reproduced in Figure 5: the oscillations resulting from a temperature change 

from I8°c to 25°c strongly suggest the occurrence of a Hopf bifurcation. 
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Fig. 5: Population growth in the waterflea Dcrphnia Magna at (a) 1s0 c, and 

(b) 25°C in 50 cc of pond water. (Reproduced from Pratt (1943), reproduced 

by Krebs (1972), reproduced by Nisbet & Gurney (1982).) 

5. DENSITY DEPENDENCE: GENERAL REMARKS 

Unlimited population growth does not exist. A growing population in­

fluences its environment and therefore its own growth. Many such biological 

feedback loops can only be described properly in terms of the interaction 

of the physiological processes within the individuals (e.g. growth, repro­

duction) and environmental factors (e.g. the availability of food). Con­

sequently models of the type described in section 2 are an ideal tool to 

give a realistic mathematical formulation of density dependence (Streifer, 

1974). Once one knows the general structure of the models it is hardly more 

difficult to formulate a nonlinear model than a linear one(there are, how­

ever, some subtilities and pitfalls; see Diekmann, Lauwerier, Aldenberg & 
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Metz, 1983, for an example), but unfortunately this resemblance ceases when 

we consider the mathematical analysis of the resulting problems. 

If the conditions at the beginning of section 3 are relaxed one usually 

still can solve the problem of the existence and uniqueness of a solution 

for the initial value problem and subsequently define a semigroup of non­

linear operators (possibly only on a closed subset W of X such that solutions 

starting in W remain in Wand do not blow up in finite time; for instance, 

the definition of W may involve nonnegativity). However, the catalogue of 

possible asymptotic behaviour is much richer now and, in fact, so rich that 

we cannot say anything in general. We expect that progress will be made 

by analysing specific problems in detail using bifurcation theory (Chow & 

Hale, 1982, Guckenheimer & Holmes, 1983) and numerical experiments (Gurney 

& Nisbet, in press). Much work has to be done in order to generalize such 

basic theoretical results as the principle of linearized stability and the 

Hopf bifurcation theorem to the present class of dynamical systems (Webb, 

in press, Cushing, 1983, and Pruss, 1981, 1983, contain results 

for age-dependent population growth which is a rather special case since 

the growth rate ~~ is always one and never density dependent). However, a 

perhaps much more pressing problem is the development of powerful methods 

to derive results about roots of characteristic equations which are not of 

the simple kind discussed in section 3 (Cooke & Grossman, 1982). These arise 

when linearizing about some non-zero steady state. 

Anyhow, except for the case of age dependence there exists at this 

moment no general nonlinear mathematical theory at all and we've had our 

say on this matter. 
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