
Integration of VectorWise with Ingres

Doug Inkster, Actian Corporation
Marcin Zukowski, Actian Netherlands B.V.

Peter Boncz, CWI

ABSTRACT
Actian Corporation recently entered into a cooperative
relationship with VectorWise BV to integrate its Vector-
Wise technology into the Ingres RDBMS server. The
resulting commercial product has already achieved phe-
nomenal performance results with the TPC-H industry
standard benchmark, and has been well received in the
analytical RDBMS market. This paper describes the
integration of the VectorWise technology with Ingres,
some of the design decisions made as part of the inte-
gration project, and the problems that had to be solved
in the process.

1. INTRODUCTION
The Ingres project of the 1970’s at UC Berkeley

was one of the first attempts to practically apply
the theory of the relational model to solving prob-
lems of data storage and access. The project led to
much research and many published papers [6], some
of which were fundamental to the early development
of relational database systems. Berkeley Ingres sub-
sequently formed the basis of numerous commercial
ventures including the Ingres RDBMS introduced
by Relational Technology Inc., formed by several
members of the original Ingres research team in
1980. While its market share is not what it once
was, Ingres has been continually developed since
its original market introduction. After a succession
of acquisitions and following its release into open
source in 2004 by CA Technologies, Ingres was rein-
troduced as an independent RDBMS by the newly
founded Ingres Corporation in 2005, and its devel-
opment and promotion has been pursued even more
aggressively since then. In 2008, Ingres Corpora-
tion (renamed as Actian Corporation in Septem-
ber 2011) entered into a commercial agreement with
VectorWise BV, a spin-off company from the Dutch
research institute CWI (Centrum voor Wiskunde
en Informatica). VectorWise was created to bring
to market the technology that was developed by
the MonetDB/X100 project [1, 2, 10]. The goal

of the agreement was to integrate the VectorWise
technology with the Ingres database server to pro-
duce a viable commercial RDBMS that provided the
accepted components of enterprise class database
management together with the extreme performance
of the VectorWise engine as demonstrated in the
numerous research papers generated from the Mon-
etDB/X100 project.

2. VECTORWISE
The MonetDB/X100 research project was initi-

ated at CWI to extend the ideas behind its open
source MonetDB column store database to work-
loads where the data set size is significantly larger
than memory. This led to the vectorized query ex-
ecution paradigm proposed in the Ph. D. thesis of
Marcin Zukowskix100phd, that conserves and even
improves the raw computational efficiency of Mon-
etDB, but avoids its policy of full intermediate re-
sult materialization, hence improving scalability. The
focus on large disk-resident workloads led to further
innovations in highly efficient compression meth-
ods [10] and Cooperative Scans [9] to to reduce I/O
bandwidth pressure. Like its ancestor MonetDB,
X100 is a column store database server designed for
read-mostly applications performing complex ana-
lytic queries on large volumes of data. That said,
it also employs sophisticated updating mechanisms
based on Positional Delta Trees (PDTs) that give it
acceptable performance in update applications from
moderate to heavy [2].

The design goals of X100 were to build upon
the lessons learnt in the MonetDB project1 and
to exploit features of modern computer hardware
architectures to deliver improved retrieval perfor-
mance to relational queries. In addition to the ben-
efit of reduced disk access inherent in column store
databases, the X100 design takes a holistic view of
disk, main memory, CPU cache and CPU to pro-
duce a database server that balances resource con-

1See http://www.monetdb.org

SIGMOD Record, September 2011 (Vol. 40, No. 3) 45

sumption from disk bandwidth, to memory band-
width to CPU instruction cycles. Among the more
novel ideas incorporated into the X100 architecture
is a lightweight compression scheme which uses dif-
ferent techniques depending on the data type and
value distribution. The compression algorithms are
simple enough to avoid diverting CPU resources
from actual query execution, yet effective enough
to reduce the need for disk space and increase the
effective bandwidth of disk transfer. Moreover, the
data is left in its compressed form even in main
memory. Only when it is ready to be used by the
actual operators of the executing query plan is it
decompressed. This technique allows better utiliza-
tion of the scarce bandwidth between CPU cache
and memory.

