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Abstract—Ensuring transactional behavior of business processes and web service compositions is an essential issue in the area of
service-oriented computing. Transactions in this context may require long periods of time to complete and must be managed using
non-blocking techniques. Data integrity in Long-Running Transactions (LRTs) is preserved using compensations, that is, activities
explicitly programmed to eliminate the effects of a process terminated by a user or that failed to complete due to another reason. In this
paper, we present a framework for behavioral modeling of business processes, focusing on their transactional properties. Our solution
is based on the channel-based coordination language Reo, which is an expressive, compositional and semantically precise design
language admitting formal reasoning. The operational semantics of Reo is given by constraint automata. We illustrate how Reo can
be used for modeling termination and compensation handling in a number of commonly-used workflow patterns, including sequential
and parallel compositions, nested transactions, discriminator choice and concurrent flows with link dependencies. Furthermore, we
show how essential properties of LRTs can be expressed in LTL and CTL-like logics and verified using model checking technology.
Our framework is supported by a number of Eclipse plug-ins that provide facilities for modeling, animation, and verification of LRTs to
generate executable code for them.
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1 INTRODUCTION

Service-oriented computing advocates the idea of com-
posing large business systems using loosely-coupled
self-contained services. A system constructed from
independently-designed and technology-agnostic ser-
vices, nevertheless, has to be predictable, reliable, and
consistent with application logic. Real-world business
processes involve dozens of activities supplied by mul-
tiple partners. Their execution requires careful coordi-
nation, accounting for fault-tolerance, correct process
termination and cancelation, without undesirable con-
sequences at any stage of the execution. Therefore, re-
alization of transactional behavior in Service-Oriented
Architectures (SOAs) is an indispensable task.

The term transaction is used to denote a compound
unit of work performed completely or not at all. In
traditional database systems, if something goes wrong
during the execution of a transaction, a rollback activity
is performed, which reestablishes the state of the system
exactly as it was before the beginning of the transaction.
Locks are acquired on the necessary resources at the
beginning of a transaction and are released only at its
end (in both cases of completion and rollback). The use
of locks, which forbids others to access the resources,
is justified by the short duration of the transaction.
However, modern businesses created the need for a new
transactional processes in which remote entities interact
by performing complex activities, both automated and
manual, which require substantially longer times to com-
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plete, sometimes reaching days, weeks, months or even
years. Such prolonged times no longer allow the use of
locks on resources, and hence makes transaction rollback
impossible. In such transactions, called Long-Running
Transactions (LRTs), the alternative to roll-back activities
is the use of compensations, which are logical activities
able to remove the effects of the performed actions.

In this paper, we present an approach to formal design
of LRTs that extends our previous work [1] with more de-
tails on LRT semantics, modeling of timed LRT, descrip-
tion of our supporting software toolset, and examples of
logic properties that can be verified with available model
checking tools. Our approach relies on the channel-based
coordination language Reo, which assumes that coordi-
nated entities have no prior knowledge about each other.
Reo has been successfully applied to service/component
coordination [2], [3], business process modeling [4], and,
in our view, is suitable for representing the logics of
LRTs. A graphical notation along with several formal
semantic models have been defined for Reo. This makes
it applicable both for graphical design and automated
verification using model checking tools. The correspond-
ing tool support is provided. We consider Reo coordina-
tion in SOA as a bridge between domain-level design
languages such as Business Process Modeling Notation
(BPMN), and executable languages used for process
implementation, e.g., WS-BPEL or Java. In this way, we
assume an a-priori transactional behavior analysis that
takes place before the system has been actually imple-
mented. Only a process designer can decide whether a
set of activities should be executed transactionally and
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what should happen if their execution fails or the effects
of the completed transaction should be canceled. Our
approach offers a framework for a systematic design of
LRTs where sets of compensatable service operations are
grouped to logical workflows with the associated cance-
lation and/or compensation policies. Once the modeling
of a (transactional) business process is completed, the
designer can abstract from its internal details and use it
in larger-scale models with nested transactions. Due to
its compositionality, Reo is suitable for modeling multi-
party transactional processes where non of the parties
has the view of the whole communication pattern: the
“glue code” generated from the Reo model of a global
LRT can be split into several parts and automatically
deployed on various machines.

This paper is organized as follows. Section 2 contains
an overview of related work. In Section 3, we discuss a
domain-level LRT modeling. Section 4 is a brief intro-
duction to Reo and illustrates its application to business
process modeling. In Section 5, we discuss service co-
ordination in sequential transactions. In Section 6, we
focus on transactions with parallel flows and service co-
ordination in some complex workflow patterns. Section 7
is dedicated to transactional property specification and
model checking of Reo LRT models. Section 8 provides
an insight into time-aware business transaction design.
In Section 10, we describe Reo coordination tools from
the perspective of their application to LRT modeling.
Finally, Section 10 concludes the paper with an outline
of our future work.

2 RELATED WORK

A theoretical basis for LRTs is well-established. A num-
ber of attempts have been made to formally specify ex-
ception and compensation handling in various workflow
systems. For instance, Bocchi [5] studies the notion of
LRTs incorporated into Microsoft BizTalk modeling envi-
ronment. In this work, an extension of the asynchronous
π-calculus is proposed to deal with LRTs, including the
semantics of arbitrarily nested transactions [6]. How-
ever, this approach does not relate compensations with
the control flow of the original process. For example,
if one of the activities in a sequential flow fails, the
compensations for all previously executed activities start
simultaneously, while another (e.g., reverse) order may
be required.

Butler and Ferreira [7] present an operational seman-
tics for the StAC (Structural Activity Compensation)
language. StAC is a business process modeling language
inspired by the Communicating Sequential Processes
(CSP) with operators for compensation and exception
handling. In [8], another CSP-based language for com-
pensation orchestration, called compensating CSP or cCSP
is proposed. Among the shortcomings of these languages
are their complex semantics and non-compositional rea-
soning about the intended effects of a transaction. Sagas
Calculi [9] have a more compact syntax, distinguish

compensation and exception handling, and relate the
behavior of the whole process with the success or fail-
ure of its atomic activities. For parallel processes, two
versions of Sagas are proposed, Naive and Revised. A
comparison of cCSP and Sagas [10] reveals that these two
approaches account for different compensation policies
when handling concurrent processes.

Gaaloul et al. [11] propose an event-driven approach
to validate the transactional behavior of web service
compositions. In this work, service compositions are
specified using transactional patterns [12], which then
are described in an event calculus to enable formal rea-
soning about their behavior. Transactional web service
patterns can be seen as a convergence concept between
workflow systems and transactional models. However,
only very simple patterns such as a single parallel fork
or a single parallel merge are considered in this work,
and even for these constructs, specifying their transac-
tional consistency as a set of logical formulas is rather
cumbersome.

