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A framework allowing a unified and rigorous definition of the semantics of 
concurrency is proposed. The mathematical model introduces processes as elements 
of process domains which are obtained as solutions of domain equations in the 
sense of Scott and Plotkin. Techniques of metric topology as proposed, e.g., by 
Nivat are used to solve such equations. Processes are then used as meanings of 
statements in languages with concurrency. Three main concepts are treated, viz. 
parallellism (arbitrary interleaving of sequences of elementary actions), 
synchronization, and communication. These notions are embedded in languages 
which also feature classical sequential concepts such as assignment, tests, iteration 
or recursion, and guarded commands. In the definitions, a sequence of process 
domains of increasing complexity is used. The languages discussed include Milner's 
calculus for communicating systems and Hoare's communicating sequential 
processes. The paper concludes with a section with brief remarks on miscellaneous 
notions in concurrency. and two appendices with mathematical details. 

1. INTRODUCTION 

The aim of this paper is to present a mathematical study of the semantics 
of a variety of language concepts in the area of concurrency. We shall be 
concerned with three fundamental notions in this field: parallel composition, 
synchronization, and communication, and we shall develop a general 
framework in which definitions and properties of these notions can be 
discussed in a systematic way. 

The emphasis in the paper is on definitions-rather than on pragmatic 
use-of language concepts. We shall use the methodology of denotational 
semantics. "Denotational" should be contrasted here with "operational": The 
key idea of the former approach is that expressions in a programming 
language denote values in mathematical domains equipped with an 
appropriate structure, whereas in the latter the operations as prescribed by 
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the language constructs are modelled by steps performed by some suitable 
abstract machine. 

In the denotational semantics of sequential programming concepts, a 
central role is played by the notion of (state-transforming) function. Let us 
use E, with elements a, for the set of states. For the present purposes, it 
suffices to define a state as a mapping from program variables x, y, ... , to 
values such as 0, 1, .... The denotational meaning of a simple command such 
as the assignement statement x := x + 1 is a function rf>: E-+ E, defined by 
rf>(a) =a', where a'(x) = a(x) + l, and a'(y) = a(y) for ally =I= x. Also, the 
meaning of a composite command, formed by sequential composition ";", 
such as x := x + 1; y := x + y is obtained by forming the function 
composition r/> 2 a </J 1 , where </J 1 and </J 2 are the meanings of the statements 
x := x + 1 and y := x + y, respectively. When we admit nondeterminacy, the 
situation changes somewhat in that the meaning of a statement is now a 
function from states to sets of states with a certain structure. Using .? for 
"power set of," we now use functions r(>: E-+ ,:;r"(E). Here as well, 
composition is easy to define: r/> 1 a </J 2 =A.a· ~a' I a' E r/> 1(a") for some 
a" E r/> 2 ( a)}, and no essential extension of the traditional view of a statement 
having a state transformation as its meaning is necessary. A fundamental 
change in this view is needed, however, for the denotational treatment of 
parallel composition. Let S 1 II S 2 denote parallel execution of S 1 and S 2 : 

Statements S 1 and S 2-in the example allowed to share their variables-are 
executed by arbitrary interleaving of the constituent elementary actions of S 1 

and S 2 • Consider, for example, a simple program ( * ): (A 1 ; A 2 ) II (B 1 ; B 2 ), 

with A;, B; elementary actions (such as x := x + 1), and let r/>;, If/; be the 
respective meanings of A;,B;. Now what happens if we take the r/J;, l/f; 

simply as functions: E-+ E? We form the compositions r/> = r/> 2 a r/> 1 , 

If/= l/1 2 a l/f 1 and try to define a resulting function merge (</J, l/f). Here we are 
stuck, since having formed the compositions r(>, If!, we no longer have 
available their respective operands rf> 1, I/I;· (Remember that what we want as 
resulting function is the union of the (six) possibilities r/> 2 a r/> 1 a l/f 2 a l/f 1 , 

r/> 2 a ~1 2 a r/> 1 a I/Ip···· l/f2 a l/f 1 a r/> 2 a </J 1 .) In an operational approach, the 
problem does not arise in this form: A trace is kept of the computation, e.g., 
in the form of the (set of the) sequence(s) of elementary actions generated 
while executing the program, and the meaning of S 1 II S 2 is simply the shuffle 
(in the language theoretic sense) of the traces corresponding to S 1 and S 2 • 

(Other operational approaches are also possible, see, e.g., Hennessy and 
Plotkin, 1979; Plotkin, 1983. However, they all involve suitably structured 
sequences of elementary steps.) This preserving of intermediate information 
in order to be able to describe the final result of interleaving is crucial for a 
proper treatment of parallellism, and is in fact what we shall do as well in 
our denotational approach. The basic idea is to extend the notion of function 
to that of process. Here "process" is a generic term, referring to a variety of 
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mathematical objects which have one important property in common, viz. 
that they are constituted in some way from (possibly infinite) sets of 
(possibly infinite) sequences. For the example language considered above, 
the corresponding notion of process is an extension of that of state
transforming function in that it is still a function but now includes the infor
mation on how it was built up from the-possibly infinite-sequences of its 
elementary components. In this introduction we shall not be more precise 
about the notion of process. What we do underline is that in our theory a 
process is a semantic rather than a syntactic notion: it is a feature of the 
mathematical model rather than of the program text. 

Section 2 of the paper presents the notion of process in some detail. A 
rigorous treatment of this requires some mathematical machinery involving 
tools from metric topology. A fundamental role is played by equations for 
domains of processes. Such equations are solved essentially by completion 
techniques-reminiscent of the way Cantor constructed the real numbers 
from the rationals. Next, the central operations upon processes are defined. 
We consider the convenience in formulating these definitions as an important 
accomplishment of the theory of processes. Processes are finite or infinite. 
Defining the operations for the finite cases requires specific attention; the 
infinite ones are each time obtained in a standard way by continuity 
arguments. Some of the more tedious mathematical arguments are relegated 
to the appendices; in Section 2 we concentrate on those results which are 
necessary for an understanding of the central sections of our paper. For the 
reader who wants to skip all mathematical details we provide a brief 
summary of the relevant results at the end of the section. Sections 3-8 
constitute the applied part M the paper. In these, it is shown how a rigorous 
and concise semantics can be designed for certain central notions in 
concurrency, by an appropriate synthesis of the use of processes with that of 
more traditional ideas of denotational semantics. Section 3 concentrates on 
flow of control: It considers a simple language with elementary actions, 
sequential composition and nondeterministic choice, and iteration or 
recursion. Adding parallel composition ("II") to this requires for its semantics 
a rather simple process domain, the so-called uniform processes. Iteration 
and recursion are dealt with in a relatively straightforward way by certain 
limit constructions. We already mention that an appeal to Banach's fixed 
point theorem will replace the familiar least fixed point approach of 
denotational semantics based on complete partially ordered sets. The section 
also discusses how the yield of a uniform process p can be derived from the 
set of all paths in p. 

In Section 4 we add synchronization to the language(s) of Section 3. 
Synchronization restricts the set of all possible interleavings of sequences of 
elementary actions, and a general mechanism to model this is studied. 
Section 5 refines the theory by introducing the notion of state-suppressed in 
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Sections 3 and 4-and assignements, and discusses the required extensions to 
the notions of processes and their yields. Processes are no longer uniform, 
but depend on the state as an argument, and the previous definitions have to 
be modified accordingly. As special feature we mention that unbounded 
nondeterminacy can be dealt with without any additional measures. Section 6 
combines the ideas of Sections 4 and 5, in that synchronization is now 
considered for nonuniform processes. Among the topics studied are 
deadlock, and synchronization through guards in guarded commands. 
Section 7 extends synchronization to communication: At points of 
synchronization in the parallel execution values are passed from one process 
to another. A further extension of the notion of process is needed to deal 
with this. Two major examples of languages with communication are treated: 
Hoare's Communicating Sequential Processes (Hoare, 1981 ), and Milner's 
Cal cul us for Communicating Systems (Milner, 1980 ). In Section 8 we finally 
discuss some miscellaneous notions in concurrency, without providing a full 
treatment as was done in the preceding sections. In the appendices a number 
of mathematical details omitted in Section 2 are filled in. 

A few words on the emphasis on denotational in the title of our paper are 
in order. Our arguments for the claim that our approach is denotational are 
twofold: (i) the systematic use of mathematical models which are used as 
range for the valuation mappings assigning meaning to the various 
programming constructs, (ii) the systematic way of adhering to the 
compositionality principle, allowing homomorphic valuations. However, we 
are aware of the fact that we have to pay a price for this. The mathematical 
model contains various notions which, though denotational in style, are 
operational in spirit. These include the '"history" feature of the notion of 
process itself~ and the use of so-called silent moves in dealing with 
synchronization and recursion. 

There is a vast amount of literature on concurrency. and a good part of 
these papers involve some discussion of the operational semantics of the 
notion ( s) in concurrency. Our understanding of concurrency has been 
profoundly influenced by the work of Milner, starting with Milner ( 1973 ), 
continued in papers such as Hennessy and Milner ( 1980 ), Milne and Milner 
( 1979 ), Milner ( 1979), and culminating in Milner ( 1980). Though the latter 
work is primarily operational in spirit, there is still a lot in it which recalls 
its author's denotational period. Also, for an intuitive understanding of the 
central notions in concurrency it is an invaluable source. The various notions 
of process to be studied below will be introduced as solutions of domain 
equations. The introduction of equations of this type is due to Scott-dating 
back to perhaps the most famous equation for reflexive domains: 
D = D--+ D-and has been treated extensively in, e.g., Scott (1976) or, more 
recently, in Scott (1982). A very nice textbook on denotational semantics in 
general and domain equations in particular is Stoy (1977). (A more 
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introductory text on denotational semantics is Gordon, 1979; many 
advanced topics are treated in Milne and Strachey, 1977.) Scott's theory did 
not include nondeterminacy or concurrency, and an extension of his theory 
dealing with these concepts was proposed by Plotkin ( 1976 ), later simplified 
somewhat by Smyth (1978); cf. also Lehmann (1976). The first time we saw 
a domain equation intended to be used for modelling concurrency was in 
Bekic (1971). In the work of Plotkin and Smyth, domain equations are 
solved by category-theoretic methods which may be somewhat demanding 
for the uninitiated reader. We prefer to use other tools, viz. those of metric 
topology. The use of these has been advocated in recent years by Nivat and 
his colleagues, and applied successfully in a variety of applications having to 
do with infinite words or infinite trees modelling infinite computations and 
the semantics of recursive program schemes with nondeterminacy (Arnold 
and Nivat (1980a, b), Nivat (1979, 1980)). The mathematical foundations of 
our work-as described in Section 2-owes a considerable debt to the work 
of Nivat's school; though the specific way we use topological completion 
techniques to solve equations seems to be new. 

Our own first venture into the realm of (in(jnite) processes was De Bakker 
( 19 77 ). That paper lacked a sound mathematical basis for the notion of 
process. The present topological treatment was first described in De Bakker 
and Zucker ( 1982 ), reporting on research which was started during a most 
enjoyable stay of the first author at Bar-Ilan University and the Weizmann 
Institute during the summer of 1981. 

Further references to the literature-in particular, those concerned with 
the various concepts in concurrency we shall encounter in these notes-will 
be given as we go along. 

2. PROCESSES 

In this section we show how processes p can be introduced as elements of 
domains P which are obtained as solutions of domain equations of the form 
(*):P=~(P). The techniques used to solve(*) are taken from metric 
topology. A variety of equations ( *) is considered, determining a variety of 
process domains of increasing complexity. Furthermore, a number of 
operations upon processes are defined,, viz. composition (p 1 o p 2), union 
(p 1 U p 2), and merge (p 1 ff p 2), and various properties of these operations are 
presented. A few of the proofs of the supporting mathematical facts are not 
contained in this section but can be found in the Appendix. A brief summary 
of the relevant results is given at the end of the section. 

We begin by recalling a few basic facts from metric topology. We assume 
known the notions of metric space, Cauchy sequence (CS) in a metric space, 
isometry (distance-preserving bijection), limits and closed sets, completeness 
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of a metric space. and the theorem stating that each metric space (M, d) can 

be completed to (i.e., isometrically embedded in) a complete metric space. 

Throughout our paper, we shall only consider spaces (M, d) such that the 
metric d has values in the interval [O, l j. 

These notions are sufficient to solve the first domain equation for 
processes. This equation is very simple, and introduced only for the sake of 

illustrating the method used in solving such equations. Let A be any set. We 
consider the equation 

P = lPof U (AX P), (2.1) 

where p 0 is the nil process, and "X" is the usual Cartesian product. 

Intuitively, it is not difficult to see that the (greatest) solution set P should 

consist of p 0 , all finite sequences of the form (a,, (a 2 , ... , (a 11 ,p0 ) ... )),for 

n ? l, together with all infinite sequences (a 1, (a 2 , ••• )). The role of the nil 

process Po may be somewhat unusual in this equation, in that it replaces the 
more familiar empty sequence. However. it will remain with us all through 

the paper, and we ask the reader to exercise some patience in trying to 
appreciate it use. 

We now obtain the solution of (2.1) in a more rigorous manner. 

DEFINITION 2.1. Let (P 11 , d 11 ). n = 0, 1,.... be a collection of metric 

spaces defined inductively by P0 = jp0 f, d0 (p',p") = 0 (since 

p',p"EP0 <=>p'=p"=p0 ), P11 + 1 =jp0 fU(AXP 11 ), d 11 + 1 is given by 
d 1111 (p 1 ,p")=O if p'=p"=p0 , d 11 + 1 (p',p")= 1 if p'=p0 , p"i=p0 or 
p' =I= p 0 , p" = p 0 • Otherwise, p' = (a 1 ,p 1), p" = (a 2 ,p2 ) for some a,, a2 EA, 
p 1,p2 EP 11 , and we put 

d111 1(p', p") = d 11 + 1((a, ,p 1), (a 2 ,p2 )) = 1, 

=~dll(p,,p,), 

if a 1 i=a 2 , 

if a 1 = a2 • 

It is not difficult to verify that d 11 is indeed a metric on P 11 • As next step, 
we define P w =cir U 11 P11 and d =dr U 11 d11 • For example, take 

p'=(a,,(a 2 ,(a 3 ,p0 ))), p"=(a 1 ,(a 2 ,(a 3 ,(a 4 ,p0 )))). Then d(p',p")= 

dm(p',p"), (any m? 4) = 1dm_ 1((a 2 , (aJ,p0 )), (a 2 , (aJ, (a 4 ,p0 )))) = ... = 

id,,, J(Po· (a4, Po))= i * 1 = ~ · 

DEFINITION 2.2. (a) Pw=U 11 P11 ,d=U 11 d11 , 

(b) (P, d) is the completion of (P "', d). 

