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MODELING AND ANALYSIS OF
BIOLOGICAL NETWORKS
WITH MODEL CHECKING

Dragan Bǒsnǎcki, Peter A.J. Hilbers, Ronny S. Mans, and Erik P. de Vink

1.1 INTRODUCTION

Over the last decades, biological networks, like signal transduction pathways, meta-
bolic pathways, and genetic networks, have received increasing attention in bio-
chemistry. In each living organism a growing plethora of such networks have been
identified. Is has become clear that the understanding of themechanisms and their
functioning is crucial for elucidating the functioning of the cell and the organism as
a whole.

Different formalisms and approaches exist for the modelingof biological networks.
In this chapter we focus on model checking as a method that exploits executable mod-
els. Its main advantage is that they lend themselves to formal verification. Standard
simulation on the model can only yield predictions regarding model properties with
certain probability. The advantage of model checking over standard simulation is
that it considers all possible behaviors of the systems, notjust some subset of it and
therefore yield conclusions with certainty.
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After intrducing the basic concepts in the next section, in Section 1.3 we show
how standard model checking can be used to model and analyze biological systems.
To this end we use as the modeling language Promela, the specification language of
the model checking tool SPIN. The SPIN tool can be used to check a broad range of
properties. In particular, we show how SPIN can be used to detect steady states of
the biological systems as well as periodic behavior. Some ofthe case studies that we
discuss have also been modeled with other formalisms, like Petri nets orπ-calculus.
We discuss the advantages of model checking over those approaches.

Section 1.4 is devoted to modeling and analysis of biological systems which are
inherently probabilistic. To this end we use a special kind of model checking –
probabilistic model checking. We demonstrate the conceptsof probabilistic model
checking for biological systems using the probabilistic model checking tool Prism.

1.2 PRELIMINARIES

1.2.1 Model Checking

Roughly speaking, model checking [19, 2] is an automated technique that, given
a model of the system and some property, checks whether the model satisfies the
property. Compared to other automated or semi-automated formal techniques, such
as deductive methods using theorem provers, model checkingis relatively easy to
use. The specification of the model is very similar to programming and as such it
does not require much additional expertise from the user. The verification procedure
is completely automated and often takes only seconds to several minutes. Another
important advantage of the method is that, if the verification fails, i.e., the property
that is checked does not hold, the erroneous behavior of the system can be reproduced.
This significantly facilitates the location and correctionof the errors.

Unlike simulation, model checking explores all possible states of the system. The
model checker explores the complete system behavior, i.e.,all possible executions
of the system. Obviously, for model checking to be applicable, the state space of
the system under study should be finite. Systems with infinitestate spaces can be
handled as well provided the state space can be reduced to a finite one. For this,
various abstraction techniques are available. In general,the state space that reflects
all system behavior is represented as a graph in which the states are nodes and the
edges are transitions between states. A particular behavior of the system, which we
also refer to as an execution sequence or a path, can be represented by a path in the
graph consisting of states and the transitions between them. Of particular interest are
states from which there are no outgoing transitions, which are called deadlock states,
as well as cyclic paths in the state space graph. The deadlockstates correspond to
steady states in the real systems, whereas the cycles are associated with periodical
behavior of the systems.

To illustrate the above notions related to the state spaces we consider the simple
genetic network given in Figure 1.1 a, which consists of three genes. Gene A is an
activator of gene B, whereas gene B inhibits gene C. Further,if B is not active, then



PRELIMINARIES 3

CA 

000

100 010

110 011

111101

b)

001

A 

c)a)

010 100

011

111

101

000

001

110

d)

B CB

Figure 1.1 A simple genetic network with its state space.

gene C spontaneously deactivates, whereas if gene gene A is not active, then gene B
spontaneously activates. Also gene A is a self-activating one. The state space of the
network is given in Figure 1.1b. The states are represented by a state vector. For the
sake of simplicity, in the figure the state vectors are simplified into three bit binary
strings. (States are depicted as circles, transitions as arcs.) The components of the
vector correspond to the genes A,B, and C, respectively. Each gene can take two
values 0 (not activated) and 1 (activated).

We assume that the genes change their states asynchronously, one gene at a time.
So, from the state 000 one can go non-deterministically either to state 100 or 010.
The first transition happens when gene A activates spontaneously, whereas the second
one corresponds to a spontaneous activation by gene B. The transition from state 101
to 100 happens by spontaneous deactivation of gene C and the transition from 110
to 100 because of the inhibiting influence of A to B. Similarlythe other transitions
can be coupled to activation/deactivation of a particular gene. The only deadlock or
stable state is 100.

The state space does not contain cycles. However, cyclic behavior can be intro-
duced, for instance, by adding a feedback activating influence between C and A and
assuming that A deactivates spontaneously (see Figure 1.1c). In that case a sponta-
neously activated gene B activates gene C, which in its turn activates gene A. Gene A
will deactivate gene B, which will result in spontaneous deactivation of gene C and as
a consequence also gene A. Then the cycle can resume again with a new spontaneous
activation of B. The state space of the new network is given inFigure 1.1d.

1.2.2 SPIN and Promela

Spin [18] is a software tool that supports the analysis and verification of concur-
rent systems. The system descriptions are modeled in a high-level language called
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Promela. Its syntax is derived from the programming language C, and extended with
constructs to model non-determinism, the so-called guarded commands due to Dijk-
stra, and with statements to model communication (sending and receiving messages)
which are inspired from Hoare’s CSP language.

In Promela, system components are specified asprocessesthat can interact either
by message passing, viachannels, or memory sharing, viaglobal variables. The
message passing can either be buffered or unbuffered. Concurrency is asynchronous
and modeled by interleaving, i.e. in every step exactly oneenabledaction is per-
formed, if available at all. No assumptions are made on the relative speed of process
executions.

Given a Promela description as input, SPIN generates a C program that performs
the verification of a system property by generating the statespace graph. Simultane-
ously, the check of the property is performed, i.e., each newstate is checked if it is
erroneous, e.g., a deadlock state, or if an erroneous cyclicpath is closed. There are
various ways to formally express the properties that we wantto verify. Properties that
boil down to the presence or absence of cycles in the state space can be formulated via
special formal language called Linear Temporal Logic (LTL). Cf. [12]. We give more
details about LTL in section 1.2.3. The most general way of expressing properties in
SPIN is via so-callednever claims, which are best seen as monitoring processes that
run in lock step with the rest of the system.1 SPIN provides an automatic translator
from formulae in LTL to never claims. In case the system violates a property, the
trace of actions leading to an invalid state, or a cycle, is reported. The erroneous trace
can then be replayed, on the Promela source, by a guided simulation.

1.2.3 LTL

We give only an informal overview of the Linear temporal logic (LTL). For a formal
definition, we refer the reader to [12]. Temporal logic is a formalism for specifying
sequences of states. Temporal logic formulae are composed out of a small number
of special temporal operators and state formulae. Linear temporal logic (LTL) is a
specific branch of temporal logic which only contains futuretime temporal operators.
This branch of logic is most relevant to the verification of concurrent systems.

