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Strong Normalization and Perpetual Reductions 
in the Lambda Calculus 

By Jan A. Bergstra and Jan Willem Klop 

Abstract. A lambda term }J{ is called strongly normalizing if every reduction of M stops 
eventually (in the unique normal form), and weakly normalizing if some reduction of M 
ends in the normal form. Here we are interested in characterizing those reduction steps 
kl _,. M' such that if M has an infinite reduction, ]}[' has one too. A sufficient condition 
is that in the step JJ1 _, M' a redex" R = (J.x. A) B is contracted where x is free in A, 
i. e. R does not erase its "argument". (A corollary is the well-known fact that in the/.!­
calculus strong and weak normalization are equivalent.) An R whose contraction preserves 
the property of having an infinite reduction is called perpetual. In the present paper the 
perpetual redexes which do erase their \J,rgument are charaeterized. 

Introduction. The relevance of .A-calculus to Computer Science, both practically 
and theoretically, is at present well established. The property of Strong Normalization 
of a A-term is of obvious importance, because it allows one to attach to a .A-term a 
unique operational meaning. Also in the theory of Term Rewriting Systems (in which 
A-calculus occurs as a prime example), much attention is devoted to this topic of 
termination (or normalization, as we call it) of reduction sequences. 

In this paper we study the behaviour of a A-term w.r.t. normalization in what 
seems to be a reversed way: if a },-term M is not strongly normalizing, i.e. admits at 
least one infinite reduction, then we are interested in those reduction steps M ........ M' 
which preserve this property of having an infinite reduction. In fact we give a charac­
terization of such steps. In this way we come to an understanding of what happens in 
a step M ........ M' which is critical in the sense that M has an infinite reduction but M' 
not (i.e. M' is strongly normalizing). Apart from the general insight into the normali­
zation property which this approach via "perpetual" reductions yields, one may also 
think of systems in which non-termination rather than termination is desirable (such 
as operating systems). 

In a technical respect, ·we have made an essential use of reduction strategies, a 
concept which seems to be of independent interest (see [3}). Reduction strategies 
occur in the Computer Science literature e.g. in definitions of operational semantics 
for data type specifications (see [5}). 

We will now give a summary of the main definitions and results. 
Let A be the set of .A-terms. A term M EA is called strongly normalizing if every 

reduction of M stops eventually (in the unique normal form). Let SN be the set of 
strongly normalizing A-terms. Instead of M a: EN we will write ooM, to indicate that 
there is an infinite reduction starting from M. Par abus de language we will call such 
a term Man infinite term. 
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We will study strong normalization by considering the question: supposing that one 
is interested to preserve the property oo, which redexes can "safely" be contracted 
(i.e. without losing oo) in any context? Let us call such redexes perpetual. 

A partial answer to this question is obtained in [2]: the redex (A.x. A) B is perpetual 
if it does not erase its argument, i.e. if x E FV(A). When applied to the AI-calculus 
this result yields at once two well-known facts: 

(1) in the A.I-calculus strong normalization is equivalent to having a normal form; 
(2) a AI-term has a normal form iff all its subterms do. 

In this paper we consider the redexes which do erase their argument, and we will 
arrive at a characterization of the perpetual redexes among them in terms of a certain 
quasi odering ~oo on A, defined as follows: 

~ -> ~ -+ ~ 

A(x) ~00 B(x) iff 'VG E SN (oo B(O)=? oo A(O)). 

(So A ~00 B iff every SN-substitution making B "explode" does the same for A.) 
To be precise, we will prove that the redex (A.x. A) B where x ~ FV(A), is perpetual 
iff A ~00 B. Together with the partial result in [2] for non-erasing redexes this yields 
a characterization of all perpetual redexes. 

As in the proof of the result for non-erasing redexes in [2], our main tool will be 
the concept of a perpetual reduction strategy. An outline of the method employed in 
this paper will be given after introducing some terminology and preliminaries. 

Acknowledgement. We wish to thank Henk Barendregt for useful criticisms on 
a draft of this paper and David Isles for some stimulating discussions on the subject 
in question. 

1. Terminology. We will quickly introduce some basic concepts and notations. 
A, the set of A.-terms, is defined inductively by (i) x1 E A (i E IN); (ii) M, N E A==? 

(MN) EA; (iii) ME A=? (A.x. M) EA. 
If in (iii) the proviso x E FV(M) is added, we get the AI-terms. Here FV(M) is the 

set of free variables of M. 
The usual bracket convention (association to the left) is employed. Writing M(aJ.i, 

•.• , x,..) means FV(M) ~ { x1, ••• , x11 }; then M(N1, ••• , N ,..) is the result of simultaneous 
substitution of N1 , •.• , N 11 for x1 , ••• , Xn. 

A term R =(.Ax· A) Bis called a redex; R' ::= A[x := B], the result of substituting 
B for the free occurrences of x in A, is the contractum of R. A term not containing 
redexes is a normal form. In the sequel R, R' will exclusively be used for a redex and 
its contractum. 

If R = (Ax. A) B then Arg(R), the argument of R, is B. If x E FV(A), R is called an 
I-redex. (But R need not be a AI-term.) If x ~ FV(A), R is a K-redex and we will 
write R = KAB (inspired by Combinatory Logic). 

