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Abstract

We propose a finite mixture model for clustering of the spatial data patterns. The model is
based on the spatial distances between the data locations in such a way that both the distances of
the points to the cluster centers and the distances of a given point to its neighbors within a defined
window are involved in the model. Nevertheless, we take into consideration the background noise
as well in the model. We resort to Classification Expectation-Maximization (CEM) algorithm for
both estimating the parameters and clustering the data points. We test the algorithm on some
simulated data sets with different background noise levels and apply it to a real earthquake data
recorded in Kashmir in 2005.

Keywords: spatial clustering, finite mixture model, earthquake data analysis, background noise, Dirichlet

compound multinomial, Bayesian inference, expectation-maximization.

1 Introduction

We use a constrained Finite Mixture Model (FMM) to cluster spatial data points. These points may
indicate the locations of some natural events occurred in a region and be concentrated around some
centers. As an example, the earthquakes taken places around the main and the following strong
shocks may exhibit such a spatial pattern. There are some approaches based on spatial point process
[1] and nearest neighbor search [2] for spatial clustering. In these approaches, the data points are
clustered regarding to the majority vote of their neighbors given a local region. A drawback of the
majority voting is that it may lead the domination of the major cluster in number. In the other hand,
model-based clustering methods assign a probability density function to each cluster and perform the
clustering regarding to the weights of the points calculated using the cluster densities [3], [4]. FMMs
are preferred for model-based clustering. Our clustering approach combines the model and the nearest
neighbor based clustering approaches using a constraint FMM. We use a FMM to model the clusters
and a latent variable model to introduce the local interactions. Our mixture model contains three key
variables, namely location, cluster label and mixture proportion. For the locations, we assume that
the points are distributed around the cluster centers as a Gaussian. Mixtures of Gaussians (MoG)
based clustering methods are used for spatial point processes [5] [6], [7]. For each data point, we define
a latent cluster label to be a categorical random variable which is a special version of the multinomial
random variable where each data point belongs to only one cluster [8]. Extension to the classical
MoG model, we take the local interaction of each point into consideration by defining a spatially
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varying latent model for mixture proportions based on Dirichlet density. There may be found some
studies which include the spatial correlations into mixture models, i.e. [9]. Using the model, we aim
to improve the clustering performance especially around the cluster borders. By defining appropriate
likelihood and prior for the latent mixture proportion and integrating out it from the model, we obtain
a Dirichlet Compound Multinomial (DCM) distribution which is also known as Polya distribution and
is proposed to model the diffusion of a contagious disease over a population [10]. The DCM based
mixture models find varying application areas, in document clustering [11], text retrieval [12] and
image segmentation [13], [14].

Apart from the data points concentrated around the cluster centers, there might be some data
points located far away from the clusters. We assume these data points to be the background noise
or the outliers. The intuitive trend for background noise modelling in spatial clustering is to use a
Poisson point process [5] [6], [7]. In this study, we use the noise model proposed in [7] and allocate
one of the components in the mixture model for the background noise.

We formulate the problem in a Bayesian framework [15]. The Expectation-Maximization (EM)
algorithm [16], [17] is the mostly used method for solving the FMM based clustering problems. We
can interpret our Bayesian formulation as a constrained EM method [18]. Our aim is to maximize the
FMM w.r.t its parameters subject to a spatially constrained latent variables. Furthermore, we use a
computationally less expensive version of EM algorithm, namely Classification EM (CEM) [19], both
for parameter estimation and for clustering, using the advantage of categorical random variables. In
classification step, CEM uses the Winner-Take-All principle to allocate each data point to the related
cluster according to the posterior probability of latent cluster label. After the classification step of
CEM, we estimate the parameters of the cluster densities using only the members of the related
clusters.

We test the algorithm both on the simulated and the real data. For real data, we use a seismic
activity pattern observed in Kashmir in 2005. The seismic signals are analyzed for varying purposes
such as surveillance, analysis and prediction of the geological hazards and disasters. These analyzes
are generally based on the three variables namely, space, time and magnitude [20],[21]. In this study
we focus on the clustering of the spatial earthquake pattern occurred after a main shock. There are
some studies on clustering the spatial earthquake data, i.e. [22] uses the mixture of Poisson processes,
[23] resorts to Fisher Discriminant Analysis (FDA) and [24] proposes a Dirichlet Process Mixture
(DPM) model.