Several formalizations of Failure, Compensation and
Termination (FCT) handling in WS-BPEL have been pro-
posed. Lucchi and Mazzara [13] introduce an orchestra-
tion language, called webπ, which is based on the idea
of event notification as the unique error handling mecha-
nism. Webπ is obtained by extending the π-calculus with
a transactional construct composed of two processes. The
authors show how WS-BPEL compensation handling can
be reduced to event handling in the webπ. However,
this approach relies on statically specified compensation
handlers and does not represent the default compensa-
tion in WS-BPEL. Laneve and Zavattaro [14] focus on the
encoding of the WS-BPEL scope construct into the webπ-
calculus, but this work suffers from the same problems
as the above approach. In [15], the theoretical foundation
of scope-based flow languages is established. The au-
thors propose a language, called BPEL0, that formalizes
a subset of WS-BPEL. Eisentraut and Spieler [16] ex-
tend this work by providing support for repeating com-
pensations, called all-or-nothing semantics, which allows
for the compensation of failed compensations. Several
works propose Petri net semantics for WS-BPEL. The
most complete of them is given by Lohmann [17]. This
approach formalizes control and data flows in WS-BPEL
by means of Open Workflow Nets (WFNs), a class of
Petri nets extended with the interface for asynchronous
message passing. Takemura [18] aims at formalizing the
semantics of BPMN transactions using Petri nets. The
mapping is not compositional and the resulting Petri
nets for relatively simple case studies look complicated
and difficult to understand. Moreover, such issues as
cleaning of tokens in Petri net models of transactions
with hazards are not considered.

In our approach, we do not adhere to any specific
service composition language or workflow system. Our
work, rather, aims at establishing a modeling framework
able to unambiguously express any required compensa-
tion strategy. Therefore, we consider the most represen-
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tative scenarios from the above papers and show how
designers can benefit from using Reo in these cases. At
a first glance, Reo is somewhat reminiscent of Petri nets.
However, Petri nets normally offer synchronization at
each transition of a net, whereas in Reo synchroniza-
tion is defined by the types of channels connected to-
gether. This enables more concise representation of com-
plex workflow patterns, including ones with exception
handling and compensation mechanisms. Synchronous
drain channels in Reo are convenient for modeling pro-
cesses where token cleaning is required, while Petri nets
are usually extended with inhibitor and reset arcs for
this purpose, which significantly reduces the number of
software tools able to analyze such models [19].

Lanotte et al. [20] suggested the use of Communicating
Hierarchical Timed Automata for modeling LRTs. This
automaton-theoretic approach allows the time-aware
verification of properties by model checking, but leaves
the problem of appropriate fault handling in LRTs for
further investigation. We believe that our modeling
framework is more generic in the sense that it does not
introduce special graphical constructs or automata for
dealing with LRTs, but nonetheless, enables the verifica-
tion of process transactional properties.

3 DOMAIN-LEVEL LRT MODELING

According to the Business Process Modeling Notation
(BPMN) [21], a widely used graphical language for
domain-level process analysis, a business process can be
represented in terms of activities carried out by humans
or software applications, important events occurring in
the process and a control flow on the involved activities.
Additionally, BPMN supplies a number of modeling con-
cepts more typical for implementation-level languages,
such as sub-processes with exception handling, com-
pensation associations, and transactions. For example, it
assumes that an arbitrary process placed into a double-
border rectangle is a transaction. The compensation associ-
ation primitive is used to represent an activity with an
associated compensation operation which should be exe-
cuted to cancel its effects. A BPMN transaction is a group
of such activities that must be all either successfully
executed or canceled otherwise. There are three basic
outcomes of a sub-process that represents a transaction:

• successful completion when an execution token leaves
the sub-process using the normal sequence flow,

• failed completion when a transaction is successfully
canceled, i.e., all its performed activities are com-
pensated for and the token leaves the sub-process
using a cancel intermediate event,

• exception or hazard completion which means that nei-
ther successful nor failed completion is possible and
the token leaves the sub-process using the exception
flow originating from an error intermediate event
attached to the boundary of the transaction.

BPMN has been designed for prompt sketching of
business processes by domain experts and lacks precise

semantics for unambiguous representation of process be-
havior, including a compensation handling mechanism
for the specified transactions. Instead, WS-BPEL [22], a
de-facto standard for web service composition, defines
primitives to describe a process flow at the execution-
level, including its FCT handling. When a transaction
fails, the effects of all its executed activities are negated
by executing their respective compensations. By default,
compensations in WS-BPEL are executed in the reverse
order relative to the normal flow.

Observe that the notion of LRT in WS-BPEL is
limited to a single business process instance, i.e.,
there is no distributed coordination among multiple-
participant services. Technically, such coordination in
SOA can be achieved by implementing protocols
from WS-Transaction [23] specification, which identifies
atomic transactions triggered using the classical ACID
paradigm [24], and business activity transactions, which
are managed by transaction coordinators. There are two
protocols for managing LRTs. The first one is called
business agreement with participant completion. In this pro-
tocol, a participant registers with the coordinator, so
that the coordinator can manage it. A participant knows
when it has completed all work for a business activity,
and informs the coordinator when this is the case. In
the business agreement with coordinator completion pro-
tocol a participant also registers with the coordinator.
However, the end of a transaction is indicated by the
coordinator. The outcome of a business activity can be
atomic in nature or have a mixed outcome when some
participants may commit results while others have to
undo/compensate activities. Using the above solutions
typically involves layering WS-Transaction protocols on
top of WS-BPEL processes.

4 REO COORDINATION LANGUAGE: SEMAN-
TICS AND APPLICATION

Reo is a coordination language in which components and
services are coordinated exogenously by channel-based
connectors [25]. Connectors are essentially graphs where
the edges are user-defined communication channels and
the nodes implement a fixed routing policy. Channels in
Reo are entities that have exactly two ends, also referred
to as ports, which can be either source or sink ends.
Source ends accept data into, and sink ends dispense
data out of their channels. Although channels can be
defined by users, a set of basic Reo channels with pre-
defined behavior suffices to implement rather complex
coordination protocols. Among these channels are (i) the
Sync channel, which is a directed channel that accepts a
data item through its source end if it can instantly dis-
pense it through its sink end; (ii) the LossySync channel,
which always accepts a data item through its source end,
tries to instantly dispense it through its sink end, and if
this is not possible, loses the data item; (iii) the SyncDrain

channel, which is a channel with two source ends that
accept data simultaneously and loses them subsequently;
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Fig. 1. Examples of Reo channels

(iv) the AsyncDrain channel, which accepts data items
only through one of its two source channel ends at a
time and loses it; and (v) the FIFO channel, which is
an asynchronous channel with a buffer of capacity one.
Additionally, there are channels for data manipulation.
For instance, the Filter channel always accepts a data
item at its source end and synchronously passes or loses
it depending on whether or not the data item matches a
certain predefined pattern or data constraint. Similarly,
filter conditions can be added to the SyncDrain and
AsyncDrain channels. Such channels appear useful for
business process modeling when conditional synchro-
nization of two flows is required. Finally, the Transform

channel applies a user-defined function to the data item
received at its source end and synchronously yields the
result at its sink end.