Standard properties of the completion technique yield that we may take P 

as consisting of P,,, together with all limit points p = lim,,p,,, with <Pn)11 a 

Cauchy sequence such that p 11 E P". It is now straightforward to show that 
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LEMMA 2.3. P satisfies (2.1 ). 

Proof Let P' =dr { p 0 f U (A X P). We define isometries </J: p--> P', 
l.fl: P'--+ P in the following manner. First we consider </J. If p = p 0 , we take 
</J(p)=p0 ; clearly, </J(p)EP' in that case. Otherwise,p=limnPn with (Pn),, 
a CS (if p E Pn, for some n ~ 1, p is identified with a CS which is eventually 
constant), and we may assume without lack of generality that Pn = (a, q n>• 
for some a and all n, such that (qn)n is also a CS. Now let q =limn q n. We 
take </J(p) = <a. q ). We leave the definition of l./f, and verification that </J, 1/.1 are 
indeed isometries to the reader. I 

The trouble taken to solve (2.1) may seem somewhat inordinate. It was 
done this way to familiarize the reader with this style of argument, which 
will pay off later, rather than for the solution of this problem in its own 
right. 

Processes p which are elements of sets Pas defined (e.g.) by Eq. (2.1) 
have a degree, written as deg(p ), and defined in 

DEFINITION 2.4. deg(p0) = 0, deg(p) = n if p E Pn \Pn- i • for some 
n ~ 1, and deg(p) = oo, otherwise. 

For processes p, q in P as defined in (2.1) we now give the definition of 
their composition p o q. 

DEFINITION 2.5. po q is defined (by induction on deg(q)) 

(a) po Po= p, po <a, q') = (a,p o q') if deg((a, q')) < ro, 

(b) po limi q1 = limi(P o q1), for qi finite. 

EXAMPLE. <ap(a 2 ,p0 )) 0 <a 3 ,p0 )=<a3 ,(a 1,(a 2 ,p0 ))). We see that 
composition is (almost) concatenation in reverse order. 

LEMMA 2.6. (a) If (q1) 1 is a CS, then so are (po qi)i (this justifies 
Definition 2.5(b)) and (qi o p')1• 

(b) "o" is continuous in both arguments, i.e. (lim1 p1) o q = lim1(p; a q ), 
and po limi q1 = lim1(p o qi), for all p1, q1 such that (p1) 1, (q1) 1 are CS. 

( c) "o" is associative. 

Proof This lemma is a special case of later results. We omit its 
proof. I 

We now turn to the solution of a more interesting equation. The resulting 
processes are not simply (finite or infinite) sequences, but (roughly, a precise 
statement follows) sets of such sequences. We want to solve 

P= {p0 } U~(A X P), (2.2) 
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where ._9"(·) denotes all subsets of (- ), and ~(·) all closed subsets of (·) 

(closed with respect to the metric to be introduced in a moment). Before 

going into the mathematical details, we consider a few simple examples. 

Possible elements of P are p 0 , {(app0 ), (a 2 ,p0)f, {(a 1 , {(a 2 ,p0 )}), (a 1 , 

{(a 3 ,p0 )})}, {(a1' {(a 2 ,p0 ), (a 3 ,p0 )})}, or {(a, {(a, {(a, ... )f )})}.In pictures, 

these processes may be represented by 

I al 

aA 
a 

a 

a 

We see that these processes closely resemble (unordered) trees. However, 

as essential difference we have that "nodes" in a process have a set (rather 

than a multiset) of successors: A tree 

has no corresponding process. 
The topological treatment of the solution of (2.2) requires some 

preparations. First, we extend distances d as follows: 

DEFINITION 2. 7. Let (M, d) be a metric space and let X, Y be subsets of 

M. We define 

(a) d(x, Y)=inf.vEYd(x,y), 

(b) d(X, Y)= max(supxEXd(x, Y), sup,EY d(y,X)). 

(By convention, inf0 = 1, sup 0 = 0.) 

Remark. The distance d(X, Y) is the Hausdorff distance between sets. It 

should be distinguished from d' (X, Y) = infxEX .vEX d(x, y ), which does not 

determine a metric. 

For the Hausdorff distance we have 

LEMMA 2.8. Let (M, d) be a metric space, and let .?.,(M) be the 

collection of all closed subsets of M. Then (.9'.,(M), d) is a metric space. 

Proof See Dugundji (1966) or Engelking (1977). I 

Remark. Given a metric space (M, d), d is said to be an ultrametric on 

M if it satisfies the "strong triangle inequality" V x, y, z E M[ d{x, z) < 



78 DE BAKKER AND ZUCKER 

max(d(x, y), d(y, z)) ]. It is easy to see that if dis an ultrametric on M, then 
so is the induced Hausdorff metric on .~(M). It will follow (as can easily be 
shown) that every process domain P considered in this article will have an 
ultrametric with, moreover, max (d(p, q) Ip, q E P} = I. 

An important technical result which plays a central role in the theory 
developed below is the following theorem of Hahn ( 1948) ( cf. Engelking, 
1977). 

THEOREM 2.9. If (M, d) is complete, then so is (.~(M), d). Also, for 
(Xn\ a CS in ·9c(M), we have that 

1imXn = (x Ix= lim Xn, xn E X 11 , (xn),, a CS in M}. 
n n 

Proof See Appendix A. I 

We now proceed with the construction solving (2.2). We introduce metric 
spaces (Pn, dn), extending the techniques as applied before with sets and their 
(Hausdorff) distances. 

DEFINITION 2.10. The collection of metric spaces (Pn, d11 ), n = 0, !, ... ,is 
defined by P 0 = 1 Po}, d0(p', p") = 0, P11 + 1 = 1 Po} U .:Y'(A X P,i), 
dn+ 1 (p',p") is as before for p' =Po or p" =Po. Otherwise, p' = X c;; A X P,,, 
p" = y c;; A x p n' and we take d n + I (X, Y) as the Hausdorff distance induced 
by the distance between points d,, + 1 (x, y), where (as before), for x = (a 1 , p 1 ), 

Y = (a2,P2), 

dn+1(x,y)=!, 

=~dn(P1•P2), 

if a 1 =t a 2 , 

if a 1 = a2 • 

EXAMPLE. Take a2 =t a3 • Then d 2({(a1' {(a2 ,p0 ), (a 3 ,p0)})}, {(a 1 , 

\(az,Po)}), (al' ((a3,po)}>f)=~. 

As before, we take P w = Un P,,, d = Un d,,, and (P, d) is defined as the 
completion of (P w• d). We have 

THEOREM 2.11. P = 1 p0 } U .~(A X P), where .~(·) stands for all 
subsets of(·) which are closed with respect to the metric d. 

The proof needs a definition and a lemma. 

DEFINITION 2.12. (a) Let pEPw. We define p 1"l, n=O, 1, ... , by: If 
p=p0 , then pln)=p0 , n=O, 1, .... Otherwise, p«n=p0 , p 1"+ 1l= 

{(a, q 1">) I (a, q) E p }. 
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(b) Let p E P\P ,,,. Then p = lim;p1, P;, E P1, (P;); a CS. We then 
put p<n> = lim1pjn>. 

(c) For x ~Ax p we put x<n+ l) = {(a,p<n» I (a,p) E Xf, n = 0, I, .... 

LEMMA 2.13. (a) Foreachp,p=limnp<n>. 

(b) For X ~A X P, (x<n»n is a CS and limn x<n> = X, where X is the 
closure of X. Hence, for X closed, X = limn x<n>. 

Proof We only prove (b). Clearly, form< n, d(x<n>, x(m>) ~ 1;2m, and 
we see that (x<n» is a CS. We now show that X~ limn x<n>. Let (a,p) EX. 
Then (a,p) =(a, limn p<n>) = limn(a,p<nl) E limn X(n>. Each x<n> is closed in 
Pn+ 1 (all subsets of each Pn are closed, since distances between points are at 
least l/2n and so there are no nontrivial CS in Pn); hence limnx<n> exists 
and is closed. From this and X ~limn X(n> it follows that X ~limn X(n>. 
Conversely, let p E limnx<n>. By Theorem 2.9, p =limn Pn, where Pn E x<n>, 
(Pn)n a CS. Hence, Pn = q~nl for some q,, EX. Then p =limn qn, i.e., p 
belongs to the closure X of X. 

We now prove Theorem 2.11. Similarly to what we did in the proof of 
Lemma 2.3, we show that P satisfies (2.2) by establishing an isometry 
between the spaces P and P' =dr {p0 f U.'?.:(A X P). We define two bijections 
~: P-+ P', If!: P'-+ P, as follows: 

(i) If p=p0 , then ~(p)=p0 • Otherwise,p= lim,, Pn•Pn EPn, (Pn)n a 
CS, Pn * p0 for n sufficiently large. For these n, by the definition of P,, we 
have that Pn is a subset of A X P,, _ 1, hence closed in A X P; thus, (p n)n is a 
CS of closed sets in A X P. We now take for ~(p) the closed subset of A X P 
which equals lim,, Pn. 

(ii) If p' = p0 , then lfl(p') = p0 • Otherwise, take p' = X E; .~(AX P). 
By Lemma 2.13b, X= lim,,X(nl_ For each n > 0, put Pn =X(n) E P,,. Since 
(X<"l),, is a CS in P', (P,,)n is a CS in P. So we define l/l(P') = lim,, p,,. 

We leave it to the reader to verify that ~. I/I are the required isometric 
mappings. This concludes the proof of Theorem 2.11. I 

We proceed with the introduction of the operations "o", "U", "II" for 
processes p in P solving (2.2). By the preceding theory we know that for 
each process p, either p is p0 , or p is finite and p = X E . ~(A X P), or p is 
infinite and p = lim;pU>, (p( 0 ) 1 a CS, with p< 0 E P1, i = 0, 1, .... 

DEFINITION 2.14. Let x, y E . :?,,(A x P) with deg(X), deg( Y) < 00. 

(a) (composition) pop0 =p, poX={poxlxEX}, po(a,q)= 
(a, po q), and po lim1 q<il = lim1(p o q'0 ). 

(b) (union) p0 Up= p U p 0 = p, XU Y is the set-theoretic union of the 
two sets X, Y. Also, (lim1 p<il) U (limj qUl) = limk(P(kJ U q<•> ). 

643/54/1-2/6 
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(c) (merge) p II p0 =Po II p = p, XII Y = {X llY I YE Y} U {x II YI x E 
Xf, Xll(a,p) = (a,Xllp), (a,p)llX= (a,pJIX), and (lim;p('>)ll(limiqu>) 

= Iim,(p1'' II q(k'). 

EXAMPLE. p 1 llP2 =df {(a,, {(a2, Po)})} II \(a1, {(a4, Po)})} = {(a1, 
{(a2 ,po)f llP2)} U {(a1,P1 II {(a4,Po)})} = {(a1, {(a2,P2)} U {(aJ, {(a2, 
p 0)f I! {(a4 • p 0)f)}), (a1, {(a4, P1)} U {(a1, {(a2,Po)} II {(a4,po)})})} 
= ··· = {(a 1 , j(a2, {(a 3 , {(a4, P0 )})}), (a3, {(a2, {(a4, Po)}), (a4 , {(a 2 , 

Po)f )f)f), (a3, ... )}. 

(The reader should compare this with the (language-theoretic) shujJle of two 

words a 1 a2 and a3 a4 , yielding a set of six words {a 1 a 2 a 3 a 4 ,a 1a 3 a 2 a 4 , ... , 

a,ia 4 a 1a2 }.) The following describes the result: 

Definition 2.14 is justified in 

LEMMA 2.15. (a) For finite q, q',d(p 0 q,p 0 q') < d(q, q'). 

(b) For finite qn, if (qn\ is a CS, then so is (pa q 11 ) 11 • (Hence, the 
definition po q = limAp o q(nl) is well formed). 

(c) Part (a) holds for all q, q'. 

( d) If q,,--> q, then po q11 --> po q ("o" is continuous in its second 
argument). 

(e) For finite p, q, p', q', d(p Up', q U q') < max(d(p, q), d( p', q' )). 

(f) Forfinitep11 ,q11 , if(Pn)11 , (qn)n are CS, then so is (p11 Uq11 ) 11 • 

(Hence, the definition p U q = lim 11(p(nJ U q( 11 J) is well formed.) 

(g) Part (f) holds for all p, p', q, q'. 

(h) If Pn--> p, q n--> q, then p 11 Uq 11 --> p U q ("U" is continuous in both 
arguments). 

(i) For finite p, q, q', p', d(pllq,p'llq') < max(d(p,p'), d(q, q')). 

U)-(1) Similarly to (f)-(h)for 11-

(m) "o" is continuous in its first argument. 

(n) " 0 ", "U", "II" are associative, "U" and "II" are commutative. 
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Proof See Appendix B. II 

We continue with the consideration of domain equations which determine 
more complex processes. Calling processes in (2.2) uniform, we consider the 
nonuniform processes defined in 

P= 1P0 [U(A-+.?0(BXP)). (2.3) 

Processes pare now (either p0 or) functions, such that for each a, p(a) is a 
closed set j ... ,<b;,P;), ... };En where the index set I depends on a:l=l(a). 
The solution of (2.3) is very similar to the ones given above. A new element 
is the distance between functions. We give 

DEFINITION 2.16. The collection of spaces (Pn, dn), n = 0, !, ... , is 
defined as follows: P0 and d0 are as before. Pn+ 1 = 1Po [ U (A-> .f'(B X P 11 )), 

dn+ 1(p',p") is as before for p'=p0 or p"=p0 • Otherwise, d 11 + 1(p',p")= 
supaEA dn+ 1(p'(a),p"(a)), where the distance between the sets p'(a), p"(a) is 
the usual Hausdorff distance induced by the distance between points 
d,, + 1 ( <b" p, ), (b 2 , p 2 )) given by 

dn+1((bpp1), (bz,Pz>)= 1, 

= 1dn(P"Pz), 

if b, =I= b2, 

if b, = b2. 