One step (p)-reduction is defined by C[R] -+ C[R'] where R, R' are as above and 
C[ ] is a context. Contexts are A-terms containing one hole O; they can be inductively 
defined as follows: (i) Dis a context, the trivial one; (ii) if ME A and N is a context 
then (MN) and (NM) ar:e contexts; (iii) if M is a context t~en (Ax · M) is a context. 

C[M] is the result of substituting M for Din O[ ]. The subterm relation~ is defined 
by: M ~ N ~ 30[] N ::= C[M]. (=denotes syntactical equality.) 

R 
Sometimes we will write M -+ N to indicate which redex R is contracted in the 

reduction step M -+ N. (As everywhere in this paper we will tacitly assume that it is 
clear that we are speaking about occurrences of subterms, in casu R.) The tranBitive 
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reflexive closure of - is denoted by~· Reduction sequences M 0 -+ M1 - M 2 - ••• -+ 

M .. -+ ••• will be denoted by (ft, plus possibly subscripts. Although it is an abuse of 
notation, we will sometimes shorten 31. = M 0 -+ ••• -+ M., to (JI,= M 0 ~ M 11• 

If Mis not a normal form, the leftmost redex of Mis that redex whose head-symbol A. 
is to the left of the head-.?. of every other redex in if!. 

If A, B SM we will write A~ B to denote that A and Bare disjoint (i.e. incom­
parable w.r.t. C:) and A is to the left of B. 

2.1. Definition (Descendants and underlining). (I) Let M - M' and N c: M. 
The subterm(s) N' c: M' which can be "traced back" to N are the descendants of N 
in M'. N is also called the ancestor of N'). (Notation: N >- N'). 

The concept of descendant was first formulated in [7], [8]. Since [7], [8] are not 

generally accessible we will state the definition here. So let M ~ M' be a reduction 
step where R = (Ax. A) B is the contracted redex, and let R' =:: A[x := B] be the 
contractum in M'. Suppose N' ~ M'. According to the relative positions of N' and R' 
we distinguish four cases and define the ancestor N of N'. 

(1) N' n R' = 0 (N', R' are disjoint). Then there is a corresponding subterm 
N S M which is the ancestor of N'. 

(2) N' ;;? R' (R' is a proper subterm of N'). Then there is a unique N c: M such 
R 

that N - N' ; and for this N we define N >- N'. 

(3) N' = O[x :=B] for some 0 where 0 ~A but 0 $ x; then 0 >- N'. 

(4) N' is a subterm of some "copy" of B in A[x := B]. Then the ancestor of N' 
is N' itself as a subterm of B in M. 

The notion >- extends in the obvious way from one step reductions to arbitrary 
finite reductions. The transitive reflexive closure of >- is denoted by ;;;>-. So if 
r'll = M 0 - ••• -+ M., (n 2 0), N ~ M 0 and N' ~ M 11 , then N ;;;:..-- N' means that N' 
is a descendant of N (via 31.). 

Remark. (i) The notion of descendent of N ~ M can easily be visualized by 
tracing the brackets which surround N. 

R 
(ii) Note that in the step M - M' the contracted redex R =(Ax. A) B has no 

descendants in M'. Also the (occurrences of) X in A have no descendants in M'. 

(iii) Note that every N' c: M' has a unique ancestor N SM. On the other hand, 
an N c: M can have le descendants for every k ~ 0. 

(II) Often it is useful to attach some extra information to a A.-term, by specifying 
some of its subterms. This specification can be made simply by underlining those 
subterms. We define the set A of underlined A-terms as follows: (1) Xi and ~i EA for 
all i ~ O; (2) M, NE 4 =?(MN), (MN), (Ax. M), (J.x. M) E 4. Reduction extends in 
a simple way to 4, by requiring that descendants of underlined subterms (and only 
those) are again underlined. E. g.~ (NM_)-+ NM(NM). 

2.2. Definition. Consider the reduction :Jl = M0 - M1 -+ ••• and some subterm 
L0 S M 0• The descendants of L0 in :Jl form a tree; e.g. see Fig_. 1. 

Now we define a line of descendants (l.o.d.) to be a branch m that tree. 
Note that the l.o.d. :t = L 0 >- L1 >- L2 >- ... is in general not a reduction 

sequence, since there may be substitutions from "outside" into the L,. 

29 l<JIK,Bd.18,H.7{8 
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R, R1 R, 
2.3. Definition. Let 3l = M 0 - M1 - M 2 -+ M3 ••• 

Ull Ull Ull Ull 
and a l.o.d. 

be given. Then :t is called passive if for all i, R; ~ L;. 

2.4. Definition. (i) Let 3l be as above. 3l is called SN-substituting if for all i, 
Arg(Ri) E SN. 

(ii) Let M = M(x1, ••• , Xn) and 01, ••• , On E SN. Then M(01 , ••• , On) is called an 
SN-substitution of M. 

2.5. Definition. Let 3l be as above where R; = (.A.x1• A;) B 1 are the contracted 
redexes. 3l is called simple (w.r.t. substitution) if it is not the case that 

3i 3j > i 3Bi ~ M1(B1 >-Bi & X1 E FV(Bi)). 

