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Abstract The coordination modelling language Paradigm addresdigoation between compo-
nents in terms of dynamic constraints. Within a Paradigm ehocbmponent dynamics are con-
sistently specified at a detailed and a global level of abstna. To enable automated verification
of Paradigm models, a translation of Paradigm into prockgesbea has been defined in previous
work. In this paper we investigate, guided by a client-seexample, reduction of Paradigm mod-
els based on a notion of global inertness. Representati®am@digm models as process algebraic
specifications helps to establish a property-preservingvatpnce relation between the original and
the reduced Paradigm model. Experiments indicate thatisnathy larger Paradigm models can be
analyzed.

Keywords coordination, process algebra, Paradigm, vertical dyo@onsistency, levels of abstrac-
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1 Introduction

Within the current software architecture practice, architectures are mestty for describing static as-
pects of software systems. Techniques that allow system architects tdbdesaordination among
components within an architecture and to reason about the dynamics ofthegy its entirety, are not
commonly used. The coordination description language Paradigm helpsdigmer to merge different
dynamic aspects of a system. At the same time the language allows for the ti@s@ifpoth detailed
and global behaviour of an individual component i.e. its own specifieNiebr and separately its inter-
action with other components, and the language is particularly helpful irr@ndpconsistency in the
behaviour of large sets of interrelated components.

The coordination modeling language Paradigm [9, 10] specifies rolesngardctions within col-
laborations between components. Interactions are in terms of temporatyaiots on the dynamics
of components. To underpin Paradigm models with formal verification atahreied analysis, the
Paradigm language has been linked with#li®L2 toolset [11] via its translation to the process algebra
ACP [6, 3] and with the probabilistic modelchecker Prism [15, 4] via a dieacbding scheme. Process
algebras (PA for short), such as CCS, CSP, LOTOS and ACP, pravpadsverful framework for formal
modeling and reasoning about concurrent systems, which turns ouvémbsuitable for our needs in the
setting of coordination. The key concepts of compositionality and synaiion in process algebra are
mostly exploited in our translation. As detailed and global aspects of compbekavtiour are specified
by separate PA specifications, the vertical constraints are encodeglthsgnchronizations expressing
consistency of detailed and global component behaviour. Horizontat@nts at the protocol level are
naturally captured by parallel compaosition, synchronization and enlzjosu
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2 Towards reduction of Paradigm coordination models

While the translation to ACP antCRL2 allows for formal verification of Paradigm models [3, 2, 4],
the omnipresent problem of state space explosion when analyzing largésmoders here as well. In
the present paper, we address the question of reducing Paradignsrabdeordination. The reduction
method applies to a component’s behaviour, reducing the representatibe eértical constraints of
that component by abstracting away any information on the componentibeharelevant for these
constraints. To this end, the benefit of the translation of Paradigm laagnagACP is twofold. On
the one hand, we borrow the abstraction concept from PA and appledtljiin Paradigm on detailed
behaviour. On the other hand, the translation provides us with a formafl rethodology to reason and
guarantee that the reduced Paradigm model has the same propertiesragritbémodel. As a matter of
fact, it has gradually become evident that separating detailed from ddebaliour as supported by the
Paradigm language, allows us to reason about reduction by abstractigatimer natural way. We shall
clarify this point after the Paradigm overview, at the end of Section 2.

Our work on dynamic consistency in a horizontal and vertical dimensiobdas influenced by the
work of Kuster [7, 14]. Related work includes the Wright language [1] based S @rovides FDR
support to check both types of consistency properties. Other bridgassbftware architecture to auto-
mated verification include the pipeline from UML via Rebeca and Promela to thé i@Bdel-checker
and from UML via Object-Z and CSP to the FDR model-checker/[19, 1&Jc&ss algebra driven proto-
typing as coordination from CCS is proposed in [18]. The skeletonsrgttefrom CCS-specifications
overlap with Paradigm collaborations. In the TITAN framework/ [17], € Blaying a unifying role in
a heterogeneous environment for aspect-oriented software engmeBecently the coordination lan-
guage Reo has been equipped with a process algebraic interpretati@®). [fhe encoding of Reo into
mCRL2 and subsequent analysis has been integrated in the ECT toolset fatReo |

We present our idea by means of an example. The system we considgstsain clients who
try to get service from one server exclusively, a critical section propighere the server is supposed
to choose the next client in a non-deterministic manner. While the translatior éfatadigm model
into PA for the example is done manually, the toolseRLz2 is exploited to generate the complete state
spaces, on which further analysis can be done. Initial results showstasitial reduction in the size
of the state space. In Section 2 Paradigm is summarized on the basis of Weecabmple. Sectian 3
briefly introduces our process algebra translation for the example mau&edtion 4 we present our
reduction techniques. Section 5 concludes the paper.