We organize the paper as follows. In Section 2 and 3, the DCM mixture model and CEM algorithm
are given. The simulation results are shown in Section 4. Section 5 presents the conclusion and future
work.

2 Dirichlet Compound Multinomial Mixture Model with Noise

We denote each data as a vector xn = (x1, x2) ∈ R2 where n ∈ R = {1, 2, . . . , N}. The components
of xn represent the longitude and the latitude respectively. If we denote µk to be the cluster centers,
we can define the cluster density p(xn|µk,Σk) as a Gaussian as

N (xn|µk,Σk) =
1

2π|Σk| 12
exp

{
(xn − µk)T Σ−1

k (xn − µk)
}

(1)

where Σk ∈ R2 × R2 is the covariance matrix of the kth cluster. We denote θk = {µk, Σk} to be the
parameters of the cluster densities for k = 1, . . . , K.

Every data point has a latent cluster label. Denoting by K the number of clusters, we encode
the cluster label as a K dimensional categorical random vector zn whose elements zn,k, k ∈ C =
{0, 1, . . . ,K} have the following properties: 1) zn,k ∈ {0, 1} and 2)

∑K
k=0 zn,k = 1. This binary random

vector indicates the cluster label of the related pixel. We allocate the 0th cluster for background noise
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with parameter α. We assume the elements of zn to be distributed a priori as a multinomial density
with parameters πn = [πn,0, . . . , πn,K ]. We denote the prior of zn as p(zn|πn) = Mult(zn|πn). The
parameters πn,k represents the mixture proportions and ensure that

∑K
k=0 πn,k = 1. We may write

the probability of xn to be the marginalization of the joint probability density p(xn, zn|Θ, πn) =
p(xn|zn, Θ)p(zn|πn), [8], over zn as

p(xn|Θ) =
∑
zn

p(xn|zn, Θ)p(zn|πn)

=
∑
zn

αzn,0π
zn,0
n,0

K∏

k=1

N (xn|θk)zn,kπ
zn,k

n,k

=
∑
zn

αzn,0

K∏

k=1

N (xn|θk)zn,k

K∏

k=0

π
zn,k

n,k (2)

where Θ = {α, θ1, . . . , θK} is the set of the parameters. We assume the parameter α to be fixed. By
taking into consideration that zn is a categorical random vector distributed as a multinomial, and
assuming that πn is spatially invariant, (2) is reduced to classical MoG model with a noise term [5],
[6], [7] as follow

p(xn|Θ) = απ0 +
K∑

k=1

N (xn|θk)πk (3)

In our study, we do not use the classical MoG model in (3) but use the spatially varying mixture
model in (2) to include the spatial local statistics. We use a fully Bayesian approach to include the
local statistics to the clustering process. In fully Bayesian approaches, all the parameters might be
estimated from the same data. We give the details of the model and the algorithm in the following
section.

3 Bayesian Estimation and Clustering with Classification EM
Algorithm

In this section, we formulate the clustering problem under fully Bayesian framework. Since the spatial
data is comprised of the spatial coordinates, any spatial interaction model has to depend on the data.
We use the following setting to introduce the spatial interaction to the model. Let X = {x1, . . . ,xN}
be the set of all data points. If we define a local region bounded with a circle located at a data point
xn with radius r as Dn = {m ∈ R : ||xm − xn)|| ≤ r}, we can denote X∂n = {xm : m ∈ Dn} to be
the neighbor set of xn and D = {D1, . . . ,DN} to be the set of all local interactions in the model. We
do not include the parameter r into our Bayesian model and release its value to be determined by the
user.