Channels can be joined together using nodes. A node
can be a source, a sink or a mixed node, depending on
whether all of its coinciding channel ends are source
ends, sink ends or a combination of both. Source and
sink nodes together form the boundary nodes of a con-
nector, allowing interaction with its environment. Source
nodes act as synchronous replicators, and sink nodes
as non-deterministic mergers. A mixed node combines
these two behaviors by atomically consuming a data
item from one of its sink ends at a time and atomically
replicating it to all of its source ends.

The basic set of Reo channels can be extended to
enable modeling of specific features of service communi-
cation. For example, timed Reo [26] channels were intro-
duced to specify time-dependent interaction protocols,
while probabilistic Reo channels [27] are used to build
communication networks with unreliable links. Apart
from functional aspects, channels can differ at the level
of their non-functional characteristics. In quantitative
Reo [28], channels are characterized by a set of associated
QoS parameters such as data transfer delays or cost.

Complex connectors are constructed by composing
simpler ones via the join and hiding operations. Join
plugs two channel-ends together creating a node at their
point of connection. To this node one can connect more
channels via further join operation. If more than one
accepting channel end is connected to a node every
incoming message is simultaneously written to all out-
going channels whenever all outgoing channels in the
node are ready to accept data. Whenever more than one
channel-end offers data at a node a non-deterministic
choice decides which data item is taken and written to
all outgoing channels. The hiding operation hides away
one node which means that the data-flow occurring at

Fig. 2. Examples of Reo connectors: Exclusive router

this node cannot be observed from outside and no new
channel-end can be connected to this node. A complex
connector has a graphical representation, called a Reo
circuit, which is a finite graph where the nodes are labeled
with pair-wise disjoint, non-empty sets of channel ends,
and the edges represent their connecting channels. The
behavior of a Reo circuit is formalized by means of the
data-flow at its sink and source nodes.

Figure 2 shows an implementation of an exclusive
router using basic Reo channels. The connector provides
three nodes A, B and C for other entities (connectors or
component instances) to write to or take from. A data
item arriving at the input port A flows through to only
one of the output ports B or C, depending on which one
is ready to consume it. The input data is never replicated
to more than one of the output ports. If both output
ports are ready to consume a data item, then the circuit
selects one non-deterministically. To avoid drawing the
circuit for an exclusive router every time it is used, we
introduce a graphical shorthand notation similar to a
node to represent this connector. We will also use XOR-
nodes with n > 2 outputs. Such a connector can be
defined by combining n − 1 exclusive routers with two
outputs. Additionally, it is useful to define a priority
on the outputs of an exclusive router in such a way
that the data item will always flow into the prioritized
output if more than one output is possible. When such
a behavior of an exclusive router is assumed, we use a
small exclamation mark to show its prioritized output in
the corresponding Reo circuit.

Arbab et al. [4] define Reo connectors that simu-
late the behavior of basic BPMN modeling objects. By
composing these connectors, one can model arbitrarily
complex process workflows. For example, Fig. 3 shows
an annotated Reo model for a fragment of the Purchase-
to-Pay scenario within a procurement application. A
corresponding BPMN diagram for this example can be
found in Sadiq et al. [29]. In this scenario, two entities,
Purchaser and Supplier, perform a number of activities
within their workflows and exchange messages to co-
ordinate their work. Each atomic activity is represented
by a FIFO channel, which intuitively means that such an
activity is started by accepting a flow token (data item)
and completes by asynchronously disposing this token
(data item). Observe that annotations on Reo circuits
merely provide clues to help human understanding; they
in no way affect the semantics of the circuits. The models
with FIFO buffers that represent basic process activities
(analogous to places in Petri nets) are mostly used for
process simulation, validation and generation of state-
transition systems for their formal verification. Once
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Fig. 3. Reo model for a fragment of the Purchase-to-Pay scenario

the designer is assured that the basic control/data flow
logic is correct, components, which are black boxes with
associated behavioral interfaces, can be attached to the
model. These components can further be associated with
WSDL files or other similar service interface specifica-
tions (e.g., semantic Web service standards). The result-
ing model can be converted to executable coordination
code realized, e.g., in WS-BPEL, C++ or Java, with the
invocation of existing web services.

The most basic model for expressing the opera-
tional semantics for Reo relies on Constraint Automata
(CA) [30], which are essentially labeled transition sys-
tems with associated data constraints. Assuming that
N is a finite set of node names and Data is a fixed,
non-empty set of data that can be sent and received
via Reo channels, a function δ : N → Data defines
a data assignment for a subset of nodes N ⊆ N . CA
use a symbolic representation of data assignments by
data constraints which are propositional formulas built
from the atoms dA = dB, dA = d and standard boolean
connectors, where A,B ∈ N , dX is a symbol for the
observed data item at the node X and d ∈ Data. We
write DA(N) to refer to the set of all data assignments
for the node-set N , DC(N) to denote the set of data
constraints that at most refer to the observed data items
dA at node A ∈ N , and DC for DC(N ).

Definition 1 (Constraint Automaton (CA) [30]): A con-
straint automaton A = (S,N ,→, s0) consists of a set of
states S, a set of node names N , a transition relation
→ ⊆ S × 2N × DC × S, where DC is the set of data
constraints over a finite data domain Data, and an initial
state s0 ∈ S.

We write q
N,g
−→ p instead of (q,N, g, p) ∈→ . Figure 4

shows the CA for the basic Reo channels. Note that the
constraint automaton shown for the FIFO is with respect
to the data domain Data = {0, 1}.

The behavior of any Reo circuit composed of basic
channels can be obtained by computing the product of
the constraint automata of its constituent parts.

Definition 2 (Product of CA [30]): The product of two
constraint automata A1 = (S1,N1,→1, s

1
0) and A2 =

(S2,N2,→2, s
2
0) is defined as the constraint automaton

A1 ./ A2 = (S1 × S2,N1 ∪ N2,→, 〈s10, s
2
0〉) where the

transition relation → is determined by the following
rules:

s1
N1,g1
−→1 t1 N1 ∩ N2 = ∅

〈s1, s2〉
N1,g1
−→ 〈t1, s2〉

s2
N2,g2
−→1 t2 N2 ∩ N1 = ∅

〈s1, s2〉
N2,g2
−→ 〈s1, t2〉

(1)
and

s1
N1,g1
−→1 t1 s2

N2,g2
−→1 t2 N1 ∩ N2 = N2 ∩N1 = ∅

〈s1, s2〉
N1∪N2,g1∧g2

−→ 〈t1, t2〉
(2)

Constraint automata are not expressive enough to
describe precisely all details of the intuitive behavior
of Reo. In particular, they cannot express the context-
dependent behavior of the LossySync channel that loses
a data item only if the environment or subsequent chan-
nels are not ready to consume it. Several models have
been proposed to overcome this specific problem. The
simplest of them is the connector coloring [31] which
describes the behaviour of Reo in a compositional fash-
ion by coloring the parts of the circuit with and without
dataflow using different colors that match on common
ports/nodes. When three colors are used, the model
captures context-dependent behaviour by propagating
negative information about the exclusion of dataflow
through the connector. This model currently is used as a
theoretical basis for Reo circuit animation and simulation
tools. To provide a compositional semantics for Reo with
communication delays, another automata-based model
has been recently proposed [32]. This model generalizes
CA in the sense that it distinguishes several actions
observable on channel ports. This allows us to represent
states in which a circuit is busy transferring data and
thus cannot accept incoming requests, which provides
a formal model for evaluating end-to-end delays in a
connector.

