CHAPTER 1

MODELING AND ANALYSIS OF
BIOLOGICAL NETWORKS
WITH MODEL CHECKING

Dragan B&na&ki, Peter A.J. Hilbers, Ronny S. Mans, and Erik P. de Vink

1.1 INTRODUCTION

Over the last decades, biological networks, like signaiddaction pathways, meta-
bolic pathways, and genetic networks, have received isorgaattention in bio-
chemistry. In each living organism a growing plethora offsnetworks have been
identified. Is has become clear that the understanding afh#hehanisms and their
functioning is crucial for elucidating the functioning dfe cell and the organism as
awhole.

Different formalisms and approaches exist for the modeditimological networks.
In this chapter we focus on model checking as a method th&igxpxecutable mod-
els. Its main advantage is that they lend themselves to florendication. Standard
simulation on the model can only yield predictions regagdimodel properties with
certain probability. The advantage of model checking ov@ndard simulation is
that it considers all possible behaviors of the systemsjusbsome subset of it and
therefore yield conclusions with certainty.

Please enteXoffprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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After intrducing the basic concepts in the next section, éct®n 1.3 we show
how standard model checking can be used to model and anatjagibal systems.
To this end we use as the modeling language Promela, thdisption language of
the model checking tool SPIN. The SPIN tool can be used tokchécoad range of
properties. In particular, we show how SPIN can be used tectisteady states of
the biological systems as well as periodic behavior. Sontleeotase studies that we
discuss have also been modeled with other formalisms, e Rets orr-calculus.
We discuss the advantages of model checking over thoseages.

Section 1.4 is devoted to modeling and analysis of bioldgigatems which are
inherently probabilistic. To this end we use a special kifidnodel checking —
probabilistic model checking. We demonstrate the conoefypsobabilistic model
checking for biological systems using the probabilisticd®lcchecking tool Prism.

1.2 PRELIMINARIES

1.2.1 Model Checking

Roughly speaking, model checking [19, 2] is an automatelnigcie that, given
a model of the system and some property, checks whether tdelmatisfies the
property. Compared to other automated or semi-automatethidechniques, such
as deductive methods using theorem provers, model che&kirgatively easy to
use. The specification of the model is very similar to prograng and as such it
does not require much additional expertise from the useg.vEnification procedure
is completely automated and often takes only seconds toalewinutes. Another
important advantage of the method is that, if the verificafails, i.e., the property
thatis checked does not hold, the erroneous behavior ofgtera can be reproduced.
This significantly facilitates the location and correctifrthe errors.

Unlike simulation, model checking explores all possibles of the system. The
model checker explores the complete system behaviorailgppssible executions
of the system. Obviously, for model checking to be appliealite state space of
the system under study should be finite. Systems with infstd&e spaces can be
handled as well provided the state space can be reduced titeadime. For this,
various abstraction techniques are available. In gent@lstate space that reflects
all system behavior is represented as a graph in which tihesséae nodes and the
edges are transitions between states. A particular behafvibe system, which we
also refer to as an execution sequence or a path, can bearfeédy a path in the
graph consisting of states and the transitions between.t@dparticular interest are
states from which there are no outgoing transitions, whieltalled deadlock states,
as well as cyclic paths in the state space graph. The deasiatds correspond to
steady states in the real systems, whereas the cycles a@adsd with periodical
behavior of the systems.

To illustrate the above notions related to the state spaeesowsider the simple
genetic network given in Figure 1.1 a, which consists ofélgenes. Gene A is an
activator of gene B, whereas gene B inhibits gene C. Furifh&iis not active, then
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Figure 1.1 A simple genetic network with its state space.

gene C spontaneously deactivates, whereas if gene geneoAastive, then gene B
spontaneously activates. Also gene A is a self-activatimey @ he state space of the
network is given in Figure 1.1b. The states are representadstate vector. For the
sake of simplicity, in the figure the state vectors are sifiggliinto three bit binary
strings. (States are depicted as circles, transitionsass)arhe components of the
vector correspond to the genes A,B, and C, respectivelyh Baoe can take two
values 0 (not activated) and 1 (activated).

We assume that the genes change their states asynchrqrmmgsgiene at a time.
So, from the state 000 one can go non-deterministicallyeeith state 100 or 010.
The first transition happens when gene A activates spontesheavhereas the second
one corresponds to a spontaneous activation by gene B.dmmsgtton from state 101
to 100 happens by spontaneous deactivation of gene C anthtisition from 110
to 100 because of the inhibiting influence of A to B. Similatthe other transitions
can be coupled to activation/deactivation of a particutareg The only deadlock or
stable state is 100.

The state space does not contain cycles. However, cycliaviimhcan be intro-
duced, for instance, by adding a feedback activating infledretween C and A and
assuming that A deactivates spontaneously (see Figurg 1rlthat case a sponta-
neously activated gene B activates gene C, which in its tctimeges gene A. Gene A
will deactivate gene B, which will result in spontaneousa®ation of gene C and as
a consequence also gene A. Then the cycle can resume adamnétv spontaneous
activation of B. The state space of the new network is givefigure 1.1d.

1.2.2 SPIN and Promela

Spin [18] is a software tool that supports the analysis arrdieation of concur-
rent systems. The system descriptions are modeled in alévghlanguage called
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Promela. Its syntax is derived from the programming langu@agand extended with
constructs to model non-determinism, the so-called guscdenmands due to Dijk-
stra, and with statements to model communication (sendidgeceiving messages)
which are inspired from Hoare's CSP language.

In Promela, system components are specifiggrasesseshat can interact either
by message passing, vidannels or memory sharing, viglobal variables The
message passing can either be buffered or unbuffered. @ency is asynchronous
and modeled by interleaving, i.e. in every step exactly enabledaction is per-
formed, if available at all. No assumptions are made on tlagive speed of process
executions.

Given a Promela description as input, SPIN generates a Garothpat performs
the verification of a system property by generating the Spéee graph. Simultane-
ously, the check of the property is performed, i.e., each stae is checked if it is
erroneous, e.g., a deadlock state, or if an erroneous qyatitis closed. There are
various ways to formally express the properties that we teawerify. Properties that
boil down to the presence or absence of cycles in the state gpa be formulated via
special formal language called Linear Temporal Logic (LTTC). [12]. We give more
details about LTL in section 1.2.3. The most general way pfegsing properties in
SPIN is via so-callediever claimswhich are best seen as monitoring processes that
run in lock step with the rest of the systénSPIN provides an automatic translator
from formulae in LTL to never claims. In case the system \tedaa property, the
trace of actions leading to an invalid state, or a cycle,pered. The erroneous trace
can then be replayed, on the Promela source, by a guidedationul

1.2.3 LTL

We give only an informal overview of the Linear temporal lo@iTL). For a formal
definition, we refer the reader to [12]. Temporal logic is arialism for specifying
sequences of states. Temporal logic formulae are compagesf @ small number
of special temporal operators and state formulae. Lineapéeal logic (LTL) is a
specific branch of temporal logic which only contains futtimee temporal operators.
This branch of logic is most relevant to the verification oficarrent systems.