For our purposes we only use two temporal operators. These are the operator
alwaysor box, which is represented by the symbol ‘[ ]’ and the operatoreventually
or diamond, which is represented by the symbol ‘〈 〉’. Let us suppose thatp is a
formula expressing some property. Then formula[ ]p captures the notion that the
property specified byp remains invariantlytrue throughout an execution sequence,
i.e., holds in each state of the sequence. The informal meaning of the formula〈 〉p
is that the propertyp is guaranteed to eventually becometrue at least once in an
execution sequence. Besides the special temporal operators, LTL also provides the

1The never claims are, in fact, Büchi Automata [33], and thus can express what are called arbitrary
omega-regular properties.
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usual logical operators: ‘!’ for negation, ‘||’ for disjunction, ‘&&’ for conjunction,
and ‘→’ for logical implication.2

To illustrate the use of LTL formulae, some examples are given in Table 1.1.

Table 1.1 Examples of LTL formulae.

Formula Informal meaning
[ ]〈 〉p always eventuallyp, i.e., infinitely manyp’s
〈 〉[ ]p eventually alwaysp, i.e.,p only from some point on
p → 〈 〉q if initially p then eventuallyq
[ ](p → 〈 〉q) everyp is eventually followed by aq
〈 〉p → 〈 〉q eventuallyp implies eventuallyq

1.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING

We discuss how to use model checking to analyze genetic networks. In genetic
networks, genes can activate or inhibit one another. Moreover, self-regulation (ac-
tivation/inhibition) of a gene is possible too. We are interested in the qualitative
behavior of genetic networks, i.e., for each gene we distinguish only two possible
states: ‘on’ and ‘1’ vs. ‘off’ and ‘0’. Consequently, we use boolean regulatory
graphs [9] as formal models of the genetic networks.

1.3.1 Boolean Regulatory Networks

Let G = {g1, . . . , gn} be a set of genes. To each genegi ∈ G, we assign a a
subsetI(i) ⊆ G and a boolean functionKi. Intuitively, I(i) contains the source
genes of all incoming interactions intogi and is calledinput of gi. The boolean
functionKi : 2I(i) → {0, 1} associates a parameterKi(X) to each subsetX of I(i).
Intuitively, if all genes in the subsetX are active thengi is activated (ifKi(X) = 1)
or inhibited (in caseKi(X) = 0). As a result, the output of functionKi(X) produces
thenewvalue of genegi.3 The corresponding regulatory graph is a (labeled) directed
graph defined by the following three components:

• a set of nodesG = {g1, . . . , gn},

• a set of edges determined by the setsI(i), i = 1, . . . , n, and

• a set of parametersK = {Ki(X) | j = 1, . . . , n, X ⊆ I(i)}.

2For the reader who is familiar with LTL and model checking: Inmost of the applications that we discuss
in this chapter the usage of LTL formulae even for safety properties, i.e. properties that can be disproved
with a finite counterexample sequence, is essential. This isbecause those safety properties are global and
therefore cannot be expressed with assertions, that capture only local properties.
3Thus, the network can be regarded as an asynchronous sequential logical circuit.
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1.3.2 A Case Study

We illustrate our approach in more detail on a case study – a genetic network of the
plantArabidopsis thalianawhich is involved in the control of flower morphogenesis.
Mendozaet al. [27] have proposed a Boolean regulatory model involving 10 genes
cross-regulating each other. For proper parameter value sets, this model encompasses
6 stable states, four of them matching the qualitative gene expression patterns ob-
served in the different flower organs, while the two last stable states correspond to
non-flowering situations. All these stable states correspond to deadlocks in the state
space of the system and as such can be detected by model checking.

Chaouiyaet al. have introduced a simplified version of the network which focuses
on a subset of six genes that play a crucial role in the selection of specific flowering
differentiative pathways, leaving aside the genes which can be treated as simple
inputs (EMF1, UFO, LUG and SUP). In [9] a parameter set has been chosen for
which the system has four stable states, each correspondingto a gene expression
pattern associated with a specific flower organ.

LUG

AG1

AP1

TLF1

EMF1

LFY

AP3

PI

UFO

SUP

Figure 1.2 Genetic network for flowering in Arabidopsis.

Thus, only the following genes are considered: TLF1, LFY, AP1, AG1, AP3
and PI. The (gene network is depicted in Figure 1.2. Crossbararrowheads indicate
inhibition, while standard arrowheads indicate activation. The inhibition/activation
interactions between genes in Figure 1.2 are rather informal. The precise definition
of the interactions is given by theKi parameters of the underlying regulatory graph
which are given in Table 1.2. In the tablegi is associated withgi = 1 (gi ∈ X) and
its complement̄gi corresponds togi = 0 (gi /∈ X). For example,KL(AT̄ ) = 0
means that when AP1 is activated and TLF1 is inhibited, then gene LFY is inhibited.

1.3.3 Translating Boolean Regulatory Graphs into Promela

As a boolean function eachKi parameter has an unique value for all possible combi-
nations of inputs. Therefore, it is relatively straightforward to model such functions
in Promela. We model each genegi as a separate process (Promela proctype) which
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Table 1.2 Parameters given in [9]

TLF1 (=T) LFY (=L) AP1 (=A) AG1 (=G) AP3 (=P) PI (=I)
KT (L̄) = 0 KL(ĀT̄ ) = 0 KA(L̄Ḡ) = 1 KG(T̄ L̄Ā) = 1 KP (P̄ Ī L̄) = 0 KI(Ī P̄ L̄) = 0
KT (L) = 0 KL(ĀT ) = 0 KA(L̄G) = 0 KG(T̄ L̄A) = 0 KP (P̄ Ī L) = 1 KI(Ī P̄ L) = 1

KL(AT̄ ) = 0 KA(LḠ) = 1 KG(T̄ LĀ) = 1 KP (P̄ I L̄) = 0 KI(Ī P L̄) = 0
KL(AT ) = 0 KA(LG) = 0 KG(T̄ LA) = 0 KP (P̄ IL) = 1 KI(Ī PL) = 1

KG(T L̄Ā) = 0 KP (P Ī L̄) = 0 KI(I P̄ L̄) = 0
KG(T L̄A) = 0 KP (P Ī L) = 0 KI(I P̄ L) = 0
KG(TLĀ) = 0 KP (PI L̄) = 1 KI(IP L̄) = 1
KG(T LA) = 0 KP (PIL) = 1 KI (IPL) = 1

consists of an (infinite) loop given with the Promelado loop:
do

:: statement 1

:: statement 2

...

:: statement n

od.
Eachstatement is of the formcondition->actionwith the meaning thataction
is executed if the guardcondition is fulfilled. Further, eachstatement corresponds
to a row in definition of functionKi in Table 1.2. For instance, the code for the AG1
gene is given in Listing 1.3.1.