(Here x1 is the bound variable of the redex R1 contracted in the step M 1 --. Mi+1 of 
:Jl.) 

Remark. This means that into a "substituted" subterm (i.e. a descendant Bi of 
B 1) there is no substitution (of B 1) allowed; roughly said: there are no double sub­
stitutions allowed. An example where such a double substitution occurs, is 

(Jex. ((.Icy. yl) (xx))) w - (.Ax. xxl) w -+ wwl. 

Note that although this reduction is SN-substituting, the result of the double sub­
stitution is that the descendant wwl of yl is not an SN-substitution of yl (here 
w = .Ax. xx). Note also that the reduction is not standard. 

R R 
2.6. Definition. Let 3l = M 0 _; M1 _; ••• be a finite or infinite reduction sequence. 

In each Mn we will attach to some of the redex-A's a marker* (meaning: this redex is 
henceforth forbidden to contract) as follows. 

Basis. In M0 all redex-./c's to the left of that of R0 are marked. 

Induction step. In Mn+i the following redex-A.'s are marked: 
(I) those that had already a mark in Mn, 
(2) those to the left of the head-A. of Rn+i· 
3l is called a standard reduction if the restrictions imposed by the marks are not 
violated, i.e. if no marked redex is contracted. 

2.7. Lemma. Standard reductions are simple (w.r.t. substitutions). 

~ & . 
Proof. Let 3l = M0 - M1 --.. •.• where R; = (Ax;. A1) B 1 be a standard reduct10n. 

Consider a step 

M1 = -----AY1 ---AY2 --- (Jex;. A1(x1)) B1(Y1• Y2• ... ) ----­
i 

Mi+1 = ----.A.*y1 ---J.*y2 ----A1(Bi(Y1• Y2• ... )) -----
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Obviously the free variables y1 in Bi (which are not free in Mi) must be bound by 
A's before x;. Hence by Definition 2.6 those y1 are ,,frozen" after this step. So (!/, 
cannot make a substitution anymore into (a descendant of) Bi. D 

2.8. Proposition. Let (!/,be a s1:mple, SN-subst-ituting reduction. Let :f: M ~ M' 
be a passive l.o.d. in (!/,_ Then M' is an SN-substitution of M. 

Proof. Say M == M(xp ... , x,,). Now it is obvious that the only thing happening 
in J' is that some of the variables xi in M are replaced by SN-terms Ci: e.g . 

. ilf(xv ... , Xn) >- M(xv ... , Xn) >- 111(xv 0 2 , x3, ... , Xn) >-

]11(Cv 0 2, x3 , ••• , Xn) >- ... >- M' . 

Since (!/, is simple, there cannot be substitutions into the Ci and since :t is passive 
t.here are no reductions inside the displayed terms. Hence M' = M(01 , 0 2 , ••• , On) 
where some of the ci may have remained Xj, and indeed all ci E SN. D 

2.9. Definition (Reduction diagrams and projections). We will give a quick 
sketch of the definition of those concepts; precise definitions can be found in [l], l G]. 

If L .,_ "11• - },f -+ ill, __... N are two "divergent" reductions, it is by the well­
known Church-Rosser theorem possible to find "converging" reductions L ~ '11., -> 

_,. p -+ .ill• -+ N. 
A stronger version of the CR-theorem asserts that this can be done in a canonical 

way, by adjoining "elementary diagrams" as suggested in Fig. 2. In this way the 
reduction diagram 3)((1/,1 , (1/,2 ) originates, and in [1], [G] it is proved that it "closes", 
i.e. the construction terminates and yields ~ and /R4 as desired. 

N 

. . 
---

--- I 
:/)(~1,.J?,2) 

. . 
-

L p 

Fig. 2 
(here -•• means -») 

It ifl fairly evident how to define these elementary diagrams; we only give two 
examples: 

wR •----->• RR 

I 
I 
9 R'R 

wR' •------J R'R' 

KAR •-· 

I 
A 9 . 

-->• KAH' 

!A 
Notice that we have to introduce "empty steps" to keep things rec:tangular. 

Now the in this way canonically found ~ is called the projection of :ft1 by <'R2 , 

written: (1/,3 = Jt1/J1211tSimilarly /R4 = (1/,2/(1/,1 • 

29• 
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R 
Another notation: the reduction step M 0 __,.. M~ will be denoted by { R}. So by the 

above, :Jlj { R}, the projection of 31. by { R}, is the reduction displayed in the figure 

3l 
.. --------------------~---»• 

I R .7J(J'L {R}} I 
~--- »~ 

ill/{ R} 

(The reduction { R} j:Jl = Mn --%- 111~ is known as a "complete development" of the 
descendants of R in M,..) 

Remark. In one of the two examples of elementary diagrams above we saw that 
a reduction step may vanish when taking a projection of it; namely if R ~ B, then 
{ R}/C[KAB] _____. C[A] = 0, the empty reduction. 

3. Definition. (i) A map F: A_,. A is called a one step reduction strategy if M ...... 
_,. F(M) unless M is in normal form, in which case F(M) == M. All the strategies in 
this paper are one step strategies, so we will omit this qualification from now on. 
Reduction strategies were introduced in [2], see also [ 1]. 

