Mathematics > Probability
[Submitted on 28 Feb 2011 (v1), last revised 3 Dec 2013 (this version, v4)]
Title:Scaling limits via excursion theory: Interplay between Crump-Mode-Jagers branching processes and processor-sharing queues
View PDFAbstract:We study the convergence of the $M/G/1$ processor-sharing, queue length process in the heavy traffic regime, in the finite variance case. To do so, we combine results pertaining to Lévy processes, branching processes and queuing theory. These results yield the convergence of long excursions of the queue length processes, toward excursions obtained from those of some reflected Brownian motion with drift, after taking the image of their local time process by the Lamperti transformation. We also show, via excursion theoretic arguments, that this entails the convergence of the entire processes to some (other) reflected Brownian motion with drift. Along the way, we prove various invariance principles for homogeneous, binary Crump-Mode-Jagers processes. In the last section we discuss potential implications of the state space collapse property, well known in the queuing literature, to branching processes.
Submission history
From: Amaury Lambert [view email] [via VTEX proxy][v1] Mon, 28 Feb 2011 08:53:14 UTC (42 KB)
[v2] Mon, 11 Jun 2012 09:07:58 UTC (27 KB)
[v3] Thu, 23 May 2013 11:08:35 UTC (26 KB)
[v4] Tue, 3 Dec 2013 07:46:24 UTC (54 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.