As before, d 11 determines a metric on P 11 , P w is defined as Un P 11 , 

d = U 11 d 11 , and (P, d) is the completion of (P w, d). We have 

THEOREM 2.17. P= jp0 [U (A->.'f'c(B X P)). 

Proof By appropriately adapting the proof of Theorem 2.11. For 
example, we treat the isometry rp: P-+ P', where P' =dr 1 Po} U 

(A-+.~(BXP)). Let p=lim 11 p 11 , (p11 \ a CS in P. We indicate how to 
obtain rp(p) as a function in (A-> ·9c(B X P)). Take any a EA. Since (p11 ) 11 

is a CS, so is (p"(a)) 11 • As CS of closed sets, (p11 (a)) 11 has as limit a closed 
set, say Xa, where Xa ~ B X P. Now put rp(p) =A.a · X 0 • We have to check 
(i) rp is well defined, i.e., if (p=) lim11 Pn = lim 11 q 11 , then 
limn p 11 (a) =limn q11 (a), (ii) rp is l-1, i.e., rp(p) = rp(q) => p = q, (iii) rp is onto, 
and (iv) rp preserves distances. We treat only (ii). Assume that, for all a, 
lim 11 p.(a)=lim 11 q11 (a). To show p=q, i.e., lim 11 p 11 =lim 11 q11 • Since (p11 ) 11 , 

(q11 ) 11 are CS, we have VdNVm, n? N[d(pm,Pn) < c/2, d(qm, q 11 ) < i:/2 J. 
Thus, (*) Vm, n? N Va[d(pm(a),Pn(a)) < i:/2], (**) Vm, n ?NVaJd(qm(a), 
qn(a))<c;/2]. Letting m-+oo in (*), (**) we have Pm(a)-+p(a), 
qm(a)-+q(a). Thus Vn?NVa[d(p11 (a),p(a))~i:/2, d(q 11 (a),q(a))<c/2]. 
From this, since p(a) = q(a), we obtain Vn? N[d(pn(a), q11 (a)) < e J. Taking 
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sup over all a we get 'in~ N[d(Pn• qn) ~ e ]. By a standard argument then 
d(p, q) ~e. Since this holds for any e we conclude that p = q. I 

The operations "o", "U'', "II" can be extended to nonuniform processes. 

DEFINITION 2.18. We only consider processes of finite nonzero degree, 
the treatment of the remaining cases being the usual one. 

(a) (composition) po A.a· X =A.a · (po X), where po X = 
lP ox Ix EX}, and po (b, q) = (b,p o q). 

(b) (union) (A.a· X) U (A.a· Y) =A.a· (XU Y). 

(c) (merge) (A.a· X) II (A.a· Y) = A.a -({x II (A.a· Y) I x EX} U 
l(A.a · X) II y I y E Y}), where (b,p) II (A.a· Y) = (b,p II A.a · Y), and (A.a· X) 

11 (b, q) = (b, (A.a· X) 11 q). 

Remark. Observe the difference between clauses (b) and ( c ), in that we 
do not put (A.a · X) II (A.a · Y) =A.a · (XII Y) (with XII Y defined 
appropriately). In other words, though we have, for p, q * p 0 , that p U q = 
A.a· (p(a) U q(a)), for p II q we do not have p II q =A.a · (p(a) II q(a)) but, 
instead, p II q =A.a· ((p(a) II q) U (p II q(a))). 

Operations "o'', "U", and "II" for nonuniform processes satisfy the natural 
extension of Lemma 2.15. · 

LEMMA 2.19. As Lemma 2.15, but now for the operations as given in 
Definition 2.18. 

Proof Left to the reader. I 

The last equation in the list of domain equations is 

P = {Po} U (A --> . ~ ( (B X P) U ( C--> P)) ). (2.4) 

We only give the definition of the metric spaces (P,,, d11 ), leaving elaboration 
of the details concerning the isometries necessary to establish (2.4) to the 
reader. We have 

DEFINITION 2.20. The metric spaces (P11 , d,,), n = 0, 1, .. ., are defined by: 
P0 ,d0 are as before, P 11 + 1 =lp0 }U(A->.9'((BXP11 )U(C->P11 ))), 

dn+ 1(p',p") is as before for p'=p0 or p"=p0 • Otherwise, d11 +1(p',p")= 
SUPaeA d11 +1(p'(a),p"(a)), where d11 + 1(X, Y) is the Hausdorff distance 
between sets induced by the distance between points d11 + 1 (x, y ), where 
d11 + 1((b,p), AC·p')= 1 =d11 +1(A.c·p', (b,p)), dn+ 1((b 1,p 1), (b2 ,p2 )) is as 
usual, and d,,+ 1(A.c · p 1 , A.c · p 2 ) = SUPcec d11(p"p 2 ). 

The operations for p E P, with P solving (2.4) are given in 
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DEFINITION 2.2 l. We only consider processes of finite nonzero degree. 

(a) po A.a · X =A.a· (po X), po X = {pox Ix E Xf, po (b, q) = 
(b,p o q), po A.c. p' = A.c. (pop'). 

(b) U: Omitted. 

(c) (Jca · X) II (A.a· Y) =A.a· ({x 11 (.lca · Y) Ix E Xf U {(A.a· X) II y I 
y E Yf ), where (b, p) II .lca · Y = (b, p II A.a · Y) and similarly for (A.a · X) II 
(b,p), (A.c · p') II (.lca · Y) = Jcc · (p' II Jca · Y), and similarly for 
(A.a · X) II (Jee · p'). 

As the last lemma of this section we claim 

LEMMA 2.22. The operations "o ", "U", "II" have the usual properties. 

Proof Omitted. I 

Having arrived at the end of this section, we summarize the main results: 

( 1) Process domains P are obtained as solutions of equations of the 
form 

(a) P={p0 }U(AXP), 

(b) P = {Po} U r.,(A X P), where . ~(·) stands for all closed 
subsets of ( · ), 

(c) P= {p0 } U (A-+ .r.,(B X P)) (idem), 

(d) P = {Po} U (A -+.~((BX P) U (C-+ P))) (idem). 

(2) Processes p are either nil (p0 ), or finite and of finite degree deg(p) 
or infinite and (topological) limit of a sequence (p< 0 )i with p 10 finite. (For 
the definitions of the pw see point (5).) 

(3) Operations upon processes are composition ("o"), union ("U"), 
and merge ("II"). They are defined as follows {U, II only for process domains 
solving (b), (c), (d); X, Y are always finite elements of.~(·)). 

(3.1) po q is defined by induction on deg(q): po p0 = p, po X = 
{poX I xEX}, po(a,q) = (a,poq), po.lca·X = 
Jca · (pa X), po (b, q) = (b,p o q), p oA.c · q = Ac· po q, 
po Jim; q10 = lim;(P o qtil). 

(3.2) pU q is defined by: pUp0 = p 0 U p = p, XU Y is the set
theoretic union of X and Y, (A.a · X) U (A.a · X) = 
A.a · (XU Y), (Jim; pw) U (lim; qUl) = limk(p 1k' U qu.1 ). 

(3.3) p II q is defined by induction on deg(p) + deg(q): p II Po = 
Pollp=p, XII Y = {xii Ylx E X} U {XllYIY E Yf, 
(Jca · X) 11 (.lca · Y) = A.a · ( {x II A.a · Y I x E X} U !.lca · X II 

YI YE X} ), (a,p) II Y = (a,p II Y), Y II (a, p) = (a, Y II p), 



84 DE BAKKER AND ZUCKER 

(b, p) II (A.a · Y) = (b, p II A.a · Y), and similarly for (A.a · Y) 
II (b,p), (A.c · q) II (A.a· Y) = -1.c · (q II (-1.a • Y)), and 
similarly for (A.a· Y) II (A.c· q), (lim;p(/)) II (limjqUl) = 
limk(p<kl II q<k'). 

(4) The above operations are continuous and satisfy the usual 
properties such as commutativity (U, II), associativity (a, U, II), etc. 

(5) With respect to each of the equations (a) to (d), p~"l =Po• 
n = 0, 1, ... , and, for p * p 0 , p<Ol =Po· 

Moreover, for n = 0, 1, ... , 

(a) p<n+ Il =(a, q<n», where p =(a, q), 

(b) p<n+Il={(a,q<nl)l(a,q)Ep}, 

(c) p<n+I) =A.a· {(b,q<nl)I (b,q)Ep(a)}, 

(d) p<n+ I)= A.a· ((b, q<nl) I (b, q) E p(a)} U {.Ac· q<nl I A.c · q E p(a)} ). 

3. FLOW OF CONTROL: MERGE WITH ITERATION OR RECURSION 

In this section we introduce the first two of the series of languages studied 
in Sections 3-8. Both languages have elementary actions, sequential 
composition, nondeterministic choice, and (arbitrary, i.e., not synchronized) 
merge. Language Yfi has moreover iteration ( * ), and language ..'.!'~ has 
recursion. We shall use A, with typical elements a, for the class of 
elementary (atomic) actions. In later refinements of the theory, actions a will 
be replaced by assignment statements. Throughout the paper, we use a self
explanatory variant of BNF for syntactic definitions. 

DEFINITION 3. I. The language .:fa (regular flow of control + merge) with 
elements S, is defined by 

For the definition of the semantics of :fa we use a domain of uniform 
processes P0 • We assume that its constituent set A is a (possibly infinite) 
alphabet such that for each elementary action a E A there is a corresponding 
a EA. Let, moreover, t: be the empty word (with respect to the alphabet A). 
We give 

DEFINITION 3.2. The domain P0 is given as solution of 

. P0 = {p0 } U.~((A U {t:}) X P0 ). 



DENOTATIONAL SEMANTICS OF CONCURRENCY 85 

Remark. Properly speaking, this requires adaptation of the definitions of 

Section 2 for uniform processes with the convention that a EA U ji; j, 

together with natural definitions such as: a 1 =a, if a 1 and a2 are both t:. or 

denote the same element of A. 

We now define the semantics of by providing a mapping /I: j 11 -· P,.. 

Thus. /I determines for each language element S a corresponding process p. 
(Mappings such as /I are often called i-aluations in denotational semantics. 

They serve to associate meaning (mathematical objects) to the syntactic 

constructs in a certain class (here J.,). and in this way embody the heart of a 

denotational semantics definition.) 

DEFINITION 3.3. The valuation /I: J 0 _. P 11 is defined by 

(a) //(a)= j(a.p0 )f. where a corresponds to a. //(skip)=: p., 

(b) #'(S 1 :S2)= #'(SJo #'(Si). #(S 1 US,)= S1 )U #(S 2 ), 

#(S1llS2)= #(S,)11 #'(5 2) 

(c) /l(S*)=limipi. where (p0 =p0 and) 

Remark I. Since the elementary actions are left unspecified. there is not 

much we can do with them in the semantic definition. Therefore, we simply 

map them onto some corresponding elementary process. 

Remark 2. The simplicity of clause (b) is a reward of our preparatory 

work in Section 2. Operations upon (uniform) processes "o ", "U". "II'' have 

become available, and they can be used directly to model the corresponding 

syntactic composition rules. 

Remark 3. In order to understand the definition of S*, recall the 

equivalence S* = S; S* U skip. Now define a mapping T: P0 --> P0 by putting 

T= ).p ·((po. #'(S)) U l <t:, p 0 )} ). Here l (t:,p0 ) l is the dummy process, i.e., 

the semantic equivalent of the syntactic skip action. It follows from general 

properties of the operations "o '', "U'' (see Appendix B) that the mapping T is 

contracting, viz. that, for all p', p". d(T(p'). T(p")) ~ ~d(p'.p") (this uses 

that . #'(S) =F p 0 for all S). By a classical result in metric topology (the 

Banach fixed point theorem) we may then conclude that the sequence 

p 0 , T( p 0 ), T 2 ( p 0 ), ••• , is a Cauchy sequence which converges to a limit p 

satisfying p = T( p ). (In fact, this limit is independent of the starting process 

p 0 , and yields the unique fixed point of T.) 

EXAMPLE l. .#'(a 1 ; a2 ) = .#'(a2) 0 .R'(a,) = j(a 2 , p 0 )[ o {(a,, Po)f 

{(a" {(a2, Po)f )f. 
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EXAMPLE 2 .. #'((a1 ; a 2 ) II (a 3 ; a4)) = {(al' {(a2, Po)})} II {(a3 , 

{(a4,p0)})} = ··· = {(al' {(a2, {(a3, {(a4, Po)f )}), (a3, {(a2, {(a4, P0)}), 
(a4, {(az, Po)})})}), (a3, ... )f 

( cf. the example after Definition 2.14 ). 

EXAMPLE 3 . .Af'(a*)=p=lim;p;, 
( (e, Po)}. 

Hence, 

p={(e,po), 

where P;+ 1 =(P; 0 ((a,p0 )})U 

(a, { (e, Po>. 

(a, { (e, Po), 

(a, ... )})})}. 

In a picture, .Af'(a*) is described by 

a 

a 

a 

We observe that a* means executing a zero or more times, including infinite 
repetition of a. 

We next turn to the recursive case. We shall employ the notation of theµ
calculus for recursion (see, e.g., De Bakker, 1980, Hitchcock and Park, 
1973 ). For the reader who has not seen this before, the following explanation 
may help: Think of a parameterless recursive procedure Q in some Algol-like 
language. Q has a declaration of the form, say, Q <= .•. Q ... Q ... , where 
... Q ... Q ... , is the procedure body with two recursive calls of Q. We note that 
the procedure variable Q is bound in this declaration (systematically 
renaming it would make no difference). A call of Q in the main program 
corresponds in the notation of the µ-calculus to the statement µi;[ ... c; ... i; ... J, 
where the bound variable ~ is from some alphabet of procedure variables $'. 
In this way, procedure declarations disappear, and inner calls are taken care 
of by the bound variable mechanism. 

DEFINITION 3.4. Let .;t,·, with elements c;, be the set of procedure 
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variables. The language (general recursion with merge) is defined by: Let 

SEY;. Then 

S : := a I skip I S 1; S 2 I S 1 US 2 I S 1 I[ S 2 i ~I .u~! S ]. 