For our purposes we only use two temporal operators. Theséharoperator
alwaysor box which is represented by the symb§]'‘and the operatoeventually
or diamond which is represented by the symbgl)*. Let us suppose thai is a
formula expressing some property. Then formijacaptures the notion that the
property specified by remains invariantlfrue throughout an execution sequence,
i.e., holds in each state of the sequence. The informal mgadfithe formula )p
is that the property is guaranteed to eventually becoitnee at least once in an
execution sequence. Besides the special temporal opgraldr also provides the

1The never claims are, in fact,iBhi Automata [33], and thus can express what are calledrampi
omega-regular properties.
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usual logical operators: ‘" for negation)|" for disjunction, ‘&&’ for conjunction,
and ‘-’ for logical implication.?
To illustrate the use of LTL formulae, some examples arerginelable 1.1.

Table 1.1 Examples of LTL formulae.

Formula Informal meaning

[1O)p always eventually, i.e., infinitely manyp’s

O] eventually alway$, i.e.,p only from some point on
p—{)q if initially p then eventually

[1(p — ()q) | everypis eventually followed by &

()p — (Vg | eventuallyp implies eventually;

1.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING

We discuss how to use model checking to analyze genetic nedwdn genetic
networks, genes can activate or inhibit one another. Mae®elf-regulation (ac-
tivation/inhibition) of a gene is possible too. We are iewed in the qualitative
behavior of genetic networks, i.e., for each gene we disisigonly two possible
states: ‘on’ and ‘1’ vs. ‘off’ and ‘0’. Consequently, we usediean regulatory
graphs [9] as formal models of the genetic networks.

1.3.1 Boolean Regulatory Networks

Let G = {g1,...,9n} be a set of genes. To each gepec G, we assign a a
subset/ (i) C G and a boolean functiof’;. Intuitively, I(i) contains the source
genes of all incoming interactions ingg and is callednput of g;. The boolean
functionk;: 2!V — {0, 1} associates a paramef§f(X) to each subseX of I(i).
Intuitively, if all genes in the subséf are active them; is activated (ifK;(X) = 1)
orinhibited (in casd(;(X) = 0). As aresult, the output of functidid, (X ) produces
thenewvalue of gengy;.> The corresponding regulatory graph is a (labeled) directed
graph defined by the following three components:

e asetofnode& = {g1,...,9n},

e aset of edges determined by the s&t3,7i = 1,...,n, and

e asetof parametels = {K;(X) |j=1,...,n, X C I(i)}.
2For the reader who is familiar with LTL and model checkingmost of the applications that we discuss
in this chapter the usage of LTL formulae even for safety prtps, i.e. properties that can be disproved
with a finite counterexample sequence, is essential. Thiedause those safety properties are global and

therefore cannot be expressed with assertions, that eapiily local properties.
3Thus, the network can be regarded as an asynchronous setjlagital circuit.
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1.3.2 A Case Study

We illustrate our approach in more detail on a case study -natigenetwork of the
plantArabidopsis thalianavhich is involved in the control of flower morphogenesis.
Mendozaet al. [27] have proposed a Boolean regulatory model involving é0e$
cross-regulating each other. For proper parameter valsgkis model encompasses
6 stable states, four of them matching the qualitative geqpeession patterns ob-
served in the different flower organs, while the two last lgtabates correspond to
non-flowering situations. All these stable states corradgo deadlocks in the state
space of the system and as such can be detected by modelrahecki

Chaouiyeet al. have introduced a simplified version of the network whichufees
on a subset of six genes that play a crucial role in the seledii specific flowering
differentiative pathways, leaving aside the genes whiah loa treated as simple
inputs (EMF1, UFO, LUG and SUP). In [9] a parameter set has lob@sen for
which the system has four stable states, each correspotwimgiene expression
pattern associated with a specific flower organ.

L /API ——- EMF1 AP3 <«— UFO
AGl ——Tr—— ———1ry PI | SUP

0
Figure 1.2 Genetic network for flowering in Arabidopsis.

Thus, only the following genes are considered: TLF1, LFY,1JARG1, AP3
and Pl. The (gene network is depicted in Figure 1.2. Crossitvawheads indicate
inhibition, while standard arrowheads indicate activatidhe inhibition/activation
interactions between genes in Figure 1.2 are rather inforitee precise definition
of the interactions is given by th&; parameters of the underlying regulatory graph
which are given in Table 1.2. In the tabjeis associated witl; = 1 (¢; € X) and
its complemeny; corresponds tg; = 0 (¢; ¢ X). For example K (AT) = 0
means that when AP1 is activated and TLF1 is inhibited, theered FY is inhibited.

1.3.3 Translating Boolean Regulatory Graphs into Promela

As a boolean function eadli; parameter has an unique value for all possible combi-
nations of inputs. Therefore, it is relatively straightfard to model such functions
in Promela. We model each geggas a separate process (Promela proctype) which
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Table 1.2 Parameters given in [9]

TLFLED FY D) APL(=A) AGI(=0) AP3 (=P) PTED
Kr(£)=0 | Kp(ar)=0 | Ka(zg)=1 | Ke(rza)=1 | Kp(prz)=0 | K;(GpL) =0
Kr(1)=0 | Kr(ar) =0 | Ka(ig)=0 | Ka(7ia) =0 | Kp(pr) =1 | Ki(Gpr) =1
Kr(ar)=0 | Ka(wg)=1 | Ka(rpa)=1 | Kp(prz)=0 | Ki(7pL) =0
Kr(ar) =0 | Ka(zg) =0 | Ka(rpa) =0 | Kp(prp) =1 Ki(ipL) =1
Ka(r£a) =0 | Kp(pi) =0 | Ki(4p) =0
Ka(ra) =0 | Kp(prr)=0 | Ki(tupr) =0
Kg(rra) =0 | Kp(prr) =1 | KiGprr) =1
Kg(rra) =0 Kp(prr) =1 Kr(tpr) =1

consists of an (infinite) loop given with the Promeélaloop:

do
statement_1
statement_2
statement n
od.

Eachstatement is of the formcondition->actionwith the meaning thatction

is executed ifthe guarcbnditionisfulfilled. Further, eachtatement corresponds
to a row in definition of functior; in Table 1.2. For instance, the code for the AG1
gene is given in Listing 1.3.1.