Listing 1.3.1 (Promela code corresponding to gene AG1)

1 proctype AG() {

2 do

3 :: atomic{!Active[G] && !Active[T] && !Active[L] && !Active[A] -> Active[G]=1}

4 :: atomic{!Active[G] && !Active[T] && Active[L] && !Active[A] -> Active[G]=1}

5
6 :: atomic{Active[G] && !Active[T] && !Active[L] && Active[A] -> Active[G]=0}

7 :: atomic{Active[G] && !Active[T] && Active[L] && Active[A] -> Active[G]=0}

8 :: atomic{Active[G] && Active[T] && !Active[L] && !Active[A] -> Active[G]=0}

9 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}

10 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}

11 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}

12 od; }

Recall that the exclamation mark! denotes negation. Theatomic clause is a
technicality which denotes that the enclosed check of the guard and the corresponding
action are executed in atomic fashion, i.e., they cannot be interrupted by some
statement executed by another process (gene). The completemodel is given in the
appendix as Listing A.0.1.

The do loop is executed as long as at least one of the options is executable.
Otherwise the loop is blocked. Each branch (guarded command) of the do loop
corresponds to a row in the table definingKi. The condition (guard) encodes the fact
that all genes inX are active. As a result the value ofgi is updated according toKi

from the table.
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We simplify the model by the observation that to detect stable states, only the tran-
sition of a gene from active to inactive and inactive to active needs to be considered.
(When we also model a transition of a gene from active to active and from inactive
to inactive then the system can do a step, while the state of the system remains the
same. As a result, a deadlock can never appear in the system.)Therefore, an extra
variablex0 is added toKi(X) which represents the genei itself, and with which only
transitions from inactive to active and from active to inactive can be considered.

Using fairly standard techniques from propositional logicone can also simplify
the boolean functions. This often leads to a more compact code, which can be
particularly useful for more complex networks. For example, the Promela code of
the simplified logical expression of gene AG1 is presented inListing 1.3.2.

Listing 1.3.2 (Simplified code for gene AG1)

1 proctype AG() {

2 do

3 :: atomic{!Active[G] && (!Active[T] && !Active[A]) -> Active[G]=1}

4 :: atomic{ Active[G] && (Active[T] || Active[A]) -> Active[G]=0}

5 od; }

1.3.4 Some Results

Finding Stable States. With the kind of models described above one can find
stable states by checking for deadlocks which in SPIN are called invalid end states.
Since a deadlock state is an error SPIN also always shows a scenario which leads
to the found deadlock state. Finding deadlock states in SPINis an option which is
independent form the LTL verification. By default SPIN stopsafter the first deadlock
state is found. This is not very convenient because in this way it is possible to
detect only one stable state in the model. In principle, there is an option which
instructs SPIN not to stop on the first error - in our case, the first found deadlock - and
instead report all found deadlocks. However, for technicalreasons that are beyond
the scope of this chapter and that are related to SPIN’s output, sometimes it could
be more convenient to use the following trick: to each found stable state, we add a
self-loop to that sate. In this way the latter is not found anymore by the deadlock
detection algorithm. To achieve this we add a separate process with ado-loop in it
that contains the following line:stable state -> skip (wherestable state is
a correct representation of the stable state in SPIN, andskip is a dummy statement).
In this way, there is always a transition fromstable state to itself. Obviously, one
could repeat this procedure until no more stable states are found.

As it was already mentioned above, in order to simplify the model and make the
verification more efficient, we exploited the fact that in oursetting the stable states
correspond to deadlock states. However, with model checking techniques one can
detect also a more general type of stable states which are notnecessarily deadlocks.
They correspond to a partially stable states in which only subset of the genes in the
network remains stable.

Finding such states can be achieved in two steps. First, we have to verify that the
state itself can be reached. This can be done with the following formula (that, by
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default, is checked for all executions):!〈 〉state meaning ‘not eventuallystate’,
i.e., ‘state is never reachable’. When the model checker gives an error trail, then
the state exists. Second, we have to verify that the state is indeed a stable state. In
other words, when the system reaches the state, it has to remain in that state forever.
This can be done with the following formula which has to hold for all executions of
the system:[ ](state -> [ ]state). When the model checker indicates that the
verification result is valid, thanstate is indeed stable.

Using deadlock detection techniques, we obtain some interesting results with the
Arabidopsis model. In [9] it is claimed that, for the set of parameters given in
Table 1.2 and with an initial state in which both LFY and AP1 are active and the
others being not active, the system has four stable states. These stable states are
shown in Figure 1.3. (The first stable state in the figure indicates that gene A (AP1)
is active and the other genes are not. The others can be interpreted analogously.)
However, SPIN reports that the last two stable states in Figure 1.3 cannot be reached
at all. This can be also analytically proven.
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Figure 1.3 The four stable states.

Guided by the counter-examples produced by SPIN, we define analternative set of
parameter values given in Table 1.3 for which all four stablestates exist. When choos-
ing these parameter values we have tried to respect as much aspossible the activatory
and inhibitory relationships among the genes, defined in Figure 1.2. Sometimes
this was impossible though. So, in the cases in which the pictorial representation
is ambiguous, i.e., for the genes for which there are both activating and inhibiting
incoming edges, we have used the predetermined values of theparameters, given in
[27]. That those predetermined values are not always in accord with Figure 1.2 can
be seen from the following example. In [27] it has been statedthat in order to obtain
stable statesKL(AT ) needs to be set to zero. Since we have that in two of the stable
states AP1 is activated and LFY is inhibited, we conclude that KL(A) has to be set to
zero too. This is contradictory with the relationships among the genes in Figure 1.2
which imply that gene AP1 activates gene LFY. By applying similar reasoning we
were able to establish the parameter set given in in Table 1.3. With these values for all
states in Figure 1.3 we could check with SPIN that they can be reached and that they
are indeed stable states. It should be emphasized that despite some discrepancies, the
values from Table 1.3 are much closer to the experimental data (see e.g. [27]) than
the parameters in Table 1.2 proposed in [9]. Thus, in this we are able to substantially
improve the model based on the results obtained with the model checker.