For the semantics of y·'ah 1 we take process domain P 1 equal to P0 . In 

order to handle the variables ~. we introduce an environment E, with 

elements 17, defined by E =, '% -+ P 1, and we define the meaning of a 

statement S E Y; with respect to E. In other words, we take 

. 11: Y; -+ (E -• P 1 ); its definition is given in 

DEFINITION 3.5. l1(a)(17) = j(a,po)f. #'(skip)(ry) = l\t:.po)f. 

(b) l1(S 1 ; S 2)(17) = l1(S 2)(17) o ll'(S 1)(1/). 
l1(S 1 U S2)(17) = l1(S 1)(17) U l1(S 2)(17). 

ll'(S1 II S2)(17) =.R'(S1)(17) ll.A'(S2)(17). 

(c) 11(~)(17) = 17(~), ll'(µ~IS])(17) = lim; P;· where (p0 = p0 and) 

P;+ 1 = j(e, l1(S)(111P;R}))}. 

Remark 1. Clauses (a) and (b) are exactly as in Definition 3.3. apart 

from the extra argument 17 which is just carried along. 

Remark 2. In the definition of te meaning of the µ-construct we observe 

a complication. The reader who is familiar with the treatment of (sequential) 

recursive procedures in denotational semantics would probably have 

expected the definition p 1+ 1 = .ll'(S )(11 j P;g} ). (Note that this specializes to 

the previous treatment of iteration by taking S* =µ~[S;~Uskip].) This 

may work as well, but we have not been able to prove that, defining the 

mapping T' = Jcp ·. #'(S)(17j p/~} ), the sequence (T,;(p0 )); is a CS for 

arbitrary SE .s1;. (Bergstra and Klop. 1982 prove that (T,;(q)); is a CS for 

each q. However, the resulting limit depends. in general, on q, and the 

problem remains which q to choose.) Therefore, we have introduced an extra 

step in defining T= Jcp · j(t:,uf(S)(17jp/~}))}. This indeed ensures that T is 

contracting and, as before, lim; T;(p0 ) exists and equals the unique fixed 

point of T. Operationally, the c;-step may be seen as reflecting the action of 

procedure entry. By way of example we obtain that #'(u~i~J)(17) = 
j(c;, {(t:, {(e .... )})})} (an infinite sequence of empty steps); cf. also the 

discussion in De Bruin ( 1981 ). 

In Definitions 3.3 and 3.5 we have shown how to associate a process p 

with statements SE .'.10 or SE :.;; . In case one is interested only in the set of 

all possible sequences of elementary actions determined by executing 

S-rather than in its meaning p = ll'(S) as a whole; note that a process 

contains more information than the set of its constituent paths-we apply a 

new (unary) operation upon process p, determining its yield p 1 • For this, we 

need the auxiliary definition of path of a process. 
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DEFINITION 3.6. Let p E P 0 , and let a, a; EA U {c: }. A path for p is a 
(finite or infinite) sequence(*): (a,,p,), (a 2 ,p2), ••• , (a;,P;),. .. , such that 

(i) (a 1,p1)Ep and (a;+ 1 ,P;+ 1)Ep;, i= 1, 2, ... , 

(ii) sequence ( *) is either infinite or, when finite, terminates with 
(an,Pn) (n~ 1), withpn=Po· 

Remark. Note that, by this definition, Po has no paths. Moreover, note 
that we do not allow a finite path terminating in (a,,, p,,) with p,, = 0. (The 
empty set is also a process!) 

Now let Ax =ctr A* u A",, i.e., A 00 is the set of all finite (possibly empty) 
and infinite sequences of elements in A. Also, let "·" denote concatenation of 
words over A. We put 

DEFINITION 3. 7. p + c:; A''- is defined to consist of all words w EA w such 
that either w =a,· a 2 • ••. ·a,,, where (a, ,p,), (a 2 , p 2), ••• , (a,,,p 11 ) is a finite 
path for p, or w =a 1 • a 2 • ••• • a; · ... , where (a 1 , p,), (a 2 , p 2), ••• , (a;, p;), ... , is 
an infinite path for p. 

Remark. Remember that a; EA U \c: }. Thus, the a; occurring in the 
above equations for w may disappear in the resulting concatenation in case 
a;= c. 

EXAMPLES. Pt=0, \(t:,po)}+ = {c:f, {(a,, {(c:, {(a2,Po)})})}+ ={a,. 
e · a 2 } = {a,a2 }, {(ap {(a 2 ,p0 )}, (a,, {(a 3 ,p0)})})+ ={(a,, {(a 2 ,p0), (a 3 , 

Po)f)}+ = {a,a 2 ,a 1a3 }. 

From the last example we conclude that, for p, * p 2 , we may have that 
pi = p; . We may define p 1 ~ p 2 ~ ctr pi = p; , and study properties of this 
equivalence relation. (A more refined equivalence relation is Milner's obser
vation equivalence, cf. Milner, 1980.) 

Finally, one may use the yield operation in the semantics of languages 
such as Y:~ or Y~, by investigating the mapping I'(+ defined by 
. I'!+ (S) =. l'l(S)+. This mapping obtains the sequences of elementary 
actions prescribed by the execution of S. For example, .l'l+((S 1 ;S2)U 
(S 1 ; S 3)) = . ..#'+ (S 1 ; (S 2 US 3)), whereas . ..#' differs on these two arguments. 
For languages such as !zf'o, y;, consideration of the yield .. ..#'(S) + is probably 
not very fruitful. Later (Section 5) we shall encounter languages where the 
role of the yield operation is more important. 

4. SYNCHRONIZATION 

We add a synchronization construct to the language Y:~, leaving to the 
reader a similar extension of Y;. This section owes much to the pioneering 
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studies of Milner (1973. 1979. 1980; l\.iilner and Milner, 1979) on the nature 

of synchronization. 
We introduce the language / 2 as an extension of ..1,, by adding a class of 

synchronization commands C. C. Synchronization commands always appear 

in pairs such that C corresponds to C (and C to C). Before trying to explain 

their meaning. we first give the syntax for _1 1 • 

DEFlNIT!ON 4. l. The language .1 1 • with elements S. is defined by 

In order to obtain some understanding of the meaning of these 

synchronization commands. let us take S' = S 1 ; C; S 2 • S" = S 3 ; C; S 4 • and 

let us consider (S' Ii S")\C. Its intended meaning is that the merge of S' and 

S" is synchronized by the pair C. C such that. instead of the full merge of 

S 1 ;S 2 with S_1 ;S4 , we only retain (S 1 jiS 3 ); (S 2 1S4 ). The role of the 

restriction operation S \ C may be phrased roughly as deleting from the 

execution of S all execution sequences which contain C and C in a way 

where synchronization failed. In an example such as S' =a 1 ; C; a 2 , 

S" = a 3 ; C; a 4 • one such failing sequence is. e.g .. a 1 ; C; a 2 ; a 1 ; C; a 4 • 

For the definition of the semantics of we introduce the domain P 2 as 

given by the equation 

(4.1) 

Here. as before, for each a E there is a corresponding a E A. MoreoYer. 

for C. C E ./ 2 there are corresponding elements )'. y in r. An arbitrary 

element of the set Au FU jc f will in the sequel be denoted by /J. 

Remark. Processes in P2 are close to Milner's synchronization trees. An 

important difference, however, is our use of sets rather than multisets. for the 

collection of '"successors" of the ''nodes" in a process. 

We now give 

DEFINITION 4.2. The valuation ff: Y 1 --> P2 is given by 

(a) ff(8i) = 1(a,p0 )f, where a corresponds to a. 
ff( C) = 1 (}'. p 0 ) f, where }'corresponds to C. 
/l'(C) = j(y.p0 )f. where ycorresponds to C. 

(b) ff(S 1 ;S2)= /l'(S 2)0./l'(S 1 ). 

tf'(S 1 U S2) = .#'(S 1)U #'(S 2). 

ff(S, ii S2) = #'(S 1) 11 ff(S2 ); for "II" see Definition 4.3. 
#'(S\ C) = tf'(S) \ y; for''\' see Definition 4.3. 
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(c) .R'(S*)=lim;P;, where (p 0 =p0 and) 

P;+ 1 = (P; 0 · R'(S)) U {(1:, Po) f. 

This definition assumes a refined definition of the merge operation "'II" 
between processes, and a (new) definition of p \ y. These are provided in 

DEFINITION 4.3. (a) Let p 1 llu p 2 be a notation for the merge of two 
uniform processes--over the set AU I'U {1: f-as defined in Section 2. We 
define p 1 II p 2 , for P1> p 2 of finite nonzero degree, by XII Y = (X llu Y) U 
{(1:,p'llP")l(y,p')EX, ("i,p")E Y, for corresponding y,y and arbitrary 
p',p"f. 

(b) Po\Y=Po 
X\y = {<fJ,p'\y) I <fJ,p') EX, f3 =I= y, Yf, deg(X) < oo 
(Jim; pU))\y = Iim;(p< 0 \y). 

Note how the restriction operation p \ y deletes from process p all pairs 
(y, p') or (Y, p') which are element of p or one of its subprocesses. 

As an example of Definitions 4.2 and 4.3 we consider the programs 
S'llS" and (S'llS")\C, where S'=a1 ;C;a2 and S"=a3 ;C;a4 • We 
obtain for. lf(S 1 II S 2) the process depicted in 

a 

Here the leaves marked by 0 contain trees which disappear as the result of 
the \ C operation. Thus, all failing attempts at synchronization are deleted, 
and the result only contains a;-steps with two 1:-steps interspersed. 

We conclude with a few words on the yield operation in this case. For 
p E P 2 , p+ determines a set of (finite or infinite) paths over the alphabet 
A Ur. In case p + s; A"'", one might call p proper. For example, for p such 
that p = #'(S\ C), where synchronization in S only uses C, C, we expect 
that p + s; A (J:j. This expresses that unsuccessful attempts at synchronization 
do not contribute to p +, since there is no contribution top+ from paths in p 

·terminating in the empty process (cf. the remark following Definition 3.6 ). 
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5. STATES AND ASSIGNMENT 

Until now, our languages contained only elementary actions the meaning 

of which was left unspecified. We next introduce the notion of state, extend 

the syntax of our languages with assignment and tests, and discuss the 

corresponding extension for the processes used in their semantics. First we 

present some preliminary definitions, introducing simple expressions, tests, 

and their meanings with respect to some state. 

DEFINITION 5.1. (a) Let Var, with elements x, y,. .. , be the class of 

simple variables. Let V be some domain of values ( 1 might be an example) 

and let .E=ctrvar-> V. Let W= {tt,Jf} be the set of truth-values. 

(b) Let v E V, a E .E, x E Var. We define the variant notation, turning 

state a into a state a{v/x}, by putting 

a{v/x}(y) = v, x=:y, 

= a(y ), x i=. y. 

( c) We introduce the classes Exp, with elements s, t, of expressions 

and Test, with elements b, of logical expressions. We assume given 

valuations 

":f·: Exp-> (.E-> V) and "JP': Test-> (.E-> W). 

(The precise nature of Exp and Test does not concern us here; all we require 

is that their evaluation always terminates. In a specific instance, taking, e.g., 

l for V, one might think of expressions such as x + (y * z), and tests such 

as x > y + z.) 

We continue with the definition of the syntax of language .:L'j. It extends 

'./~ with assignment and tests. Synchronization will reappear in Section 6 

(this postponement is only for reasons of presentation). 

DEFINITION 5.2. The language Y'~, with elements S, is defined by 

S ::= x := s I skip I b I S 1 ; S2 I S 1 U S 2 I S 1 II S2 IS* Ix:=? 

Remark 1. The intuitive meaning of x := s, skip, S 1 ; S 2 , S 1 U S 2 , 

S 1 11 S 2 , S * should be clear. 

Remark 2. A test statement b may succeed or fail, depending on 

whether the test b evaluates to tt in the current state. More familiar 

constructions such as if b then S 1 else S 2 fi or while b do S od are expressed 

in~ by (b;S 1)U(-.b;S2 ) or (b;S)*;-.b, respectively. 
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Remark 3. x := ? is the random assignment, introduced not so much 
because it is our favorite language concept, but rather to illustrate that 
semantics using processes can deal with it without any technical problems 
(contrary to the situation in traditional denotational semantics, cf. Apt and 
Plotkin, 1981; Back, 1980; De Bakker, 1980; Dijkstra, 1976). 

For the semantics of st; we introduce the class of processes P3 • This 
involves an essential extension of the processes as considered up to now, in 
that a process p (=l=p0 ) is now a function depending on :E. 

DEFINITION 5.3. The class of processes P 3 is defined as solution of the 
domain equation 

(5.1) 

We observe that (5.1) is an equation for a domain of nonuniform processes 
of the type considered in Section 2, Eq. (2.3 ). By the general theory as 
developed there, operations Pi o p 2, Pi U p 2, p 1 II p2 are again meaningful (the 
latter, for the moment, without the synchronization refinement). 

We define the valuation J(: ~---+. s?; in 

DEFINITION 5.4. The semantics of st; is given by 

(a) .L(x := s) =A.a · { (a{:Y(s)(a)/x },p0 ) }, ..A'( skip)= A.a · { (a,p0 ) }. 

(b) .L(b)=A.a. if'.W"(b)(a) then {(a,p0)f else 0 fi. 

(c) .L(S1; S 2) = .L(S2) o ..A'(Si), .Af(S i U S 2) = .L(S i) U .L(S 2 ), 

.f(S1 II S2) = .L(S1) !I .L(S2)· 

(d) .L(S*) = limi Pi• where (p0 =Po and) 

Pi+1 = (P; 0 .Af'(S))UA.a · {(a,p0 )f. 

(e) .L(x :=?)=A.a· {(a{v/x},p0 ) Iv E V}. 

Remark 1. Note how the dummy process, previously represented by 
{ (e, p 0) }, is now replaced by A.a · {(a, p 0 ) f. 

Remark 2. Note that, in clause (e), the set X= {(a{v/x},p0 ) Iv E V} is 
a subset of P 3,1 =df {p0 } U (.E--+ 3'(1: X {p0 } )); that X is closed requires no 
more argument than the observation that all .subsets of each of P3 ,k (where 
P3,o={Po}, P3,k+1={Po}U(.E--+Pc(l:XP3,k)), for k~O) are (trivially) 
closed: distances between points are at least 1/2k-I (for k ~I), and no 
nontrivial CS exists in P3,k. Thus, we see how unbounded nondeterminacy 
fits smoothly into our theory. It should be remarked, however, that the 
continuity problems caused by unbounded nondeterminacy in classical 
denotational semantics are now transferred to the same problem for the yield 
function (to be defined in Definition 5.6). 
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£.\:ample I. 