Notation. :JlF,M will be the reduction generated by repeated application of F: 

/llp, M = M ...... F(M) _,. F 2(M) F3(M) -• ... 

It is infinite or ends in the normal form of M. 

(ii) A redex R is perpetual iff Y C[ ] ( oo O[ R] =:> oo C [ R']), where R' is the contrac­
t um of R and oo M ~ M a: SN as defined in 0. 

(iii) A reduction strategy F is perpetual if 

YM(oolJ;J=;> ooF(M)). 

4. Definition. Let A == A(x1 , ... , x.,,) and B = B(x1, ... , Xn)· Then A ;;;;; 00 B iff 
YC1 ... , On E SN( oo B(C1 , •.• , 0,.) =:>co A(01 , .•• , On)). Obviously, ;;:;;; 00 is a quasi 
ordering on A (i.e. reflexive and transitive). 

5. Examples. Define M > 00 N iff M ;;;;; 00 N and 1 M ;;;; 00 N. Then it is not 
hard to prove that 

(i) xxx >00 xx; 

(ii) xxI >00 XX (I = Ay. y); 

(iii) xlx and xx are incomparable w.r.t. ;;;;; 00 ; 

\iv) A~ B=:> A ;;;;; 00 B; 

(v) oo A 8 Y BA ;;;;; 00 B; 

(vi) BESNE~YAA ;;;;; 00 B. 

Here E is defined for subsets X ~ A as follows: 

x 1: = {M(x1, ... 'Xn) Ex I y Nl, ... 'Nn Ex M(N1, ... 'Nn) t X}. 

{Using well-known properties of substitution one can verify that Xl: ~ X and 
xu: = X.) t 
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(vii) If A'~ A > 00 B ~ B', then A';;;;-"" B'. 

(viii) The property A ~ 00 B is not invariant under SN-substitution; for consider 
A== y, B == J.z. zyx and the substitution [x := aa]. Then A[x := aa] = y =A' and 
B[x := aa] = J.z. zy(aa) = B', and now B' $oo A'. This fact will cause us some 
trouble later on. 

Outline of the proof. As in [2], we employ the following method of proving that 
some redex R is perpetual. We search for a reduction strategy S such that 

(i) Sis perpetual, 

(ii) if O[] is an arbitrary context, M = G[R] and oo M (so by (i) ilts, M is infinite), 
then the projection ilts, Mf{R} is also infinite. 

(So if such an S exists, it delivers an infinite reduction /ll 8 , Mf { R} of G[R'], hence R 
is perpetual.) 

To this end we define firstly a strategy F: A-+ A, which is perpetual, SN-sub­
stituting, and yields standard reduction sequences c'Jlp, M· However, as the example 
in Section 14 shows, property (ii) fails for F. 

From F we define another strategy F* (this is our desired S) which has the same 
properties as F we just mentioned, and moreover satisfies (ii). F* operates on A-terms 
plus some extra information: an underlining of some K-redexes in M. Now F* is 
designed to have the following property. If M = G[KAB] is an infinite term such 
that A 2 00 B, then 31.1,,. M is an infinite reduction such that (if the descendants 
KA1B1 ~ KAB are also 'underlined throughout iltp., M) no reduction step in c'JlF*, M 

is taking plac~ inside a B1 ~ KA1B1. This guarantees that the projection iltp•, Mf 

{KAB} is also infinite, since no reduction steps of iltp•, M vanish when we take the 
projection (recall the remark at the end of Section 3). Hence oo G[A]. So KAB with 
A ;;;;- 00 B is a perpetual redex. The reverse implication is easily established. 

6. Definition. Let F be a reduction strategy, defined by induction on the structure 
of J.-terms as follows. 

(1) if M E A is in normal form, then F(M) = M; 
(2) otherwise, let (J.x. A) B be the leftmost redex in M == O[ (J.x. A) B]: 

(i) if --, oo B, i. e. B E SN, then F(M) = G[A[x := B]] 
(ii) if oo B then F(M) = C[(J.x. A) F(B)]. 

It is easily proved that an equivalent definition of Fis as follows. 
Let M E A and R0, R1, R2, ... be the "special sequence of redexes" in M defined by: 

R0 is the leftmost redex of M, 
- R,,+1 is the leftmost redex of Arg(R11 ), if Arg(R .. ) is not in normal form; otherwise 

the sequence stops with R11 • 

Now let R" be the first redex in this special sequence such that Arg(Rk) E SN. Then 
F contracts the redex Rk in M. If the special sequence is empty, which can only be 
the case if Mis in normal form, then F(Jff) _ M. 

7. Theorem. If R is an 1-redex, then R i's perpetual. 

Proof (see [2], 5.8). The proof there is an application of a certain perpetual strategy 
Foo (the remarkable thing aboutF00 is that it is a recursive perpetual strategy, see 
[2] or [I]. It is defined as follows: F 00 scans the special sequence of redexes of M, and 
picks out the first J-redex of that sequence, if there is one, otherwise it picks out the 
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last redex in the special sequence to contract). This Foo satisfies for I-redexes the 
requirements (i), (ii) mentioned in the "outline of the proof" above. D 

8. Lemma. Fis a perpetual strategy. 

Proof. By induetion on the structure of A-terms we prove: 

ooM ===? oo F(M) . (1) 

Se let oo Mand suppose (induction hypothesis) that (1) is proved for all proper sub­
terms of M. 