2 Paradigm and a critical section model

This section briefly describes the central notions of Paradigm: STDgpf@amnecting) trap, role and
consistency rule.

e An STD Z(state-transition diagramis a tripleZ = (ST,AC, TR) with ST the set of state9\C the
set of actions an@iR C ST x AC x ST the set of transitions of, notationx 3 x'.

e A phase Sf an STDZ = (ST,AC,TR) is an STDS= (st,ac, tr) such thast C ST, ac C AC and
tr C{(x,a,X)ETR|x,X € st,ac ac}.

e A trap t of phaseS= (st,ac,tr) of STD Z is a non-empty set of statés_ st such thatx € t
andx-% X € tr imply X e t. A trapt of phaseSof STD Z connectsphaseS to a phases’ =
(st’,ac’,tr’) of Z if t C st’. Such trap-based connectivity between two phase&isfcalled a
phase transfeand is denoted B8LS.
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e A partition m={ (S,Ti) |i €| } of an STDZ = (ST, AC,TR), | a non-empty index set, is a set of
pairs(S,Ti) consisting of a phasg = (stj,ac;, trj) of Z and of a se; of traps ofS.

e A role at the level of a partitiont= { (S,Ti) |i € | } of an STDZ = (ST,AC,TR) is an STD
Z(m) = (ST,AC, TRy With STC {S |i€1},ACC Uiy TTandTRC {§-5Sj |i,j €1,t € AC} a set
of phase transfer& is called thedetailedSTD underlyingglobal STD Z(m), being roleZ(m).

e A consistency ruler protocol stedor an ensemble of STD& Z;, ..., Zx and roley (1a), . . ., Z(Tk)
is a nonempty set of phase transfers preceded by one extra transition.

o LetZ: x2 X «Zy(m): S’ll> e Z(TR) S’KL S, be a consistency rule for a given ensemble;
Z,...,Z areparticipantsof it, Z is conductor

e A Paradigmmodelis an ensemble of STDs, roles thereof and consistency rules.

The above notions constitute Paradigm models. The semantics thereofiginéy/ras follows: a consis-
tency rule has synchronization of its phase transfers and its conduwataition, only if all connecting
traps mentioned have been entered. Detailed transitions are allowed in thet@iate of an STD,
only if the current phase (state) of each role of the STD contains thdttoandn this way, phases are
constraints on underlying STD dynamics imposed by protocols (sets ofcpiatteps). In a mirrored
way, traps impose constraints on the behaviour at the protocol level pgsatr@involved in the firing of
consistency rules.

(a) Lo

&> Out |ener Waiting| 1! out J-
explain I Without
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Out reques
Interrupt leavd
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. @aiting
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Figure 1: (a) detailed STD dilient, (b) partition of three phases, (c) global STent(CS).

An STD is a step-wise description of the dynamics belonging to a componeid.vikualized as a
directed graph: its nodes are states, its action-labeled edges are trangitital states are graphically
indicated by a black dot-and-arrow. Figure 1a gives the so-called dk&llB of aClient in and around

a shop: starting in stat®ut the client cycles through stat&¥aiting, Busy, AtDoor and Out again,
subsequently. The entire system we consider, contaswh clients, dynamically the same, plus one
different component, the server. For the complete system the overaiteetent is that only one client
at a time, out of allh clients, is allowed to be in its stausy. So, being in stat®usy is a Critical
Section problem (abbreviatedS). To solve it, ongoingClient; dynamics is constrained by the phase
prescribed currently. Figure 1b visualizes phaséshout, Interrupt andWith. PhaséVithout excludes
being in statBusy by prohibiting to take the actiorsplain andthank. Contrarily, phas&Vith allows
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both, going to and leaving staBaisy. Finally, the intermediate phaseterrupt is an interrupted form of
Without, as actiorenter cannot be taken, but being in sté&iting is allowed, though.

In view of a transfer from the current phase into a next phase to penough progress within the
current phase must have been made: a connecting trap has to be &rgerBayjure 1b pictures relevant
connecting traps for the above three phases, drawn as rectangled #ne states the trap consists of. In
particular, we need trapriv to be connecting fromVithout to Interrupt, trapnotYet to be connecting
from Interrupt back toWithout, traprequest to be connecting frortterrupt forward toWith and finally,
trapdone to be connecting fronWith back toWithout. In this manner, Figure 1b gives all ingredients
needed for the dynamics of@ient; STD at the level of partitiol€S: see roleClient;(CS) in Figure 1c
and repeated in Figure 2a.

a . i i . . notYet-us
@) o—ﬂ Without ot H Without]triv]
triv " triv-use
I done-use
done| "

Interrrupt With[done]

(b)

Interrupt[notYet]

notYet-register

Interrupt]triv]

With i i done-registef request-register
reques h With[triv] equest—u Interrupt[request]

Figure 2: (a) global procesdient(CS) and (b) its refinement in view of translation.

Figure[ 2b presents a slightly refined diagram of the proper role STD in(@pr State names here,
additionally keep track of the trap most recently entered within a phase, asifld be taken as a smaller
phase committed to within the larger one imposed. Action names still refer to a ttdp dmered, but
they additionally discriminate between, firggisteringthe trap has been entered and, second, thereafter
usingthis for a phase transfer. This more refined view represents the staoiimdgqr the ACP encoding

of the global process, as discussed in the next section.