#(x :=0; y :=x + 1)=),o · j(o{O/xf. ),a· j / (x + 1)(6)/y~.p.,' ;!. 

Example 2. 

, . .?'((x := O; y := x + I) II x := I) 

=Aa· j(o{O/xf.M· {(6{7"(x+ 1)(6)/yf,p0 /f)f Pa· {(ajl/xf,p0 '1 f 

=···=Ao· { < 0{1/xf.M-. {(6jO/xf,M· 1(aj1"(x + l)(a)/yf,p0 )f f;>, 

(o{O/xf,M· {(a{l/xf.M· {(a{f'(x+ l)(a)/yf,p0)f\f\ 

(aj0/xf,M· {(aj1'(x+ l)(a)/yf,A.a· {(ap/xf,p0 )f>f>/. 

Example 3 . 

.?'((x = y ); z := I U (x =!= y ); z := 2) 

=AO · (if o(x) = a(y) then { (o. M · {(a{ 1/z f, p 0 ) l) f else 0 fi U 

ifa(x) =!= a(y) then { (o, M · { (6{2/z f, p 0 ) f) f else 0 fi ). 
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Contrary to the situation in the previous sections, it is now of some impor
tance to study the notion of yield for p E P 3 • We need the following 
definitions: 

DEFINITION 5.5 (paths for (o,p)). A (finite or infinite) sequence 

(0 1, P 1), (a 2 ,p2 ), .•• , is a path for (o,p) whenever 

(i) (a 1 ,p 1)=(0,p), and (o;+i•P;+ 1)Ep;(a;), i= 1,2, ... , 

(ii) the sequence is either infinite or, when finite, terminates with 

(on, Pn), n?;?, I, such thatpn=Po· 

The yield of a nonuniform process p may intuitively be understood as 

follows: Supply p with an argument a. The pair (a,p) determines the set of 
all paths for (a,p). Terminating paths have leaves a which are included in 
the output set, nonterminating paths are reflected by the appearance of l in 
the output set. Here l is the undefined state corresponding to nonterminating 
computations. Its role is fundamental in traditional denotational semantics, 

but rather less so in our theory. 

DEFINITION 5.6. For p E P 3 we define p +:I-> .?(.EU { l f) by putting 
Pt =AO· 0, and, for p=/=p0 , p+ =AO· ((a,p))+, where (o,p)+ is given by 

(a, p) + = ja I there exists a path for (a, p) terminating with (a, Po) f 

U (if(a, p) has infinite paths then 1 J_ f else 0 fi). 
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EXAMPLE. Consider the processes Pt= .. A'(x := O; Y := x + 1) and 
p 2 = .. #'((x := O; y := x + 1) II x := 1) discussed in the example following 
Definition 5.4. First consider p 1 • The pair (a, Pt) has as (only) path the 
sequence (a,p 1), (ajO/x}, M · Wl1''(x + l)(a)/y}, Po)f>, (a{O/x}{'l'(x 
+l)(a{O/x})/y}, p 0 ), and we see that Pt=A.a · {a{O/x}{l/y}}. For Pi we 
obtain in a similar fashion pi=A.a·{a{O/x}{l/y}, a{l/x}{2/y}, 
a\ l/y) j l/x} }. 

We now consider what happens when we extend Y) with recursion. We 
only supply the pertinent definitions which should be sufficient for the reader 
who has understood Y; . 

DEFINITION 5.7 (recursion). (a) Let SE 'l~. We define (omitting 
x := ? for simplicity) 

(b) Let P4 =dfp3 , and let E=l-+P4 , with r;EE. We define 
#': .!4 -+ (E-+ P4 ) by 

#'(x := s)(r/) =A.a · { (a{1' (s)(a)/x }, p 0 ) }, 

. #'(b)(r;) =A.a· if11(b)(a) then{(a,p0 )} else 0 fi, 

. #'(S,; S2)(r;) =. #'(S2)(77) 0 . #'(St)(r;), ... , 

' R'( ~)( r;) = r;( ~), 

#'(µ~[S])(r;) =limp;, where (p0 = p0 and) 
I 

P;+ t =A.a· {(a,. #'(S)(IJ { p;/~})) }. 

Thus, apart from the use of A.a · {(a, ... )} instead of ( (i:, ... ) }, as we saw in 
Definition 3.5, the definitions are a straightforward continuation of the 
preceding theory. 

6. STATES, ASSIGNMENT, AND SYNCHRONIZATION 

We now extend the language Y; introduced in the previous section with 
synchronization commands. We proceed in two stages: First, we add to Y; 
commands C, C as considered previously in Section 4. Second, we furthe; 
extend .'.!} with guarded commands and, in particular, with guards 
establishing synchronization. (For simpliciy, we return to .'.!~ rather than 
extending .'.!~.) · 

DEFINITION 6.1 (y:; with synchronization). The language Yi with 
elements S, is defined by 
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s ::= x := s I skip I b I SI: S2 I SI us, 1 SI II s, 1 S* I c I Cl 
S\ 1 CI S\ 2 Cl.d. 
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We observe two restriction operations \ 1 and \ 2 • The former is the direct 
counterpart of the \--0peration in the uniform case (Section 4): the latter is 
aimed at modelling deadlock. In our interpretation, this occurs in a situation 
where a failing attempt at synchronization has no alternative. This 
phenomenon is then signalled by the appearance of the dead process in the 
result. The statement A is the abort statement. We assume from now on that 
E contains the special dead state 6. 

Next, we introduce the process domain P,. 

DEFINITION 6.2. Process domain P, satisfies the equation 

We define the semantics of :/5 in 

DEFINITION 6.3. The valuation ff:::;;---> P 5 is given by 

j((x :=s)=Aa · ifa=6then j(6,p 0)f else j(aj1 (s)(a))xf,p0)f fi 

.. #'(skip) = 1a · 1 (a, Po) f 

r!'(b) =la · if a= o then j (6, p 0 ) f else if:ff (b )(a) 
then I (a, p 0 ) f else 0 fi fi 

' tf'(S I ; s i) =' R'(S 2) 0' R'(S I),' r!'(S I us 2) = r!'(S I) u' R'(S 2), 

.. /t'(S 1 II S 2 ) =. R'(S 1) 11.R'(S 2 ), with "II" defined below 

. /t'(S *) = Jim Pi, 
i 

with (p0 =Po and) 

P 1+ 1 =(p1 °.R'(S))UAa· j(a,p0 )f 

. tf'(C) = 1a ·if a= 6 then 1 (6, Po) f else 1 (y, Po) f fi, 

and similarly for. /t'(C) 

. R'(S\ 1C) =. R'(S)\;}', with \ 1 to be defined below, i= I, 2, 

.r!'(.d)=Aa · i(b,p0 )f. 

The definitions of "II", "\ 1" are given in 

DEFINITION 6.4. Let (J range over EU r. We only give the definitions 
for p, q of finite nonzero degree: 

h4J,...54 I 2 ·7 
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(a) (Jca · X) 11 (Jco · Y) 
=A.a . ( {x II Jca · YI x EX} U {Jca · XII Y I YE Yf 

U {<a,p' 11 q') l<y,p') EX, (Y, q') E Yf ); 

here (jJ,p') II Aa · Y = (jJ,p' II fo · Y), A.a· XII <JJ, q') = <JJ, Aa ·XII q') 

(b) P\1Y=Aa · {(jJ,p'\1Y) I <JJ,p') Ep(c;),f3i= y, Yl 
P \ 2 Y =AO · { (/J,p' \ 2 y) I <JJ,p') E p(c; ), f3 i= y, Y}(=df X) 

U (if(p(a) * 0) /\ (X= 0) then {(o,p0 )} else 0 fi) 

We see that in S\ 1 C, failed attempts at synchronization through C, Care 

not signalled (pairs (y, p' ), (Y, p") are simply deleted), whereas in S \ 2 C the 

failed attempts at synchronization are signalled when they are without alter

natives (i.e., in case the set X, obtained from p(o) by deleting pairs (y,p'), 
(y,p"), equals 0). 

EXAMPLE I. We determine .4(S), where S = (x := O; C; x := 1) II 
- I df (y:=2;C;y:=3)\ 2 C. Let .4'(x:=lly:=3))= p. Then .R'(S)= 

(omitting dead states for simplicity) 

A(J· {(a{O/x},M· {(6{2/y},AO· {(a,p)})}), 

(ap/y},M· {(a{O/x},M· {(a,p)})})} 

Here the A.a· {(a, ... )} terms result from the synchronization of the (y,p'), 
(y, p") terms; also, all pairs (y, ... ), (y, ... ) are deleted by the restriction 

operation (no dead states are introduced; \ 1 and \ 2 are indistinguishable in 

this example); cf. also the example after Definition 4.3. 

EXAMPLE 2. Let 

Then 

P1 ;;;Aa· {(oi'M· {(y,pD,(a 3 ,p0 )})}, 

P2 ;;;Aa· {(01,M· {(y,pD}),(oi,Po)} 

P1\1Y=P1\2Y=Aa · {(a1'M· {(a3 ,Po)})}, 

p 2\ 1y =Ao· { (0 1 , M · 0), (a 3 ,po)}, 

P2\ 2y=Aa · {(apAa· {(O,p0)}), (a 3 ,Po)}. 

We see that in process p 2 its subprocess M · { (y, p;)} has no alternatives for 

synchronization through y; hence, deadlock is signalled as the result of 1 

restriction. 
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EXAMPLE 3. Consider the program S =((CU (x :=I C)\ 2C. Let 

a1 = ap/x f. We obtain for #'(S) (again ignoring dead states) 

(..1.a · {(}',Po), (a PPoJ f II M · l (y, Po) ll\1 )' 

=A.a· {(a,p0 ), (y, M · {(f,Po)f ), (a 1. ),a· {(f.Pu>f \ 

(Sda · {(}'.Po), (a, ,po)f f \ii' 
=A.a· { (a,p0 ), (a i' M · 1 (o,p0)f) f. 

We see that S amounts to either the skip statement, or setting x to l after 
which deadlock occurs. 

We conclude this part with a few words on p + for p E P5 • Let. as usual. fJ 
range over EU r. We say that a (finite or infinite) sequence ( * ): <fJ 1 , p 1). 

(j32 ,p2), ••• , is a path for (a,p) whenever 

(i) (jJ1,P1)=(a,p),fJiEE and (jJi+i•Pi+i)Ep;(/J;), i= 1,2, ... , and 

(ii) the sequence ( *) is either infinite or, when finite. terminates in 

(jJn,Pn) with Pn =Po or {J,, Er. 

We now define p +: E--> .:f'(E U ru { J_ f) by putting p; =A.a · 0 and, for 
pi= p 0 , p+ =A.a· ((a,p) +),where (a,p) + is given by 

{/Jn I there exists some terminating path for (a,p) with (jJ,,,p,,) 

= (jJn,Po) or (jJ,,,p,,) = (y,p,,)f 

U (if (a,p) has an infinite path then { 1 f else 0 ft). 

Note that the definition of p + assumes the possibility of y-leaves in the 

process tree. Normally, this will only occur as the result of some error, since 

suitable use of the \ i operations will have deleted all occurrences of any y 

from processes p obtained as meaning .. .f'(S) of some SE ::t;. 
We now turn to the consideration of guarded commands and, in 

particular, of synchronization through guards. We introduce Y~ in 

DEFINITION 6.5 (Y; with guarded commands). The language .'./~ 1s 

defined by 

S := x := s I · · · I A I ( · · · as in Definition 6.1) 

if b 1 --> S 1 0 · · · 0 b n --> Sn fi I do b 1 --> S 1 0 · · · D b n --> Sn od I 

if b 1 ; C 1 --> S 1 D · · · D b n ; C n --> Sn fi \ 

do b I ; c I --> s l D ... D b n; c n --> s n od 

The constructs if· .. fi and do · · · od with simple tests as guards are as in 
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Dijkstra (1976); the constructs b;; C;-+ S; (synchronization through guards) 
are a simple case of Hoare's CSP (see Section 7). The meaning of the first 
two constructs is easy to define: We take P 6 = P 5 , and define L: ~-+ P 6 by 
(omitting the clauses which are as in Definition 6. 3) 

DEFINITION 6.6. (a) L(if b1 -+ S10···0bn--+ Snti) =""(bi; S 1 
U ... U bn; Sn U lbl /\ "' /\ "lbn;A) 

(b) ""(dob1-+S1D .. ·Dbn->Snod)=L((b1;S1U ... Ub 11 ;S11 )*; 
Clb1 /\ · · · /\ "lbn)) 

Remark l. Note how, for the if··· fi command, if all guards fail L1 is 
executed; abortion is thus modelled, just as deadlock, by delivering the dead 
state. 

Remark 2. Definition 6.6(b) expresses that do · · · od is equivalent to 
While b l V " • V b n do b l ; SI U " ' U b n ; Sn Od. 

Remark 3. For a remark on a possible different interpretation of b;-> S; 
in guarded commands see Remark 8.2. 

The definition of the other two cases is more involved. 

DEFINITION 6.7. 

1 (if b I ; C 1 --+ S 1 0 · · · 0 b n ; C 11 -t S 11 fi) 

=A.a · ifa = o then { (o, p 0)} else 

(if:W'(b 1)(a)then {(y1,L(S1))}else0fiU··· U 

ifrF(bn)(a) then {(yn,.A'(Sn))} else 0 fi U 

if7F(lb1 /\ ··· /\ lbn)(a}then {(O,p0)} else 0fi)fi. 

Definition 6.7 is perhaps best understood by discussing an example. We use 
a slight variation on the official syntax, by allowing an if · · · fi construct with 
both b; C and b-type of guards. Also, the guard true; C is abbreviated to C. 
Let 

S 1 = (ifC--+ skip D true-> x :=I fi II x := 2)\ 2C, 

S 2 = (if true--+ CD true-> x := I fi II x := 2) \ 2 C. 