In our recent work [33], [34], we expressed the be-
havior of Reo in the specification language mCRL2 [35].
mCRL2 is expressive enough to represent the behavior
of all aforementioned three automata models. The basic
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{A,B} dA = dB {A,B} dA = dB{A}

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B} {A}{B}

Sync LossySync FIFO SyncDrain AsyncDrain

Fig. 4. Semantics of basic Reo channels and nodes

notion in mCRL2 is the action. Actions represent atomic
events and can be parameterized with data. Actions in
mCRL2 can be synchronized using the synchronization
operator |. Synchronized actions are called multiactions.
Processes are defined by process expressions, which are
compositions of actions and multiactions using a number
of operators. Moreover, the mCRL2 language provides
a number of built-in datatypes (e.g., boolean, natural,
integer) with predefined standard arithmetic operations
and a datatype definition mechanism to declare custom
types (also called sorts). We employed the mCRL2 toolset
to generate state spaces for graphical Reo circuits and
subsequently model check them. mCRL2 models for Reo
circuits are generated in the following way [33]: ob-
servable actions (i.e., dataflow on the channel ends in
the basic CA model) are represented as atomic actions,
while data items observed at these ports are modeled as
parameters of these actions. Analogously, we introduce
a process for every node and actions for all channel
ends meeting at the node. A custom sort Data and the
mCRL2 summation operator are used to model the input
data domain and iterate over it while specifying data
constraints imposed by channels. This work enriches
Reo with a functional language for specifying data con-
straints and enables tool supported verification of data-
aware service-based process models specified in Reo.

5 SEQUENTIAL FLOWS

In this section, we apply Reo to model compensation
strategies in transactional processes composed of a set
of sequentially executed activities.

As mentioned in the introduction, BPMN introduces
a special notation to identify tasks with associated com-
pensation activities. According to this notation, only one
activity can be marked as a target compensation activity,
i.e., a sequence of compensation activities is not allowed.
If several actions are required for the compensation, they
must be combined into a single sub-process. Naturally,
only activities that have been executed can be compen-
sated for. Taking into account this description, an atomic
task T with an associated compensation activity ∼ T,

written as T÷ ∼ T , can be represented as shown in
Fig. 5(a). In this Reo circuit, after the task T has executed,
a token flows into the internal FIFO buffer which leads
to the change of the connector state. An external user is
notified that the task has been completed by the message
observed on the port “performed”. The performed task
can be canceled or committed, where the effects of a
committed task cannot be undone or canceled anymore.
The token that resides in the FIFO buffer enables the

(a) Internal view (b) Input/output hiding

Fig. 5. A task with an associated compensation activity

connector to accept cancel or commit messages. If a
cancel message arrives, the compensation activity ∼ T is
executed and the task T is considered to be canceled. If
a commit message arrives, the status of the task changes
to “committed”. The commands to commit or cancel
the task effects are received from a transaction manager
which generates them according to some global event
such as output or failure of another service, timeout, or
upon receiving a client’s request to cancel the process.
Such events are part of the application logic and can be
modeled using Reo as discussed in [4].

Figure 6 shows a Reo model for a transactional process
P ≡ C1;C2; ...;Cn consisting of a set of sequentially
executed compensatable activities. Here, each connector
Ci ≡ Ti÷ ∼ Ti, 1 ≤ i ≤ n, stands for an aforemen-
tioned compensation pair that includes an atomic task
Ti whose effect is compensated for by another atomic
task ∼ Ti. In this scenario, unused outputs represent-
ing the “canceled” and the “committed” states of the
connector for each compensation pair can be hidden
using two FIFO and two SyncDrain channels as shown
in Fig. 5(b). For an external observer such a connector,
after hiding, will have four I/O ports: three inputs for
accepting “execute”, “commit” and “cancel” messages,
and one output representing the “performed” state of
the source activity. The transactional process has several
possible outputs. At the end of the successful transaction
execution, that is, if no cancel message has been received,
a token is back-propagated to commit all performed
activities. If, instead, a cancel message has been received,
it is picked up at a place where the execution token
currently resides and back-propagated to cancel all per-
formed activities. Since in this model we assume that an
atomic compensation task cannot fail, the cancel message
can be simultaneously forwarded to the output of the
transactional process to signal the successful cancelation
of the whole transaction.

Taking into account the design of the compensation
pair connectors, namely, that after their source tasks
have been executed, each connector is ready to accept
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Fig. 6. A transaction consisting of n sequential tasks

Fig. 7. A transaction consisting of n sequential tasks
whose cancelation occurs in the reverse order

the cancel message, we propagate the cancel message
simultaneously to all performed activities. However,
such a behavior can be easily changed by substituting
synchronous channels going to the “cancel” port of each
compensation pair connector Ci, 1 ≤ i ≤ n, with FIFO

channels. In this case, each compensation activity will
be activated independently.

In both variants of the circuit discussed above,
the compensation activities are performed concurrently.
However, a process may require an ordered execution
of compensation activities. For example, Fig. 7 shows
a transaction in which the effects of the tasks in a
normal flow are compensated for in the reverse order
with respect to the normal flow order. In this circuit,
we use connectors representing compensation pairs with
only one hidden port (corresponding to the “committed”
state). A cancel message is sent to the “cancel” port of
the circuit Ci−1 only if the circuit Ci produces an output
signalling that its task has been compensated for.