The primary source of the improved performance
realized by the VectorWise engine is its server archi-
tecture. Data flows passed through algebraic X100
operators are kept in columnar form in an effort to
reduce the execution overhead of row store database
engines. Moreover, the columns are processed in
vectors of a size designed to maximize the perfor-
mance achieved in CPU cache. The server functions
that implement the operators are written to exhibit
strong locality of reference and to take advantage
of such machine features as instruction pipelining
and compiler generation of SIMD (single instruc-
tion, multiple data) instructions. The vectorizing
of operators to use SIMD instructions allows oper-
ations to be executed on many data items simul-
taneously and greatly reduces the machine cycles
consumed for each tuple processed by the query en-
gine. During the process of integration with the
Ingres server, the VectorWise engine has been en-
hanced with other features typically associated with
high performance analytical query execution. Par-
allel execution of complex queries using the Volcano
model, revamped sorting, disk overflow hashing and
many more scalar functions are just some of the
improvements that have been made to VectorWise
during the integration process.

The interface to the VectorWise engine is a low
level, relational algebra language. Operators are
defined for session management, DDL and DML
(samples shown in Table 1). It is easily compiled
into the code form used for execution and depends
on queries being already optimized to get the best
performance. Though the VectorWise compilation
process does incorporate a rewriter to perform local-
ized optimization, the generation of optimal queries
is primarily the responsibility of the coder of the
query. Figure 1 shows a simple example of an SQL
query and the corresponding VectorWise algebra

Operators Producing a Flow of Tuples
Project(Flow input, Expr* calc)

Select(Flow input, Expr cond)

Sort(Flow input, Expr* orderby)

TopN(Flow input, Expr* orderby, int N)

Aggr(Flow input, Expr* groupby, Expr* aggregates)

HashJoin1(Flow in1, Expr* k1, Flow in2, Expr* k2)

HashJoin01(Flow in1, Expr* k1, Flow in2, Expr* k2)

HashJoinN(Flow in1, Expr* k1, Flow in2, Expr* k2)

MergeJoin1N(Flow in1,Expr* k1,Flow in2,Expr* k2)

HashSemiJoin(Flow in1,Expr* k1,Flow in2,Expr* k2,

Expr cond

HashRevSemiJoin(Flow in1,Expr* k1,Flow in2,Expr* k2,

Expr cond

HashAntiJoin(Flow in1,Expr* k1,Flow in2,Expr* k2,

Expr cond

HashRevAntiJoin(Flow in1,Expr* k1,Flow in2,Expr* k2,

Expr cond

DDL and DML Operators
CreateTable(str table, str* colspec)

Insert(str table, Flow input)

Delete(str table, Flow input, Expr* key)

Modify(str table, Flow input, Expr* key)

Start()

Commit()

Abort()

Table 1: Sample X100 Algebra Operators

query. The MScan operator creates a data flow con-
taining the sno and qty columns from the sp base
table. MScan stands for Merge-Scan, as it scans
columnar data from disk while merging in possi-
ble committed updates present in the PDTs [2].
Aggr performs a hash aggregation grouping the in-
put flow on sno and computing the sum of qty

values for each group. The Project operator in
VectorWise is used to compute new columns using
input columns, functions and simple expressions –
but it does not eliminate duplicates in the man-
ner of pure relational projection. In this example,
the Project just selects the two relevant output
columns from the aggregation flow.

3. INTEGRATION WITH INGRES
The first question asked about this project was

whether it was even feasible to integrate the type
of leading edge database technology as embodied
in VectorWise with a mature, row-based RDBMS
server such as Ingres. The VectorWise server, re-
gardless of its implementation, still provides a rela-
tional interface to the users of the data it maintains.
Such is the continuing strength of the relational
model that, even though user interface languages

46 SIGMOD Record, September 2011 (Vol. 40, No. 3)

SQL:

SELECT sno, SUM(qty) FROM sp GROUP BY sno;

VectorWise:

Project(
Aggr(

MScan(’sp’, [’sno’, ’qty’]
), [sp.sno], [col2 = sum(sp.qty)]

), [sno, col2]
)

Figure 1: Simple SQL query in X100 Algebra

may differ, access to contained data is achieved with
analogous mechanisms. Different relational languages
can almost always be compiled into compatible database
interfaces. So queries, both DDL and DML, can
be coded in SQL, given to the Ingres server to be
processed as necessary, and then passed seamlessly
by Ingres to the VectorWise engine for execution.
In fact, the original Quel language of Berkeley and
commercial Ingres can also be used for expressing
queries on VectorWise databases.