Let M = O[(A.x. A) BJ where the leftmost redex is displayed. 

Case 1. If oo B, then F(M) = O[(Ax. A) F(B)] and by the induction hypothesis 
oo F(B), hence oo F(M). 

Case 2. If-, oo B, then F(M) = O[A(x :=B]]. 

Case 2.1. If (J.x. A) B was an l-redex, then by Theorem 7 oo F(M). 

Case 2.2. If not, then F(M) = O[A]. Now take an infinite reduction sequence 
Jl = M __, M 1 _,. M 2 --> M 3 .......... 

Case 2.2.1. No descendant of (llx. A) B == KAB is ever contracted in (ft. So 
M; = O;[KA 1Bi], for i = 1, 2, ... Now since-, oo Band since KA 1B 1 remains the left­
most redex of M;, we have for some m: Bm = Bm+l = ... But then evidently the 
projection 

(]t/{KAB} = O[A] - 01[A1] - ... - Om[A,.] - ... - 0,.[An] - ... = ~ = 
is an infinite reduction (since some of the steps up to Om[Am], but not afterwards, may 
be trivial). 

Case 2.2.2. A descendant of KAB is contracted in (ft. So 

(ft= O[KAB] - 01[KA1B1] - ... - Om[KAmBm] -

--> Om[Am]-+ Om+i[Am+iJ--> ... 

As in case 2.2.1, the projection (itj{KAB} is an infinite reduction (after deleting some 
empty steps) starting with O[A] = F(M). Hence oo F(M). O 

9. Remark. From the definition it is clear that F is SN-substituting, i.e. JlF, M 

is SN-substituting. We remark that there is no perpetual NF-substituting strategy 
(NF is the set of normal forms); for consider M =(Ax. xx) (.Az. KI(zz)), then oo M, 
but every NP-substituting strategy F' yields the reduction 

!llr,M = ]Jf - (llx. xx) (Az. I) - (llz. I) (llz. I) - I. 

10. Definition. Let AK ~ £! be the set of A-terms in which only K-reilexes may 
be underlined. To be precise: 

(i) X;EAKforalliEN; 

(ii) M, NE AK~ (MN) E AK; 

(ii)' if Ma llx. A (where x E! FV(A)) and BE AK, then (llx. A) B \= KAB) E AK, 

(iii) ME AK~llx. ME AK. 

11. Definition. From F we define another perpetual, SN-substituting strategy 
F*: AK-.. AK. Let ME AK. 
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Case (i). If .M = C[KAB] where oo A and KAB is the leftmost underlined K-
----- ,~··-

redex such that oo A, then F*(M) = O[KF*(A) B]. 
Case (ii). Otherwise F*(M) = F(M). 

12. Remark. So what happens is that F* "zeroes in" via a chain (w.r.t. ~)of 
infinite underlined A/s on its final target A,,, in which no infinite underlined A's 
appear; see Fig. :3. 

I\ 00 

(A.x. P., JQ1 

I \ro 
(.:ix. P2 JQ2 

I \CD 
(;tx.~ )Q3 

/\ 

1\00 
(A.x.Pm)Qm 

Fig. :L Here the Ai. for i = I, .... n - l, are the "intermediate targets" 
of F*; and An is the final target of F*. 

After F has found its final target An, it changes into F, the strategy which descends 
the chain of special redexes of A,. in search of the first one with SN-argument. 

13. Notation and Hemark. (i) Let F*[M] be the final target of F* applied on 
M, and let F*(M> be the redex which is selected by F* as the one to contract 
((h. Pm) Q 111 above). 

(ii) Analogous: F(M) is the redex selected for contraction by F. 
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We note that 

(1) M P(.~__.. F(lrl) and M P*<JJ>_, F*(M), 

(2) F*[M] ~ M:::} oo F*[M], 

(3) F*(Jr/) = F(F*[lrl]), 

J. A. Bergstra, J. W. Klop 

(4) F*[lrl] = M if M does not contain a KAB such that oo A. 

14. Example. To illustrate the working of F*, consider the following reductions 
shown in Fig. 4. Here w: =AX. xx and Q := ww. 

M = w[h. K(xw) (xw)] 

M' = [J.x. K(xw) (xw)] [J.x ·K(xw) (xw)] ------- -----

M" = K([Ax.K(xw) (xw)] w) ([J.x.K(xw) (xw)] w) 

M"' = K(I{QQ) ([Ax. K(xw) (xw)] w) 

M'"' = lvl"' 

Fig. 4 

• 
F*<M> 
= F(M) 

>• w(J.x.xw) 

•----·-·------»• (Ax. xw) (Ax. xw) 

I F*OW') 

I = F<IW> 
e --~-----»e (J.x. xw) w 

·-----»• Q 

•----~ ----- -·->>~ n 

:Jl' 

Note that the projection Jl' = Jlp•, ,Ji{K(xw) (xw)} is again infinite, which is 
what we wanted. Compare also JlP,M and note that Jlp,,11 /{K(xw) (xw)} is finite 
(namely: OJAX. xw -• (Ax. xw) (Ax. xw) _,. (Ax. xw) w ). 