So far, we have discussed ‘sequential composition’ of constraints: edpasases alternated with
traps committed to. Semantically, any current phase constrains the enah#tidns to those belonging
to the phase. So, at any moment a current detailed state belongs to the phase too. From this
it follows, that the dynamics of the detailed STD and of the global STD arsisiamt, the current
global phase reflects the current local state. Paradigm’s consistéesyare to the essence of ‘parallel
composition’: they express coupling of role steps of arbitrarily maawticipantsand a detailed step of
oneconductor Any consistency rule specifies the simultaneous execution of the steps neehitiothe
rule, a transition of the conductor and phase transfers for the partisipan

To continue the example of clients getting service, one at a time, we present a non-deterministic
coordination solution for tha clients via a server. The non-deterministic server checks the clients in
arbitrary order. If a client, when checked, wants help, it gets help mghgermitted to enter the critical
section. If not, permission to enter is refused to it. Only after a client’s leahiegritical section, the
server stops helping it by returning to the idle position, from which it arliiyraelects a next client for
checking. In the example, the server provides a unique conductorastepdh consistency rule. The
STD Server of the server is drawn in Figure 3. As conductor, detailed stefgrotr need to be coupled
to phase transfers of ea€lientj, 1 <i <n.
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Figure 3: STD non-deterministic serv&grver.

Server : Idle M NDChecking; * Client;j(CS) : Without v, Interrupt Q)
Server : NDChecking; refuse Idle % Client;j(CS) : Interrupt MWithout (2)
Server : NDChecking; M NDHelping; * Client;(CS) : Interrupt %tWith 3)
Server : NDHelping; ™€ |die « Client;(CS) : With 9278 Without 4)

Note that for this protocol, each conductor step of the server comespo a phase change of exactly
one client. E.qg., the server moves from the st@iédo NDChecking; iff the global client processlient;(CS)
changes from the phasgithout to the phasenterrupt. The server then makescaeck; transition. In
general, there is a precondition, however. Within the phésgeut sufficient progress should have been
made, such that the particular trap has been reached. In this case, ittiividigrap triv rendering
the requirement superfluous, as the trivial trap, containing all statesqfttasewithout, is trivially
reached. For the actual checking, the next two consistency rulesndeipt on the tragotYet andrequest,
respectively, decide the target of the conductor transition and the aeigipant phase, viz. stateéle

and phaseavithout Or stateNDHelping; and phasavith, respectively. The last consistency rule couples the
conductor’s returning from statéDHelping; to Idle with trapdone of phasewith having been entered.

The consistency rules specifigrizontal dynamic consistency, i.e. across components, here between
server and clients. Such specification is about coordination, i.e. whadiBen actually models, step-
wise computation of next behavioural constraints. The constrainingpsojpposed by a phase implies,
an underlyingClient; transition is allowed only if it belongs to the phase that corresponds to thencur
state of the role otlient; in the CS collaboration, i.e. the current state of the global Sdilent;(CS). The
constraining propertylient; commits to by entering a trap, allows for a phase transfer, i.e. a transition
of Client;(CS), once the (connecting) trap is entered. These two constraining prapsyti¢actically
guaranteeertical dynamic consistency, i.e. within a component between its underlying STD amdeits

As mentioned in Section| 1, is has become evident to us that separating detaitedlbbal be-
haviour as supported by the Paradigm language, allows one to reasatreduction by abstraction in
a rather natural way. The intuitive explanation for this is as follows: Glblealaviour, actually defin-
ing phases a system needs to go through during a particular coordinaltibiors, is built on top of the
detailed behaviour: each global phase represents a sub-behaivibarumderlying detailed behaviour.
Nevertheless, not every action at the detailed level affects the cwimrdl phase. Only some actions
may enable a next phase transfer and hence may affect the protecatien. Thus, it is natural to try
to detect the detailed actions that do not matter for, i.e. that cannot bevetsar the protocol level.
By hiding them, a reduced detailed behaviour is obtained, just containingl@iant information and
actions needed for proper execution of the component role within thegolotds we shall show for
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our running example, this information can be extracted from the hieratchicature per component in
the Paradigm model, see Subsection 4.1. Note that all interaction betweeorcamtgp(horizontal) and
all hierarchical structure within components (vertical), as specified indnad®ym model in an explicit
manner, are flattened in the PA translation and hence their character hgmgherizontal or vertical,
gets lost. Thus, after the PA translation only a single communication pattern serfraim which it is
no longer straightforward to extract information needed for proparatioh of detailed behaviour.

Yet another aspect of the Paradigm model that can be justified andnoedflyy the approach taken
here is discussed shortly in the paper, see Subsection 4.2. From the defifiifaradigm, although
provided with a formal operational semantics, it is not straightforward ¢ot@evhat extent a compo-
nent’s detailed behaviour is not affected by some constraints or cotiadinale. In particular, consis-
tency rules for some complex model may have an unforeseen effectaitedecomponent behaviour,
in particular a deadlock at the detailed level. The translation from Paradig@Rocombined with the
abstraction techniques discussed in the next section supports forrifelatien of separate protocols
and of overall coordination.

3 Paradigm model as a process algebraic specification

In this section we show by means of the example introduced in Section 2, havadigfm model can be
translated into ACP. The general translation has been defined in [3] thvw@aefer for more detail.
Roughly, each STD will be represented by a recursive specificatienicl consistency in Paradigm has
to be expressed explicitly. In particular, to represent the interactionetidleld STD and the global STD,
we use actionsk!(.) andox?(.) that take the labels afetailed stepsis their argument. The complementary
actions synchronize if the step of the detailed STD is allowed by the curhestepof the global STD
as constraint. Thus, synchronization of actier$.) andox?(-) between global STD and detailed STD
reflect the current permission for the detailed step to be taken.