3.1 Adding VectorWise Tables to Ingres
Two primary mechanisms were available for defin-

ing VectorWise tables to the Ingres server. Ingres
has long included a gateway capability that allows
tables defined in federated RDBMS’, and even flat
file systems, to be “registered” in the Ingres in-
formation schema. Heterogeneous queries on such
tables are compiled in Ingres, then passed to the
database or file servers in question for processing.
Wrapper functions are required to be written for
each such interface to allow exchange of definitions,
data and transaction processing commands. To de-
velop such an interface to allow access to data stored
in a VectorWise database would have been a nat-
ural use of the gateway facility, one which would
have been quite straightforward to implement.

The ease of defining a gateway interface from
Ingres to VectorWise was offset, however, by sev-
eral factors. Possibly the very first design goal of
the entire integration project was to avoid burden-
ing the VectorWise processing technology with the
overheads of the Ingres row store architecture as
much as possible. The gateway approach delivers
rows back to the Ingres server one at a time to be
returned to the user and this was deemed an unac-
ceptable bottleneck. Moreover, for a better user ex-
perience, it was determined that the interface from
Ingres to VectorWise should be as seamless as possi-
ble and putting VectorWise tables in the same cat-
egory as tables created in other RDBMS’ would im-
pede our ability to provide, among other things, an

VectorWise (was: MonetDB/X100)

X100 Algebra

Ingres Optimizer (heavily modified)

Ingres Rewriter (slightly modified)

SQL Parser

Compressed PAX/DSM

Vectorized Execution

VectorWise Rewriter

Cross Compiler (new)Classic

Storage &

Ingres

Execution

Figure 2: Architecture of Ingres VectorWise.

integrated transactional model for updates.
The decision to fully integrate VectorWise tables

was consistent with the fact that Ingres already
supported several table storage options, specified
when tables are created. Rows of “heap” tables
are simply stored sequentially as they arrive in the
database, kept in a storage heap that extends auto-
matically as rows are added. “isam” and “btree”
are indexed sequential options and “hash” stores
rows scatters in the storage space, based on a hash
of their key column values. VectorWise tables are
simply defined by a new Ingres table storage op-
tion using the “structure=” parameter of the Ingres
CREATE TABLE statement, analogous to the heap,
isam, btree and hash options already supported.

Various Ingres DDL statements have been ex-
tended to support the definition of VectorWise ta-
bles and indexes. Definitions of VectorWise tables
and columns are recorded first in the Ingres infor-
mation schema so that Ingres can recognize refer-
ences to VectorWise tables and compile queries ac-
cordingly. The DDL is then passed to VectorWise
so that definitions can also be recorded in local Vec-
torWise catalogs for VectorWise engine use. Most
importantly though, from the user’s perspective the
same interface is used to define and maintain Vec-
torWise tables as those of native Ingres. Figure 2
depicts the final architecture of the integrated sys-
tem, in which dark boxes correspond to (heavily)
modified components. In the following, we discuss
these modifications in more depth.

3.2 Optimizing VectorWise Queries
While the notion of integrating different table or-

ganizations into an existing database server is quite
reasonable, generating optimal query plans for ta-
ble structures as radically different from classic row

SIGMOD Record, September 2011 (Vol. 40, No. 3) 47

stores as the VectorWise column store takes a bit
more of a leap of faith. However, arguably the most
critical function of query optimization is the esti-
mation of base table cardinalities in the presence of
restriction predicates and intermediate result car-
dinalities in the presence of joins and aggregations.
The remaining activities of a query optimizer are
the enumeration of all possible, or at least reason-
able, query plans and the association of cost esti-
mates with each. These are primarily mechanical
processes that can easily be extended to accommo-
date new data organizations.

Ingres was the first commercial RDBMS to use
histograms as a method for representing value dis-
tributions of the data in a column, histograms being
but one of numerous novel techniques introduced
to the Ingres optimizer from the Ph. D. research
of Robert Kooi[4]. As such, estimations of pred-
icate selectivity and resulting cardinality have al-
ways been strengths of its query optimizer. More-
over, Ingres histograms are built by a utility that
simply executes SQL queries on the underlying data.
Row counts for each distinct value are accumulated
in the utility itself, or by the Ingres server using ag-
gregate queries, depending on the ratio of distinct
values to rows in a table. Basic SQL retrieval sup-
port for VectorWise data allowed histograms to be
built for VectorWise tables very early in the integra-
tion process and provided a basis for using the ex-
isting Ingres optimizer to generate acceptable query
plans for VectorWise queries.

Therefore, the initial creation of query plans by
Ingres for use in the VectorWise engine simply used
the same cost algorithms as are used for queries on
native Ingres tables. Certain Ingres-only join tech-
niques were removed from the set of target strate-
gies, but the remaining operations such as hash
or merge joins were compiled identically for Vec-
torWise and native Ingres queries. The resulting
plans were quite promising, though certain char-
acteristics of the VectorWise execution model def-
initely required additional consideration. Some of
the changes to address these characteristics are de-
scribed later in Section 3.2.2.