Now imagine that in some circumstances compensa-
tion activities may fail. Figure 8(a) models a compen-
sation pair that admits a failure of its compensation
activity. In this model, the task ∼ T can have two
outcomes, namely, successful completion, which means
that the effects of the task T have been completely
canceled, and exception, which signals that something
went wrong while canceling the effects of the source
task. After hiding the “committed” state of this connector
we obtain a connector shown in Fig. 8(b). Using such
connectors, we can model transactions with exceptions,
called hazards in BPMN. Figure 9 shows a transaction
process consisting of a set of sequentially executed ac-
tivities with a possible hazard output. In contrast to the
previous models, a cancel message cannot be simply
propagated to the cancel output port. Instead, we need
to ensure that all completed activities have been success-

(a) Internal view (b) External view

Fig. 8. A task with an associated compensation activity
with possible failure

fully canceled. This involves a structure similar to the
one for executing and canceling parallel activities [4].
First, all compensation pair connectors receive cancel
messages analogously to the sequential process in Fig. 6.
Second, messages confirming the successful execution
of all compensation activities must be received. Only
in this case the transaction is considered successfully
canceled. If some of the compensation activities fail, we
can immediately signal the hazard event. However, in
this case, a problem arises regarding the clean up of
tokens returned by each of the invoked compensation
activities. To resolve this problem we use the same idea
as for canceling a process consisting of a number of
sequential activities: the exclusive router Y redirects the
exception token to one of the places yi, 1 ≤ i ≤ n,

where the cancelation token currently resides, and both
are disposed of in the corresponding synchronous drain
(yi, zi). Additionally, tokens flow from this point into all
available FIFO channels and wait until all compensation
activities have disposed their tokens, either through the
cancel output or through the exception output.

Note that designers are not supposed to directly
construct complex circuits such as the one in Fig. 9.
Instead, they can use higher-level design languages such
as BPMN, while Reo circuits can be regarded as the
semantics of such higher-level specifications. Moreover,
it can be observed that all circuits for process modeling
we introduced in this section are composed of relatively
simple repeatable patterns, each easily understandable.
After a correct circuit is constructed to reflect the se-
mantics of a common modeling pattern such as e.g., the
sequential transaction with hazards, such a circuit can
be converted to a component and used in higher-level
models.

6 PARALLEL FLOWS

Arbab et al. [4] examined how Reo can be used to
coordinate parallel activities with exception handling.
A Reo circuit for a parallel process P ≡ C1|C2|...|Cn

is essentially composed of a parallel fork and a par-
allel join gateways with n outgoing and n incoming
branches, respectively. When an activity Ti, 1 ≤ i ≤ n,

has completed, its corresponding token waits until other
activities complete as well. After that, the token flows
to the circuit output. For interrupting the process, a
cancel message, either coming from an external source,
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Fig. 9. A transaction consisting of n sequential tasks with
possible failures in compensation activities

Fig. 10. A transaction consisting of the discriminator
pattern with n parallel activities

or spawned by a failed activity in one of the parallel
flows, is asynchronously directed to each of the remain-
ing branches. A similar Reo connector can be used to
cancel parallel activities within an LRT. Additionally
to the aforementioned pattern, we must commit each
activity after all branches have completed successfully.

Below, we consider LRTs for more complex scenarios
involving parallel activities. For example, one of the
interesting patterns is the so called discriminator choice
which allows alternatives to be explored in parallel.
Once one branch finishes successfully, all remaining
alternatives are stopped and compensated for. A Reo
circuit modeling such a behavior is shown in Fig. 10. The
first completed branch initiates the compensation for all
other branches. The compensation is performed asyn-
chronously when the connector for its corresponding
compensation pair is ready to accept the cancel message.

Some languages, e.g., WS-BPEL, provide a mechanism
for adding control dependencies to concurrent flows.
This is done by means of links. A link is a directed con-
nection between a source activity and a target activity.
After a source activity is executed, the link is set to true,

Fig. 11. Coordination of activities in parallel flows using
links

Fig. 12. Compensation of parallel flows with control links

allowing the target activity to start.

Consider a process P ≡ C1; (C2;C4|C3;C5);C6 consist-
ing of six compensation pairs Ci ≡ Ti÷ ∼ Ti, 1 ≤ i ≤ 6
(adopted from Bruni et al. [9]). In the normal flow, two
pairs of tasks (T2;T4) and (T3;T5) are initiated after the
task T1 has completed, and execute concurrently. Now,
assume that there is an additional constraint, written
as link(T3, T4), which states that the task T4 must be
executed after the task T3 has completed. This constraint
can be easily modeled with Reo using a FIFO1 and a
synchronous drain channels connecting nodes A and B

as shown in Fig. 11. One more FIFO1 channel is needed
to keep the execution token returned by the connector
C2 while waiting for the completion of the task T3 within
the C3 connector.

While control links are considered to be a useful
mechanism for synchronizing concurrent flows, they
obscure the desired compensation behavior in case of
a process failure. We assume that such behavior can
vary in different scenarios and must be dealt with by
more refined modeling. For example, Fig. 12 shows a Reo
circuit for the process compensation after executing the
activity T6. In this circuit, all activities are compensated
for in the reverse order relative to the normal flow. In
particular, the compensation activity for the task T3 is
activated after the compensations for the tasks T4 and
T5 have completed, while the compensation for the task
T2 can be activated independently from that of the task
T5, but after the task T4 has been compensated for.

Observe that by hiding internal nodes of Reo circuits,
any transactional process can be presented in the form
of a connector shown in Fig. 8(b) with or without ex-
ception/hazard output ports. Nested transactions, thus,
can be handled by propagating messages in/out of their
corresponding Reo connectors.
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7 PROCESS VERIFICATION

Finite-state verification is a powerful means to detect
errors in concurrent systems that otherwise may be
difficult to find and reproduce. With the help of Reo
flash animation and simulation tools, designers can vi-
sually validate the behavior of a certain process model.
However, since Reo connectors coordinating services in
LRTs can be rather intricate, it is better to encode such
properties as logic formulas and verify them automati-
cally using model checking technology.

Several model checking tools are available for analyz-
ing Reo. One of them is the symbolic model checker from
the mCRL2 toolset1. This tool relies on the parameterized
boolean equation system (PBES) solver to encode model
checking problems such as verifying first-order modal µ-
calculus formulae on linear process specifications. Its ap-
plication to the analysis of timed data-aware workflows
modeled in Reo has been discussed in [33] and [36].

Alternatively, verification of Reo circuits can be accom-
plished with the help of the Vereofy model checker [37].
Vereofy uses two input languages, namely, the Reo
Scripting Language (RSL), and a guarded command
language called Constraint Automata Reactive Module
Language (CARML), which are textual versions of Reo
and CA, respectively. Scripts in these languages are
automatically generated from graphical Reo/CA models.
Nevertheless, they can be written manually as well,
which can be useful, e.g., for the specification of large
connectors with repeating patterns such as we observe
in LRTs involving multiple services.

Regarding the analysis of component/service-based
process model, the mCRL2 toolset has several advantages
over Vereofy as it supports timed specifications with
abstract data types and user-defined functions. However,
both tools are suitable for control flow analysis, and since
the mCRL2 property specification format based on µ-
calculus is more difficult to use, we choose Vereofy to
check essential temporal properties of LRT. For model
checking with Vereofy, a constraint automaton needs to
be associated with an arbitrary finite data domain Data,
which collects all possible data items exchanged through
the corresponding Reo circuit or stored within the local
variables of the components. Data is a global data type,
which in the current implementation of the Vereofy can
be Bool, int, or enum, depending on the user settings.
The default data domain is int(0,1) and we use it for
control flow analysis.