15. Proposition. F* is perpetual and SN-substituting. 

Proof. Immediately from the definition and because F has the same properties, 
by Lemma 8 and Remark 9. D 

rn. Proposition. Let IV! EA. Then .Jl,P,.11 is a standard reduction. 

Proof. See Fig. 5. Consider M and say that Rn is the first redex in the special 
sequenee of redexes of M with Arg(Rn) E SN. Then F in its search "jumps" from 
R 0 to Rn and eontracts R,,. Mark every redex-A to the left of that of Rn; so if /A1', JI is 
to be standard. R0, RI> ... , Rn-I plus the redexes in P0, 1\, ... , Pn-l are henceforth 
forbidden to eontract. 

Now it is easy to see that F respects those restrictions, since in all following steps 
Ji' will also jump over all in this step markedA's because the perpetuality of F conserves 
the property oo of (the descendants of) Q0, Q1, ... , Qn-1· 

Similarly the marks originating in the following steps of /Rp, ,.,.,1 are respected by F. 
Hence F yields a standard reduction. D 



Strong Normalization 413 

R,, :: F< 11> _ 

Fig. 5 

17. Proposition. Let ME :1.K· Then (JtF•,M is a standard reduction. 

Proof. Let Jtp•, M be M = M0 F•ou.?...M1 F*(M,?... ••• • Suppose (induction hypothesis) 
that we have proved that M0 -+ ......... M,,. is standard. See Fig. 6. 

~1'111-1 = . 

Fig. 6 

F*[M,,.-1] 

Ill 

llU 

p .. 

00 

(i\x2. P2) Q2 

llU 

llU 
Ice 

(i\xm· Pm) Qm =F*Oln-1> 

Consider M 11 _1, the special sequence of F*[ M 11 _ 1], and the contraction of F*(M n-i>. 
There are two cases. 

Case 1. In the step M,,_ 1 -. M,,. a new KF<?. redex with ooF appears. Tha~ is, 
there is a KF'G' c M,,._ 1 where -, oo F' such that KF'G' >- KFG ~ M,,. where 
ooF. -- --

This is only possible if there is a substitution into F', i.e. F' ~ Pm and hence 
KF'G' ~ P 111 • 

This implies that F*[M,,.] ~ the cont.ractum of F*(M,,._1) = (A.x 111 • P,,,) Qm. Hence 
F*[M,,.] and a fortiori F*(M,,.), are to the right of the descendants in Mn of (A.x1• P 1), 

... , (AXm-I· P,,,_ 1 ). So indeed the standard requirement is fulfilled. 

Case 2. Otherwise, it is evident that F*[M11 ] = the descendant of F*[M,,._1 ] 

(here we use the perpetuality of F). 
Then Proposition 16 yields the result. D 
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18. Proposition. Let ME A and let (/ex. A) B be a redex in M. Then 

(i) F<M> ~ B =} oo B and 

(ii) F<M) Q;; A. 

Proof. Routine. D 

19. Proposition. Let ME _"'1:K and K~_!! ~ M. Then: 

(i) F*<M) ~ B=} co B; 

(ii) F*<M) ~ A=} co A. 

Proof. (i) Suppose M ~ KA.f! ~ B ~ F*<M). If M 0 =: F*[M] ::J KAB, we 

are through by Proposition lS(i). So suppose M 0 ;;!;? KAB. Then, since M 0 ~ F*<M), 

we must have B ~ M 0 ~ F*<M). By the remark in Section 1:3, oo M 0• Hence oo B. 

(ii) Suppose 1'>1 ~ fS_LJ:B ::JA ~ F*(1rJ). There are B cases. 

1. M0 ~ [<._.!JB is not possible, by Proposition 18(ii). 

2. If A 2 M 0 we are done since then M 0 \; J'v[, hence co M 0 , hence oo A. 

B. The only remaining case M 0 =: KA is impossible by definition of M 0 • D 

20. Proposition. Let ME AK and let 1S_1!_13_ ~ M, say M = C[~(_.!J-B]. Let M' = 
= C[KA' B] where A F*<ilI~A'. Then F*<M') ~ A' . 

Proof. Since F*<M> c A and F*(M) ~ F* [M], clearly either F*[M] ~A or 
F*[M] ~A. The latter case is impossible since F*<M> = F<F*[M]) cannot be a 
subterm of the function part of a redex \Proposition 18(ii)). So F*[M] c A. Hence 
oo F*[M], and by perpetuality of F, the descendant of P*[M] in M' is again infinite. 
Hence oo A'. Therefore F*(M') ~ A'. D 

21. Proposition. Let ME AK and KAB c M where oo A. Then P*<M 1 <A or 
F*<IYJ) ~ A. - ~----

Proof. An easy induction on the number of steps in which F zeroes in via the 
intermediate targets (see Section 12) on its final target M 0 == F*[M], shows that 
M 0 <{A or M0 ~A. 