We may write the marginal likelihood of the parameter set Θ given the data X and spatial inter-
action model D as

p(X ,D|Θ) = p(D)
∑

Z
p(X|Θ,Z)p(Z|D) (4)

where Z = {z1, . . . , zN} is the set of the cluster labels. The maximum likelihood estimation of Θ from
(4) can be found iteratively using the EM algorithm. We can write the EM objective function to be
maximized as

QEM (Θ|Θt−1) = C +
∑

Z
log{p(X|Θ,Z)}p(Z|X ,D, Θt−1) (5)
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We can formulate the constraint clustering problem by maximizing QEM (Θ|Θt−1) subject to

p(Z|X ,D, Θt−1) =
∫

p(Π,Z|X ,D, Θt−1)dΠ (6)

where Π = {π1, . . . , πN} is the set of mixture proportions. Since our aim is not only to fit the
parameters to the objective function but also to cluster the data, we resort to Classification EM
algorithm [19] using the advantage of working with categorical random variables. The CEM algorithm
incorporates a classification step between the E-step and the M-step which performs a Maximum-a-
Posteriori (MAP) estimation. In the following three sections, we give the details of the CEM algorithm.

3.1 E-step

In order to calculate the posterior p(Z|X ,D, Θt−1) introduced in (6), we factorize the integrand using
the pseudo likelihood approximation [25]. This approximation leads to a kind of binary mean field
approximation on Z. We may write

p(Π,Z|X ,D, Θt−1) ≈
N∏

n=1

p(πn, zn|Z−n,xn,Dn, Θt−1)

=
N∏

n=1

p(πn, zn|Z∂n,xn,Θt−1)

=
N∏

n=1

p(xn|zn,Θt−1)p(Z∂n|πn)p(zn|πn)p(πn)
p(xn,Z∂n|Θt−1)

(7)

where Z−n represents the set from which the zn is extracted and Z∂n = {zm : m ∈ Dn} is the
cluster labels around zn. To obtain the last expression, we also assume that the data points are i.i.d.
distributed as

p(X|Z, Θt−1) =
N∏

n=1

p(xn|zn, Θt−1) (8)

We may integrate out πn from (6) by considering (7) as

p(zn|Z∂n,xn, Θt−1) ∝ p(xn|zn, Θt−1)
∫

p(zn|πn)p(Z∂n|πn)p(πn)dπn (9)

The first term in (9) is the exact likelihood of the cluster label zn given the estimated parameters
from the previous step as introduced in (2) implicitly as

p(xn|zn, Θt−1) = αzn,0

K∏

k=1

N (xn|θk)zn,k . (10)

The first term inside the integral is a multinomial, Mult(zn|πn), as introduced in Section 2.
Assuming that πn is distributed as i.i.d. multinomial inside the local region Dn, we may write the
second term inside the integral in (9) as

p(Z∂n|πn) ∝
∏

m∈Dn

K∏

k=0

π
zm,k

n,k (11)
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If we assign a noninformative prior for πn as p(πn) =
∏K

k=1 π−1
n,k, we can reorganize p(Z∂n|πn)p(πn)

as a Dirichlet density as

Dir(πn|vn) =
Γ(

∑K
k=1 vn,k)∏K

k=1 Γ(vn,k)

K∏

k=1

π
vn,k−1
n,k (12)

where
vn,k = 1 +

∑

m∈Dn

zt−1
m,k. (13)

and Γ(·) represents the Gamma function. If we perform the integration in (9) by considering (12),

∫
Mult(zn|πn)Dir(πn|vn)dπn =

Γ
(∑K

k=1 vn,k

)

Γ
(∑K

k=1 vn,k + zn,k

)
K∏

k=1

Γ(vn,k + zn,k)
Γ(vn,k)

(14)

we obtain the DCM or Polya distribution. Furthermore, using the identity Γ(x + 1) = xΓ(x), we
obtain a simpler non-parametric version of the DCM density as

p(zn|vn) =
K∏

k=1

(
vn,k∑K

k=1 vn,k

)zn,k

(15)

Now, we are able to write the posterior in (6) as follows

p(zn,0|xn,vn, Θt−1) ∝
(

αvn,k∑K
k=1 vn,k

)zn,0

, k = 0 (16)

p(zn,k|xn,vn, Θt−1) ∝
(
N (xn|θt−1

k )
vn,k∑K

k=1 vn,k

)zn,k

, k 6= 0. (17)

3.2 C-step

In the C-step, we perform the clustering by assigning a cluster label to each data point such as for
all n = 1, . . . , N , classify the nth pixel into class j as zn,j = 1 by choosing j which maximizes the
posterior p(zn,k|xn,vn, Θt−1) over k = 0, 1, . . . , K as

j = arg max
k

p(zn,k|xn,vn, Θt−1) (18)