3.2.1 Changes to the Ingres Rewriter
Several categories of change were implemented in

the rewriter component of the Ingres query opti-
mizer. Not all functions supported by the Ingres
dialect of SQL are supported in syntax by the Vec-
torWise engine. Examples include statistical aggre-
gate functions such as stddev pop, stddev samp,
var pop, var samp, corr,
regr slope, regr intercept, and so forth. These

functions all have well known expansions into more
basic operators such as multiplication, division, ex-
ponentiation, etc. and are defined that way in the
SQL standard[3]. So the parse tree fragments con-
structed by the Ingres parser for statistical aggre-
gates are detected and rewritten by the optimizer
rewriter as more primitive sequences of functions
and operators that are supported by the Vector-
Wise engine.

Like all commercial implementations of SQL, the
Ingres RDBMS rewrites many forms of WHERE clause
subqueries into flattened joins with the containing
queries. This allows more efficient execution strate-
gies to be developed. However, some forms of sub-
query are very difficult to flatten and native Ingres
relies on a nested loop “subquery” join operator to
handle such cases. For each row of the containing
query, the subquery is effectively executed with the
current set of correlation variables (with some op-
timizations to avoid continual reevaluation), to de-
termine the truth value of the subquery predicate.
Subqueries that are connected to a WHERE clause by
an OR are examples of the Ingres use of the subquery
join, rather than some complex flattening strategy.

The VectorWise engine does not support any nested
loop join operators. This has required the devel-
opment of additional novel flattening strategies in
the Ingres rewriter to handle subqueries in Vector-
Wise queries that were not flattened for classic In-
gres. These new subquery flattening strategies are
generic in that they are also applicable to native In-
gres queries and will deliver performance benefits to
existing users of Ingres. There are numerous such
examples of the symbiosis between the VectorWise
integration project and native Ingres.

Figure 3 shows a >= ALL subquery and how it
can be flattened to compute the MAX and COUNT of
the comparand value, as well as COUNT(*), then re-
stricts the containing query to rows for which the
subquery has either no result rows or result rows
that all contain null, and for which either all sub-
query rows are null or the maximum subquery value
is less than or equal the containing row comparand
value. VectorWise has the ability to re-use the re-
sults of any operation (joins, projections, etc.) to
be reintroduced later in the execution of the same
query, such that proper graph-shaped query plans
are possible. The Ingres rewriter already has the
ability to identify some common table-level expres-
sions so that their results can be computed once,
and cached (typically in a lightweight temporary ta-
ble) for reuse in the same query. This technique is
used, for example, when the same aggregate view is
referenced more than once in a single query. For

48 SIGMOD Record, September 2011 (Vol. 40, No. 3)

SQL:

SELECT * FROM p WHERE pno >=
ALL (SELECT pno FROM sp WHERE QTY = 100)

VectorWise:

Project (
Select (
Select (
CartProd(
MScan (
’p’, [’pno’, ’pname’, ’color’, ’weight’, ’city’]

) [’est_card’ = ’6’] ,
Aggr (
Select (
MScan (
’sp’, [’qty’, ’pno’]

) [’est_card’ = ’12’] , ==(sp.qty, sint(’100’))
) [’est_card’ = ’1’] ,
[] ,
[TRSDM_3 = max(sp.pno),_TRSDM_4 = count(*),
jTRSDM_5 = count(sp.pno)] , 200

), 1
), || (==(TRSDM_4,TRSDM_5), ==(TRSDM_4, sint(’0’)))

), || (==(TRSDM_4, sint(’0’)), >=(p.pno,TRSDM_3))
) [’est_card’ = ’3’] ,
[p.pno, p.pname, p.color, p.weight, p.city])

Figure 3: Flattened <compop> ALL sub-
query.

VectorWise queries, however, the Ingres rewriter
has been extended to perform a more general search
for common expressions. Resulting query fragments
are then executed once with their results cached by
the VectorWise engine. The cached result may then
be referenced elsewhere in the same query without
the need to rematerialize the rows from scratch.