Checking Cycles. Besides stable states, one can also detect cycles in the state
space of the network. Suppose that we want to check if there isa cycle consisting
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Table 1.3 Set of parameters which respect as much the activatory and repressory
relationships and the predetermined values

TLF1 (=T) LFY (=L) AP1 (=A) AG1 (=G) AP3 (=P) PI (=I)
KT (L̄) = 0 KL(ĀT̄ ) = 0 KA(L̄Ḡ) = 1 KG(T̄ L̄Ā) = 1 KP (P̄ Ī L̄) = 0 KI(Ī P̄ L̄) = 0
KT (L) = 0 KL(ĀT ) = 0 KA(L̄G) = 0 KG(T̄ L̄A) = 0 KP (P̄ Ī L) = 1 KI(Ī P̄ L) = 1

KL(AT̄ ) = 0 KA(LḠ) = 1 KG(T̄ LĀ) = 1 KP (P̄ I L̄) = 1 KI(Ī P L̄) = 1
KL(AT ) = 0 KA(LG) = 1 KG(T̄ LA) = 1 KP (P̄ IL) = 1 KI(Ī P L) = 1

KG(T L̄Ā) = 0 KP (P Ī L̄) = 1 KI(I P̄ L̄) = 1
KG(T L̄A) = 0 KP (P Ī L) = 1 KI(I P̄ L) = 1
KG(T LĀ) = 1 KP (P I L̄) = 1 KI(IP L̄) = 1
KG(T LA) = 1 KP (P IL) = 1 KI(IP L) = 1

of (a subset of) the statess0 to sn. To find the cycle we have to check the negation
of the formula:!< >[ ](s0||s1||. . .||sn), i.e., not eventually always one of the
statess0 to sn. In other words, there is no execution sequence of the model such that
some of the statess0 to sn is reached, and the system remains in that state forever.
If the cycle exists, the previous property does not hold. Strictly speaking, one has
to check first that none of the statessi, i = 0 . . . n is a deadlock state. If one of the
states turns out to be a deadlock, this would automatically mean that a cycle through
composed of those states does not exist.

It is worth emphasizing that it takes SPIN just couple of seconds to produce all
results described above.

1.3.5 Concluding Remarks

In the previous sections we considered genetic networks which are defined by a
boolean function. We presented a method for which a genetic network, which is
defined by a boolean function can be translated into Promela.With a small extension
to this method, it is possible to detect stable states in the network. Also, we showed
some LTL-formulae with which it is possible to verify stablestates and cycles.

The use of standard model checking techniques, exploiting Promela and SPIN in
particular, are not limited to genetic networks. They can beapplied also to other types
of biological networks, like signaling and metabolic pathways. More specifically,
since SPIN originally has been developed for modeling of communication protocols,
it can be used in quite a natural way for modeling signaling pathways.

1.3.6 Related Work and Bibliographic Notes

There are several papers on model checking or closely related formal techniques
applied to biological networks (e.g. [20, 6, 30, 25]). Here we briefly discuss in more
detail the works that are the most relevant with regard to thesubjects treated in this
chapter.

In [8] symbolic model checking techniques are applied to thequerying and valida-
tion of both quantitative and qualitative models of biomolecular systems. The main
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difference with our approach is that [8] uses the symbolic model checker NuSMV
and the constraint-based model checker DMC, that both accept the temporal logic
CTL as a language to formulate the queries (properties). It is well known that for
some applications the explicit model checkers, like SPIN, are more efficient and
more intuitive to use. For instance, it would be easier to translate theπ-calculus
into SPIN than into NuSMV. Also the property language of SPIN, Linear Temporal
Logic (LTL), and CTL are not comparable in the sense that there are LTL formulae
that cannot be expressed in CTL and vice versa.

In [3] an approach for model checking genetic regulatory networks has been
proposed which consists in connecting GNA to the CADP verification toolbox. GNA
is a quantitative simulation tool well-adapted to the available information on genetic
regulatory networks. Also, it is capable of analyzing largeand complex genetic
regulatory networks. Theµ-calculus has been used as a property language. Although
theµ-calculus is more general than LTL, in the sense that each LTLformula there
is an equivalentµ-calculus formula, the latter are usually much more crypticand
difficult to grasp than their LTL counterparts.

In [1] two tools are described, Simpathica and XSSYS, which involves an automaton-
based semantics of the temporal evolution of complex biochemical reactions starting
from the representation given as a set of differential equations. Also, the ability is
provided to qualitatively reason about the systems using a propositional temporal
logic. However, those tools are essentially simulation tools which deal with systems
which are deterministic with nature. The Promela/SPIN models are able to capture
also the non-deterministic feature of the biological systems.

SPIN is a open source software which is available fromhttp://spinroot.com.
Other model checking tools can be applied also to biologicalsystems, for instance,
NuSMV available fromhttp://nusmv.irst.itc.it, and DiVinE, available from
http://divine.fi.muni.cz.

1.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS

Many biological systems have inherently a probabilistic/stochastic nature. A proba-
bilistic interpretation, rather than a deterministic one underlying the continuous view
based on ordinary differential equations (ODEs), is necessary when the number of
molecules in the system is small or the time interval considered is short. A standard
examples from the literature are genetic switches, in particular theλ-phage [26]. In
this section we consider another class of biological systems in which probabilities
play an indispensable role. We show how a specific type of model checking, so-
called probabilistic model checking, can be used for such systems. The probabilistic
approach we present has been developed in the last several years and constitutes
an alternative to traditional methods such as Gillespie-type simulations. Also here,
the advantage of probabilistic model checking over simulation is that model check-
ing considers all possible behaviors of the systems, i.e., all simulation runs. Thus,
model checking, when feasible, is more reliable and in the case considered also faster
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than simulation. To demonstrate the basic approach we use the probabilistic model
checker Prism.

1.4.1 Motivation and Background

The transfer of genetic information from DNA to mRNA to protein happens with
very high precision. This is because each a single error potentially can have dramatic
consequences for the organism as a whole. Here we analyze thestage of this
information pathway which corresponds to the translation from mRNA to protein,
i.e., the protein biosynthesis. In particular, we are interested in translation errors and
the factors of potential influence.

An mRNA molecule can be considered as a string of codons,eachof which encodes
for a specific amino acid. The codons of an mRNA molecule are sequentially read
by a ribosome and each codon is translated into an amino acid.As a result we
obtain a chain of amino acids, i.e. a protein. The amino acidsare carried to the
ribosome by a specific transfer-RNA (aa-tRNA). Each aa-tRNAcontains a so-called
anticodon and carries a specific amino acid. Arriving by Brownian motion, an aa-
tRNA, docks into the ribosome and may succeed in adding its amino acid to the
chain under construction. Alternatively, the aa-tRNA dissociates in some stage of
the translation. This depends on the pairing of the codon under translation with the
anticodon of the aa-tRNA, as well as on the stochastic influences such as the changes
in the conformation of the ribosome.

Thanks to the vast amount of research during the last thirty years, the overall
process of translation is reasonably well understood from aqualitative perspective.
The process can be divided into around twenty small steps/reactions, a number of
them being reversible. Relatively little is known exactly about the kinetics of the
translation. Over the past several years, Rodnina and collaborators have measured
kinetic rates for various steps in the translation process for a small number of specific
codons and anticodons [28, 31, 32, 15]. They were able to experimentally show that in
several of those steps the rates strongly depend on the degree of matching between the
codon and the anticodon. Additionally, in [11] the average concentrations (amounts)
of aa-tRNAs per cell have been collected for the model organismEscherichia coli.
Viljoen and co-workers [13] proposed a model which is based on those results. One
of their basic assumption is that the rates found by Rodninaet al. can be used in
general, for all codon-anticodon pairs. Thus, the model in [13] covers all 64 codons
and all 48 aa-tRNA classes forE. coli. The model is used to perform extensive
Monte Carlo simulations and to establish codon insertion times and frequencies of
erroneous elongations. The results show a strong correlation of the translation error
and the ratio of the concentrations of the so-called near-cognate and cognate aa-tRNA
species. Consequently, one can argue that the competition of aa-tRNAs, rather than
their availability, decides both speed and fidelity of codontranslation.