In addition, we use the complementary actiaes.) andat?(.) that takedetailed statesas their argu-
ments. The complementary actions synchronize if the step to be taken by tiaé §ldb is allowed by
the current trap of the detailed STD as constraint. Upon synchronizdtien(g andat?(-) the global
process will update its trap information, if applicable. For the communication witigirprotocol, here
between the server and its clients, actiense!(.) on the side of a conductor are meant to complement
crule?(.) actions on the side of the employees. Synchronization leads to executieadrtiesponding
consistency rule: a detailed transition of the conductor, phase chasrges £mployees involved.

For the concrete example the above amounts to the following. We adoriptbeesseslient; with
the actionst!, conveying state information, and actians, regarding transition eligibility.

—

Client; = Out;
Outj = at!(Outj)-Outj + ok?(enter;) - Waiting;
Waiting; = at!(Waiting;) - Waiting; + ok?(explain;) - Busy;
Busy; = ok?(thankj)-AtDoor;
AtDoor; = at!(AtDoor;) - AtDoor; + ok?(leavej) - Out;

The LTS of Client; Of Client; is given in Figure 4a (with the subscripsuppressed). The definition of
proces<lient; assures, the process really starts in close correspondence to statémusfrom Fig-

ure 1a. The definition of procesat; expresses: (1) upon being asked, it can exchange state information
while keeping the process as-is; (2) it can ask for permission to take éhegare of transitiornter from
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Figure 1a, in view of continuing with proce®giting; thereafter. Note, in the definition of processy;
the possibility for exchange of state information is not specified, as as@ingdoes never occur. Note,
in Figure 1b, stat®usy does not belong to tragone.

ok!(enter) okl!(leave)

at!(Out) at!(Waiting) crule?(notYet)

ok?(ente crule?(triv)

o> Out Waiting

ok?(explain) _at?(0up)

Interftriv] | _| Inter[notYet
at? A
ok!(leave) okl{leave)

at?(Waiting)
crule?(done) Imer[reque t]

ok?(leave)
AtDoor «2k2(thank) g;gy
aQAJ

?
t!(AtDoor) crule (request)

Ok!(gﬁ"”“”) 7 )ok(thanky

With[triv]

@) (b)

Figure 4: Processes (ﬁ/)ie?c and (b)m(CS).

In a similar manner, the processeslient;(CS) are augmented with the actioas? andox!. Now,
at the global level, the relevant information is the pair of the current paadethe current trap. For
example, the recursion variablgthout;triv] represents thatlient; is constrained to phas&ithout and
hasn’t reached a specific trap, wher@asrupt;[notYet] reflects thatlient; committed to phaseterrupt
resides in trapotYet. As these global processes play a participant role in the protocalribhe? actions
for engaging in a consistency rule have been put in place as well.

Clientj(CS) = Without; [triv]
Withoutj[triv] = ok!(leavej) - Without;[triv] + ok!(enter;) - Without;[triv] +
crule?(trivi) - Interrupt;[triv]
Interruptj[triv] = at?(AtDoor;) - Interruptj[notYet] +at?(Out;) - Interrupt; [notYet] +
at?(Waiting;) - Interrupt;[request] 4 ok!(leave;) - Interrupt;[triv]
Interrupti[notYet] = ok!(leavej) - Interrupt;[notYet] 4+ crule?(notYet;) - Without; triv]
Interruptj[request] = crule?(request;)- With;[triv]|
Withiftriv] = at?(AtDoor;) - With;[done] + ok! (explain;) - With; [triv] +
ok!(thank;) - Withi [triv]
Withi[done] = crule?(donej)- Without;[triv|

The corresponding LTS of the specificatiOfent; (CS) of Client;(CS) is given in Figuré 4b.

As above, procesSiient;(CS) is defined in close correspondencevi@hout;ftriv] being starting state
in Figure/ 2b. Theok!(.)-actions provide the permission answers to requests framt; to take a de-
tailed step. Thet?(.)-actions ask for state information relevant for deciding a next, smaller &ap h
been entered. Theuie?(.)-actions correspond to a phase change, so they synchronize witticalpar
conductor step.

The final component of the Paradigm model that needs to be translateddRtsAhe non-determinis-
tic serverserver. In fact, the STD of the server as given in Figure 3 exactly corresptmds recursive
specification; we only rename each transition lakfebm Figure 3 intocrule! (¢) to stay consistent with
the general translation as defined |in [3], for instapa@it; is renamed intarule! (permit;) in the PA
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specification. There is neither asy(.) action nor anyt(.) action added here. This component plays the
conductor role in the protocol and as such it is represented only by itteddt@haviour (detailed STD).
Therefore, no vertical constraints are imposed on its detailed behaviour.

—

Server = lIdle
Idle = crulel(checks)-NDChecking; +---+ crule!(checkn)- NDChecking,
NDChecking; = crule!(permit;j)- NDHelping; 4 crule!(refusej) - Idle
NDHelping; = crule!(continuej)-Idle

For the communication function’ ‘we put at!(s) |at?(s) = t for ‘states’s = Outj, Waiting;, AtDoor;, and
ok?(a) | ok!(a) = ok(a), for actionsa = enter;, explain;, thank;,leavej. Note, ACP allows to keep the result of
the synchronization afk?(a) andox!(a) observable, here as the actigxia), for suitablea. We exploit this
feature below to express system properties, since the synchronizetiimmsax (a) describe detailed steps
taken by clients. E.g., observing(enter,) indicates a service request madedoynt;. On the contrary,
synchronization oft!() andat?() is only used to update the information of the current detailed state. The
resulting actions are internal to the component and not needed in angrfarialysis. Therefore, we
safely user for the synchronization oft?() andat!().