3.2.2 Optimizer Changes
While the Ingres query optimizer generated ac-

ceptable plans for VectorWise queries almost imme-
diately, there are certain capabilities that are spe-
cific to the VectorWise engine that required addi-
tional properties to be tracked during query plan
enumeration. Ingres has long supported referential
and primary key/unique constraints; however its
optimizer has never exploited the presence of con-
straints while compiling queries. Accurate histogram-
based cardinality estimates of restrictions and joins
largely superseded the need to consider the impli-
cations of join predicates that map to referential re-
lationships between tables in a query. In contrast,
VectorWise has several features that can only be
targeted with knowledge of the constraints that un-
derlie the tables referenced in a query. As a result, a
new information schema table was defined in Ingres
to define more compactly the mapping of columns
in a referential relationship. Rows are added to this

table during the execution of the DDL statements
that define referential constraints. Corresponding
code was introduced to the Ingres optimizer to iden-
tify join predicates in a query that map to referen-
tial relationships.

The first benefit of such information is that the
optimizer can more easily identify and estimate costs
for joins that can take advantage of the join indexes
that VectorWise will optionally create to support
referential relationships. Merge joins between a join
index in a referencing table and the tuple ID of the
corresponding referenced table are the most efficient
joins that VectorWise can perform.

Referential relationships and unique/primary key
constraints are also the basis (along with the group-
ing columns of intermediate aggregate results) of
the functional dependency property tracked for each
node of a query plan for a VectorWise query. Func-
tional dependencies allow the leveraging of a feature
of the VectorWise aggregation operators. Those op-
erators include an operand list describing the ag-
gregate results to be computed and an operand list
describing the grouping columns upon which the
aggregation is to be performed. Columns in the
grouping list whose values are functionally depen-
dent on one or more other columns in the list do not
logically contribute to the determination of distinct
groups over which the aggregation is performed. As
such, VectorWise allows them to be designated with
the DERIVED attribute, in which case they are left
out of the grouping operation. The requirement to
include all columns of an SQL select-list in either
an aggregate function or the group by clause of the
query leads to many queries that include large text
columns in grouping lists, simply to allow them to
be included in the result row. Use of the DERIVED

attribute allows such columns in the grouping col-
umn list without imposing a potentially significant
overhead on the hashing and comparison operations
used to group the data. Figure 4 shows an aggre-
gation on sno and sname. By virtue of the unique
constraint on sno, sname is functionally dependent
on it and can be flagged as DERIVED in the aggrega-
tion, not needing to be part of the actual group-
ing operation taking place. Like most relational
query optimizers, the Ingres optimizer tracks order-
ing properties of nodes of a query plan. This allows
it to eliminate sorts at various points in the query
plan and to use the much more efficient ordered ag-
gregation operator to perform grouping operations,
rather than relying on hash techniques. However,
ordered grouping only requires its input to be clus-
tered on the grouping column values. That is, all
of the rows with the same values in the grouping

SIGMOD Record, September 2011 (Vol. 40, No. 3) 49

SQL:

SELECT s.sno, sname, SUM(qty)
FROM s, sp

WHERE s.sno = sp.sno
GROUP BY s.sno, sname;

VectorWise:

Project (
Aggr (
HashJoin01 (
MScan (
’sp’, [’sno’, ’qty’]

) [’est_card’ = ’12’] , [sp.sno],
MScan (
’s’, [’sno’, ’sname’]

) [’est_card’ = ’5’] , [s.sno]
) [’est_card’ = ’5’] ,
[s.sname DERIVED, s.sno] ,
[col3_3 = sum(sp.qty)

) [sno_1 = s.sno, sname_2 = sname, col3_3]
)

Figure 4: DERIVED designator in aggrega-
tion

columns must be contiguous. Clustering is a weaker
property than ordering, and the Ingres optimizer
has been extended to track it in addition to ordering
to enable the identification of grouping operations
that can be performed with the more efficient Vec-
torWise OrdAggr operator, rather than the hash-
based Aggr operator.

3.3 Query Plan Cross Compiler
The key component in the integration of Ingres

and VectorWise is a cross compiler which generates
a VectorWise query from an optimized Ingres query
plan. Ordinarily, the Ingres query compiler trans-
forms the optimized query plan into a code form ex-
ecutable by the Ingres query execution engine. For
a query on a VectorWise database, the Ingres code
generator invokes the cross compiler to transform
the optimized plan into query syntax to be executed
by the VectorWise engine. The cross compiler tra-
verses the optimized plan using recursive descent,
much like the code generator does for native Ingres
code generation. But as the plan tree is descended,
syntax is emitted for each of the corresponding op-
erators of the VectorWise relational algebra, and on
return from the descent the columns, expressions,
literals and other parameters of the operators are
emitted. The result is a query which builds data
flows from base table access and successively refines
them through the execution of the nested operators
such as joins, aggregations and unions.