In this text, we model the translation kinetics via the modelcheckingof continuous-
time Markov chains (CTMCs) using the tool Prism [22, 16]. Thetool provides built-in
performance analysis algorithms and a formalism (Computational Stochastic Logic,
CSL) to reason about various properties of the CTMCs, removing the burden of
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extensive mathematical calculations from the user. Additionally, in our case, the
Prism tool provides much shorter response times compared toGillespie simulation.

1.4.2 A Kinetic Model of mRNA Translation

There exists a fixed correspondence between codons and aminoacids given by the well
known genetic code. With exception of the three so called stop codons, which denote
the end of the genetic message, each codon codes for exactly one amino acid. As a
consequence an mRNA encodes for a unique protein. This idealpicture is disturbed
by the fact that, in theory, each codon can bind with each anti-codon. However, the
binding intensity can significantly differ from pair to pair. This influences the speed
of the actual translation and also the chances for errors. Thus, the translation is quite
accurate, but not perfect. The biological model of the translation mechanism that
we adopt here is based on [31, 21]. Two main phases can be distinguished: peptidyl
transfer and translocation. Here we focus on the peptidyl transfer since it this part
that determines the error probabilities. This phase can be divided in several steps
which are represented in Figure 1.4 and which we briefly describe in the sequel. The
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Figure 1.4 Kinetic scheme of peptidyl transfer [13].

transfer begins with aa-tRNA arriving at the A-site of the ribosome-mRNA complex
by diffusion (state A1 in Figure 1.4). The initial binding leads to state A2. Since
the binding is relatively weak the reverse process, i.e., unbinding of the aa-tRNA
is also possible and this brings us to the initial state. Codon recognition comprises
(i) establishing contact between the anticodon of the aa-tRNA and the current codon
in the ribosome-mRNA complex, and (ii) subsequent conformational changes of the
ribosome.GTPase-activation of the elongation factorEF-Tu is largely favoured in
case of a strong complementary matching of the codon and anticodon. AfterGTP-
hydrolysis, producing inorganic phosphatePi andGDP, the affinity of the ribosome
for the aa-tRNA reduces. The subsequent accommodation stepalso depends on the
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fit of the aa-tRNA. This step happens rapidly for cognateaa-tRNA, whereas for
near-cognateaa-tRNAthis proceeds slower and theaa-tRNAis likely to be rejected.
These different speeds are expressed via the reaction ratesfrom A6 to A7 and A6
to A9. For a cognateaa-tRNAthe rate A6–A7 is much bigger than the rate A6–A9,
whereas for a near cognate the situation is the other way around.

Next, the translocation phase follows. Another GTP-hydrolysis involving elonga-
tion factorEF-G, producesGDP andPi and results in unlocking and movement of
the aa-tRNA to the P-site of the ribosome. The latter step is preceded or followed
by Pi -release. Reconform ation of the ribosome and release ofEF-G moves the
tRNA, that has transferred its amino acid to the polypeptidechain, into the so called
E-site of the ribosome. Further rotation eventually leads to dissociation of the used
tRNA. As mentioned above, we assume that this phase does not further influence the
probability of incorporating the amino acid in the chain. More precisely, we assume
that once the final state (A8) of the peptidyl transfer is reached the amino acid will
be for sure added to the chain. Because of that in our formal model that we present
later we deal only with the peptidyl transfer.

There is not much quantitative information regarding the translation mechanism.
ForE. coli, a number of specific rates have been collected [31, 15], whereas some steps
are known to be relatively rapid. Here we adopt the fundamental assumption of [13]
that the experimental data found by Rodninaet al. for theUUU andCUC codons,
extrapolate to other codons as well. Also, accurate rates for the translocation phase
are largely missing. Again following [13], we have chosen toassign, if necessary,
high rates to steps for which data is lacking. This way these steps will not be rate
limiting.

1.4.3 Probabilistic Model Checking

Traditional model checking, which we presented in the previous sections of this
chapter, deals with the notion of absolute correctness or failure of a given property.
On the other hand, probabilistic4 model checking is motivated by the fact that prob-
abilities are often an unavoidable ingredient of the systems we analyze. Therefore,
the satisfaction of properties is quantified by a probability. This makes probabilistic
model checking a powerful framework for modeling various systems ranging from
randomized algorithms via performance analysis to biological networks.

From an algorithmic point of view, probabilistic model checking overlaps with the
conventional technique, since it too requires computing reachability of the underlying
state space graphs. Still, there are also important differences because numerical
methods are used to compute the transition probabilities. However, these details

4In the literature probabilistic and stochastic model checking often are used interchangeably. A more
clear distinction is made by relating the adjectives probabilistic and stochastic to the underlying model,
viz. discrete-time and continuous-time Markov chain, respectively. For the sake of simplicity, in this
chapter our focus is on discrete-time Markov chains, so we opted for consistently using the qualification
‘probabilistic’. Nevertheless, as we also emphasize in thesequel, the concepts and algorithms that we
present here can be applied as well to continuous-time Markov chains.
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are beyond the scope of this chapter. They will play no role inthe application to
biological systems that we consider in the below.

1.4.4 The Prism Model

To obtain our formal Prism model we apply a twofold abstraction to the above infor-
mally sketched biological model: (i) Instead of dealing with 48 classes of aa-tRNA,
that are identified by the their anticodons, we use four typesof aa-tRNA distinguished
by their matching strength with the codon under translation. (ii) We combine various
detailed steps into one transition. The first reduction greatly simplifies the model,
more clearly eliciting the essentials of the underlying process. The second abstraction
is more a matter of convenience, though it helps in compactlypresenting the model.

For each codon we distinguish four types of aa-tRNA:cognate, pseudo-cognate,
near-cognate, non-cognate. Cognate aa-tRNAs carry an amino acid which is the
correct one for the according to the genetic code and their anticodon strongly couples
with the codon. The binding of the anticodon of a pseudo-cognate aa-tRNA or a
near-cognate aa-tRNA is weaker, but sufficiently strong to occasionally result in the
addition of the amino acid to the nascent protein. In case theamino acid of the
aa-tRNA is, accidentally, the right one for the codon, we call the aa-tRNA of the
pseudo-cognate type. If the amino acid does not coincide with the amino acid the
codon codes for, we speak in such a case of a near-cognate aa-tRNA.5 The match of
the codon and the anticodon can be very poor too. We refer to such aa-tRNA as being
non-cognate for the codon. This type of aa-tRNA does not initiate a translation step
at the ribosome.