Let N be the finite set of names representing the
channel ends and Reo nodes and all interface ports of
components. Let A,B ∈ N and d ∈ Data a value
from the data domain. I/O-constraints then have the
following syntax c := c | c0 ∧ c, where c denotes a
constraint and

c0 := A | ¬A | dA = d | dA 6= d | dA = dB | dA 6= dB

1. http://www.mcrl2.org

is a constraint atom. An I/O-constraint stands for the
access to a set of synchronized write and read operations
at channel ends, ports, and Reo nodes. They are given by
configurations of atoms of the form A (“there is data flow
at port A”), ¬A (“there is no data flow at A”), or conditions
on the data item dA exchanged through A. Conditions
on the data flow may relate to either a constant value
d ∈ Data or the data value observed at some other port
B ∈ N .

Vereofy supports linear and branching-time model
checking. Properties of Reo circuits can be specified
either in the Linear Temporal Logic (LTL) or the
Alternating-time Stream Logic (ASL), a variant of Com-
putation Tree Logic (CTL) extended with the ability to
express conditions on data flow in channel nodes using
regular expressions. LTL allows designers to encode
formulae about the future of execution paths such as
that some condition will eventually be true or will be
true until another condition becomes true. CTL is a
branching-time logic which models time as a tree-like
structure and allows designers to encode formulae about
the future of possible execution paths. For example, an
ASL formula AG[EX [true]] which literally means “for all
paths, it is globally true that there exists a next state” can be
used for deadlock detection.

Among the useful properties that we can verify are
the following:

∀i, 1 ≤ i < n,

G (Ci.start → F (Ci.committed ∨Ci.cancelled)).

This property says that either the committed state or
the canceled state of each started compensation pair Ci

will eventually be reached. We use quantifies to iterate
over a set of n compensatable activities used in an LRT,
meaning that the aforementioned temporal constraint
should hold for every one of these activities. The next
property

G (P.commit → F ∧n
i=1 Ci.commit)

states that the process commit implies the commitment
of all of its involved activities.

The successful cancelation of an LRT occurs when
the arrival of a cancelation message implies that all
performed activities will be eventually compensated for
(cancelled). This property can be checked using the
following formula for parallel transactions:

G (M → F ∧n
i=1 Ci.cancelled).

A cancelation message can be received at any moment
of the process execution. In our models of sequential
LRTs, we do not wait until the process is completed, but
initiate compensation after the completion of the atomic
activity being performed at the moment of the arrival
of the cancelation message. Therefore, the successful
cancelation of the LRT can be formalized as follows:

∀i, 1 ≤ i < n,

G ((Ci.start → X (¬Ci+1.start ∧M)) →
F ∧i

j=1 Cj .cancelled).
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In the case of the simultaneous invocation of compen-
sation activities, this condition can be rewritten as

∀i, 1 ≤ i < n,

G ((Ci.start → X (¬Ci+1.start ∧M)) → ∧i
j=1Cj .cancel).

To guarantee the reverse order cancelation, it is
enough to show that for each activity the compensation
of its preceding activity starts at the next step after the
successful cancelation of the current activity:

∀i, 1 ≤ i < n,

G ((Ci.start → X (¬Ci+1.start ∧M)) →
FC1.cancelled∧i

j=2 (Cj .cancelled → XCj−1.cancel)).

In the model shown in Fig. 6 and Fig. 7 we assumed
that if all n activities have been successfully completed,
the process is committed. However, it is easy to modify
this process in a way that it will be cancelable even
after the completion of all of its activities. For example,
according to the business agreement with coordinator com-
pletion protocol suggested by WS-Transaction, the com-
mitment is initiated by the external coordinator. In this
case, conditions formalizing the successful cancelation of
LRT may be slightly different.

Generally, LTL and CTL-like logics supported by Vere-
ofy allow designers to express various properties of
business processes. Examples of useful properties can be
found in Dwyer et al. [38]. This work provides property
specification templates in LTL, CTL and regular ex-
pressions which allow designers to easily describe such
facts as the absence or existence (including bounded
existence) of certain events or states or cause-effect rela-
tionships between pairs or sequences of events/states.

8 TIME-AWARE LRTS

A timed transaction is as an activity or a sub-process that
must be interrupted and compensated for if it does not
complete before a specified time-out. In our approach,
time-aware design of LRTs can be accomplished with the
help of Reo timer channels.

The operational semantics of time-aware Reo circuits
is given by Timed Constraint Automata (TCA) [26], which
are defined as follows. Let C be a finite set of clocks.
A clock assignment is a function v : C → R≥0. If t ∈
R≥0 then v+ t denotes the clock assignment that assigns
the value v(x) + t to every clock x ∈ C. If C ∈ C then
v[C := 0] stands for the clock assignment that returns
the value 0 for every clock x ∈ C and the value v(x)
for every clock x ∈ C \ C. A clock constraint (denoted
cc) for C is a conjunction of atoms of the form x ./ n

where x ∈ C, ./∈ {<,≤, >,≥,=} and n ∈ N. CA(C) (or
CA) denotes the set of all clock assignments and CC(C)
(or CC) the set of all clock constraints.

Definition 3 (Timed Constraint Automaton (TCA) [26]):
A TCA is an extended CA A = (S,N ,→, s0, ic) with the
transition relation → ⊆ S × 2N × DC × CC × 2C × S

such that dc ∈ DC(N), C is a finite set of clocks and
ic : S → CC is a function that assigns an invariance
condition ic(s) to any location s.

Fig. 13. Modeling timed LRTs

Fig. 14. TCA for the t-timer with off-option

This definition is similar to the definition of standard
timed automata [39]. However, in contrast to simple
timed automata, TCA contains three transition labels: (i)
synchronization constraints that represent a set of ports
where data flow is observed simultaneously, (ii) data
constraints that enable these transitions and, finally, (iii)
clock constraints. Figure 13 illustrates how timed LRTs
can be managed using Reo timer channels, namely a t-
timer with off and reset options channel with source end A

and sink node B. The source end of the channel accepts
any input value d ∈ Data and produces through its
sink end a timeout signal after a delay of t time units.
The off-option allows the timer to be stopped before the
expiration of its delay when a special “off” value is
consumed through its source end, while the reset-option
allows us to reset the clock of the channel to 0 without
switching it off. The TCA describing this behavior is
shown in Fig. 14.

Thus, in our scenario, the Coordinator component
keeps track of time, and either interrupts the trans-
actional process P if it does not complete within the
predefined timeout, or otherwise stops the timer and
commits the process. Here we use a full FIFO channel
with the source end C and the sink end D to keep the
special “off” value which is sent to the timer.