3.3 M-step

After C-step, we can partition the data points domain R into K non-overlapping groups such that
R =

⋃K
k=1Rk and Rk

⋂Rl = 0, k 6= l. We can write the classification log-likelihood function by
modifying the EM objective function in (5) as

QCEM (Θ|Θt−1) =
K∑

k=1

∑

m(k)∈Rk

logN (xm(k)|θk) (19)

To maximize this function, we alternate among the variables α, µk and Σk. The CEM functions
of the parameters are written as follows

QCEM (µk|Θt−1) =
∑

n∈Rk

−1
2
(xn − µk)T Σ−1

k (xn − µk) (20)
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Table 1: RMSE values of the clustered simulated data with 50% of noise for different initial cluster
centers obtained by perturbing the ground-truth centers by adding 5, 10, 15, 20 and 25, and related
numbers of iterations.

5 10 15 20 25

RMSE(�) 0.8316 0.8964 0.8688 1.5202 3.1609
RMSE(Σ) 0.5140 0.6667 0.6342 1.2565 1.9516
# of iter.s 3 4 4 6 8

QCEM (Σk|Θt−1) =
Nk

2
log |Σk|+

∑

n∈Rk

−1
2
(xn − µk)T Σ−1

k (xn − µk) (21)

The solutions to (20) and (21) can be easily found as

µk =
1

Nk

∑

n∈Rk

xn (22)

Σk =
1

Nk

∑

n∈Rk

(xn − µk)(xn − µk)T (23)

4 Simulation Results

In this section, we present the clustering results of the proposed model on simulated and real data.

4.1 Simulated data

In order to test our algorithm, we simulate a spatial point pattern which has two Gaussian clusters and
uniformly distributed background noise or clutter. The point pattern similar to one used in [7] with a
difference that the cluster centers are much closer to each others. The Gaussian clusters are centered at
(70, 70) and (120, 120) and have standard deviations in the horizontal and vertical directions of (10, 20)
and (18, 10). We simulate 250 data points for each cluster and test the algorithms for different noise
ratios changing from %10 to %70.

We first test the dependence of the DCM algorithm on initial values. Table 1 lists the different the
Root Mean Squared Errors (RMSE) of the estimated mean and covariance parameters obtained with
different initial cluster centers presence of 50% of noise. We estimate the mean error by averaging
errors found by running the algorithms 200 times with different random noise realizations. The error
in the estimation of µ is found by taking the difference between the estimated µ̂ and real µ∗ means.
For the estimated covariance matrix, we use an error such as ||(I2 − Σ̂−1Σ∗)||2 where I2 is the 2 × 2
identity matrix and ||J||2 is the square root of the maximum eigenvalue of JT J. In this experiment,
we initialize the ground-truth cluster centers by adding 5, 10, 15, 20 and 25 both in vertical and
horizontal directions. The covariance matrices are estimated from the data using the initial means.
The initial values up to 15 give quite good results. With the initial values after 20, the clustering
performance is deteriorated. As seen from Table 1, the necessary number of iterations and the errors
are increasing proportional to the distance between the initial and the ground-truth cluster centers.

To show the convergence of the algorithm, we may use the Total RMSE, TRMSE = RMSE(µ) +
RMSE(µ). Fig. shows the three plots. Regarding to TRMSE, the algorithm converges its optimum
value after 4 iterations.

We have performed some experiments by changing r from 0 to 8 to determine the radius r and
understand the sensitivity of the clustering to r. Fig. 1(b) illustrates the plot of the RMSEs of the
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Figure 1: (a) TRMSE plot versus number of iterations. (b) RMSE plots of the clustered simulated
50% noisy data versus neighborhood radius r.

Table 2: RMSE values of the clustered simulated noisy data with MoG and DCM mixture model.
MoG DCM

Noise ratio % RMSE(�) RMSE(Σ) 1/α RMSE(�) RMSE(Σ) 1/α

10 0.9852 0.3283 20.0 0.9699 0.3447 75.0
20 1.2636 0.3793 10.0 1.0645 0.3893 30.0
30 1.2694 0.4605 6.0 1.0005 0.4262 10.0
40 0.9011 0.5824 5.0 0.6961 0.4795 8.0
50 0.7070 0.6778 4.6 0.7331 0.4885 4.4
60 0.9654 0.9352 3.8 1.0063 0.5404 3.2
70 4.5738 1.1133 3.6 1.0320 0.6179 2.0

estimated mean and covariance parameters presence of 50% noise versus r. From the plot, we can see
that the best value of r can be found between 2 and 4.