Hence F<M0) :::= F*(M) <{A or ~ A. 0 
22. Definition. Let ME Ax. 

(i) A redex KAB ~ M such that A ~""Bis a p-redex. 

(ii) A redex KAJ3 ~ M such that 1 co Bis a q-redex. 

(iii) If every KAB ~Mis a p-redex, Mis a p-term. 

(iv) If every KA!} ~ M is a p- or q-redex, M is a pq-term .. 

23. Proposition. An SN-substitution of a p-redex is a p- or q-redex. 

Proof. Let KAB be a p-redex and let KA' B' be an SN-substitution. Suppose co B'. 

Then by definition of ~co, ooA'. Hence (Section 5(v)) A' ~co B', i.e. KA'B' is a 
p-redex. If 1 oo B', then KA' B' is a q-redex. D ---

24. Proposition. Let ME AK be a p-term and let 31,F• M be 
--- ' 

R, R, R, 
M -+ lJ'(M) ...... F 2 (M) _,. ... 

Then for all i, F*i(M) is a pq-term. 
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Proof. Consider the original p-redexes KAB in M. Evidently, it suffices to take 
an arbitrary such KA!} and an arbitrary l.o.d. :t through 81, starting with that KAB: 

:t = KAB >-KA' B' >-KA" B" >- ... >- KA<ilB(il >- ... 

nu n11 m 
</) M R,, M R, M M . c.ILF*,..:.11 = ___ c+ 1 __ _,. 2----'il-··· __ _,. i ---~ .... 

and to prove that every KAUlB<il in :t is a p- or q-redex. 

Now say that j is the least natural number such that R1 c: KA(j)B(j). So the initial 
part of :t, KAB ;ll>- KA(jJB(j) is a passive l.o.d. Since 81,F•, ]}I is standard (Proposition 
17), it is simple (Lemma 2.7). Since 81,:h'*, M is also SN-substituting, by Proposition 2.8 
KA(j)B~il is an SN-substitution of KAB; now by Proposition 23 it is a p- or q-redex. 
Likewise the KA<klB<~) fork< j are p- or q-redexes. (The same argument in case there 
is no j as supposed.) 

To treat the other part of :t, which is no longer passive, we distinguish the following 
cases. 

Case I. R1 = KA(j)J}5.!J_. Then :f stops in MW (since the contractum of a redex is 
not a descendant of that redex) and we are through. 

Case 2. R1 S: AW. By Proposition 19 (ii) we have: RJ+k S: A<J+k) for all k; and 
by Proposition 20, oo A<J+k) for all k. Therefore by Section 5(v) all KAU+klBO+kl are 
p-redexes. 

Case 3. R1 ~ B(j). Since 81,F*. ]}I is standard, there will be no more substitutions into 
the 44u+_"}J!~:i+kl'(k ~ 0) (because this would need a contraction of a redex whose 
head-A is to the left of BUJ, hence of R1). 

Now if KA(j)B(j) is a q-redex, i.e. B(j) is finite, then we are through: BU+kl will 
remain finite for all k. And if it is a p-redex then we are also through, since by Section 
5(vii) A 2:: 00 B ~ B' implies A ~00 B'. 

25. Lemma. In the situation of Proposition 24, 81,p•, M contains no reduction steps 
inside an argument of an underlined K-redex (i.e. no Ri S: B c: ~AB ~ Mi, for all 
i ~ 0 and all KAB in M;). 

Proof. By Proposition 24, all the M; are pq-terms. Now suppose that there is an i 
and a KAB S: M; such that R 1 ~ B c: KAB. There are two cases: 

I. KAB is a q-redex, i.e. B is finite. But this is impossible by Proposition 19. 

2. KAB is a p-redex, i.e. A ~co B. By Proposition 19, oo B. Hence ooA. But then 
by Proposition 21 it is impossible that R 1 is to the right of A. - Contradiction. 0 

26. Corollary. oo C[KAB] & A ~00 B="? oo O[A]. 

Proof. Underline KAB. The resulting underlined term M 0 = C[KAB] is then a p-
term. Since oo M 0 and F* is perpetual, the reduction 81,F*, M is infinite. 

Now consider the projection 81,' = 81,F•, u/{KAB} shown in Fig. 7. 

Claim. Each reduction Mi~ M~+ 1 is in fact one step. 

Proof. Consider in the figure showing 2)(/Rp•, M' {KAB}) the subdiagram 2'J(M;--+ 
- M;+1, /R;). Here 81,i = {KAB}/M0 ~Mi is a complete development of the 
underlined K-redexes KA1B1• 
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Mo 111 Mz 

'~ F"M = --------t---------1 

KAB 

I 

' ..Jl' = ___ .,. _____ I--· -

11' 
0 

Fig. 7 

M' 
1 

M' z 

(see Remark to Fig. 2) 

A1 81 1 

'~N 

K AzBz 
•N 

Ri,1 - N 
• R,;2 
N 

Now by Lemma 25, R, = F*(JJfi) is not a subterm of the argument of an under­
lined K-redex. Hence Ni,l ~~Ni+1 , 1 is indeed one step and R;, 1 is again not covered 
by the argument of an underlined K-redex, etc. This proves the claim. 