One source of difficulty within the cross compiler
is the fact that the VectorWise query references

database entities (tables and columns) by name,
whereas Ingres query plans compile into buffer ref-
erences and offsets. In fact, entity names are effec-
tively removed from the query when it is turned into
a parse tree – before query optimization takes place.
The cross compiler goes to great lengths to avoid
name ambiguities and scope errors by generating
distinct table and column names and making heavy
use of table name qualifiers in column references.
Different instances of the same table and column
names are modified to assure distinctness, some-
times at the expense of readability of the resulting
syntax. A simple exception table is used to identify
Ingres expression operators that do not have an ex-
act equivalent in the VectorWise algebra. For exam-
ple, VectorWise supports is null and like opera-
tors, but not the negated is not null or not like

operators. The exception table has entries for the
Ingres is not null and not like operators that
result in the ! (not) operator being prepended to
the supported VectorWise is null and like oper-
ators.

There are also numerous examples of implemen-
tation effort being divided between the VectorWise
engine and the cross compiler. VectorWise does not
have native support for windowed functions such
as rank(), dense rank(), ntile() and so forth.
To relieve the VectorWise development team of the
entire burden of implementing these complex func-
tions, the cross compiler took on the responsibil-
ity of generating syntax to perform the partition-
ing and ordering, as well as the joining together
of results of window functions using differing win-
dow specifications. The VectorWise engine supplies
more primitive functions to first partition the in-
put rows, then to identify peer groups within each
partition based on the requested window ordering.
The results of those functions are then used to com-
pute the various windowed functions supported by
Ingres/VectorWise.

Example 5 shows a query that computes the rank()
function over two distinct window specifications.
The cross compiler computes the first rank value
and a sequentially assigned row number for each
row in the first pass of the result set. This ini-
tial result is cached using the VectorWise interme-
diate result re-use mechanisms described in Sec-
tion 3.2.1, which surfaces here in the assignment
into the IIWINSQNAME1 identifier of a subquery re-
sult, and the subsequent re-use of this identifier.
The cached result is re-sorted to generate the sec-
ond rank value and the results of the two computa-
tions are joined back together on the computed row
number.

50 SIGMOD Record, September 2011 (Vol. 40, No. 3)

SQL:

SELECT sno, pno,
RANK() OVER (PARTITION BY sno ORDER BY qty)

AS srank,
RANK() OVER (PARTITION BY pno ORDER BY qty)

AS prank
FROM sp;

VectorWise:

Project (
HashJoin01(

IIWINSQNAME1 =
Project (

Sort (
MScan (

’sp’, [’qty’, ’sno’, ’pno’]
) [’est_card’ = ’12’] , [sp.pno,

sp.qty]
), [TRSDM_0 = diff(sp.pno),

TRSDM_1 = rediff(TRSDM_0,sp.qty),
IIWINRNUM10 = rowid(uidx(’0’)),
sp.qty, sp.sno, sp.pno, prank =

sqlrank(TRSDM_0,TRSDM_1)]
), [IIWINRNUM10],
Project(

Sort(
Project(

IIWINSQNAME1, [IIWINRNUM11 =
IIWINRNUM10, sp.sno, sp.qty]

), [sp.sno, sp.qty]
), [TRSDM_3 = diff(sp.sno),

TRSDM_4 = rediff(TRSDM_3,sp.qty),
srank =sqlrank(TRSDM_3,TRSDM_4),
IIWINRNUM11]

), [IIWINRNUM11]
), [sp.sno, sp.pno, srank, prank]

)

Figure 5: Windowed functions with differing
window specifications

3.4 VectorWise Rewriter
The X100 Algebra plans created by the cross com-

piler lack certain details that were felt not relevant
during the (join-order) query optimization phase.
These typically concern highly VectorWise-specific
features. For instance, VectorWise represents deci-
mal and date/time data types using simple integers
of different widths (1, 2, 4, 8 and 16 bytes) that
are carefully selected to be of the minimal width
needed to prevent overflow. This selection is based
on min/max statistics kept for all columns. This
mapping of logical SQL data type to physical type
is performed by a VectorWise rewriter that oper-
ates on the already optimized algebraic query plan,
as a post-processing step.

Similarly, VectorWise represents null-able columns
as a pair of a value- and boolean-column, where the
boolean column indicates whether the tuple value
is null. This representation and resulting process-

ing model keeps functions null-oblivious and avoids
the need for null checks deep inside the execution
primitives. This absence of checks in turn conserves
the efficiency of the vectorized model, maximizing
e.g. SIMD opportunities. The extra boolean null

columns, and the propagation of these, are also han-
dled by a phase in the VectorWise rewriter.