Here we focus on the computation of insertion errors. As a result the model can
be even further simplified by assuming that the non-cognatesdo not play any role in
the process. In our model, the main difference of cognates vs. pseudo-cognates and
near-cognates is in the kinetics. At various stages of the peptidyl transfer the rates
for true cognates differ from the others up to three orders ofmagnitude.

Figure 1.5 depicts the relevant abstract automaton, derived from the Prism model
discussed above. In case a transition is labeled with two rates, the left hand number
concerns the processing of a cognate aa-tRNA, the right handnumber that of a
pseudo-cognate or near-cognate. In three states a probabilistic choice has to be
made. The probabilistic choice in state2 is the same for cognates, pseudo-cognates
and near-cognates alike, the ones in state3 and in state4 differs for cognates and
pseudo-cognates or near-cognates.

For example, after recognition in state3, a cognate aa-tRNA will go through the
hydrolysis phase leading to state4 for a fraction0.999 of the cases (computed as
260/(0.23 + 260)), a fraction being close to1. In contrast, for a pseudo-cognate or
near-cognate aa-tRNA this is0.005 only. Cognates will accommodate and continue
to state6 with probability0.736, while pseudo-cognates and near-cognates will do
so with the small probability0.044, the constantFAST being set to1000 in our

5The notion of a pseudo-cognate comes natural in our modeling. However, the distinction between a
pseudo-cognate and a near-cognate is non-standard. Usually, a near-cognate refers to both type of tRNA.
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Figure 1.5 Abstract automaton for error insertion.

experiments. As the transition from state4 to state6 is irreversible, the rates of the
remaining transitions are not of importance here.

One can see the Prism model as a superposition of three stochastic automata, each
encoding the interaction of one of the types of aa-tRNA, except the non-cognate
type. Each automaton is obtained from the automaton in Figure 1.5 by applying the
corresponding rates.

We can further simplify our model by taking into account thatwe deal with av-
erage transition times and probabilities based on exponential distributions. Under
this assumption it is a common practice in performance analysis to merge two sub-
sequent sequential transitions with given ratesλ andµ into a combined transition of
rateλµ/(λ + µ). However, it should be noted that in general such a simplification is
not compositional and should be taken with care.

In the models that we are considering, which are based on continuous-timeMarkov
chains, Prism commands have the form[label] guard → rate : update ;. From
the commands whose guards are satisfied in the current state,one command is selected
with a probability proportional to its relative rate. Thus,a probabilistic choice is
made. Executing the selected command results in a progress of time according to
the exponential distribution for the particular rate. Alsoan update is performed on
the state variables. More information about the Prism modelchecker can be found
in [22, 16].

Initially, control is in states=1 of the Prism model with four boolean variables
cogn, pseu, near andnonc set to false. The initial binding of aa-tRNA is modeled
by selecting one of the boolean variables that is to be set to true. There is a race
between the three types of aa-tRNA: cognate, pseudo-cognate, or near-cognate.
The outcome of the race depends on the concentrationsc cogn, c pseu, c near

andc nonc of the three types of aa-tRNA and a kinetic constantk1f. According to
the Markovian semantics, the probability thatcogn is set to true (the others remaining
false) is the relative concentrationc cogn/(c cogn + c pseu + c near). Analogously
the probabilities for the other two types of aa-tRNA are computed. This amounts to
the following code:

// initial binding

[ ] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;

[ ] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;

[ ] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
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The aa-tRNA that has just attached can also dissociate. We model this below by
returning the control to the states=0. Although it might seem more natural to return
to the initial state, as we will see later, we need this state for model checking purposes.
The boolean that was set to true is reset. We assume the same dissociation rate for
all aa-tRNA types. ratek2b.

// dissociation

[ ] (s=2) -> k2b :

(s’=0) & (cogn’=false) & (pseu’=false) & (near’=false) ;

Regardless of the type, aa-tRNA can continue from states=2 in the codon recognition
phase, leading to states=3. This step can also be reversed, hence we include
transitions from states=3 back to states=2. The fidelity of the translation mechanism
is ensured by the fact that the rates for cognates vs. pseudo-and near-cognates, viz.
k3bc, k3bp andk3bn, differ significantly (see Table 1.4). The boolean variables
remain unchanged since aa-tRNA is not released.

// codon recognition

[ ] (s=2) -> k2f : (s’=3) ;

[ ] (s=3) & cogn -> k3bc : (s’=2) ;

[ ] (s=3) & pseu -> k3bp : (s’=2) ;

[ ] (s=3) & near -> k3bn : (s’=2) ;

The next step, from states=3 to states=4, is one-direcitonal. It corresponds to a
combination of detailed steps in the biological model whichinvolves modification
of GTP. We assume that ratesk3fp andk3fn, resp. for pseudo-cognate and near-
cognate aa-tRNA, are equal. The progress of the translationin the right direction
is again ensured by a significant difference between these rates and ratek3fc for a
cognate aa-tRNA.

// GTPase activation, GTP hydrolysis, EF-Tu conformation change

[ ] (s=3) & cogn -> k3fc : (s’=4) ;

[ ] (s=3) & pseu -> k3fp : (s’=4) ;

[ ] (s=3) & near -> k3fn : (s’=4) ;

States=4 is an important crossroad in the process. The aa-tRNA can either be
rejected, after which control moves to the states=5, or it can be accepted. This
corresponds to the various accommodation steps in the biological model, i.e. the
ribosome reconforms such that the aa-tRNA can hand over the amino acid it carries,
so-called peptidyl transfer. In our model the accepting step means moving to to
states=6. In this step too the rates for cognates and those for pseudo-cognates and
near-cognates differ significantly.

// rejection

[ ] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;

[ ] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;

[ ] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer

[ ] (s=4) & cogn -> k4fc : (s’=6) ;

[ ] (s=4) & pseu -> k4fp : (s’=6) ;

[ ] (s=4) & near -> k4fn : (s’=6) ;
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The step from states=6 to states=7 models the binding of the EF-G complex. This
step is also reversible, but eventually the binding becomespermanent. The transition
to the final states=8 subsumes many different steps of the translation mechanism
which start with GTP hydrolysis and ends with elongation of the polypeptide chain
with the amino acid carried by the aa-tRNA. Non-cognates never pass beyond
states=2, but the outcome of the translation can still be an error if aa-tRNA is near-
cognate, i.e., if booleannear is true. In this case an amino acid is inserted that does
not correspond to the codon in the genetic code.

// EF-G binding

[ ] (s=6) -> k6f : (s’=7) ;

[ ] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,

// rearrangements of ribosome and EF-G, dissociation of GDP

[ ] (s=7) -> k7f : (s’=8) ;

The model is completed by transitions from the dissociationstates=0and the rejection
states=5 back to the start states=1. After a aa-tRNA is rejected the race of the four
aa-tRNA types resumes. Also, for technical reasons, a self-loop at the final states=8
is added.