Finally, we need to encode the coordination captured by the consistdesy For example, consis-
tency rule/(1) couples a detaileskck; step of theServer, being the conductor of thes protocol, to the
globaltriv step ofClient;, being a participant in thes protocol. The netresult is a state transfer, i.e. a tran-
sition dle <"k, NDChecking; for the server, and a phase transfer, i.e. a transitiiout v, Interrupt in the
global STD for tha-th client. Similar correspondences apply to the other consistency rulesefore,
we put

crule!(check)|crule?(trivj) = check; crule!(refusej) | crule?(notYet;) = refuse;

crule!(permit;) | crule?(requestj) = permit; crule!(continuej) |crule?(donej) = continue;

As usual, unmatched synchronization actions will be blocked to enfoncencmication. We collect
those in the set = { crule!,crule? at? at!,ok? ok! }. Finally, the process for the collaboration of the server
and then clients is given by

da(Clienty || Clients(CS) | ... || Clienty || Clientn(CS) || Server) (5)

The next section is concerned with the intertwining of detailed and the glebaMior, and possible ways

to reduce the component specification by abstracting away from spesiéited! activities. The process
algebraic specification of our running client-server example will be usémhto establish relations be-
tween Paradigm models before and after reduction. Therefore, it darhaady to represent the overall
behaviour of theclient component as the parallel composition of its detailed and global behaviour. T
this end, we denote the set of states of the detailed pranessby Statesp = { Out, Waiting, Busy, AtDoor },

the set of labels of its transitions by of detaile@elsp = { enter, explain, thank, leave } and we put

AT = { at!(s), at?(s) | s€ Statesp } OK = {ok!(a), ok?(a) | a€ Labelsp }

and defined = ATUOK. Then the process combining detailed behavioumiiedt and global behaviour of
Client(CS) can be expressed @sent(DG), With DG referring to ‘detailed’ and ‘global’, given by

Client(DG) = 9 (Client || Client(CS))
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ok(leave)
_AtDoor. Out
Without[triv . Without][triv]
crule?(triv]
) ok(enter)
crule?(done) |crule?(notYet) | crule?(triv) cruIe?(noth‘
AtDoor Waiting
With[done! AtDoor 0k(leaVT out Without[triv
T Interf[triv] Inter[triv] crule?(triv)
T 1]
AtDoor Wa'““g
With[triv AtDoor | ok(leave) out Interftriv]
Inter[notYet] Inter[notYet
ok(thank) [

T
it

Waiting
Inter[request]

crule?(requesl

Busy
With[triv]

Waiting

ok(explain) With{triv]

Figure 5: Procesm(DG)

Figurel 5 shows the behavior afient(DG) graphically. The process describes the way the detailed and
global behaviors occur and constrain each other.

On the one hand, steps taken at the detailed level influence the cures® phthe global level,
and therefore allows and forbids certain phase transitions at the glokal The global process and its
transitions, are ‘navigated’ by the activities executed at the detailed leselngtance, the effect of the
detailed transitiorxk(enter) is described with the appearance of twotransitions. One of them captures
the scenario in which the client has not yet required any service, whieamsr@atnter has not been
taken yet at the detailed level, although the server (conductor) mayseffeice. It can be observed that
this transition is followed by the phase transitiasyet which brings the process back to the initial state.
We can also observe that as soon as the detailed transitieis taken, the enablegv transition differs
from the previous one.

On the other hand, froriient(DG) we can observe how each phase, i.e. a global state, constrains the
steps that can be taken locally. Moreover, it is specified exactly how daftedps reached blocks any
detailed transitions, just as expected. For instance, we see that the ackier) on top of Figure 5
cannot be executed before the phase is changed, i.e. a stepvftigtane] to Without[triv] Via the global
transitioncrule?(done). Note that such details, which are explicit and easily observable from @ A
specification of the compositiafiient(DG), cannot be directly detected in the Paradigm model.

Once systems are modeled algebraically, their behaviours can be compansparison is typically
done by means of equivalence relations, chosen appropriately toywestain properties. Since we
aim at the mCRL2 toolset for tool support, we choose for branching bistionlf8] as the equivalence
relation we apply. Indeed, branching bisimulation is the strongest in thé&rgpeof behavioural equiva-
lence relations, but yet weak enough to identify sufficiently many systesiswBve adapt the definition
from [8] (originally defined on labelled transition systems) to STDs with uniginelicated initial states.

In fact, labelled transition systems (LTS), as a (visual) representatiomoégs algebraic specifications,
can be seen also as STDs. Therefore, in the sequel we do not mdkst elitinction between LTSs
and STDs.

