
Theoretical Computer Science 28 (1984) 215-221
North-Holland

NOTE

HOARE'S LOGIC FOR PROGRAMMING LANGUAGES
WITH TWO DATA TYPES*

J.A. BERGSTRA**

215

Department of Computer Science, Mathematical Centre, I 098 SI Amsterdam, The Netherlands

J.V. TUCKER
Department of Computer Studies, University of Leeds, Leeds LS2 9JT, United Kingdom

Communicated by E. Engeler
Received September 1982
Revised May 1983

Abstract. We consider the completeness of Hoare's logic with a first-order assertion language

applied to while-programs containing variables of two (or more) distinct types. Whilst Cook's

completeness theorem generalizes to many-sorted interpretations, certain fundamentally impor

tant structures turn out not to be expressive. We study the case of programs with distinguished

counter variables and Boolean variables adjoined; for example, we show that adding counters to

arithmetic destroys expressiveness.

Key words. Hoare 's logic, partial correctness, while-programs, completeness, expressiveness,

many-sorted programs, many-sorted first-order logic.

Introduction

Since the publication of [6] there has accumulated a large body of knowledge

about proof systems for formally verifying the partial correctness of programs. Proof

systems have been made which include a wide variety of programming features and,

in particular, the soundness and completeness of these systems have been successfully

analysed along the lines first set down in [5]. To obtain information about what has

been achieved, at least for the sequential control aspects of programming languages,

see [1].
In this note we consider a simple feature of most programming languages which

has gone unnoticed to date, namely the property that there may be two (or more)

distinct types of variable or identifier in a single program. We demonstrate that whilst

* Most of the work for this paper was performed in the course of two visits to the Mathematical

Centre by the second author in February and July 1982.

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

216 J.A. Bergstra, J. V. Tucker

Cook's account of completeness generalizes to include Boolean variables, it is,

surprisingly, unable to cope with while-programs with counters.

In Section 1 we summarize prerequisites and observe that Cook's completeness

theorem for Hoare's logic for while-programs applied to first-order expressive

structures generalizes to the many-sorted case. However, in Section 2, we prove

that adding arithmetic N to an expressive structure A can lead to a non-expressive

two-sorted interpretation [A, N]. In particular, we prove that adding arithmetic N
to arithmetic N leads to a non-expressive structure [N, N] and, indeed, that Hoare's

logic for [N, N] is incomplete (Theorem 2.3). Thus, there is a general completeness

theorem for the two-type situation, but it cannot be applied to a canonical example.

1. Assertions, programs and Hoare's logic

In addition to necessary prerequisites about two-sorted syntax and semantics, we

outline the fate of Cook's study [6] of Hoare's logic when generalized to the

two-sorted situation as this is the background of our main results.

Syntax

The first-order language L(.!) of some two-sorted signature ~ is based upon two
sets of variables

x:, x~,... and

of sorts 1 and 2 respectively, and the constant, function and relation symbols of

L(.!) are those of J: together with equality symbols of sorts 1 and 2.

The usual inductive definition of term now yields two kinds of term giving values

of sort 1 and sort 2. Atomic formulae have the form

t;=;s; and R(y~1 ,y~2, ... ,y;;)

where t;, s; are terms (having values) of sort i, =; is the equality symbol for sort i,

R is a relation symbol and the yj are variables of sort i1, j = 1, ... , k and i, i; E {I, 2}.

The well-formed formulae of L(~) are made inductively by applying the logical
connectives 11, v, 1, -+ and the quantifiers

Vx} 3x 1 Vx 2 3x2
I I I

in the usual way.

Using the syntax of L(.I) the set WP(~) of all while-programs over .I is defined

in the obvious way. Note, in particular, that there are two kinds of assignment
statement

xJ := t 1 and x2 := t2
I

but that Boolean tests in control statements are simply quantifier-free formulae of
L(J:) and may refer to both sorts.

Hoare's logic for programming languages 217

By a specified or asserted program we mean a triple of the form {p}S{q} where
p, q e L(.:f) and SE WP(.:f).

Semantics
The semantics of L(.:f) is based on two-sorted structures A of signature ;r and

is formally defined in the usual manner.
The set of ail sentences of L(.:f) which are true in structure A is called the

first-order theory of A and is denoted Th(A). For <PE L(.:f) the set defined in A
by <P we denote- </>[A].

For the semantics of WP(.:f} on an interpretation A we leave the reader free to
choose any sensible account of while-program computation in one-sorted structures
and then to generalize it. Certainly, the operational and denotational semantics
given in [2] have natural many-sorted generalizations (see [8]).

We suppose that the meaning of Se WP(.l') on interpretation A is defined as a
state transformation

MA(S): STATES(A)_,. STATES(A).

Also if S has n variables of sort 1 and m variables of sort 2, then STATES(A) =
A~ x A2', where A 1, A 2 are the domains of sorts 1, 2 in A, and we suppose that
MA(S) is represented by a mapping

Putting together the semantics of L(l:) and WP(l:) we consider the partial
correctness semantics of the specified programs: {p}S{q} is valid on A, written
AF={p}S{q}, if when p is true, then either S diverges or S converges to a state at
which q is true. The set of all specified programs valid on A is called the partial
correctness theory of A and we write

PC(A) = {{p}S{q}: AF={p}S{q}}.