// no entrance, re-entrance at state 1

[ ] (s=0) -> FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ ] (s=5) -> FAST : (s’=1) ;

// elongation

[ ] (s=8) -> FAST : (s’=8) ;

The rates that are used in our model are given in Table 1.4. they are collected from
the biological literature [31, 13].

Table 1.4 Rates of the Prism model

k1f 140 k3fc 260 k4rc 60 k6f 150

k2f 190 k3fp, k3fn 0.40 k4rp, k4rn FAST k7f 145.8

k2b 85 k3bc 0.23 k4fc 166.7 k7b 140

k2bx 2000 k3bp, k3bn 80 k4fp, k4fn 46.1

The complete Prism model can be found in the appendix as Listing A.0.2. In the
sequel we use the Prism model described above for the analysis of the probability
for insertion errors, i.e. the chance that the peptidyl chain is extended with an amino
acid that differs from the one encoded by the codon which is translated.

1.4.5 Insertion Errors

Once having the model we can use the model checking capabilities of the Prism tool
to predict the misreading frequencies for individual codons. To this end we need to
give Prism the exact property that corresponds to our question about the probability.
In other words, we need the right formula with the above mentioned logic CSL. The
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formula should state that we want to compute the probabilitythat an erroneous state
is reached in which a wrong amino acid is added.

For a codon under translation, a pseudo-cognate anticodon carries precisely the
amino acid that the codon codes for. Therefore, successful matching of a pseudo-
cognate does not lead to an insertion error.

Taking into account the above we come up with the following CSL-formula:

P=? [ (true) U ((s=8) and not near) ]

The formula is of the formP=?[Φ], which is a basic formula template for CSL. The
partP=? means that we want a numerical result, i.e., the cumulative probability of all
paths that satisfy formulaΦ. Like the formulae for the LTL logic in standard model
checking, CSL formulae are also interpreted on sequences ofstates, i.e., paths, of the
model. So, the inner formulaΦ states that we are interested only in paths that end in
states=8 – in which the amino acid is added to the chain – and moreover, that the
added amino acid is the wrong one, i.e., the tRNA is not cognate or pseudo-cognate,
but near-cognate. This last fact is expressed asnear, wherenot is the negation
operator. The paths start by default in the initial states=0. The formulaΦ itself is
of the formΦ1 U Φ2, where U is the so called until operator.6 The meaning of this
kind of formulae is that along the path formulaΦ1 must hold until a state is reached
in which formulaΦ2 holds. IfΦ2 holds in the initial stateΦ1 does not need to hold
in that state, since in this case the formulae is trivially true. In our case we have set
Φ1 to true. Sincetrue holds trivially in all states, this means that we do not care
about the intermediate states of the path and that it is only important that a state is
reached in whichΦ2 holds, i.e., a wrong amino acid is added to the chain.

Our results obtained with Prism are given in Table 1.5. Prismproduces these

Table 1.5 Probabilities per codon for erroneous elongation

UUU 27.4e-4 CUU 46.7e-4 GUU 1.12e-10 AUU 14.4e-4
UUC 91.2e-4 CUC 13.6e-4 GUC 55.0e-4 AUC 35.0e-4
UUG 7.59e-4 CUG 4.49e-4 GUG 2.68e-4 AUG 58.3e-4
UUA 23.5e-4 CUA 18.9e-4 GUA 22.3e-4 AUA 34.4e-4
UCU 2.81e-10 CCU 34.1e-4 GCU 1.77e-10 ACU 2.73e-10
UCC 56.1e-4 CCC 10.4e-4 GCC 12.5e-4 ACC 34.2e-4
UCG 20.3e-4 CCG 37.6e-4 GCG 3.187e-4 ACG 31.7e-4
UCA 9.09e-4 CCA 22.8e-4 GCA 28.2e-4 ACA 29.1e-4
UGU 6.97e-4 CGU 1.21e-10 GGU 1.32e-10 AGU 8.70e-4
UGC 30.4e-4 CGC 4.59e-4 GGC 9.40e-4 AGC 37.2e-4
UGG 39.8e-4 CGG 88.7e-4 GGG 2.72e-10 AGG 140.7e-4
UGA 7.50e-4 CGA 3.98e-4 GGA 100.3e-4 AGA 48.1e-4
UAU 2.81e-10 CAU 91.1e-4 GAU 18.6e-4 AAU 15.2e-4
UAC 15.7e-4 CAC 47.5e-4 GAC 43.2e-4 AAC 49.3e-4
UAG 41.3e-4 CAG 69.4e-4 GAG 7.09e-4 AAG 32.1e-4
UAA 6.04e-4 CAA 22.7e-4 GAA 21.4e-4 AAA 14.6e-4

6Actually, this operator exists also in LTL, but we ‘hid’ it inthe temporal operators[ ] and〈 〉. The latter
are just syntactic sugar and they can be expressed using the until operatorU .
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results within a couple of minutes. Checking for an individual codon takes just a few
seconds.

As reported in [13], the probability for an erroneous insertion, is strongly correlated
with the quotient of the number of near-cognate anticodons and the number of cognate
anticodons.This can be seen also in Figure 1.6. On the y-axisis the quotient of the

Figure 1.6 Correlation of ratio near-cognate vs. cognates aa-tRNAs and error probabilities.

concentrations (number of molecules) of near-cognate and cognate tRNAs, whereas
on the x-axis are the probabilities for erroneous insertion.

1.4.6 Concluding Remarks

We showed how probabilistic model checking can be used to analyze biological net-
works as an alternative for Gilliespie-like simulation. Asan example we discussed a
stochastic model of the translation process based on realistic data of ribosome kinet-
ics. We used the probabilistic model checker Prism and in particular its capabilities
to deal with continuous time Markov chains. Compared to simulation, our approach
is computationally more reliable as it is independent on thenumber of simulations.
Also, it this case, it has faster response times, taking seconds rather then minutes or
hours.

The kind of probabilistic/stochastic models, as we presented here, has opened new
avenues for future work on biological systems that possess intrinsically probabilistic
properties. E.g., current research using the model checking based method is targeted
at biological processes that require high precision, like DNA translation, DNA repair,
charging of the tRNAs with amino acids, etc. In [4] we show howwith our model one
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could check if amino acids with similar biochemical properties substitute erroneously
for one another with greater probabilities than dissimilarones.

1.4.7 Related Work and Bibliographic Notes

The model that is used in this chapter builds upon [5], which was inspired by the
simulation experimentsof mRNA translation reported in [13]. A similar model, based
on ordinary differential equations, was developed in [17].Although probabilistic, it
is used to compute insertion times, but no translation errors. The model of mRNA
translation in [14] assumes insertion rates that are directly proportional to the mRNA
concentrations, but assigns the same probability of translation error to all codons.