Listing 1.3.1 (Promela code corresponding to gene AG1)

1 proctype AGO {

2 do

3 :: atomic{!Active[G] && 'Activel[T] && 'Active[L] && !'Active[A] -> Active[G]l=1}
4 :: atomic{!Active[G] && !'Active[T] && Active[L] && 'Active[A] -> Active[G]=1}
5

6 :: atomic{Active[G] && 'Active[T] && !'Active[L] && Active[A] -> Active[G]=0}
7 :: atomic{Active[G] && 'Active[T] && Active[L] && Active[A] -> Active[G]=0}
8 :: atomic{Active[G] && Activel[T] && !'Active[L] && !'Active[A] -> Active[G]=0}
9 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}
10 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}
11 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}
12 od; }

Recall that the exclamation mark denotes negation. Thetomic clause is a
technicality which denotes that the enclosed check of taedyand the corresponding
action are executed in atomic fashion, i.e., they cannotnberrupted by some
statement executed by another process (gene). The compbelel is given in the
appendix as Listing A.0.1.

The do loop is executed as long as at least one of the options is tatdeu
Otherwise the loop is blocked. Each branch (guarded comjnainthe do loop
correspondsto a row in the table definiiig. The condition (guard) encodes the fact
that all genes inX are active. As a result the value gfis updated according t&’;
from the table.
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We simplify the model by the observation that to detect statates, only the tran-
sition of a gene from active to inactive and inactive to actieeds to be considered.
(When we also model a transition of a gene from active to acivd from inactive
to inactive then the system can do a step, while the stateeafythtem remains the
same. As a result, a deadlock can never appear in the systdrargfore, an extra
variablex, is added td<; (X ) which represents the geniself, and with which only
transitions from inactive to active and from active to imeetan be considered.

Using fairly standard techniques from propositional logite can also simplify
the boolean functions. This often leads to a more compacg,cathich can be
particularly useful for more complex networks. For exampie Promela code of
the simplified logical expression of gene AG1 is presentddsting 1.3.2.

Listing 1.3.2 (Simplified code for gene AG1)

1 proctype AGO {

2 do

3 :: atomic{!Activel[G] && (!Active[T] && !'Active[A]) -> Active[G]l=1}
4 : atomic{ Active[G] && (Active[T] || Active[A]) -> Active[G]=0}
5 od; }

1.3.4 Some Results

Finding Stable States. With the kind of models described above one can find
stable states by checking for deadlocks which in SPIN aflectaivalid end states
Since a deadlock state is an error SPIN also always showsnarszevhich leads
to the found deadlock state. Finding deadlock states in 38 option which is
independent form the LTL verification. By default SPIN stafiter the first deadlock
state is found. This is not very convenient because in thig ivés possible to
detect only one stable state in the model. In principle,ahieran option which
instructs SPIN not to stop on the first error - in our case, tiseffiund deadlock - and
instead report all found deadlocks. However, for technieakons that are beyond
the scope of this chapter and that are related to SPIN’s gutpmetimes it could
be more convenient to use the following trick: to each foutathle state, we add a
self-loop to that sate. In this way the latter is not foundranye by the deadlock
detection algorithm. To achieve this we add a separate psosith ado-loop in it
that contains the following linestable_state -> skip (Wherestable_state is
a correct representation of the stable state in SPINsangd is a dummy statement).
In this way, there is always a transition frarhable_state to itself. Obviously, one
could repeat this procedure until no more stable statearedf

As it was already mentioned above, in order to simplify thedai@nd make the
verification more efficient, we exploited the fact that in setting the stable states
correspond to deadlock states. However, with model chgdéohniques one can
detect also a more general type of stable states which amegessarily deadlocks.
They correspond to a partially stable states in which onbsstiof the genes in the
network remains stable.

Finding such states can be achieved in two steps. First, weetbaverify that the
state itself can be reached. This can be done with the falipWiéormula (that, by
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default, is checked for all executiond;)state meaning ‘not eventuallgtate’,
i.e., ‘state is never reachable’. When the model checker gives an eaibytinen
the state exists. Second, we have to verify that the stareleed a stable state. In
other words, when the system reaches the state, it has tar@nthat state forever.
This can be done with the following formula which has to halddll executions of
the system:[] (state -> [J]state). When the model checker indicates that the
verification result is valid, thaatate is indeed stable.

Using deadlock detection techniques, we obtain some stiageresults with the
Arabidopsis model. In [9] it is claimed that, for the set ofrg@eters given in
Table 1.2 and with an initial state in which both LFY and AP# active and the
others being not active, the system has four stable statbeseTstable states are
shown in Figure 1.3. (The first stable state in the figure iaigis that gene A (AP1)
is active and the other genes are not. The others can beretedpanalogously.)
However, SPIN reports that the last two stable states inrEi@jLB cannot be reached
at all. This can be also analytically proven.

~vQsoN
(L T T
Cooroo
~vQst
(L (T A |
~F—ror~roO
~vQesoN
(L T T T |
Co~roo0O
~vQestN
(L T T 1
HR,R,OoOOO

Figure 1.3 The four stable states.

Guided by the counter-examples produced by SPIN, we definkemative set of
parameter values given in Table 1.3 for which all four stakdges exist. When choos-
ing these parameter values we have tried to respect as mpolssible the activatory
and inhibitory relationships among the genes, defined iureid..2. Sometimes
this was impossible though. So, in the cases in which theg#ttrepresentation
is ambiguous, i.e., for the genes for which there are botivatrtg and inhibiting
incoming edges, we have used the predetermined values pataeneters, given in
[27]. That those predetermined values are not always inrdaeith Figure 1.2 can
be seen from the following example. In [27] it has been st#tatlin order to obtain
stable state&’;, (AT') needs to be set to zero. Since we have that in two of the stable
states AP1 is activated and LFY is inhibited, we conclude &g A) has to be set to
zero too. This is contradictory with the relationships agntre genes in Figure 1.2
which imply that gene AP1 activates gene LFY. By applyingikinreasoning we
were able to establish the parameter set given in in Tablé/¥ith these values for all
states in Figure 1.3 we could check with SPIN that they carehehred and that they
are indeed stable states. It should be emphasized thatelegpie discrepancies, the
values from Table 1.3 are much closer to the experimental @ae e.g. [27]) than
the parameters in Table 1.2 proposed in [9]. Thus, in thisne@eahble to substantially
improve the model based on the results obtained with the hohe@eker.

Checking Cycles. Besides stable states, one can also detect cycles in tiee stat
space of the network. Suppose that we want to check if theaecigle consisting
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Table 1.3 Set of parameters which respect as much the activatory anelssory

relationships and the predetermined values

TLFLET) LFY =0 APL (=A) AGL(=G) AP3 (=P) PIED
Kr(p) =0 ]| Kp(ar)=0 | Ka(zg)=1 | Kg(rra)=1 | Kp(pi)=0 | K;(GpL) =0
Kr()=0 | Kp(ar) =0 | Ka(Lg) =0 | Ka(r£a) =0 | Kp(p1r)=1 | Ki(Grr) =1

Kr(ar)=0 | Ka(rg)=1 | Kg(rpa)=1 | Kp(prz)=1 | Ki(Gpr) =1
Kr(ar) =0 | Ka(tg)=1 | Kg(rpa)=1 | Kp(prL) = Ki(ipr) =1
Ko(rra) =0 | Kp(p1L)=1 ] K;(upPL) =1
Kg(rpa) =0 | Kp(piL) = Ki(tpp) =1
Kg(rra) =1 Kp(prz) =1 | Ki(upr) =1
Kg(rra) =1 Kp(pir) =1 Kr(zpr) =1

of (a subset of) the stateg to s,,. To find the cycle we have to check the negation
of the formula: '<>[1 (sl Is111...11s,), i.e., not eventually always one of the
statessg to s,,. In other words, there is no execution sequence of the modalthat
some of the states to s,, is reached, and the system remains in that state forever.
If the cycle exists, the previous property does not holdicBgrspeaking, one has
to check first that none of the states: = 0...n is a deadlock state. If one of the
states turns out to be a deadlock, this would automaticadignrthat a cycle through
composed of those states does not exist.