The timed properties of LRT models can be veri-
fied with the mCRL2 toolset. For the mapping of timer
channels to mCRL2, we need to capture off, reset and
timeout signals. Thus, along with the basic global data
type Data the circuit should be able to deal with data
items representing these options. Timer channels also
behave differently when switched on or switched off.
The details of the encoding of timed Reo in mCRL2
can be found in [36]. In a nutshell, the timer with off
and reset options can be represented as the following
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parameterized mCRL2 process:

Timer (isOFF :Bool , x:Real , t:Real) =
isOFF → (Σd:DataTimer isOther(d) →

A(d).Timer (false , 0, t)) �
((x < t) → (Σd:DataTimer

isReset(d) → A(d).Timer (false , 0, t) +
isOff (d) → A(d).Timer (true, x, t) +
tick@x.Timer (false , x+ 1, t)) �

B(timeout).Timer (true, x, t));

Here, the operator p + q means alternative composition;
p · q sequential composition; the construct c → p � q, where
c is a boolean expression corresponds to the conditional
operator or if-then-else; Σd:D p is a summation operator
used to quantify over a data domain D; and the at
operator a@t indicates that an action a happens at time t.
The labeled transition system obtained with the help of
mCRL2 tools is equivalent to the (T)CA-based semantics
for Reo. The mCRL2 specifications for any Reo circuit
is generated automatically and then converted to a la-
beled transition system. However, for reducing the state
space, it is useful to generate mCRL2 specifications for
frequently used behavioral patterns that are converted
to components directly. When abstracted from the details
of the data flow in internal nodes, the behavior of a con-
nector observable at its boundary nodes can be encoded
in mCRL2 in a much more concise way and processed
faster. In [36], for instance, we applied this approach to
a connector that models a variable. For analyzing LRT
models with mCRL2 toolset, we convert compensation
pairs to their corresponding mCRL2 specifications. For
example, the following mCRL2 process

CompensationPair = Σd:Data·
(

start(d) · performed(d) · (cancel(d) · cancelled(d)+
commit(d)|committed(d))

)

· CompensationPair;

describes the observable behavior of the Reo model
for the compensation pair in Fig. 5(a). The properties
of timed LRT can be specified in timed µ-calculus2. For
example, we can verify that some action x happens
within some time period after an action y. In the context
of the given example, such a property can be used to
check whether the transactional process P completes
within t units of time after it has been initiated:

[true∗]∀τ : R · [start@τ ]〈true〉
∃u : R · (u ≤ τ + t ∧ performed@u).

Alternatively, TCA can be analyzed with the SAT-
based bounded model checker developed by Kem-
per [40]. In this work, the behavior of a TCA is rep-
resented by formulae in propositional logic with linear
arithmetic to be analyzed by various SAT solvers. Since
TCA provide operational semantics for timed Reo, this
approach can be used for model checking time properties
of LRTs. However, at the moment there is no tool for

2. http://www.mcrl2.org/mcrl2/wiki/index.php/Language
reference/mu-calculus syntax

generating TCA from graphical Reo connectors. The de-
velopment of such a tool for data-aware Reo will require
the integration of TCA with some functional language
for specifying constraints and functions used in filter
and transformer channels. By using the mCRL2 toolset
to obtain automata-based semantics of timed process
models we avoid this problem.

9 MODELING LRTS WITH EXTENSIBLE CO-
ORDINATION TOOLS

In this section, we overview Reo tools for supporting
business process modeling and LRT behavior analysis.

Reo coordination tools3 consist of a set of plug-ins
on top of the Eclipse platform4. Additionally, multiple
other plug-ins, including ones for business process de-
sign and execution, have been developed for Eclipse.
Our approach adheres to the principle of model-driven
development and establishes the connection of popular
business process modeling notations and service compo-
sition languages such as BPMN, UML or WS-BPEL with
our proposed formal tools. The overall set of tools we
apply to the design of transactional processes looks as
follows:

• BPMN modeler5 is a graphical editor for creating
BPMN diagrams. It is based on the Graphical Mod-
eling Framework (GMF) and uses an Eclipse Mod-
eling Framework (EMF) object model. The object
model persists as XMI. Other modeling tools, e.g.,
Eclipse UML26, can be used to design transactional
business processes as well.

• BPMN2Reo converter is a plug-in for mapping BPMN
diagrams into Reo models. We assume that BPMN
diagrams are automatically converted to Reo models
using a set of predefined ATL rules [41] and further
refined to remove any ambiguity or semantic errors
in the desired process behavior. A set of rules for
mapping the aforementioned patterns have been
specified in the prototype of the conversion tool [42].

• Reo graphical editor is a plug-in for the develop-
ment of Reo connectors composed of the basic
communication channel types. The editor supports
hierarchical design by allowing previously defined
Reo connectors to be converted to components and
incorporated into new coarser-grained models.

• Reo animation engine is a plug-in that generates flash
animated simulations of Reo connectors. Two ani-
mation modes are supported: a plain mode, which
demonstrates the whole process, including all pos-
sible execution alternatives, and a guided or stepwise
mode, which shows each execution step separately,
including all possible alternatives for a current step.

3. http://reo.project.cwi.nl/
4. http://www.eclipse.org
5. http://www.eclipse.org/stp/bpmn/
6. http://www.eclipse.org/modeling/mdt/?project=uml2
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• Reo verification plug-ins are tools for verifying Reo
process models against formally specified proper-
ties. This set includes the aforementioned (i) Vereofy
model checker, (ii) the mCRL2 toolset capable of
verifying timed and data-aware process models [33],
[36] and (iii) a prototype of a SAT-based bounded
model checker used for verifying timed (data agnos-
tic) Reo networks [40].

• Java code generation engine is a plug-in that imple-
ments Reo circuits as a set of Java classes. This
engine can be used to generate distributed processes
from Reo models annotated with deployment infor-
mation. A distributed version of the code generation
engine is also available.

Figure 15 demonstrate the application of ECT tools
for LRT modeling and implementation. First, we assume
that the designer models a transactional business process
using a suitable modeling tool, e.g., the aforementioned
Eclipse BPMN graphical editor. For example, Fig. 15(a)
shows a BPMN modeling primitive for the compensation
pair. Then, using the BPMN2Reo converter, a Reo model
of the compensation pair shown in Fig. 15(b) can be
obtained. This model gives operational semantics to the
corresponding BPMN diagram. Figure 15(c) shows a CA
with four states and five transitions for the compensation
pair generated from the above Reo process model. Here
transition labels represent names of external (visible)
ports, namely, “start”, “performed”, “cancel”, “canceled”,
“commit”, and “committed”, where data flow can be
observed by external user. Such a CA can be given as
input to the Vereofy model checker together with the
properties to be verified. For example, using an LTL
formula

F performed →!(committed ∨ cancelled)U performed

we can ensure that the results of the task cannot be
canceled or committed until it has been performed.
Similarly, using an LTL formula

G (performed → G(cancel → F cancelled))

we can check that after the task has been performed, it
can be canceled in response to the cancel message.