For this new VectorWise rewriter we used a pattern-
matching tool called Tom2 that can be embedded in
C/C++ code to aid with the formulation of rewrite
rules. The presence of a separate, column-oriented
rewriter has aided the project as certain functional-
ity can be engineered with much less impact to the
main Ingres optimizer. Besides the mentioned phys-
ical typing and null optimizations, there are various
other rules implemented and many opportunities for
new rules. Notably, this column-oriented rewriter
was also used to implement multi-core query par-
allelization. Thus, parallelism is planned posterior
to main join-order query optimization. The same
approach is taken by many other systems, but may
miss possibilities an integrated optimization method
could potentially spot. Thus, the flexibility of hav-
ing a post-processing VectorWise rewriter also leads
to certain design trade-offs of the scope of query op-
timization versus the complexity of development.

3.5 Query Execution
The VectorWise server runs in a separate pro-

cess from the Ingres server. It is initiated by a
VectorWise interface layer that exists in the Ingres
server. This does not occur until the first user re-
quest to Ingres is received that actually requires ac-
cess to the VectorWise server. Execution by Ingres
of queries destined for the VectorWise server is a rel-
atively straightforward process, primarily following
the paradigm of making the interface as simple as
possible to take full advantage of the performance
of the VectorWise engine. As mentioned in Sec-
tion 3.1, DDL statements that affect the Ingres in-
formation schema are executed first in Ingres to per-
form necessary information schema changes, then
passed to the VectorWise interface where they are
converted to X100 algebra for delivery to the Vec-
torWise engine where an analogous process records
information in the VectorWise catalog. Transaction
synchronization is performed to assure that errors
in either the Ingres server or the VectorWise server
result in rollback of the effects of the statement in
both servers.

Queries are optimized in Ingres and transformed
to X100 syntax by the cross compiler as described
in Section 3.3. The syntax is then delivered to the

2See http://tom.loria.fr

SIGMOD Record, September 2011 (Vol. 40, No. 3) 51

VectorWise interface, along with the address of a
vector of row buffers to expedite the return of re-
trieved result rows from the VectorWise server to
the user. The size of the buffer array is configurable.
As rows are returned to the VectorWise interface in
the Ingres server, they are reformatted to match the
data types expected by the user and contained in a
tuple descriptor that is passed to the interface along
with the query.
UPDATE and DELETE statements are executed in

the same manner, though INSERT statements go
through the usual Ingres insert processing and are
diverted to the VectorWise interface before the row
is written. A corresponding VectorWise append op-
eration is prepared there and delivered to the Vec-
torWise engine for execution. INSERT .. SELECT

and CREATE TABLE .. AS SELECT statements dif-
fer in that the retrievals that provide the row images
to be inserted may be executed on native Ingres ta-
bles or on VectorWise tables. This allows a path
for converting Ingres tables to VectorWise tables
for existing users. When the SELECT references In-
gres tables, row images are built from the result
rows of the retrieval in the Ingres query executor
and delivered in arrays to a bulk load interface to
the VectorWise engine, analogous to that used for
the Ingres COPY statement. If the SELECT only refer-
ences VectorWise tables, a VectorWise statement is
composed by the cross compiler to stream the result
of the retrieval into a VectorWise append operator
that stores the newly formatted rows. Session and
transaction management details are exchanged be-
tween the servers to assure recovery from any type
of statement failure.

4. FUTURE ENHANCEMENTS
The short term goals of Ingres/VectorWise in-

clude functionality enhancement and further inte-
gration with Ingres and native Ingres tables. Cur-
rently, queries may reference all VectorWise or all
native Ingres tables, but not a combination of the
two (with the exception of INSERT .. SELECT and
CREATE TABLE .. AS SELECT statements as described
in Section 3.5). For the benefit of existing users of
Ingres, it is desired to permit heterogeneous queries
that combine results from both native Ingres and
VectorWise tables. The Ingres query execution model
certainly permits such sophisticated query plans,
but a significant amount of work is required both
to optimize heterogeneous plans and to handle ap-
propriate interfacing between the two engines as the
queries are executed.