Definition 1. For two STDs Z= (ST,AC,TS), Z/ = (ST/,AC’,TS’) a symmetric relation RC ST x ST’ is called a branching
bisimulation relation if for all sc ST and t€ ST’ such that Rs;t), the following condition is met: if & din Z, for some
ac ACU{T}, then either a= T and RS,t), or for some n> 0, there exist, ..., tn and  in ST’ such that t ty ... 5ty >t/
inZ', R(s,t1),...,R(s,tn) and RS, t’).
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For two STDsz andz/, two states < z andt € 2’ are called branching bisimilar, notatien- , t, if there
exists a branching bisimulation relatierfor z andz’ such thaR(s,t). The STDsz andz’ are branching
bisimilar, notatiorz <, ' if their initial states are branching bisimilar.

4 Reduction of the client processes

In Section 3 we explained how ACP specifications are obtained from thdedetand global client
STDs, and how ACP’s communication function captures synchronizatioletailed and global steps,
guaranteeing consistent dynamics at both levels. Based on the completeaiigonent we are able
to make several observations regarding the Paradigm approach tatseip@ detailed from the global
behaviour.

4.1 First-reduce then-compose

The global STD of a component is an abstract representation of its degdiledIt represents the part
of the behaviour of the component that is essential for the interaction withivea gollaboration. In
general, for the global behaviour not all local transitions are relewaodt are not influencing the overall
coordination at all. Although not always easy to isolate, in actual full-Beldgystems only a restricted
part of the whole system provides a specific functionality. In such a sitydtiam a modeling perspec-
tive it is clarifying to abstract away the irrelevant part and to concentratereduced detailed behaviour
containing the relevant interaction. As a consequence, dealing with mod¢larth purposely made
concise becomes simpler, more feasible and less error-prone.

In the previous sections, we have made a Paradigm model out of the cemgonletailed client
STDs, their global STDs and the server STD. Moreover, we havepred their translations into process
algebraic specifications. The overall behaviour of the client-sena&esyis obtained by putting the
components involved in parallel and make them interact. In this section wetbhbwe can achieve the
same total behaviour of the client-server systenirsyreducingthe client components ankn composing
the reduced versions afterwards with other components of the systeracti®ads directly applied on
the original Paradigm client model, by abstracting away irrelevant stateloeal transitions.

It is intuitively clear that the global behaviour alone is not branching bisinidahe overall client
behaviourClient(DG). This is because some local steps change the further global behatarcon-
sequence, such local transitions can be detected at the global levehdiEgtéerminology going back
to [8], we call these transitiongobally non-inert Similarly, a local transition is referred to g®bally inert
if it cannot be observed, explicitly or implicitly, at the global level. More sfieally, it can be detected
whether local actiornter has been taken or not by observing whether the global transitiomat or
global transitionrequest follows after global stepriv. Putting it differently, the transition labele@ter
makes the difference for phaseerrupt of residing in tramotYet or in traprequest, as can be seen in Fig-
ure 1. Thus, the local transitienter is not globally inert. In a similar manner, the local actiesmk is not
globally inert as it enables —and so it can be detected— the execution dbtia gctiondone. In terms
of the partition, in phas#vith the actionthank enters the trajone. On the other hand, again referring
to the phases dflient(CS) in Figure 1b, we see that the actirave is in each phase either within a trap
(phasesvithout andinterrupt) Or not possible at all (phaseith is missing the target statait). Likewise,
the actionexplain is not possible (phaseasithout andinterrupt are missing stateusy) or doesn’t change
the trap information (in phaseith the transition doesn’t enter the tragne).

Definition 2. Let a Paradigm model be given. A detailed transitiof x’ of a participant of a protocol is calledlobally inert
with respect to its partitiomr= { (S, T;) | i €| } if for all traps t in T; it holds that xe t <= X' €'t whenever both X’ € S,
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iarEe!' An action a is called globally inert for a participant of a protocol with resp® a partition, if all a-labeled transitions

Using the notion of detailed transitions being globally inert or non-inert, wereduce the detailed
STD of the client. After renaming all globally inert transitions intave can identify branching bisimilar
states. The resulting quotient STD for the client carries the behaviousthatessary and sufficient for
the global STD to interact with the other components, including the conduictioe @ollaboration. The
composition of the process algebraic specifications of the quotient STIamibbalClient(CS) behaves
exactly (up to branching bisimulation) as the behaviour of the composition afrtbmal detailed and
global STDs together as representednt(DG). By congruence, composition of either of these systems
with the other clients and the server leads, modulo branching bisimulationa¢epie, to the same
behaviour. This is summarized by the next result, whertor a set of labels, represents the hiding of
the actions in from P by renaming them inte, anda;(P), for a set of labelg, is the encapsulation of the
actions of from P by blocking and transition fop with label inJ.

Lemma 3. Let GC Labelsp be a subset of globally inert actions. Then it holds for the induced quafiéihent of Client that
() QClient < 1, 1c(Client), and

(i) On(QClient|| Client(CS)) < b Tok(c)( Client(DG)), whereOK(G) = { ok(a) | a€ G }.

atl(Q)

! ‘ i Lo ate)
enter . ok?(enter .
LT A S §§

3 3 hank
1| AtDoor i< than Busy

(@ ‘oo P S ) G

Figure 6: (a) procesrs(Client) and related states, (b) quotient ST lient and (c)Qﬁie\nt.