We show that the deadlock behaviour of these two cases differs. In fact, 
putting a 1=a{l/x}, a 2 =a{2/x}, p 6 =Aa· {(a,p0 )}, p 1 =Aa · {(a 10 p 0)}, 

P 2 =A.a· {(a2 ,p0 )} (and ignoring the case a= b for simplicity), we obtain 

c/.t'(S1)= (/..a. {(y,p.), (a,p1)} II P2)\2Y, 

.£(S 2) =(A.a· {(a, M · { (y, Po)}), (a,p1)} II P2)\ 2 Y· 
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Hence, 

.#'(S1) =Aa · l<Y,P.11 P2), (a,p1 llP2), 

Thus, 

(a2),M· {(y,p.).(a,p1>f)f\2}1 

#'(S2) =A.a · {(a, M · {(}'.Po)} II Pi). (a,p1 II P2), 

(a2, A.a· {(a, M · {(y,po)f ). (a.p.)f >f \1Y 

=Aa· {(a,M· {(y,p2),(a 2,M· {(y,p0 )})}),(a,p1ll P2), 

(a2,M· {(a,M· {(Y.Po)f),(a,p.)f)f\2Y· 

( #'(S 1) shows no deadlock) 

.#'(S2)=Aa· {(a,M· {(a2,AG· {(c5,p0)})}),(a.p1llP 2), 

(az. A.a· {(a, M · l<1'.po)f ), (a,p1)f )f 

(. #'(S 2) has two possibilities of deadlock). 
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Some figures may clarify the situation. Let s be short for skip (or, 
equivalently, for true). S 1 may be illustrated as 

A 
sl Ix:=l 

S X:=l 

and S 2 as 

A 
cl I x:=l 

II 

x :=l 11 

c c x:=~ x :=2 

In the first illustration the two branches labelled C both have an alternative. 
In the second, there are two C-branches without alternative which are turned 
into dead branches by \ 2 C. 

We conclude this section with the definition of the semantics of the 
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construct (* ): do b1 ; C 1 -tS 1 0 · · · 0 bn; Cn -t Sn od. Defining the meaning of 
(*) turns out to be fairly involved; at least, we have not been able to come 

up with a simpler treatment. The problem we have is best explained by 

comparing statements do b -t Sod and do C-t Sod. For the former we have 

the equivalent construct (b; S)*; lb - iterate b; S as long as b is true, and 

for the latter we would like to be able to write, by analogy, something like 
(C; S)*; IC. This is not well defined in ~· However, it suggests the 
following approach for dealing with ( * ): Introduce, besides synchronization 

elements y, y E r also elements ly, If in a set IF. The function of ly or ly 
is, roughly, to express commitment not to use the possibility of a y, y 
synchronization (and, instead, deliver the equivalent of a skip) statement. We 
(once more) redefine"ll·" The essence of the new definition consists of (i) 
("ly, ... ) encountering some (y, ... ) gives no contribution to the result, and (ii) 
remaining occurrences of ly in the result are turned into skip steps by the 
restriction operation \ 2 • By way of example we consider the merge of the 
following two sets (returning for a moment to the uniform case for easier 
notation): 

(6.1) 

We want the outcome of ( 6.1) to consist of the following parts: 

(i) (y, ... ) and (ji, ... ), to be deleted by \ 2 y; 

(ii) (t:, (p 1 II p 2)\ 2 y), achieved as a result of succesful 
synchronization between (y,p 1) and (Y,p2); 

(iii) (ly, l<J3,p0)}), <ft, {(y,p 1), (ly,p0 )}) as intermediate result, 
turned by the redefined \ 2 into 

(iv) no pairs as result of the merge of (ly,p0 ) with (Y,p 2). 

Formally, the various parts of the definition are collected in 

DEFINITION 6.8. (a) P~={p0 }U(L'->Pc(.EUI'UII')XP~)). 

(b) For p, q E P~ we define p II q (for p =A.a· X, q =A.a. Y of finite 
non zero degree) as follows: Let /3 range over .E U r u IF. 

(A.a · X) II (A.a · Y) 

=A.a· ({x II A.a· Y) I xE X} U {(A.a· XllY) IY E Y} U {(a,p' 11 p")I 
(y,p')EX,(y,p")E Y}) 

where <fJ,p) II A.a· Y = <[J,p II A.a· Y') 
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where 

Y' = Y. 

= Y\ {<jJ'.p') I f3 = ly and /3 1 = f for some}' E f'I. 

and similarly for (Aa · X) !I <JJ, p ). 

if /J E 1r. 

if If E If". 

( c) P \ 2 Y = ).a · l <JJ' • P' \ 2 Y) i <JJ'. P') E Pl a), fJ * )', ;7 f ( = d! X 1) 

IOI 

U { (a,p" \ 2 y) I (1}1• p") E p(a) or \ly, p 11 E p(a) f (=ur X 1 ) 

U if (X 1 = 0) /\ (X 2 = 0) t\ p(a) * 0 then (r5.p0 f else 0 fi. 

(d) '..r(do bi; cl-> SID ... D bn: en-> Sn od) = lim;p;, where (p(J = P11 

and) 

p; + 1 = AO · if a = 6 then { ( o, p 0 ) f else 

where 

q0 =Po· 

{(Yk•Pi 0 c..r(Sk)), (lyk, qK,,\lkl> i k E Kaf 

U if Ka= 0 then{ (a,p0 ) f else 0 ti, 

qK' =A.a· {(!fr, qK'\lk'I) I k' EK' f, K' <::;: { !,. .. , nf. K' * 0. 

Clause (d) of the definition combines a number of ideas. First. the iteration 

aspect is best understood by comparing it with a similarly structured 

definition of the simple do · .. od construct S' = do b 1 -+ S 1 0 · · · 0 bn _, Sn od. 

For this we can take c..r(S')=lim;P;· where (p 0 =p0 and) P;+ 1 =Aa·if 

a=b then {(O,p0 )f else ({p;o . .if(Sk)lkEK0 fU(if Ka=0 then {(a.p0 \l 

else 0 fi) fi, where K 0 = {k [ 1 ~ k ~ n. 1"I (bk)( a)= ttf. Second. it contains 

synchronization elements Yk prefixed to P; o . .if(Sk) similarly to the use of Yk 

prefixing .. K'(Sk) in Definition 6.7. Third, the (lyk. qK.,'Jkl) parts are based on 

the ideas on the use of ly's discussed above. For K 0 = { 1. 2, 3 f we obtain for 

(i}'"qK.,\IIJ) the following pair: (1}'1• ).o· )(1}'2, Ao· \\IY.1·Po)f), (l}'i

M · { (ly2 , p 0 ) ~) f ). The reason for the accumulation of the i}'•. is that only 

if all synchronization through Yk' (for which the corresponding bk' is true) 

fails should skip be the outcome of c,..r(S). The last part of clause d ensures 

that if all bk are false, v.if'(S) equals skip. 

EXAMPLE. We determine .. #'(S), for 
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where we have returned to the uniform case for simplicity. We obtain, 

successively. for cll'(S), 

= 

lim {(e, {(a1, {(y ... .j, (ly,po)l II {(a2,Po)}\2y), 
i;>I 

(a2, {(a1,P;\2Y)})}), 

(e, {(a3,p0}), (a3, {(1;,po)})} 

{(e, {(a1, {(e, {(a2,Po)}), (a2• {(e,po)})}), 

(a 2 , {(ap {(e,p0)})}), 

(e, {(a 3,p0)}), (a 3 , {(e,p0)})} 

(where in the final process we have dropped the lim;;;. 1 prefix, since it is 
independent of i). 

7. COMMUNICATION: CSP AND ccs 

In this section we define the semantics of two languages where 
communication is a central concept, viz. Hoare's communicating sequential 
processes (CSP) Hoare (1978), and Milner's calculus for communicating 
systems (CCS), Milner (1980). 

We begin with CSP, and use the following syntax for a somewhat 
abstracted version of it: 
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DEFINITION 7.1 (a version of CSP). The language ../7 , with elements S, 
is defined by 

To clarify the correspondence between ../ 7 and CSP, we consider a number 
of constructs in the syntax of CSP proper: 

(!) [P1:: ... P2'?x ... /:P2 :: ... P 1!s ... 1. This corresponds in J 1 to 

1( ... C?x ... )i[( ... C!s ... )f\C. We see firstly that "ii" in :.17 and CSP 

correspond. Furthermore, communication over the "channel"' P 1 H P 2 (using 

the matching pair P2 ?x occurring in P 1 and P 1 !s occurring in P 2) is mirrored 

by the pair of communication commands C'?x, C!s. (In general. there will be 

one pair C? ... , C!. .. for each channel P; H Pj; at the ... , varying arguments 

may appear.) Moreover, a restriction construct S \C. with the same meaning 

as the S \ 2 C construct of Section 6, is used. In general, there will be as many 

restrictions ((S \ C)\ C' ) ... as there are channels C, C' .... in the program. 

(2) Full CSP has constructs of the form b; C?x or b; C!s appearing as 

guards in if··· fi or do · · · od commands. The treatment of these requires a 

combination of the techniques described in the previous section with those 

for communication described below. We leave it to the reader to work out 

the details of this. 
We have made no attempt at modelling the distributed termination 

convention of CSP. 
For the definition of the semantics of:..;; we need a new class of processes. 

The set V is used (as before) for the set of values to be assigned to the 

variables x, y of the program, as well as for the values communicated over 

the channels C. 

DEFINITION 7.2. The domain P 7 is defined by the equation 

We observe in ,:?.,(.) an extension of the definition as used for P5 : 

,'f'.:((EUT)XP5 ) is replaced by ,:?.,(EUF)X(P7 U(VXP1 )U(V->P1))). 

The domain we now consider is a variation on the process domain of the 

general format as discussed in Section 2, Eq. (2.4 ). We leave the details of 

the necessary modifications of the underlying mathematics to the reader. We 

shall use n for a typical element of the set V-+ P 7 • As before, we assume that 

E contains a dead state b, and that for each pair C'?, C! in the language there 

is a corresponding pair y, ji in r. 
The semantics of!;!~ is described in 
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DEFINITION 7.3. The valuation"#:.!/.,~ P 7 is given by 

(a) "#(x :=s), ... ,"#(S*) are as in Definition 5.4. In particular, 
.A'(S 1 llS 2)=1(S 1)llAf'(S 2 ). For processes p 1 ,p2 in P7 , p 1 llp 2 will be 
defined below. 

(b) .A'(C?x) =Ao· J<y,?cv · M · j(ojv/x},p0 )})}, 

"ff(C!s) =?ea· {(ji, (:i''(s)(a),p0 ))}, 

(c) .L(S\C)=cff(S)\y. 

(d) 1(.J)=?ca·j(<5,p0 )}. 

Clause (b) is the crucial one; it should be understood with respect to the new 
definition of "II" contained in 

DEFINITION 7.4. (a) p II q is defined as usual for p or q equal p 0 or of 
infinite degree. Otherwise, p = ?ea · X, q =?ea · Y, and we put 

(AO"· X) II (?ea· Y) =?ea· ( {(x II (?ea· Y)) Ix EX} U {((A.a· X) II y) I y E Y} 

u { (a,p' II p") I (y, n) Ex, (ji, (v, p")) E Y, n(v) = p' r ). 

Let fJ be a typical element of Lu r, and n of V ~ P7 • We put ({J,p) II ?ea· Y 
= ({J,p II ?ea· Y), ({J, (v,p)) II ?ea· Y = ({J, <v,p 11 Ao· Y)), (fJ, n) II ?ea· Y = 
(fJ, ?cw· n(w)) II ?ea· Y = ({J, ?cw· (n(w) II ?ea· Y)), and similarly for 
?ea · XII (fJ, p ), etc. 

(b) p \ y = p \ 2 y, with \ 2 as in Definition 6.4. 

The heart of the definition is the third term on the right-hand side of the 
formula for (?ea · X) II (Ao · Y). Here the value v is transmitted between 
p=Aa·X=Aa· j ... ,(y,n),. .. f and q=Aa· Y=Aa· j ... ,(ji,(v,p 11 )), ••• }, 

determining as possible candidate for continuation in the process (p II q) 
when applied to a, the processp' lip", withp' = n(v): At the synchronization 
point corresponding to the pair (y, ji), the value v is supplied to the function 
n determining process p' = n(v) as part of the continuation p' II p". Let us 
apply Definitions 7.3, 7.4 to the simple example S = (C?x II C! 1 )\C. We 
obtain . R'(S) =.~R'((C?xll C!l)\C) = p\y, where p =. R'(C?xll C! 1). By 
definition 7.3, we obtain for p:p=Aa· {<y,?cv·M· {(o{v/x},p0 )[)fllM· 
{ <r, ( l, p 0))} = (by Definition 7.4) 

Aa · ((y, ... ), (ji,. .. ), <a, [Av · M · j(o{v/xf,p0)}](1) II p 0)}) 

=?ea · ( ... , (a, M · { (o{l/x },p0 )} )). 

Applying the definition of \y to this results in deletion of the .. ., and we 
obtain as final result for "ff(S):?ca·{(a,Aff·{(o{l/x},p0 )})} which is, 
indeed, a (somewhat elaborate) way of setting x to l. 
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Definition 7.4 owes a lot to the ideas of Milner (1979, 1980). Also, it is 
close to the approach to CSP semantics as described in Francez et al. 
( 1979 ). The main difference lies in our use of processes as underlying 
111athematical structure rather than a denotational system with power 
domains (as in Milner, 1979) or with infinite trees (as in Francez et al., 
1979). From the variety of operational approaches to CSP semantics we 
111ention Cousot and Cousot (1980), Francez et al. (1980), Hoare (1981), 
Plotkin ( 1983 ), and Rounds and Brooks ( 1981 ). Applications of semantics 
to proof theory (in proving the soundness of a proof system) are studied in 
Apt ( 1981) and Apt, Francez, and de Roever ( 1980 ). 

We close our treatment of CSP with a few words on the definition of yield 
for p E P 7 • In fact, the same definitions both for a path for <a, p) and for p + 

can be used as in Section 6. Observe, however, that this implies that only 

pairs (jJi+ 1' Pi+ 1) E P;(/J;) (for /J; EE) contribute to such paths, whereas 
pairs ( v, p) or functions n do not appear in any path. 