It is worth emphasizing that it takes SPIN just couple of selsoto produce all
results described above.

1.3.5 Concluding Remarks

In the previous sections we considered genetic networkstware defined by a
boolean function. We presented a method for which a genetiwark, which is
defined by a boolean function can be translated into Prori¢ith. a small extension
to this method, it is possible to detect stable states in éteark. Also, we showed
some LTL-formulae with which it is possible to verify stalsiates and cycles.

The use of standard model checking techniques, exploitingBla and SPIN in
particular, are not limited to genetic networks. They caagied also to other types
of biological networks, like signaling and metabolic pattys. More specifically,
since SPIN originally has been developed for modeling ofmomication protocols,
it can be used in quite a natural way for modeling signalintyways.

1.3.6 Related Work and Bibliographic Notes

There are several papers on model checking or closely defatenal techniques
applied to biological networks (e.g. [20, 6, 30, 25]). Herelwviefly discuss in more
detail the works that are the most relevant with regard tcsthgects treated in this
chapter.

In [8] symbolic model checking techniques are applied tagtinerying and valida-
tion of both quantitative and qualitative models of bionmoikar systems. The main
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difference with our approach is that [8] uses the symbolidel@hecker NuSMV
and the constraint-based model checker DMC, that both aticegemporal logic
CTL as a language to formulate the queries (properties)s Wdll known that for
some applications the explicit model checkers, like SPIN, raore efficient and
more intuitive to use. For instance, it would be easier todlate ther-calculus
into SPIN than into NuSMV. Also the property language of SPlkear Temporal
Logic (LTL), and CTL are not comparable in the sense thatefaee LTL formulae
that cannot be expressed in CTL and vice versa.

In [3] an approach for model checking genetic regulatorymoelts has been
proposed which consists in connecting GNA to the CADP veiiiin toolbox. GNA
is a quantitative simulation tool well-adapted to the afalié information on genetic
regulatory networks. Also, it is capable of analyzing lasgel complex genetic
regulatory networks. The-calculus has been used as a property language. Although
the u-calculus is more general than LTL, in the sense that eachfbfnula there
is an equivalenj.-calculus formula, the latter are usually much more cryptid
difficult to grasp than their LTL counterparts.

In[1] two tools are described, Simpathicaand XSSYS, whigblives an automaton-
based semantics of the temporal evolution of complex bimite reactions starting
from the representation given as a set of differential éqnat Also, the ability is
provided to qualitatively reason about the systems usingopgsitional temporal
logic. However, those tools are essentially simulatiodgt@dich deal with systems
which are deterministic with nature. The Promela/SPIN niedee able to capture
also the non-deterministic feature of the biological syste

SPIN is a open source software which is available ftartip: //spinroot . com.
Other model checking tools can be applied also to biologigatems, for instance,
NuSMV available fronhttp://nusmv.irst.itc.it, and DiVinE, available from
http://divine.fi.muni.cz.

1.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS

Many biological systems have inherently a probabilistaxfkastic nature. A proba-
bilistic interpretation, rather than a deterministic omelerlying the continuous view
based on ordinary differential equations (ODES), is nemgsshen the number of
molecules in the system is small or the time interval considés short. A standard
examples from the literature are genetic switches, in paler theA-phage [26]. In
this section we consider another class of biological systanwhich probabilities
play an indispensable role. We show how a specific type of induecking, so-
called probabilistic model checking, can be used for suskesys. The probabilistic
approach we present has been developed in the last several aied constitutes
an alternative to traditional methods such as Gillespgetyimulations. Also here,
the advantage of probabilistic model checking over sinnutais that model check-
ing considers all possible behaviors of the systems, illesjraulation runs. Thus,
model checking, when feasible, is more reliable and in tise cansidered also faster
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than simulation. To demonstrate the basic approach we egerttbabilistic model
checker Prism.

1.4.1 Motivation and Background

The transfer of genetic information from DNA to mRNA to prioidnappens with
very high precision. This is because each a single errongiatly can have dramatic
consequences for the organism as a whole. Here we analyzgtape of this
information pathway which corresponds to the translatimmf mMRNA to protein,
i.e., the protein biosynthesis. In particular, we are iegézd in translation errors and
the factors of potential influence.

An mRNA molecule can be considered as a string of codons @gfadhich encodes
for a specific amino acid. The codons of an MRNA molecule ageesatially read
by a ribosome and each codon is translated into an amino ak#&da result we
obtain a chain of amino acids, i.e. a protein. The amino aardscarried to the
ribosome by a specific transfer-RNA (aa-tRNA). Each aa-tRidAtains a so-called
anticodon and carries a specific amino acid. Arriving by Br@am motion, an aa-
tRNA, docks into the ribosome and may succeed in adding it®@mcid to the
chain under construction. Alternatively, the aa-tRNA disates in some stage of
the translation. This depends on the pairing of the codorutrenslation with the
anticodon of the aa-tRNA, as well as on the stochastic inflasisuch as the changes
in the conformation of the ribosome.

Thanks to the vast amount of research during the last thegrs, the overall
process of translation is reasonably well understood frayoalitative perspective.
The process can be divided into around twenty small stegatioms, a number of
them being reversible. Relatively little is known exactlyoat the kinetics of the
translation. Over the past several years, Rodnina andoool#ors have measured
kinetic rates for various steps in the translation procesa §mall number of specific
codons and anticodons[28, 31, 32, 15]. They were able tagwrpatally show thatin
several of those steps the rates strongly depend on thedgigratching between the
codon and the anticodon. Additionally, in [11] the averageaentrations (amounts)
of aa-tRNAs per cell have been collected for the model ogyascherichia coli
Viljoen and co-workers [13] proposed a model which is basethose results. One
of their basic assumption is that the rates found by Rodatra. can be used in
general, for all codon-anticodon pairs. Thus, the model 8] Eovers all 64 codons
and all 48 aa-tRNA classes f&. coli. The model is used to perform extensive
Monte Carlo simulations and to establish codon insertiores and frequencies of
erroneous elongations. The results show a strong coorlafithe translation error
and the ratio of the concentrations of the so-called negnate and cognate aa-tRNA
species. Consequently, one can argue that the competftaatRNAS, rather than
their availability, decides both speed and fidelity of cotitamslation.