Proof. We consider the case of the maximal set of local actions that are globeity iie. forG = { explain, leave }. Split the
set of stateStatesp of the detailed STD intd® = { Out, AtDoor } andQ = { Waiting, Busy }. Let QClient be the induced
quotient STD, the STD obtained fro@lient by identifying the state®ut andAtDoor as well as the staté¥aiting andBusy.
The processeQClient and 1 (Client) are shown in Figure 6ab. A branching bisimulation betw&éHient and 7 (Client)
can be immediately established, which proves the first part of the lemma.

In order to prove the second part of the lemma, we first tran§l@iént into the process algebraic specificat'@@t
whose STD is shown in Figuré 6c. In order to compute the compositiQ€titnt andClient(CS) the communication function
has to be adapted @Client. For theQClient proces®ut andAtDoor are identified into th®. Similar forWaiting, Busy, now

represented b@. Thus, a detailed)mt communication intention conveyingt P or ‘ at Q updates the global process about
the current local state. Hence, we extend the communication functionawftP) | at?(Out) = 1, at!(P) | at?(AtDoor) =

7, at!(Q) | at?2(Waiting) = T and at!(Q) | at?(Busy) = 7. Now we consider the proces&(Qﬁie\nt I CT\ent(CS)) with
H = AT UOK as defined in Sectidn 3, witAT extended accordingly. The composition is shown in Figure 7a, the moces

rOK<G>(ﬁe?c(DG)) is depicted in Figure 7b. It is straightforward to establish a branching biatron between these two
processes. O

State names %K(G)(m(DG)) have been suppressed in Figure 7b for readability. Note that the number
of states intg(Client(DG)) is 13, while thefirst-reduce then-composapproach withQClient and Client(CS)
generates a process with 9 states only. Seetable 1 below for more numesides.
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T

crule?(triv)
crule?(triv)| crule?(notYet) | ok(enter)

crule?(triv)

a

lcrule?(requesl

C )

ok(thank) l crule?(request)

—C )

Figure 7: Branching bisimilar processes: fa) th I @(CS)) (b) processok g (ﬁ(DG)).

crule?(triv) crule?(notYet)

crule?(dong)

(b)

Figure 8: (a) adapted quotient procé&¥Slient, (b) composition of nermt andﬁeﬁ(CS).

It is obvious that not every choice of actions at the detailed level hagtipery of Lemma 3. For exam-
ple, selecting the set of actios$= { enter, thank }, yields a split-up intq Out, Waiting } and{ Busy, AtDoor }
and another reduction, depicted in Figure 8a. However, this reductian &sproper one as the induced
composition of the reduced detailed and the global behaviour in Figure 8 lsareching bisimilar with
the original compositiongy g (Client(DG)).

It is instructive to consider a slightly different client. Now we assume thatlibat may decide to
draw back the service request and return back to the initial stateThe detailed STD and the global
STD shown in Figure 9 differ from the model in Figure 1 only in #eer transition. If we apply the
same reasoning of Lemma 3 to this model of a client, we observe thaéttie transition does not
change the situation regarding the reduction of the local behaviour. Atjgrnter transition is not
globally inert, for the same reasons as in the previous model. Similaly, is also not globally inert.
Still, the original quotient from Lemmia 3 based on the inert actiefsin and leave yields a proper
reduction. See Figure 0.

The last example we consider as a further variation, named”, is presented in Figure 11. The only
change is now in the global STDient”(CS). The client is provided service unconditionally, i.e. without
interruption, even without needing it. But, if it doesn’t need it the client isdhed as if it does not
need servicany longer The simplified global behaviour, with less phases and less traps, impases le
constraints on the detailed behaviour. Thus, the relation between the detailéde global behaviour
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enter
@) h Out ]« "{Waiting (b)
" . return
Without
leave
AtDoor| .
triv
Out request
Interrupt leavd
@ notYet
. @aiting
With explain

done| AtDoor+—"2"Busy

Figure 9: Modified client: (a) STD dflient’, (b) phase and trap constraints.

k(entei)Tok(return)\ crule?(triv) crule?(notYe‘t‘) crule?(done crule?(notYet]
T "

crule?(done, crule’> trlv) It crule?(triv)
|

T

crule?(triv)
crule?(triv)| crule?(notYegt) t-----------<- ok(return)

-|---ok(enter)

lcrule?(request)

C )

ok(thank l crule?(request)

]

Figure 10: Branching bisimilar processes: §a) QClient’ || @’(CS)) (b) Tok (s (Cllent (DG)).

is rather loose. In Figute 12 the behaviour of proa@sst”(CS) and the parallel compositicQiient” (DG)

are graphically represented. In order to show this formally, we agaily &ip first-reduce then-compose
approach along the lines of Lemma 3 by taking the trivial split-uptefesp along all detailed actions

in Labelsp. Thus, we identify all local actions i8” = Labelsp as globally inert. The resulting quotient
STD of QClient” and its process algebraic translation are shown in Figure 13bc. The sitimpof the
reduced detailed behaviour ofent” with its global behaviour has now 3 states as shown in Figure 13d.
A branching bisimulation between this process and the correspondingssneg( Client”(DG)) can be
established easily.