So we proved that !It' is infinite, and hence oo O[A]. D 

27. Proposition. 

oo(A.x1, ••• X11 • A(x1, ••• , Xn)) 01 ••• On & Ov ... , C,,. E SN=} ooA(01, ••• , On)· 

Proof. Induction on n. 

Basis. n = 1. Let M = (A.x. A(x)) 0 where C E SN and suppose oo J.f. Take an 
infinite reduction (R of M. 

Case 1. M's head-redex is never contracted in (R. Then clearly, since 0 E SN, 
oo A(x). Hence also oo A(C). 

Case 2. Otherwise 31, = M ~ (A.x. A'(x) C'-. A'(O')-. ... Hence oo A'(O'), and 
because A(x) ~ A'(x), 0 ~ 0' imply A(C) ~ A'(O'), alAo oo A(C). 

Induction step. The same argument. D 

28. Theorem. The redex KAB is perpetual~ A ;;;;; 00 B. 

Proof. (<=) is Corollary 26. 

(=}). Let A= A(x) =: A(x1 , ••• , x11 ) and B = B(x) = B(x1, ••• , Xn) where {x1, •.• , 

x,,.} = FV(A) u FV(B). .... ..... _,. 
Suppose 1 A(x) ;;;;; 00 B(x). Then for some 0 E SN, (i) oo B(O) but (ii) 1 oo A(C). 

Now consider the context O[] = (AX". 0) C. 
Since oo KA(O) B(O) by (i), we have oo (A.x. KA(x) B(x)) 0, i.e. oo O[KAB]. 

But 1 oo (A.x. A(x)) 0 by (ii) and Theorem 28, i.e. -, oo O[A]. Hence KAB is not 
perpetual, contradiction. D 

29. Corollary. The redex (A.x. A) Bis perpetual~ x E FV(A) or A ~""B. 

Proof. Corollary 29 and Theorem 7. D 
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PeawMe 
J.-TepM M HashrnaeTcH cTporo HOpMamrnyeMbIM, ecJIH 1wm,n:an nenoy:1w np:irneneHHfl 

o6pbIBaeTCfl, npHBOL(H }( OL(H03Ha<rno onpegeJieHHOII HOpMaJihHOii qiopMe, H CJiaOO HOp­
MamrnyeMMM, ecm1 cymecTsyeT xoTH 6h1 o;.i:Ha o6phrnarnmaHcH u:erroY:i-rn. B cTaThe 
paccMaTpHBaIOTCH CBOHCTBa TaI-\HX waroB rrpHBeneHHfl M -> )1,,j'' JJ:JIH HOTOpblX 1\,[' 11MeeT 
oecHOHe•rnyIO u:erroY:HY rrp11Bep:eHHH, eCJI11 TaHOBYIO 11MeeT M. ,I(ocTaTOl!HhlM ycJIOBHeM 
3TOfO HBJI.fleTCH TO, 'ITO BO npeMH rnara M ->M' COHpamemno nop:BepraeTCH Tar-wti pep:eRC 
(ocTaTOH) R = (J.x.A) B, B HOTOpOM x CBOOOJJ:HO BXO)l;I1T B A, T. e. R He Tep.fieT CBO­
ero ',apryMeHTa". (CJie,!.\CTBlieM :noro f!BJIHeTCH TOT xopowo H3BeCTHhlfi <IiaHT' l!TO B 
J.1-HCY:HCJJemrn CTporaH H cJia6aa HOpMaJiu:3yeMOCTH COBIIaJJ:aJOT.) PeneHC R, npu 
coHpamemrn HOToporo coxpaHHeTcR cymecTBOBaHne rreo6phrna10meilca u:cno'IKH npn:­
nep:e1urn, Ha3hrnaeTcfl coxpaHHIOll(llM. B HacToHn~ei1 pa6oTe pacnrnTpHBaIOTCH cox­
paHHIOll.1He pep:eHCbl, HOTOpbie TepHIOT CBoii apryMeHT. 

Kurzfassung 
Ein A-Term hei£t streng normalisierbar, falls jede H.eduktionskette abhricht (in der 

eindeutigen Normalform), und schwach normalisierhar, falls eine Beduktionskette zur 
Normalform fiihrt. Hier interessieren wir uns fli.r die Charakterisierung solcher Reduk­
tionsschritte M _. M', flir die M' eine unendliche Reduktionskette hat, falls M eine hat. 
Eine hinreichende Bedingung dafiir ist, daB im Schritt Jl1 --+ l\i[' ein solcher Hedex 
R = (h:. A) B kontraktiert wird, bei dem x in A frei vorkommt; d. h., R verliert sein 
,,Argument" nicht. (Eine Folgerung ist der wohlbekannte Fakt, daB irn J.1-Kalklil strenge 
und schwache Normalisierbarkeit zusammenfallen.) Ein R mit der Eigcnsehaft, daB seine 
Kontraktion die Existenz unendlicher Reduktionsketten erhalt, heiBt vererbend. In der 
vorliegenden Arbeit werden diejenigen vererbenden Hedexe charakterisiert, die ihr Argu­
ment verlieren. 
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