Applications of probabilistic model checking and in particular Prism can be found
in [24]. More about probabilistic model checking and the underlying algorithms can
be found in [23].

There exist numerous applications of formal methods to biological systems. A
selection of recent papers from model checking and process algebra includes [29, 8,
10]. More specifically pertaining to this chapter, [7] applies the Prism model checker
to analyze stochastic models of signaling pathways. Their methodology is presented
as a more efficient alternative to ordinary differential equations models, including
properties that are not of probabilistic nature. Also, [16]employs Prism on various
types of biological pathways, showing how the advanced features of the tool can be
exploited to tackle large models.

Prism is an free available software and can be downloaded from its web page
http://www.prismmodelchecker.org. Of course, any model checking tool that
supports CTMCs can be used too for analyzing biological systems. One such a tool
is MRMC which is also in the public domain, seehttp://www.mrmc-tool.org.
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Appendix

Listing A.0.1 (Promela description of the Arabidopsis network)

1 #define T 0
2 #define L 1
3 #define A 2
4 #define G 3
5 #define P 4
6 #define I 5
7
8 bool Active[6];
9

10 proctype TLF1() {
11 do
12 :: atomic{Active[T] && !Active[L] -> Active[T]=0}
13 :: atomic{Active[T] && Active[L] -> Active[T]=0}
14 od; }
15
16 proctype LFY() {
17 do
18 :: atomic{Active[L] && !Active[A] && !Active[T] -> Active[L]=0}
19 :: atomic{Active[L] && !Active[A] && Active[T] -> Active[L]=0}
20 :: atomic{Active[L] && Active[A] && !Active[T] -> Active[L]=0}
21 :: atomic{Active[L] && Active[A] && Active[T] -> Active[L]=0}
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22 od; }
23
24 proctype AP1() {
25 do
26 :: atomic{!Active[A] && !Active[L] && !Active[G] -> Active[A]=1}
27 :: atomic{!Active[A] && Active[L] && !Active[G] -> Active[A]=1}
28 :: atomic{Active[A] && !Active[L] && Active[G] -> Active[A]=0}
29 :: atomic{Active[A] && Active[L] && Active[G] -> Active[A]=0}
30 od; }
31
32 proctype AG() {
33 do
34 :: atomic{!Active[G] && !Active[T] && !Active[L] && !Active[A] -> Active[G]=1}
35 :: atomic{!Active[G] && !Active[T] && Active[L] && !Active[A] -> Active[G]=1}
36 :: atomic{Active[G] && !Active[T] && !Active[L] && Active[A] -> Active[G]=0}
37 :: atomic{Active[G] && !Active[T] && Active[L] && Active[A] -> Active[G]=0}
38 :: atomic{Active[G] && Active[T] && !Active[L] && !Active[A] -> Active[G]=0}
39 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}
40 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}
41 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}
42 od; }
43
44 proctype AP3() {
45 do
46 :: atomic{!Active[P] && !Active[I] && Active[L] -> Active[P]=1}
47 :: atomic{!Active[P] && Active[I] && Active[L] -> Active[P]=1}
48 :: atomic{Active[P] && !Active[I] && !Active[L] -> Active[P]=0}
49 :: atomic{Active[P] && !Active[I] && Active[L] -> Active[P]=0}
50 od; }
51
52 proctype PI() {
53 do
54 :: atomic{!Active[I] && !Active[P] && Active[L] -> Active[I]=1}
55 :: atomic{!Active[I] && Active[P] && Active[L] -> Active[I]=1}
56 :: atomic{Active[I] && !Active[P] && !Active[L] -> Active[I]=0}
57 :: atomic{Active[I] && !Active[P] && Active[L] -> Active[I]=0}
58 od; }
59
60 init {
61 atomic{
62 Active[L]=1;
63 Active[A]=1;
64 run TLF1();
65 run LFY();
66 run AP1();
67 run AG();
68 run AP3();
69 run PI();
70 }
71 }

Listing A.0.2 (Prism model of mRNA translation)

1 stochastic
2
3 // constants
4 const double ONE=1;
5 const double FAST=1000;
6
7 // tRNA rates
8 const double c_cogn ;
9 const double c_pseu ;

10 const double c_near ;
11 const double c_nonc ;
12
13 const double k1f = 140;
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14 const double k2b = 85;
15 const double k2bx=2000;
16 const double k2f = 190;
17 const double k3bc= 0.23;
18 const double k3bp= 80;
19 const double k3bn= 80;
20 const double k3fc= 260;
21 const double k3fp= 0.40;
22 const double k3fn= 0.40;
23 const double k4rc= 60;
24 const double k4rp=FAST;
25 const double k4rn=FAST;
26 const double k4fc= 166.7;
27 const double k4fp= 46.1;
28 const double k4fn= 46.1;
29 const double k6f = 150;
30 const double k7b = 140;
31 const double k7f = 145.8;
32
33 module ribosome
34
35 s : [0..8] init 1 ;
36 cogn : bool init false ;
37 pseu : bool init false ;
38 near : bool init false ;
39 nonc : bool init false ;
40
41 // initial binding
42 [ ] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
43 [ ] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
44 [ ] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
45
46 [ ] (s=2) -> k2b : (s’=0) &
47 (cogn’=false) & (pseu’=false) & (near’=false) ;
48
49 // codon recognition
50 [ ] (s=2) & -> k2f : (s’=3) ;
51 [ ] (s=3) & cogn -> k3bc : (s’=2) ;
52 [ ] (s=3) & pseu -> k3bp : (s’=2) ;
53 [ ] (s=3) & near -> k3bn : (s’=2) ;
54
55 // GTPase activation, GTP hydrolysis, reconformation
56 [ ] (s=3) & cogn -> k3fc : (s’=4) ;
57 [ ] (s=3) & pseu -> k3fp : (s’=4) ;
58 [ ] (s=3) & near -> k3fn : (s’=4) ;
59
60 // rejection
61 [ ] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;
62 [ ] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;
63 [ ] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;
64
65
66 // accommodation, peptidyl transfer
67 [ ] (s=4) & cogn -> k4fc : (s’=6) ;
68 [ ] (s=4) & pseu -> k4fp : (s’=6) ;
69 [ ] (s=4) & near -> k4fn : (s’=6) ;
70
71 // EF-G binding
72 [ ] (s=6) -> k6f : (s’=7) ;
73 [ ] (s=7) -> k7b : (s’=6) ;
74
75 // GTP hydrolysis, unlocking,
76 // tRNA movement and Pi release,
77 // rearrangements of ribosome and EF-G,
78 // dissociation of GDP
79 [ ] (s=7) -> k7f : (s’=8) ;
80
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81 // no entrance, re-entrance at state 1
82 [ ] (s=0) -> FAST : (s’=1) ;
83 // rejection, re-entrance at state 1
84 [ ] (s=5) -> FAST : (s’=1) ;
85 // elongation
86 [ ] (s=8) -> FAST : (s’=8) ;
87
88 endmodule