In this text, we model the translation kinetics via the metlecking of continuous-
time Markov chains (CTMCs) using the tool Prism [22, 16]. T provides built-in
performance analysis algorithms and a formalism (Comjmurtat Stochastic Logic,
CSL) to reason about various properties of the CTMCs, rentpthie burden of
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extensive mathematical calculations from the user. Adddlly, in our case, the
Prism tool provides much shorter response times compar@dlespie simulation.

1.4.2 A Kinetic Model of mMRNA Translation

There exists a fixed correspondence between codons and aciiisgiven by the well
known genetic code. With exception of the three so calleg stalons, which denote
the end of the genetic message, each codon codes for exaetynoino acid. As a
consequence an mRNA encodes for a unique protein. Thispiletate is disturbed
by the fact that, in theory, each codon can bind with eachadon. However, the
binding intensity can significantly differ from pair to pairhis influences the speed
of the actual translation and also the chances for errorgs,Tthe translation is quite
accurate, but not perfect. The biological model of the titith mechanism that
we adopt here is based on [31, 21]. Two main phases can begliithed: peptidyl
transfer and translocation. Here we focus on the peptidylsfier since it this part
that determines the error probabilities. This phase caniidedl in several steps
which are represented in Figure 1.4 and which we briefly dlesén the sequel. The

Inmal GTPase
activation Ad

Y EREERRS

EF-Tu configuration

change Accomodauon Peptydil
AT transfer A8
*

\ Rejection Ribosome+aatRNA

+mRNA
A9 Ea % aa—-tRNAs

Figure 1.4 Kinetic scheme of peptidyl transfer [13].

GTP
hydrolysis

E—

transfer begins with aa-tRNA arriving at the A-site of tHeasome-mRNA complex
by diffusion (state Al in Figure 1.4). The initial bindingalés to state A2. Since
the binding is relatively weak the reverse process, i.ebinding of the aa-tRNA
is also possible and this brings us to the initial state. @aggognition comprises
(i) establishing contact between the anticodon of the &AtBnd the current codon
in the ribosome-mRNA complex, and (ii) subsequent confdional changes of the
ribosome. GTPase-activation of the elongation facteéF-Tuis largely favoured in
case of a strong complementary matching of the codon andoaioin. AfterGTP-
hydrolysis, producing inorganic phosph&eandGDP, the affinity of the ribosome
for the aa-tRNA reduces. The subsequent accommodatioraistemlepends on the
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fit of the aa-tRNA. This step happens rapidly for cognagetRNA whereas for
near-cognataa-tRNAthis proceeds slower and tha-tRNAIs likely to be rejected.
These different speeds are expressed via the reactionfratesA6 to A7 and A6

to A9. For a cognataa-tRNAthe rate A6—A7 is much bigger than the rate A6—A9,
whereas for a near cognate the situation is the other waydrou

Next, the translocation phase follows. Another GTP-hyghislinvolving elonga-
tion factorEF-G, producessDP andP; and results in unlocking and movement of
the aa-tRNA to the P-site of the ribosome. The latter stepasqued or followed
by P;-release. Reconform ation of the ribosome and releadeFes moves the
tRNA, that has transferred its amino acid to the polypeptitin, into the so called
E-site of the ribosome. Further rotation eventually leaddissociation of the used
tRNA. As mentioned above, we assume that this phase doesntiwef influence the
probability of incorporating the amino acid in the chain. id@recisely, we assume
that once the final state (A8) of the peptidyl transfer is heglcthe amino acid will
be for sure added to the chain. Because of that in our formdkefrtbat we present
later we deal only with the peptidyl transfer.

There is not much quantitative information regarding tlamstation mechanism.
ForE. coli, anumber of specific rates have been collected [31, 15],@@se30me steps
are known to be relatively rapid. Here we adopt the fundaai@ssumption of [13]
that the experimental data found by Rodnétaal. for the UUU and CUC codons,
extrapolate to other codons as well. Also, accurate ratethéotranslocation phase
are largely missing. Again following [13], we have choserassign, if necessary,
high rates to steps for which data is lacking. This way théspsswill not be rate
limiting.

1.4.3 Probabilistic Model Checking

Traditional model checking, which we presented in the pmesisections of this
chapter, deals with the notion of absolute correctnessilorésof a given property.
On the other hand, probabilistimodel checking is motivated by the fact that prob-
abilities are often an unavoidable ingredient of the systam analyze. Therefore,
the satisfaction of properties is quantified by a probahilithis makes probabilistic
model checking a powerful framework for modeling varioustsyns ranging from
randomized algorithms via performance analysis to biaalgietworks.

From an algorithmic point of view, probabilistic model cketg overlaps with the
conventionaltechnique, since it too requires computiaghebility of the underlying
state space graphs. Still, there are also important diftere because numerical
methods are used to compute the transition probabilitieeweder, these details

4In the literature probabilistic and stochastic model clregloften are used interchangeably. A more
clear distinction is made by relating the adjectives prdistic and stochastic to the underlying model,
viz. discrete-time and continuous-time Markov chain, essipely. For the sake of simplicity, in this
chapter our focus is on discrete-time Markov chains, so wedfor consistently using the qualification
‘probabilistic’. Nevertheless, as we also emphasize insthguel, the concepts and algorithms that we
present here can be applied as well to continuous-time Markains.
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are beyond the scope of this chapter. They will play no rolthapplication to
biological systems that we consider in the below.

1.4.4 The Prism Model

To obtain our formal Prism model we apply a twofold absti@ctod the above infor-
mally sketched biological model: (i) Instead of dealinghwd8 classes of aa-tRNA,
that are identified by the their anticodons, we use four tgbaa-tRNA distinguished
by their matching strength with the codon under translat{ognhWe combine various
detailed steps into one transition. The first reduction tyesmplifies the model,
more clearly eliciting the essentials of the underlyingy@ss. The second abstraction
is more a matter of convenience, though it helps in compgedgenting the model.

For each codon we distinguish four types of aa-tREégnate, pseudo-cognate,
near-cognate, non-cognateCognate aa-tRNAs carry an amino acid which is the
correct one for the according to the genetic code and thégaon strongly couples
with the codon. The binding of the anticodon of a pseudo-atgaa-tRNA or a
near-cognate aa-tRNA is weaker, but sufficiently strongdmasionally result in the
addition of the amino acid to the nascent protein. In caseathino acid of the
aa-tRNA is, accidentally, the right one for the codon, wd ta aa-tRNA of the
pseudo-cognate type. If the amino acid does not coincide tivé# amino acid the
codon codes for, we speak in such a case of a near-cogna®Naa2tThe match of
the codon and the anticodon can be very poor too. We refectoaartRNA as being
non-cognate for the codon. This type of aa-tRNA does nadbieita translation step
at the ribosome.