In order to investigate the effect of the reduction on a larger scale, we draalyzed the client-server
system using thecrL2 toolset [11] and compared the implementation of the system using either the orig-
inal Client components or their reduced versi@@ient. The translation of ACP-based specifications of
then clientsClient;, the globalClient; (CS) and the serveserver into the input language of therL2 toolset,
which we use for our model analysis, is largely straightforward (seg3Jsdndeed, the application of
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@ i ou ) (b)
i1 Without leave
enter i
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Figure 11: The Paradigm model Gfient”.
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Figure 12: Processaient”(CS) andClient” (DG).

thefirst-reduce then-compogarinciple yields a significant decrease in the size of the state space in amumbe
of cases. The results are collected in Table 1.

4.2 Extracting detailed behaviour

Intuitively it is clear that in the case of the client-server example the gloldseur does not change
or influence the local behaviour. In fact, if in the total client behaviOwht(DG) we hide the actions
crule?(-) from the set performed by the global process for external), we obtain a process which is
branching bisimilar to the detailed behaviauient. This is expressed by the following lemma.

Lemma4. Client < p Tg( @(DG) ).

Proof. We start from the procesﬁm(DG) as shown in Figure|5. After hiding the actionsEni.e. renaming them inta,
the processg ( Client(DG)) is obtained, shown in Figure 14. A branching bisimulation equivalencedestihis process and

s )

crule?(done’

L © at!(Sy)

crule?(triv)

Figure 13: (a)rer (Client”), (b) Client”, (c) QClient”, (d) composition of3Client” andClient”(CS).
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n with Client with QClient
states transitions states transitions

2 69 142 32 54
3 297 819 92 204
4 1161 3996 240 656
5 4293 17685 592 1920
6 | 15309 73386 1408 5280
10 - — | 36863 212480

(no result forClient with n=10 within 24 hours)

Table 1: Effect of thdirst-reduce then-composg@proach.

Client process can be defined without difficulty. In Figure 15 related statesoareected by differently dotted lines. Note, we
have mirrored th€lient orientation with respect to the North-East South-West diagonal. O

@itﬁolatcftorirv‘ ok(leave)

t
T T
T T

Atboor \ok(leave)
[ Inter[triv]} Inté?[ttl}iv] }

AtDoor
With[triv.

Waitin
ey

T
Waiting
With[triv]

Figure 14: Proces&(ﬁeﬁ(DG)).

ok(explain)

In the general situation, the statement of the lemma provides a check on #teagus imposed by the
global STD on the detailed one. In case the statement of the lemma holds, thieteobghaviour of

the component is preserved in the consistent composition, assuming tlénatiog protocol provides
all phase transfers in some order. In case the statement of the lemma tlbetdnpart of the original

detailed behaviour has been eliminated because of the participation with tioeqdroThis may be

deliberate and allows for further reduction of the detailed STD. This maycbidental, requiring the
overall coordination to be revised.

5 Concluding remarks

In a Paradigm model several STDs may belong to the same componenibidgstite component’s
dynamics either at various levels of abstraction (detailed vs. global SAix®scribing different roles
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Figure 15: Branching bisimulation between ¢a)Client(DG)) and (b)Client.

of the component in various collaborations. Collaboration between comisoisatescribed in terms of
dynamic constraints. Vertical consistency is maintained by keeping phasdstailed transitions and
traps vs. transfers aligned. Starting point of our investigation here isahslation of Paradigm models
into the process algebra ACP and its coupling withdtre2 toolset for subsequent automated analysis.
In the translated model, every STD from the Paradigm model is repredanterkcursive specification;
the total behaviour of a single component is obtained as a composition otcthsive specifications of
the detailed and the global component’s STDs; the overall system is sgexsfee parallel composition
of all components.

In this paper we have described a method to reduce the Paradigm reptieseof the detailed STDs
of the components, yielding reduction of the overall Paradigm models,rbaegving the overall be-
haviour. The reduction boils down to inferring globally inert detailed st8ysabstracting them away a
smaller representation of the detailed component is obtained. This refatgseicontains all informa-
tion about the constraints the detailed behaviour imposes on the globaidgfis)of the component.
The formal validation that the reduction, indeed, does not change thallowedel behaviour is achieved
via the process algebraic representation of the model: we show for onir-séever example that the re-
duced model is branching bisimilar to the original one, having the same piegoeFurthermore, by
means of a proper abstraction, in this case applied at the global level mabsarve directly from the
model, by a direct comparison, in which way the global behaviour, andhleusollaboration, affects the
components’ detailed behaviour. In case no influence is to be expecigdyiticient to show that the
component model is equivalent, up to branching bisimulation, to the detailedibeh after all global
steps are abstracted away.

As to the contribution of this paper, we have established a further conneaftiprocess algebra
and its supporting apparatus to the domain of coordination. In particulstragbion and equivalences,
typical for process algebra, become techniques that can be applieorthraiion models, via the estab-
lished link of the Paradigm language and ACP, in our case. Thus, catiafircan be initially modeled
in the Paradigm language which offers compositional and hierarchicatlimgdiexibility. Then, model
reduction can be applied, if appropriate. Finally, via its process reqtasm the model can be formally
analyzed.

As future work we want to address the reduction of general Paradigdelsiand property guided
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reduction, in particular in a situation with overlapping or orthogonal coatthn. More specifically, it is
interesting to study the notion of globally inert detailed steps for a comporergditicipates in multiple
collaborations. We plan to investigate whether other techniques fromgw@tgebraic analysis, e.g.
iterated abstraction, and pattern-based simplifications can be beneficla fmodeling with Paradigm.
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