Another future project will be the enhancement
of the Ingres query optimizer to include more spe-

cific knowledge of VectorWise cost parameters in
the building of query plans. The strategy in the ini-
tial release of the product has been to track certain
VectorWise-specific properties during the building
of a query plan and take advantage of them when
generating the corresponding VectorWise query. This
enhancement will associate costs with the properties
being tracked so that the presence of such proper-
ties can influence the selection of query plans.

Column store engines offer an opportunity to im-
plement finer granularity query optimization. Tra-
ditional query optimizers focus on strategies for ta-
ble access and joining. All columns from a given
table that are required to solve a query are typically
retrieved once and carried through the remainder of
the execution of the query. Column stores offer the
opportunity to defer retrieval of some columns from
a table until the evaluation of restrictions on other
columns from the same table have significantly re-
duced the cardinality of intermediate results. Longer
text columns may then be retrieved later in query
execution and joined to the intermediate results based
on their ordinal positions in the table. This type of
optimization is under consideration for both the In-
gres optimizer and the VectorWise rewriter.

The VectorWise team maintains a working rela-
tionship with CWI, including an active intern pro-
gram. Research projects include cooperative scans,
advanced compression techniques and “just in time”
compilation [5]. Because of its academic roots, the
VectorWise/X100 project is widely known in the
research community. Numerous university research
facilities in Europe and North America have entered
the academic licensing program.

A variety of projects are underway at several of
these schools, including fine-grained multi-table clus-
tering structures and XML storage using the Pathfinder [7]
XQuery compiler. An obvious benefit to Ingres is
the leveraging of this research into future enhance-
ments to the Ingres/VectorWise commercial prod-
uct.

5. SUMMARY
Considerable risk was involved in attempting the

integration of leading edge technology such as that
embodied by the VectorWise engine with a mature
RDBMS such as Ingres, much of whose architecture
was developed over 15 years ago. In particular, the
mixing of column store concepts with row store con-
cepts was not an intuitive thing to do. Due largely
to the robustness of the relational model, this in-
tegration project has seen considerable success al-
ready. The integrated product has been publicly
available since July 2010 and already has been well

52 SIGMOD Record, September 2011 (Vol. 40, No. 3)

accepted by the user community. In the first half
of 2011 TPC-H results where published for Vector-
Wise on the 100GB, 300GB and 1TB sizes, all using
single servers. The 100GB result (QphH 251,561.7),
is quite comparable with a Microsoft SQL Server
2008 R2 Enterprise Edition result (QphH 73,974)
as both tests where performed on a dual-socket HP
DL380 server with 144GB RAM and in total 12 In-
tel Xeon X5680 cores. In addition to the record
breaking results for non-clustered systems in these
TPC-H benchmarks, Ingres/VectorWise has been
certified by numerous application vendors, with more
on the way.

6. ACKNOWLEDGEMENTS
We would like to recognize the contributions of

the late Bob Kooi to the commercial Ingres opti-
mizer, many of which survive in Ingres to this day.

7. REFERENCES
[1] Peter Boncz, Marcin Zukowski, and Niels Nes.

MonetDB/X100: Hyper-pipelining query
execution. In CIDR, 2005.

[2] S. Héman, M. Zukowski, N.J. Nes,
L. Sidirourgos, and P. Boncz. Positional
update handling in column stores. In
Proceedings of SIGMOD, pages 543–554.
ACM, 2010.

[3] International Standards Organization.
(ansi/iso/iec) 9075-2, sql Foundation,
2008.

[4] R. Kooi. The Optimization of Queries in
Relational Database Systems. PhD thesis, Ph.
D. Thesis, Case Western Reserve University,
1980.

[5] J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query
execution. In Proceedings of the Seventh
International Workshop on Data Management
on New Hardware, pages 33–40. ACM, 2011.

[6] M. Stonebraker. The INGRES Papers:
Anatomy of a Relational Database System.
Addison-Wesley Longman Publishing Co.,
Inc., 1986.

[7] J. Teubner et al. Pathfinder: Xquery
compilation techniques for relational database
targets. Technical University of Munich,
Munich, PhD thesis, 2006.

[8] M. Zukowski. Balancing vectorized query
execution with bandwidth-optimized storage.
2009.

[9] M. Zukowski, S. Héman, N. Nes, and
P. Boncz. Cooperative scans: Dynamic
bandwidth sharing in a dbms. In Proceedings

of VLDB, pages 723–734. VLDB Endowment,
2007.

[10] Marcin Zukowski, Sandor Heman, Niels Nes,
and Peter Boncz. Super-Scalar RAM-CPU
Cache Compression. In ICDE, 2006.

SIGMOD Record, September 2011 (Vol. 40, No. 3) 53