Here we focus on the computation of insertion errors. As alréise model can
be even further simplified by assuming that the non-cograemt play any role in
the process. In our model, the main difference of cognategsesido-cognates and
near-cognates is in the kinetics. At various stages of tip¢ighd transfer the rates
for true cognates differ from the others up to three ordersadnitude.

Figure 1.5 depicts the relevant abstract automaton, défieen the Prism model
discussed above. In case a transition is labeled with tvesr#he left hand number
concerns the processing of a cognate aa-tRNA, the right hantber that of a
pseudo-cognate or near-cognate. In three states a pristialihoice has to be
made. The probabilistic choice in sta&tés the same for cognates, pseudo-cognates
and near-cognates alike, the ones in sgatand in statet differs for cognates and
pseudo-cognates or near-cognates.

For example, after recognition in steiea cognate aa-tRNA will go through the
hydrolysis phase leading to statefor a fraction0.999 of the cases (computed as
260/(0.23 + 260)), a fraction being close tb. In contrast, for a pseudo-cognate or
near-cognate aa-tRNA this (s005 only. Cognates will accommodate and continue
to state6 with probability 0.736, while pseudo-cognates and near-cognates will do
so with the small probability).044, the constantFAST being set to1000 in our

5The notion of a pseudo-cognate comes natural in our modeligwever, the distinction between a
pseudo-cognate and a near-cognate is non-standard. yJsuadlar-cognate refers to both type of tRNA.
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Figure 1.5 Abstract automaton for error insertion.

experiments. As the transition from stalt¢o state6 is irreversible, the rates of the
remaining transitions are not of importance here.

One can see the Prism model as a superposition of three stmciiatomata, each
encoding the interaction of one of the types of aa-tRNA, pkd¢ke non-cognate
type. Each automaton is obtained from the automaton in Eigius by applying the
corresponding rates.

We can further simplify our model by taking into account theg deal with av-
erage transition times and probabilities based on exp@iefistributions. Under
this assumption it is a common practice in performance &ty merge two sub-
sequent sequential transitions with given ratesdy into a combined transition of
rateAn/ (X + w). However, it should be noted that in general such a simpiifinas
not compositional and should be taken with care.

Inthe models that we are considering, which are based omemnis-time Markov
chains, Prism commands have the fdirabel] guard — rate : update ;. From
the commands whose guards are satisfied in the currentstatepmmand is selected
with a probability proportional to its relative rate. Thusprobabilistic choice is
made. Executing the selected command results in a progfésseoaccording to
the exponential distribution for the particular rate. Ao update is performed on
the state variables. More information about the Prism moldetker can be found
in [22, 16].

Initially, control is in states=1 of the Prism model with four boolean variables
cogn, pseu, near andnonc set to false. The initial binding of aa-tRNA is modeled
by selecting one of the boolean variables that is to be seut tThere is a race
between the three types of aa-tRNA: cognate, pseudo-o®goatear-cognate.
The outcome of the race depends on the concentratiotiggn, c_pseu, c_near
andc_nonc of the three types of aa-tRNA and a kinetic constant. According to
the Markovian semantics, the probability tkatn is set to true (the others remaining
false) is the relative concentratiercogn/(c_cogn + c_pseu + c_near). Analogously
the probabilities for the other two types of aa-tRNA are cated. This amounts to
the following code:

// initial binding

[ 1 (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[ 1 (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
[ ] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
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The aa-tRNA that has just attached can also dissociate. Veintiois below by
returning the control to the stage-0. Although it might seem more natural to return
to theinitial state, as we will see later, we need this statefodel checking purposes.
The boolean that was set to true is reset. We assume the sasoeidtion rate for
all aa-tRNA types. rat&2b.

// dissociation
[1 (s=2) -> k2b :
(s’=0) & (cogn’=false) & (pseu’=false) & (near’=false) ;

Regardless of the type, aa-tRNA can continue from sta?dn the codon recognition
phase, leading to state=3. This step can also be reversed, hence we include
transitions from state=3 back to state=2. The fidelity of the translation mechanism

is ensured by the fact that the rates for cognates vs. psemdaiear-cognates, viz.
k3bc, k3bp andk3bn, differ significantly (see Table 1.4). The boolean variable
remain unchanged since aa-tRNA is not released.

// codon recognition

[ 1 (s=2) -> k2f : (s8’=3) ;
[ ] (s=3) & cogn —> k3bc : (s7'=2) ;
[ 1 (s=3) & pseu -> k3bp : (s’=2) ;
[ ] (s=3) & near -> k3bn : (s’=2) ;

The next step, from state=3 to states=4, is one-direcitonal. It corresponds to a
combination of detailed steps in the biological model whimlolves modification
of GTP. We assume that rate3fp andk3fn, resp. for pseudo-cognate and near-
cognate aa-tRNA, are equal. The progress of the translatitime right direction

is again ensured by a significant difference between thése aad rat&3£c for a
cognate aa-tRNA.

// GTPase activation, GTP hydrolysis, EF-Tu conformation change
[ ] (s=3) & cogn —> k3fc : (s’=4) ;
[ 1 (s=3) & pseu -> k3fp : (s’=4) ;
[ ] (s=3) & near -> k3fn : (s’=4) ;

States=4 is an important crossroad in the process. The aa-tRNA céwerelie
rejected, after which control moves to the sta#, or it can be accepted. This
corresponds to the various accommodation steps in thedigalomodel, i.e. the
ribosome reconforms such that the aa-tRNA can hand ovemntireeacid it carries,
so-called peptidyl transfer. In our model the accepting steeans moving to to
states=6. In this step too the rates for cognates and those for pseogoates and
near-cognates differ significantly.

// rejection

[ 1 (s=4) & cogn -> kdrc : (s’=b) & (cogn’=false) ;
[ ] (s=4) & pseu -> kdrp : (s’=5) & (pseu’=false) ;
[ ] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;
// accommodation, peptidyl transfer

[ 1 (s=4) & cogn -> kd4fc : (s’=6) ;

[ 1 (s=4) & pseu -> k4fp : (s’=6) ;

[ 1 (s=4) & near -> k4fn : (s’=6) ;
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The step from state=6 to states=7 models the binding of the EF-G complex. This
step is also reversible, but eventually the binding becgmemanent. The transition
to the final states=8 subsumes many different steps of the translation mechanism
which start with GTP hydrolysis and ends with elongationha polypeptide chain
with the amino acid carried by the aa-tRNA. Non-cognatesng@ass beyond
states=2, but the outcome of the translation can still be an error{fRIgA is near-
cognate, i.e., if booleatear is true. In this case an amino acid is inserted that does
not correspond to the codon in the genetic code.