Table 2 lists the RMSE of the estimated mean and covariance parameters obtained by using MoG
and DCM models. For initialization, we perturb the ground-truth mean values by adding 1. We fix
the radius r = 4 and the number of iterations to 4 for all experiments regarding to Fig. 1(b) and
Table 1, respectively.

From Table 2, we can see that the performance of the mixture model with Bernoulli background
noise model increases in case of the noise higher than %20. The DCM model is better in over all and
especially in the estimation of the covariance matrix. Fig 2 shows the clustering results in case of two
different noise realizations. Since the mean parameter is related with location and the covariance is
with the shape and the orientation of the clusters, we can reach such an interpretation of the results
that the DCM model enables to estimate the shape and the orientation of the cluster better than the
MoG model in case of noisy background.

4.2 Earthquake data

We use a real earthquake data which consist of the locations of a sequence of earthquakes happened
between October 8, 2005 and November 7, 2005 in the Kashmir area in Pakistan. The earthquakes in
the data set have the magnitudes higher than 4.5 and are originated at a depth of less than 70 km.
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Figure 2: Clustering results with MoG and DCM mixtures in case of the presence of %40 and %70 of
background noises. The ellipses represent the contours (or isolines) of the fitted 2D Gausians evaluated
at probability 0.5.

Table 3: MNCL values of the clustered earthquake data with MoG and DCM mixture models and
their noisy versions.

MoG DCM N-MoG N-DCM

1.9038 1.9286 1.8441 1.7515

Fig. 3(a) shows the pattern of 176 spatial locations in corresponding longitudes and latitudes.
We test the noisy and noiseless mixture models on the entire data set. Since in real data case,

we do not have any ground-truth to calculate RMSE, we calculate the Mean Negative Completed
Likelihood (MNCL) excluding the estimated outliers as

MNCL = −2
1
N

N∑
n=1

K∑

k=1

log{p(xn|θ̂k)ẑn,kp(ẑn,k|v̂n)} (24)

Table 3 presents the average MNCL values calculated using clustering results of MoG and DCM
mixture models. Fig. 3 shows the original data set and the clustering results of the noiseless DCM
and the noisy MoG and DCM models. Noisy mixture models fit the data more tightly especially the
noisy DCM model. The results depend on the parameter α. In this study, we initialize it by 0.1.
We give the elements of the estimated covariance matrices by FDA [23], MoG and DCM models in
Table 4. The FDA method provides some clusters with large variances because it use the entire data
without considering background noise. The DCM with background noise model fits the data more
tightly than the others.
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Figure 3: (a) The original data set and (b) the clustering results of (b) the noiseless DCM, (c) the
noisy MoG and (d) the noisy DCM models. The ellipses represent the contours (or isolines) of the
fitted 2D Gausians evaluated at probability 0.5.

Table 4: Estimated cluster covariance matrices with MoG and DCM mixture models and FDA in [23].
σ1,1 σ2,2 σ1,2

clust 1 MoG 0.0370 0.0338 -0.0208
DCM 0.0293 0.0273 -0.0158

FDA [23] 0.0394 0.0813 -0.0188

clust 2 MoG 0.0068 0.0056 -0.0018
DCM 0.0067 0.0053 -0.0018

FDA [23] 0.0117 0.0105 -0.0039
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5 Conclusion

The proposed spatial varying mixture model exhibits good performance in the estimation of the shape
and the orientation of the clusters. Especially, in the presence of background noise the success of the
proposed method is more significant compared to classical Gaussian mixture model with background
noise component. The algorithm is sensitive to the parameter of the background noise. The user should
define it regarding to an a prior knowledge or by observing the clustering results. For the earthquake
data, the noise level should be determined by an expert in the area by considering the expected
number of background events regarding to previous earthquake data analysis. The earthquake cluster
model may be extended by including magnitude and time information. The proposed approach can be
also used for other spatial clustering applications, i.e. minefield detection, astronomical point source
clustering.
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