For verifying timed dataflow of Reo process mod-
els with mCRL2, the user needs to select a graphical
model and specify a property. The corresponding mCRL2
code will be generated automatically. The generation of
mCRL2 code can be customized using various options.
For instance, the option with components incorporates
process definitions for the components attached at the
boundary of a connector. The option with data enables
data-aware encoding. Datatypes of components and ser-
vices coordinated by Reo, as well as data constraints
for data dependent channels such as Filter or Transform

channels, can be defined using the same interface. They
are saved as annotations in the Reo model and are
propagated to the final mCRL2 specification. This way
Reo circuits can be compiled automatically into mCRL2

without any manual editing. The tool further includes
integrated space visualization tools. In particular, we
use the mcrl22lps utility for the generation of the
linear process representation of mCRL2 code, lps2lts
and lpsconvert for generating and minimizing la-
beled transitions systems, lps2pbes for symbolic model
checking of modal µ-calculus formulas, and finally
ltsgraph for visualization of state spaces.

The convertion tools create Reo counterparts for
generic business process models. Due to the ambiguities
of such models, automatically obtained Reo networks
may require manual refinement. This is especially rele-
vant for transactional processes as the high-level BPMN
models usually lack the necessary technical information
on how transactional properties of the process should be
achieved. At this stage, the Reo animation engine is par-
ticularly useful. It allows designers to see simulations of
the process execution in the form shown in Fig. 15(d) and
correct the process if necessary. By wiring Reo circuits
with component primitives as shown in Fig. 15(e), we
can incorporate service invocation in the process model
and thus implement a service composition to realize the
corresponding business process.

Reo connectors for process fragments can be further
reused in more complex process models. For example,
Fig. 16 shows a product distribution process that consists
of a transaction with two basic activities, supply and
deliver, and a sub-process cancel order which is executed
if a customer decides to cancel his/her order.

Fig. 17 shows a snapshot of a Reo model created in the
ECT environment for the sequential composition of two
compensatable services. Using the above models, we can
generate the Java code skeleton for:

• coordinating two complementary activities within
each of the compensation pairs,

• coordinating two independent compensatable ser-
vices within a sequential transaction.

To execute the generated code, the developer should im-
plement the activities associated with the FIFO channels
in the model. In our example, the FIFO channel is used
in the compensation pair to model a state where the
activity has been executed, but can still be canceled or
committed. In practice, the status of each transaction is
stored in some database, so at this point, the coordinator
should check and update this status.

Note that these Reo connectors normally will be
developed and executed by different parties, namely,
providers of compensatable web services and an orga-
nization that composes such services to implement its
own composite service with transactional behavior. We
integrate all components of the LRT in a single model
for verification purposes only. Although ECT currently
does not support automated WSDL and WS-BPEL code
generation, the LRT model can be easily realized using
the standard web service stack. The model suggests
that two WS-BPEL processes should be introduced to
provide compensatable services supply and deliver with
corresponding WSDL specifications. The boundary ports
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(a) BPMN compensation pair

(b) Reo model of the compensation pair

(c) CA for the compensation pair

(d) Animation of the compensation pair

(e) Compensatable web services coordinated by the Reo circuit

Fig. 15. BPMN compensation pair modeled with ECT

Fig. 16. A transactional product distribution process
consisting of two services

of Reo connectors correspond to operations in these
specifications. Then, a WS-BPEL process can be defined
to realizes the product distribution process through the
invocation of each individual service and its compensa-
tion activities from the given WSDL specifications.

The performance of the model verification depends on
the type of the analysis, choice of the semantic model
and the underlying model checking tool. The translation
of BPMN and WS-BPEL specifications to Reo requires
polynomial time in the number of basic activities in the
model. Vereofy model checker relies on the state-of-the-
art techniques for model checking optimization and can
deal with considerably large state spaces. However, the
generation of the constraint automata for graphical Reo
circuits is rather time consuming. The mCRL2 toolset has
been proven suitable for the state space generation and
the analysis of the large industrial systems with tens
of millions of states and transitions. For the verification
of the properties that formalize the correctness of the
control flow in the LRTs, basic CA models can be em-
ployed. These models are very concise, thus, the analysis
of a middle sized process model (50 atomic activities
corresponding to 250 states) completes within several
seconds with both Vereofy and mCRL2. For example, as
was shown in [36], the generation of the state space for
a circuit with 30 buffers takes less than 5 seconds. The
analysis of the models with context-dependent LossySync
channels is rather efficient as well, since such models
have the same number of states as the CA models,
and a slightly larger number of transitions. Regarding
the timed analysis, the generation of an explicit state
space for the timer channel with the delay in 1000000
time units requires around 11 minutes on a standard
machine with 4 cores and 8GB of memory, running Linux
2.6.27 and the January 2010 release version of mCRL2
(revision 201001). Note that the generation of the explicit
state space is not needed if the mCRL2 symbolic model
checking utility based on the PBES solver is used.

Dataflow model checking depends on the complexity
of the input domain and filter constraints which affect
the total number of states in the final state space. The
analysis of Reo models with internal coordination and
data transfer delays [32], which is useful, in particular,
for estimating end-to-end communication within a single
transaction, is much less efficient because of the larger
number of states involved. However, for computing the
execution time of a single transaction we do not need
the entire state space, since this property can be com-
puted on a small partial model. By abstracting away the
irrelevant details of a model, e.g., via hiding of internal
nodes or conversion of connectors to components, the
applicability of the presented tools can be scaled up to
tackle larger models.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how the Reo coordi-
nation language and its supporting software tools can
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Fig. 17. A sequential transaction consisting of two compensation pairs modeled with ECT

be used to model business processes with transactional
properties. Our approach makes it possible to formally
verify the process transactional behavior using a number
of validation and verification tools. We have illustrated
how most typical workflow patterns with termination
and compensation handling can be built using Reo chan-
nels. Automatic generation of Java code from verifiable
LRT designs simplifies the task of LRT development and
leads to more reliable LRT realizations.

Our approach has several advantages over existing
formal tools for LRT modeling. Most of the work-
flow modeling languages and dedicated process-algebra-
based approaches to LRT specification need special ex-
tensions to deal with tricky transactional patterns such as
e.g., discriminator choice, while Reo is able to cope with
this task in a unified manner. Due to its combination
of synchrony and asynchrony, Reo is more suitable for
specifying exception and compensation handling in LRTs
than classical Petri-nets. On the other hand, Reo is easier
than process algebras, which makes it a promising tech-
nique for practical applications for designers without
strong formal background. Furthermore, by introducing
new channels (e.g., data transformers) in Reo and ap-
propriate constraints in CA, we can deal with formal
verification of various process properties including data-

related constraints and non-functional requirements. Our
ongoing work on Reo and CA with priorities will even-
tually allow designer to model highly flexible trans-
actional processes able to favor certain services and
interactions over others.
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