// EF-G binding

[ ] (s=6) -> k6f : (s’=7) ;

[ 1 (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,

// rearrangements of ribosome and EF-G, dissociation of GDP

[ 1 (s=7) -> k7f : (s’=8) ;
The modelis completed by transitions from the dissociattates=0 and the rejection
states=5 back to the start state=1. After a aa-tRNA is rejected the race of the four
aa-tRNA types resumes. Also, for technical reasons, d@aff-at the final state=8
is added.

// no entrance, re-entrance at state 1

[ ] (s=0) -> FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ 1 (s=5) —-> FAST : (s’=1) ;

// elongation

[ ] (s=8) -> FAST : (s’=8) ;

The rates that are used in our model are given in Table 1.4.ateecollected from
the biological literature [31, 13].

Table 1.4 Rates of the Prism model

k1f 140 | k3fc 260 kdrc 60 k6f | 150
k2f 190 [ k3fp, k3fn 0.40 | k4rp, k4rn |FAST k7f|145.8
k2b 85 | k3bc 0.23 | kdfc 166.7 | k7b | 140

k2bx | 2000 | k3bp, k3bn| 80 k4fp, k4fn 46.1

The complete Prism model can be found in the appendix asgigti0.2. In the
sequel we use the Prism model described above for the amaliyie probability
for insertion errors, i.e. the chance that the peptidylcimextended with an amino
acid that differs from the one encoded by the codon whictaissiated.

1.4.5 Insertion Errors

Once having the model we can use the model checking cajpedbiit the Prism tool
to predict the misreading frequencies for individual coslofo this end we need to
give Prism the exact property that corresponds to our qureatiout the probability.
In other words, we need the right formula with the above noeril logic CSL. The
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formula should state that we want to compute the probaltiisy an erroneous state
is reached in which a wrong amino acid is added.

For a codon under translation, a pseudo-cognate anticoaloies precisely the
amino acid that the codon codes for. Therefore, successtdhing of a pseudo-
cognate does not lead to an insertion error.

Taking into account the above we come up with the followind. @&mula:

P=? [ (true) U ((s=8) and not near) ]

The formulais of the forne=7 [®], which is a basic formula template for CSL. The
partP=7 means that we want a numerical result, i.e., the cumulativiegbility of all
paths that satisfy formuld. Like the formulae for the LTL logic in standard model
checking, CSL formulae are also interpreted on sequencstates, i.e., paths, of the
model. So, the inner formula states that we are interested only in paths that end in
states=8 — in which the amino acid is added to the chain — and moredvat.the
added amino acid is the wrong one, i.e., the tRNA is not cagoapseudo-cognate,
but near-cognate. This last fact is expressedeas, wherenot is the negation
operator. The paths start by default in the initial stat6. The formula® itself is
of the form®; U ®,, where U is the so called until operatérThe meaning of this
kind of formulae is that along the path formua must hold until a state is reached
in which formula®, holds. If ®5 holds in the initial stat®; does not need to hold
in that state, since in this case the formulae is triviallyetr In our case we have set
®; to true. Sincetrue holds trivially in all states, this means that we do not care
about the intermediate states of the path and that it is omportant that a state is
reached in whichb, holds, i.e., a wrong amino acid is added to the chain.

Our results obtained with Prism are given in Table 1.5. Prmoduces these

Table 1.5 Probabilities per codon for erroneous elongation

Uuu 27.4e-4 Cuu 46.7e-4 GUU 1.12e-10 | AUU 14.4e-4
uuc 91.2e-4 cuc 13.6e-4 GUC 55.0e-4 AUC 35.0e-4
UuG 7.59e-4 CUG | 4.49e-4 GUG 2.68e-4 AUG 58.3e-4
UUA 23.5e-4 CUA 18.9e-4 GUA 22.3e-4 AUA 34.4e-4
ucCu 2.81e-10 | CCU 34.1e-4 GCU 1.77e-10 | ACU 2.73e-10
ucc 56.1e-4 CCC 10.4e-4 GCC 12.5e-4 ACC 34.2e-4
UCG 20.3e-4 CCG | 37.6e-4 GCG 3.187e-4 | ACG 31.7e-4
UCA 9.09e-4 CCA 22.8e-4 GCA 28.2e-4 ACA 29.1e-4
uGuU 6.97e-4 CGU 1.21e-10 | GGU 1.32e-10 | AGU 8.70e-4
UGC 30.4e-4 CGC | 4.59e-4 GGC | 9.40e-4 AGC 37.2e-4
UGG 39.8e-4 CGG | 88.7e-4 GGG | 2.72e-10 | AGG 140.7e-4
UGA 7.50e-4 CGA 3.98e-4 GGA 100.3e-4 | AGA 48.1e-4
UAU 2.81e-10 | CAU 9l.1e-4 GAU 18.6e-4 AAU 15.2e-4
UAC 15.7e-4 CAC 47.5e-4 GAC 43.2e-4 AAC 49.3e-4
UAG 41.3e-4 CAG 69.4e-4 GAG 7.09e-4 AAG 32.1e-4
UAA 6.04e-4 CAA 22.7e-4 GAA 21.4e-4 AAA 14.6e-4

6Actually, this operator exists also in LTL, but we ‘hid’ it the temporal operatofg and (). The latter
are just syntactic sugar and they can be expressed usingtiheperatorU.
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results within a couple of minutes. Checking for an indiaticodon takes just a few
seconds.

Asreported in [13], the probability for an erroneous inger{is strongly correlated
with the quotient of the number of near-cognate anticodadstze number of cognate
anticodons.This can be seen also in Figure 1.6. On the yis#ie quotient of the

14 /

ratio near-cognate/cognate
o o

0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016

probability for errornous insertion

Figure 1.6 Correlation of ratio near-cognate vs. cognates aa-tRNAsearr probabilities.

concentrations (number of molecules) of near-cognate agdate tRNAs, whereas
on the x-axis are the probabilities for erroneous insertion

1.4.6 Concluding Remarks

We showed how probabilistic model checking can be used tlyamaiological net-
works as an alternative for Gilliespie-like simulation. &sexample we discussed a
stochastic model of the translation process based ontiea#ta of ribosome kinet-
ics. We used the probabilistic model checker Prism and itiquéar its capabilities
to deal with continuous time Markov chains. Compared to $tion, our approach
is computationally more reliable as it is independent onnhiaber of simulations.
Also, it this case, it has faster response times, takingrs#oather then minutes or
hours.

The kind of probabilistic/stochastic models, as we presghere, has opened new
avenues for future work on biological systems that possesasically probabilistic
properties. E.g., current research using the model chgdddsed method is targeted
at biological processes that require high precision, liki®Qranslation, DNA repair,
charging of the tRNAs with amino acids, etc. In [4] we show heith our model one
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could check if amino acids with similar biochemical propessubstitute erroneously
for one another with greater probabilities than dissiniliaes.

1.4.7 Related Work and Bibliographic Notes

The model that is used in this chapter builds upon [5], whis wspired by the
simulation experiments of MRNA translation reported inj[18similar model, based
on ordinary differential equations, was developed in [1Athough probabilistic, it
is used to compute insertion times, but no translation srrdhe model of MRNA
translation in [14] assumes insertion rates that are dyrpobportional to the mRNA
concentrations, but assigns the same probability of tasinsl error to all codons.