We now turn to the definition of Milner's CCS. Contrary to the previous 
languages, CCS is an expression based language. Synchronization and 
communication are very similar to CSP, but there is no notion of assignment 
or sequential composition as we had previously. Also, CCS features 
recursion rather than iteration. In the syntax we shall give for Yg we have 
introduced a deviation from CCS in that we have separated ,l., - abstraction 
(A.x . ... ) from synchronization ((c, ... ), (c, ... )); in CCS, these notions are 
combined in the notation ax · ... or au · .... We first give a simple version of 
~, where recursive declarations are parameterless. 

DEFINITION 7.5 (a version of CCS). The language Yg, with elements 
s, ... , is defined by 

s : :=nil I (e, s) I <c, s) I (c, s) Is 1 U s2 Is 1 11 s2 I s \ c I ~ lu~[s 11 Ax · s, 

where s in µ~Js I is restricted as stated below. 

Remark l. In the construct (e, s ), e is a simple expression, defined for 
example by e ::= x lf(e 1 , ••• ,en), for fan n-ary function symbol. We assume 
that evaluation of e always terminates, delivering a value v E V. 

Remark 2. Expressions s replace statements S; synchronization prefixes 
(c, ... ), (c, ... ) replace commands C, C as used above. 

Remark 3. CCS's construct ax · B is written as (c, A.x · s8 ), with s8 the 
construct in Y~ corresponding to B. 

Remark 4. We have not taken the trouble to incorporate the relabelling 
feature of CCS. 

Remark 5. The recursive construct µ~Is] corresponds to a "call" of 
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some b defined by b <= B in CCS. Moreover, the s in µe[s] is, for the 
moment, assumed to be of ground type (i.e., not of the form AX · s' ). 

The process domain for ~ is introduced in 

DEFINITION 7.6. The process domain Pa is defined by 

Pa= {p0 } U ~((I'U VU {e}) X (Pa U (V-+ Pa))). 

For the semantics of SIS we need a class of environments E = E 1 X E 2, 
where EI = Var--+ v, E 2 = ..% --+ p 8. (..% is the set of variables e used in 
recursive definitions.) Thus, taking r,=(r, 1,172)EE, r, 1(x)=v and r, 2(?;) =p 
are meaningful equations. As before, 7/' is the valuation for simple 
expressions e, yielding results ~··(e)(1J 1 ) = v. 

DEFINITION 7. 7. The valuation 1: SIS--+ (E--+ P 8) is defined by 

(a) 1(nil)(r,) =Po· 

(b) 1((e, s))(r,) = {(~·(e)(r, 1 ),1(s)(r,))}. 

(c) 1((c, s))(r,) = {(y,1(s)(r,))}, where y corresponds to c, and 
similarly for (c, s). 

(d) 1(s1Us2)(r,)=1(s1)('1) U 1(s2)(r,), 1(s1 11s2)('1)=1(s 1 )(r,) 
II 1(s2)(r,), with "II" to be defined below. 

(e) 1(s\c)(r,) =1(s)(r,)\y. 

(f) 1(e)(r,) = r, 2@, 1(.ue[s])(r,) = lim1 p 1, where (p 0 =Po and) 
P1+1 = {(e, .L(s)(11{pi/e}))}. 

(g) 1(A.x · s)(r,)= {AV ·1(s)(r,{v/x})}. 

Here p \ y is as p \ 1 y in Definition 6.4 (in order to use \ 2, we would have 
to extend r with a dead symbol o). Furthermore, the definition of "II" is very 
similar to the one used in the CSP definition, as can be seen from 

DEFINITION 7.8. For X, YE fc(·) of finite nonzero degree we put 

XII Y = {x II YI x EX} U {XII y I YE Y} 

U {(e,p' llP") I (y, n) EX, (y, {(v,p")}) E Y, where n(v) = p' }. 

Here <ft,p) II Y = <ft,p II Y), n II Y = (Av · n(v )) II Y =AV · (n(v) II Y), etc. 

EXAMPLE. For constructs b 1 , b2 in CCS defined by b 1 <= ax · x + 1 . b 1 

and b2 <=a y+3·b2 , we have as corresponding sps2 ESIS:s 1 = µ<![(c 
Ax· (x + l, e)) ], Sz = µe[ (c, (y + 3, e)) ], and for p1 = 1(s1)('1) we o btair 
P1 =lim 1 p~i), wherepf+ 1> = {(e, {(y, {Av · {(v + l,p~1»}})})},p 2 = Jim 1 p~0 
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where p\;+ 11 = l\f:, 1(7. l(IJ 1(y) + 3, p~; 1 ) )f>f. Also. it can be shown that 

(p 1 iip1 )\y=lin1;qli 1.wherequ+ii=l(<;.i\Li 1(,r)+.f. i'l'f. 

Remark I. The use of (c, ... ) in the process theory corresponds to the 

unobservable action r of CCS. 

Remark 2. Processes p in P8 are quite close to communication trees 

(Milner. 1980, Chap. 6 ). Important differences are 

(i) the collection of successors of a node in a communication tree is a 

multiset rather than a set. 

(ii) the "mathematical sophistication we do not want to be bothered 

with'' (a quotation from Milner. 1980 referring to the case of infinite trees) is 

(if our attempts have been successful) present in our theory. 

Remark 3. Recursive behaviour expressions 1rilh parameters (of the 

form b(x) <;;o B in CCS) can be dealt with very similarly to the above 

treatment of .u~l s j. Without going into details, something along the following 

lines will have to be done: The syntax of ....t8 is extended with the clause 

s : := ... I ~(s 1) ... (s 11 ). Moreover. the terms s, in particular the variables ~. are 

now supposed to be typed as in, e.g .. the typed lambda-calculus. We drop the 

requirement that s in .u~I s I be of ground type, and adapt the choice of p0 , for 

the zero element of the CS converging to the meaning of µsis I. replacing it 

by AL' · ... · At' ·Po. where n is such that the type of s is V"-+ V (n ~ 0 ). 
nx 

Remark 4. The use of the (c .... ) prefix in Definition 7.7(f) could be 

avoided if we were to adopt Milner's requirement that "no behaviour may 

call itself recursively without passing a guard." Syntactically. this would 

amount to the requirement that, in a recursive construct .us[ s I, ~ occurs in s 
l . h' b f h " ( ~ \ ·- ' ' . ' ' I h. on y wit m su terms o t e 1orm c, ... i,, ... 1 or \c, ... c;; ... .1 or \e .... .; ... i. n t is 

way. the contraction property of T' = ).p ·. #'(s)(17j p/~l) is guaranteed. In 

our treatment. the same result is obtained by using the CS of iterates T;(p0 ) 

for T of the form T=Ap · l(c,.#'(s)(17jp/~ll)l. (As remarked already in 

Section 3, we are not sure that this precaution is indeed necessary, but we do 

not know how to prove that (T;(p0 )); is CS without it.) 

This concludes our discussion of CCS semantics. We close with a remark 

on p T for p E P 8 . Analogously to what we did in previous sections 

(Definition 3.4 ), we can define p + over the alphabet VU r. where. just as we 

did for CSP. paths are defined such that constituents rr of p do not contribute 

to its paths. Also. we may again put p - q ~ p · =qi • and investigate 

properties of---." 
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8. MISCELLANEOUS NOTIONS IN CONCURRENCY 

There is an astounding variety of notions in concurrency, and only a few 
of them have been investigated in the preceding sections. In this section we 
briefly comment upon some additional topics. In most cases we provide 
some suggestions on how the theory of processes could be linked to the 
notion concerned. Sometimes, we provide no more than some pointers to 
problems still to be dealt with. 

l. Critical Sections 

Let us extend the language~ (Section 5) with the construct [S]. Thus, as 
syntax for~ we have 

Here [ S] has as intended meaning that execution of S is not interruptible (S 
is "locked"). Using P3 as in Section5, we put .L([S])=A.a. 
{(a' ,p0 ) I a' E .L(S)+ (a) l, where p + is the (usual) yield of p. This expresses 
that S is, by [ ... ], turned into an elementary action execution of which 
cannot be merged at intermediate stages with execution of some parallel 
statement. Note that a' in .L(S)+ (a) may equal _i; strictly speaking, this 
requires appropriate adaptation of the definition of .E and of P 3 • 

2. Guarded Commands 

In Section 6 we encountered a guarded command such as if b 1 --+ S 1 D b2 --+ 

S 2 fi, to be modelled by (b 1 ; S 1)U (b 2 ; S 2) U Clb 1 ; lb 2 ; Li). This correspon
dence implies the following: Suppose that, e.g., in state a it turns out that b1 

is true, and S 1 is selected for execution. Before starting execution of S 1 , an 
interleaving action of some parallel S' may have changed a to a' for which 
b1 is no longer true, and we see that we cannot be sure that the first action of 
S 1 is executed with b 1 true, even though the "branch" b 1 ; S 1 was chosen 
since b1 was true for a. A different interpretation of a guarded command is 
possible, and may even be the intended one, viz. one in which the first 
elementary action of S 1 is taken immediately after it was selected on the 
basis of b1 being true. Let us write b => S for a construct which, contrary to 
b; S, allows no interleaving actions between b and the first action of S. 
Including this construct in ~ requires an extension of .£' with the clause 
.L(b=>S)=Aa·ifW(b)(a) then .L(S)(a) else 0 ti. (The reader should 
contrast this with .L(b;S)=.L(S)o.L'(b)=Aa·ifW(b)(a) then 
{(a, .L(S))} else 0 fi.) 

3. Await Statement (Owicki and Gries, 1976) 

Consider the await statement (*) await b then S. Operationally, when 
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execution reaches ( * ), if b is true then S is executed as indivisible action, if b 

is false execution waits. Combining the ideas of Subsections I, 2, we can 

model(*) by b=> [SI. 

4. indivisible Parameter Passing 

Extend YJ with the clause 

S ::=···I (A.x · S)(t), 

where (A.x · S)(t) is equivalent to x := t; S, but allows no concurrent action 

at the ";''. We can deal with this by putting , #'((Ax . S)(t)) = 
Ao·. R(S)(o\1 (t)(o)/xf ). 

5. Histories on Channels 

Extend 5/~ with 

S ::= ... j read(x, Ck) I write(s, Cd. 

Here C 1 , ••• , C n are channels (as before), but now may contain sequences of 

values. States are now pairs (o, p ), o as usual, p = p 1 , ... , p,,, each P; a 

(possibly infinite) sequence of values, the current contents of channel C;. Let 

E(p;) test whether the sequence P; is empty, and let P; T be the last element of 

P;· Also, P; l denotes P; with its last element deleted. The central clauses in 

the definition are 

. #'(read(x, Cd) 

=A.op · if t:(pd then 0 else { ((o\pk T /x f, Pk l ), Po) f fi 

. R(write(s. Ck)) 

=A.op· {((o, V(s)(o)- Pk), Po) f. 

Here denotes concatenation (of sequences over V* U vw), and in the p

component we have not mentioned the channels which are not referred to 

(and remain unchanged). Observe that reading from an empty channel 

results in an empty output. As usual. this captures the operational notion of 

waiting. 

6. Linking Channels 

Let p, q be processes in the domain P={p0 fU.<((AUTU\t:i)XP). 

Previously, synchronization of p, q was achieved through matching pairs }'. y 
occurring in p and q, respectively. Such matching can also be "programmed" 

by using the notation (p II q)!y: c5\ which expresses that 6 (in this paragraph 
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standing for some element of r rather than for the dead state) now acts as y, 
i.e., we define 

(p ii q)li': JJ = (p I! q)(""ll" as in Section 3) 

u ~(t:,p' II q') I (1•,p') Ep. (J, q') E qf. 

An operation such as (p II q)[y: 61 is reminiscent of the use of channel 
linking in Back & Mannila ( 1982 ). Also. it resembles the use of equalities 
c . a =c . . b in Rem and Van de Snepscheut ( 1981 ), which in a similar 

I ./ 

manner establish linking between "'ports" of processes p, p 1 , ... , Pn occurring 
in their corn ... moc construct (albeit that their definition of '"II" differs from 
the one used throughout our paper). 

7. Logic 

Let a be some formula of. e.g., predicate or temporal logic (Pnueli, 1977 ). 
We can distinguish a variety of ways of interpreting a in process p. Let, e.g., 
pEP1 • We may choose a(p0 )=tt or a(p0 )=ff, a(Ao·X)=Ao·a(X), 
a(X)=Arexa(x) or a(X)=V,·exa(x), a((o,p0))=a(o), and, for pi=p0 , 

a((a,p)) = a(a) V a(p(a)). or a((a,p)) = a(a) /\ a(p(a)). For example, the 
combination of definitions a(X) =A xexa(x) with a( (a, p)) = a( a) V a(p(a)) 
states that a(p) is true in a whenever a is true in at least one node along 
each path for (a. p ). The implications of these definitions for the model 
theory of temporal logic deserve further study. We also would like to know 
whether the results of Emerson & Clarke ( 1980) can be applied in the 
context of processes. 

8. ADA Rendezvous. Distributed Processes. Data Flow 

These notions are mentioned here for the sake of completeness. We have 
no semantic definitions for them at the moment of writing this. For the ADA 
rendezvous this should not be too difficult, because of its close connection 
with CSP (cf. Gerth. 1982(a)). For DP (Brinch-Hansen, 1978; Gerth et al .. 
1982) and data flow (Boussinot, 1982; Brock and Ackermann, 1981, 
Faustini, 1982; Kahn, 1974, 1977~ Keller. 1978; Kosinski, 1978; Pratt, 
1982; and Wadge. 1981) we need further study. 

9. Fairness 

There is a well-known correspondence between fairness and unbounded 
nondeterminacy (see, e.g., Apt and Olderog 1982 ). Since our processes allow 
a smooth treatment of the latter. the question arises as to their role for 
defining the former. We know how to do this, and we hope to describe it in a 
future publication (which is not along the lines of the approach sketched in 
the remark in De Bakker and Zucker ( 1982 )). 

This concludes our discussion of some miscellaneous topics in 
concurrency. and brings us to the end of this paper. 
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APPENDIX A: HAHN'S THEOREM 

Since the proof of Hahn's theorem (Theorem 2.9) is not easily accessible, 
we present the proof in this Appendix. We repeat the theorem as 

THEOREM A (Theorem 2.9). If (M, d) is a complete metric space, then 
so is (. ~(M), d), where .?.,(M) denotes the collection of all closed subsets of 
M, and the distance d for sets is the Hausdorjf distance. Moreover. 1i·e hare. 
for (Xn)n a CS of closed sets, 

lim Xn = X ~ jx Ix= limxn, (x"). a CS in M such that x,, E Xn f. 
n n 

Proof Clearly, we may assume that Xn =F- 0 for almost all n. We show 
that (i) X is closed, and (ii) d(X n, X)-+ 0. 