Applications of probabilistic model checking and in pautar Prism can be found
in [24]. More about probabilistic model checking and the enging algorithms can
be found in [23].

There exist numerous applications of formal methods toogjickl systems. A
selection of recent papers from model checking and prodgebra includes [29, 8,
10]. More specifically pertaining to this chapter, [7] apglthe Prism model checker
to analyze stochastic models of signaling pathways. Thethodology is presented
as a more efficient alternative to ordinary differential @ipns models, including
properties that are not of probabilistic nature. Also, [@6]ploys Prism on various
types of biological pathways, showing how the advancedifeatof the tool can be
exploited to tackle large models.

Prism is an free available software and can be downloaded fi® web page
http://www.prismmodelchecker.org. Of course, any model checking tool that
supports CTMCs can be used too for analyzing biologicaksyst One such a tool
is MRMC which is also in the public domain, seetp: //www.mrmc-tool.org.
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Appendix

Listing A.0.1 (Promela description of the Arabidopsis netverk)

OOO~NOUTRAWNE

#define T
#define L
#define A
#define G
#define P
#define I

GO WN = O

bool Activel[6];

proctype TLF1() {

do

:: atomic{Active[T] && 'Active[L] -> Active[T]=0}
:: atomic{Active[T] && Active[L] -> Active[T]=0}
od; }

proctype LFY() {
do
:: atomic{Active[L] && !'Active[A] && !'Active[T] -> Active[L]=0}
:: atomic{Active[L] && !'Active[A] && Active[T] -> Active[L]=0}
:: atomic{Active[L] && Active[A] && 'Active[T] -> Active[L]=0}
: atomic{Active[L] && Active[A] && Active[T] -> Active[L]=03}
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22 od; }

23

24 proctype AP10) {

25 4o

26 :: atomic{!Active[A] &% !'Active[L] &% 'Active[G] -> Active[Al=1}

27  :: atomic{!Active[A] && Active[L] && !'Active[G] -> Active[A]l=1}

28 :: atomic{Active[A] && 'Active[L] && Active[G] -> Active[A]=0}

29 :: atomic{Active[A] && Active[L] && Active[G] -> Active[A]=0}

30 od; 3}

31

32 proctype AGQ {

33 4o

34 :: atomic{'Active[G] && !Active[T] && !Active([L] && !Active[A] -> Active[G]=1}
35 :: atomic{'Active[G] && !Active[T] && Active[L] && 'Active[A] -> Active[G]=1}
36 :: atomic{Activel[G] && !Active[T] && !Active[L] &% Active[A] -> Active[G]=0}
37 :: atomic{Activel[G] && !Active[T] && Active[L] && Active[A] -> Active[G]=0}
38 :: atomic{Active[G] && Active[T] && 'Active[L] && 'Active[A] -> Active[G]=0}
39 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}
40 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}
41 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}
42  od; }

43

44 proctype AP3() {

45  do

46  :: atomic{!Active[P] && 'Active[I] && Active[L] -> Active[P]=1}

47  :: atomic{!Active[P] && Active[I] && Active[L] -> Active[P]=1}

48 :: atomic{Active[P] && !'Active[I] && !Active[L] -> Active[P]=0}

49 :: atomic{Active[P] && !Active[I] && Active[L] -> Active[P]=0}

50 od4; 3}

51

52 proctype PIO) {

53 4o

54 .. atomic{'Active[I] && 'Active[P] && Active[L] -> Active[I]=1}

55 :: atomic{!Active[I] && Active[P] && Active[L] -> Active[I]=1}

56 :: atomic{Active[I] && !'Active[P] && !Active[L] -> Active[I]=0}

57 :: atomic{Active[I] && 'Active[P] && Active[L] -> Active[I]=0}

58 od; }

59

60 init {

61 atomic{

62 Active[L]=1;
63 Active[A]l=1;
64 run TLF1Q);
65 run LFY(Q);
66 run AP1Q);
67 run AG(Q);
68 run AP3Q);

69 run PI();
70 }
71 3

Listing A.0.2 (Prism model of mMRNA translation)

stochastic

// constants
const double ONE=1;
const double FAST=1000;

// tRNA rates

const double c_cogn
const double c_pseu
const double c_near
const double c_nonc

PRRE
WNROOONOUTRAWNE

const double kif = 140;
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const double k2b = 85;
const double k2bx=2000;
const double k2f = 190;
const double k3bc= 0.23;
const double k3bp= 80;
const double k3bn= 80;
const double k3fc= 260;
const double k3fp=  0.40;
const double k3fn= 0.40;
const double kdrc= 60;
const double k4rp=FAST;
const double k4rn=FAST;
const double kdfc= 166.7;
const double k4fp= 46.1;
const double k4fn= 46.1;
const double k6f = 150;
const double k7b = 140;
const double k7f = 145.8;

module ribosome

s : [0..8] init 1 ;

cogn : bool init false ;
pseu : bool init false ;
near : bool init false
nonc : bool init false

// initial binding

[ 1 (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[ 1 (s=1) > k1f * c_pseu : (s’=2) & (pseu’=true) ;
[ 1 (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;

[1 (s=2) -> k2b : (s’=0) &
(cogn’=false) & (pseu’=false) & (near’=false) ;

// codon recognition

[1 (s=2) & -> k2f : (s’=3) ;
[ 1 (s=3) & cogn -> k3bc : (s’=2) ;
[ 1 (s=3) & pseu -> k3bp : (s’=2) ;
[ ] (s=3) & near -> k3bn : (s’=2) ;

// GTPase activation, GTP hydrolysis, reconformation
[ 1 (s=3) & cogn -> k3fc : (s’=4) ;
[ 1 (s=3) & pseu -> k3fp : (s’=4) ;
[ ] (s=3) & near -> k3fn : (s’=4) ;

// rejection

[ 1 (s=4) & cogn -> kdrc : (s’=5) & (cogn’=false) ;
[ 1 (s=4) & pseu -> kdrp : (s’=5) & (pseu’=false) ;
[ 1 (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer
[ 1 (s=4) & cogn -> kdfc : (s’=6) ;
[ ] (s=4) & pseu -> k4fp : (s’=6) ;
[ ] (s=4) & near -> k4fn : (s’=6) ;

// EF-G binding
[ 1 (s=6) -> k6f : (s’=7) ;
[ 1 (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking,

// tRNA movement and Pi release,

// rearrangements of ribosome and EF-G,
// dissociation of GDP

[ 1 (s=7) -> k7f : (s’=8) ;
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// no entrance, re-entrance at state 1
[ ] (s=0) -> FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ ] (s=B5) -> FAST : (s’=1) ;

// elongation

[ 1 (s=8) -> FAST : (s’=8)

H

endmodule