Ad(i). Let (Yn)n be a CS in X with Yn-+ y. We show that y EX. Let for 
each n, (x;,n); be a CS such that X;,n EX;, and X;,n--+ Yn· Consider the 
diagonal sequence (xn.rz>n, xn.nEXn. Then (xn,n)n is a CS. with x 11 • 11 --+y. 
Therefore, by the definition of X, we have that y E X. 

Ad(ii). The proof of this fact is more involved. We have to show that 
VdNVn ~ N[d(Xn, X) < c[, i.e .. 

or, equivalently. 

VdNVn ;;<: NVxn E Xn[d(xn, X) < t: J. 

VdNVn ~ NVx E X[d(x. Xn) < i; [. 

VdNVn ~ NVx,, E Xn =Jx E X[d(xn. x) < c [, 

VdNVn ~ NVx E X=Jxn E Xn!d(x,,, x) < 1; J. 

(Al) 

(A2) 

(A3) 

(A4) 

We first prove (A3). Choose c. Then(*) ::JNVm.n?:N[d(Xm.Xn)<c/2[. 
Now take any m ~ N, and any xm E Xm. We show how to find x EX such 
that d(xm, x) < c. There exists a sequence 

m=N0 <N1 <N2 <··· 

such that (**) n, n'?: Nk ~ d(Xn, Xn.) < c;/2k+ 1• Now define a sequence 
(xn)n as follows: For n < N 0 , xn is arbitrary. For n = NtP xn = x,0 (=xm). For 
N0 <n~N1 : take any xn such that d(x.,0 ,xn)<c/2 (by (*)). For 
N1 <n~N2 : take any xn such that d(x., 1 ,xn)<c/4 (by(**)) ..... For 
Nk<n~Nk+ 1 : take any xn such that d(xs,,xn)<c/2k+l (by(**)). Then 
(xn\ is a CS, since for, say, Nk<n~Nk+I' and any m~n, d(xm,xn)~ 

) /2 k + l /2k + 2 d(xn,xNk.) + d(xrvk+i•x:Nk+,) + ··· + d(x,,.k·l'xm < C, + c + ··· < 
c/2k. 
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So, by completeness of (M, d), Xn--> x for some x. Thus, x E X. 

Furthermore, we have Vn > m, d(xm,xn) < e/2 + e/4 + ··· (by similar 

reasoning) < c,. Hence, d(xm, x) <e. Altogether, we have proved (A3 ). We 

now prove (A4 ). Choose some i:;. As before, there exists N such that 

Vm,n~N[d(Xm,Xn)<e/2J. Let xEX and m~N. We show that 

d(x, X m) < e. There exists a CS <x n) n such that x n --> x. We have, for m ? N, 

d(Xn,Xm)<c,/2, so d(xn,Xm)<e/2 for all n~N. Hence (since xn-->X) 

d(x, Xm) < i:;/2 < e, which proves (A4 ). I 

APPENDIX B 

In this Appendix, we present a detailed proof of Lemma 2.15. The main 

part consists of the justification of the definitions of po q, p U q, and p II q, as 

provided in Theorems B7, Bl2, Bl4, and Bl6 and their corollaries. 

Preliminary to these theorems there are some general lemmas on the 

Hausdorff distance. Throughout the Appendix lhs and rhs stand for left-hand 

side and right-hand side, respectively. 
Up to Lemma BS we assume X, Y,. .. , are subsets of an arbitrary metric 

space (M, d), and assume, moreover 

xEX, x' EX', yE Y, y' E Y'. 

LEMMA B 1. Given l > 0 d(X, X') < l if and only if 

Vx=Jx' d(x, x') < l, (BI) 

and 

Vx'=Jx d(x, x') < l. (B2) 

Proof. 

d(X, X'):,,:;; l q.\fx d(x, X'):,,:;; l and Vx' d(X, x'):,,:;; l 

q. (B 1) and (82). Ill 

We often use a special case of this: 

CoROLLAR Y 82. Suppose there are surjections f: Y--> X, f': Y--> X' such 
that Vyd(f(y),f'(y)),s.:;;l. Then d(X,X'),s.:;;t. 

Proof. This is clear from Lemma B 1. I 
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LEMMA B6. For finite p,p', q, q' if 

d(q, q') ~ d(p,p'), 

then 

d((a, q), (a', q')) ~ d((a,p), (a',p')). 

Proof The proof is clear. I 

THEOREM B7. For finite q, q' 

d(p 0 q,p 0 q') ~ d(q,q'). (BS) 

Proof We prove (BS) simultaneously with 

d(p o x,p ox')~ d(x, x') (B6) 

by induction on n, where n = max(deg(q), deg(q')) in the case of (BS), and 
n = max(deg(x), deg(x')) in the case of (B6). 

If q =Po or q' = p 0 , then (BS) is clear. Otherwise ( cf. Definition 2.14(a)) 

lhs of (BS) = d({p ox Ix E q}, {pox' Ix' E q'}) ~ d(q, q') 

by the induction hypothesis for (B6) and Corollary B4 (taking f(x) = p 0 x 
andf'(x') =pox'). This proves (BS) for the given n. Now (B6) follows for 
the same n 

d(p o (a, q),p o (a', q')) = d((a,p o q), (a',p o q')) 

~ d((a, q), (a', q')) 

by (BS) and Lemma B6. I 

COROLLARY B8. For finite qn, if (qn)n is a CS, then so is (po qn)n· 

Proof This is clear from Theorem B7. I 
We observe that Corollary B8 justifies the definition po q = limn(P o q("l). 

COROLLARY B9. Theorem B7 holds for all q, q'. 

Proof For all n, d(p o q("\p o q 1 <">) ~ d(q(n>, q 1 <•>), by Theorem B7. 
Now lhs--+ d(p o q,p o q'), rhs-+ d(q, q'), and we see that d(p o q,p o q') ~ 
d(q, q'). I 

COROLLARY BIO. Corollary B8 holds for all qn. 

Proof This is clear from Corollary B9. I 
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LEMMA B3. If 

Vy3x'v'x'3y' [d(y,y'):::;; d(x, x') J, 

Vy'3x'Vx3y[d(y, y'):::;; d(x, x') j, 

then d( Y, Y') :( d(X, X' ). 

Proof Inequality (B3) implies, successively, 

Vy3x'v'x' d(y, Y'):(d(x,x'), 

\ly3x d(y, Y') ( d(x, X' ), 

\ly d(y, Y') ( d(X,X'), 

sup d(y, Y') ( d(X, X' ). 
y 
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(B3) 

(B4) 

Similarly, (B4) implies supy' d(Y,y')(d(X,X'). The desired result now 

follows by taking the maximum of the lhs of the last 2 inequalities. I 

Actually, we only need Lemma B3 in the special case of 

COROLLARY B4. Suppose there are surjections f: X--> Y and f': X'--> Y' 

such that \lx,x'[d(f(x),f'(x'))(d(x,x')]. Then d(Y, Y')(d(X,X'). 

Proof This is clear from Lemma B3. I 

LEMMA B5. 

d(XU Y,X'U Y')(max(d(X,X'),d(Y, Y')). 

Proof d(x, X' UY') ( d(x, X') ( d(X, X') ( rhs. 

X' UY') ( rhs. Similarly, 

sup d(y, X' UY') ( rhs, 
y 

sup d(X U Y, x') ( rhs, 
x' 

sup d(XU Y,y') ( rhs. 
y' 

Hence, 

Now take the maximum of the lhs of the last 4 lines. I 

supx d(x, 

From now on we consider uniform processes, solving Eq. (2.2 ). (See 

Definition 2.10.) We let x, y, ... , range over elements of A X P, and define 

deg((a, p)) = deg(p ). 
We give one more lemma. 
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A more interesting consequence is (for all sequences (qn)n): 

COROLLARY B 11. If q n--> q, then p o q n--> p o q. 

Proof d(poqn,poq)~d(qn,q)-->O, I 
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Note. Corollary B 11 states that " ,, 
0 is continuous in its second 

argument. 

THEOREM 12. For finite p,p', q, q', 

d(p U q, p' U q') <, max(d(p, p'), d(q, q')). 

Proof If any of p, p', q, q' equals Po, the result is clear. Otherwise it 
follows immediately from Lemma B5. I 

Again, we have the corollaries: 

COROLLARY Bl3. (a) For finite Pn,qn, if (Pn)n, (qn)n are CS, then so 
is (Pn U qn)n· (This justifies the definition p U q = limn(P(n) U q<"J).) 

(b) Theorem B12 holdsforallp,p',q,q'. 

(c) Part (a) holds for all Pn' qn. 

(d) lfpn-->p,qn-->q, thenpnUqn-->pUq (forallp,q). Thus, ''U" is 
joint(v continuous in both arguments. 

Proof We only prove 
(b) For all n, d(plnluq<nl, p' 1nluq' 1"J) ~ max(d(pl 11 l,p 1111 l), 

d(q 111 l, q' 1"l)). Now let 11--> 00. 

(d) d(pnUqn,pUq)~max(d(pn,p),d(qn,q))-->O. II 

THEOREM Bl4. For finite p, p', q, q', 

d(p 11q,p'11 q') ~ max(d(p,p'), d(q,q')). 

Proof We first prove a special case of (B7), namely, with q = q' 

d(pllq,p' llq)~d(p,p'). 

This is proved simultaneously with 

d(p 11y,p'11 y) ~ d(p, p' ), 

d(x II q, x' II q) ~ d(x, x' ), 

(87) 

(BS) 

(B9) 

(BlO) 

by induction on 11, where n=max(deg(p),deg(p'))+deg(q) in (BS), 
11 = max(deg(p), deg(p')) + deg(y) in (B9), and n = max(deg(x), deg(x')) + 

deg(q) in (B 10). 
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Now if any of p,p', q equals p 0 , then (B8) is clear. Otherwise (cf. 

Definition 2.14(c)), 

lhs of(B8) = d({p llY I YE q} U jx II q Ix Ep}, 

by Lemma 85, where 

{p' II YI YE q} U {x' II q Ix' E p'}) 

,,;;; max(d 1 , d1 ) 

d 1 = d (l P 11 Y I Y E q } , { P' 11.v I Y E q } ), 

d2 = d( {x II q I x E P }, {x' II q Ix' E p'} ). 

Now d 1 ,,;;; d(p,p') by the induction hypothesis for (89) and Corollary B2 
(taking/(y)=Plly,f'(y)=p' llY and l=d(p,p')). Also d1~d(p,p') by 
the induction hypothesis for (BIO) and Corollary 84 (takingf(x) = x II q and 
/'(x')=x'llq). This proves (88) for the given n. Now (B9) and (BIO) 
follow for the same n. For (89) 

and for (B 10) 

d(p 11 (a, q),p' 11 (a, q)) 

= d((a,p 11 q), (a,p' 11 q)) 

= 1d(p II q,p' II q) 

< 1d(p,p') 

< d(p,p'), 

by (87) 

d((a,p) 11 q, (a',p') II q) 

= d((a,p 11 q), (a',p II q)) 

,,;;; d((a,p), (a',p')) 

by (87) and Lemma 86. 
Thus we have proved (B8). Similarly (by a symmetrical argument) we can 

prove (for finite p, q, q') 

d(p II q,p 11 q') < d(q, q' ). (B 11) 

Finally, from (B 10) and (811 ), and the strong triangle inequality (see the 
remark after Lemma 2.8) we obtain 

d(p II q,p' II q'J < max(d(p 11q,p'11 q), d(p' II q,p' 11 q' )) 

< max(d(p,p'), d(q, q')). Ill 

As before, we have the corollaries 
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COROLLARY B15. (a) For finite Pn• qn, if (Pn)n, (qn),, are CS, then so 
is (Pn II qn)n· (This justifies the definition p II q = lim,,( (p<nl II q< 11 l).) 

(b) Theorem B 14 holds for all p, p', q, q '. 

(c) Part (a) holds for all p,,, q,,. 

(d) If Pn--+ p, qn-+ q, then Pn II q,,-+ P II q (for all p, q). Thus, "II" is 
jointly continuous in both arguments. 

Proof The proof is clear. I 

Now the properties of Lemma 2.15 q, i.e., associativity of "o", "U', "II", 
commutativity of "U'', "II", are easily proved. For example, for associativity 
of "o ", prove (po q) o r =po (q o r) first for finite r by induction on deg(r), 
and then for all r by taking r = Jim,, r<nl, and using Corollary B 11. 

We conclude this Appendix with a proof that " o" is jointly continuous in 
both arguments (as yet, we only proved continuity in its second argument). 

THEOREM B 16. For finite q, 

d(p 0 q,p' 0 q) ~ d(p,p'). (B 12) 

Proof We prove (B12) simultaneously with 

d(p 0 y,p' 0 y) ~ d(p,p'), (B 13} 

by induction on deg(q) (in (Bl2)) and deg(y) (in (B13)}. If q=p0 , then 
(B 12) is clear. Otherwise 

d(p 0 q, p' 0 q) = d( { p 0 y I y E q f, { p' 0 y I y E q}) 

~ d(p,p') 

by the induction hypothesis for (B 13) and Corollary B2. As for (B 13) 

d(p o (a, q),p' o (a, q)) 

= d((a,p o q), (a,p' o q)) 

= id(p 0 q,p' 0 q) 

~ id(p,p') (by (Bl2) 

~ d(p,p'). I 

Finally, we obtain the corollaries: 

COROLLARY B 17. (a) Theorem B 16 holds for all q. 

(b) If p,,--+ p, then Pn o q--+ po q. 
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(c) If Pn-+P and qn-+q, then Pnoqn-+poq (i.e., "o" is jointly 
continuous in both arguments). 

Proof We prove only part (c). We have d(pnoqn,poq)~ 
max(d(pn o qn ,pn o q), d(pn o q,p o q) ~ max (d(qn, q), d(Pn ,p))-+ 0, by the 
strong triangle inequality and Corollaries B9 and B 17. I 
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