Hoare' s logic
Hoare's logic for the two-sorted WP(.l') has exactly the same axiom scheme for

assignment statements and the same rules for composition, conditionals and iteration.
In addition, any first-order theory T may be employed to prove a specification for
the underlying data types and T affects program correctness proofs via the Rule of
Consequence (see (5, 6]). The set of all specified programs provable from T is
denoted HL(T).

In this note we are interested in proving correctness with respect to a given
two-sorted structure A. Cook's work on the single-sorted version of this case
generalizes to provide us with the following account.

1.1. Soundness Theorem. If A F= T, then HL(T) c PC(A).

J.A. Bergstra, J. V. Tucker

The assertion language L(2:) is said to be expressive for WP(2:) over A if for
any p E L(.I) and SE WP(2:) there is a formula SP(p, S) E L(2) that defines the
strongest postcondition SPA (p, S) of S with respect to p over A,

SP.\(p, S) ={uE STATES(A): 3T [MA(S)(T)lu&p(r)]}.

Notice that expressiveness is actually a property of the interpretation A rather than
L(~'). We call HL complete for A if HL(Th(A)) =PC(A).

1.2. Cook's Completeness Theorem. Suppose L(2) is expressive for WP(2) over A
and let T=Th(A). Then HL(T)=PC(A).

In view of Theorem 1.2 we define HL(A) = HL(Th(A)), and observe that HL(A)
represents the strongest Hoare logic for analyzing correctness on A because it is
equipped with all first-order true facts about A.

1.3. Theorem. If A is finite, then A is expressive and HL(A) is complete.

2. Adding arithmetic

Semantically, adding counters to while-programs is effected by interpreting the
two-sorted programming language WP(2:) on certain two-sorted structures of the
following form.

Let A and B be single-sorted structures with disjoint signatures 2A and .J:s
respectively. Then we define the join [A, B] of A and B to be the two-sorted
structure of signature 2: .. ,, 8 = 2:A u 2:8 whose disjoint domains and operations are
simply those of A and B.

What is noteworthy in this operation on structures is that algebraically A and B
remain independent data types. Adding arithmetic means computing on structures
[AN] where N is the standard model of arithmetic. Adding Booleans means
computing on structures [A, IB] where IB = {tt, ff} equipped with ", 1.

We prove that Hoare's logic is incomplete when applied to structures [A, Nl

2.1. Proposition. lf[A, B] is expressive, then A and B are expressive.

Proof. We begin by stating a basic fact about first-order definability on [A, B].
Let H be the smallest set of 2:A,B = 2:A u 2:8 formulae that contains L(2A) and

L (IH) and is closed under 1, 11, v. Thus, H does not contain formulae with
quantifiers ranging over different sorts such as

2.2. Separation of Variables Lemma. Each formula <f> E L(2A,s) is equivalent to a
formula of H.

Hoare's logic for programming languages 219

Proof. The proof follows by induction on the structure of </> (see [3]). D

Proof of Proposition 2.1 (continued). To prove the proposition we assume [A, B]

is expressive and prove that A is expressive (the case for B follows mutatis nomine).

Let </> E L(.IA) and SE WP(.IA). Let SP(</>, S) define the strongest postcondition

SPCA.BJ(</>, S) on [A, B]. By the Separation of Variables Lemma 2.2,

s

SP(</>, S) = V (tfJ'("t/Jf).
i=I

Because </> and S involve variables of type A only, the components r./lf for 1:,;;; i,;;; s

are closed and can be replaced by their propositional values true and false. This

being done we obtain a formula r./J E L(.IA,B), equivalent to SP(</>, S), that is first-order

over 1: A and, indeed, t/J defines SPA (</>, S) on A. D

Our main result implies that the converse of Proposition 2.1 is false. Let N denote

standard model of arithmetic; to be precise let

N = ({0, 1,. . . }, 0, 1, x+ 1, x _,__ l, x+ y, x· y).

Consider the structure [N1> N2] of signature .Iu wherein N 1 = N has signature .I 1

and N 2 = N has signature 2:2 , i.e., [N1, N 2] is a pair of algebraically independent

copies of N. We are looking at the case of adding arithmetic to arithmetic, so to say.

2.3. Theorem. The two-sorted structure [Ni. N2] is not expressive and HL([N1, N2])

is not complete.

Proof. Consider the following program:

s ::= x := 0; z := 0;

while x ¥- y do x := x + 1 ; z := z + 1 od

with x, y variables of sort 1 and z a variable of sort 2. The strongest post-condition

of S with respect to true is

SP(true, S) ={(a, b, c) E N1 x N 1 x N2 : a= b = c = n EN}.

Suppose SP(true, S) is first-order definable over [N1, N 2]; then clearly the 'diagonal'

.1 = { (a, b) E N 1 x N2 : a = b = n EN} is first-order definable: to this latter statement

we derive a contradiction.
By the Separation of Variables Lemma 2.2, it is sufficient to show that .1 is not

definable by a formula of H(1:'1.2).
Suppose as a contradiction that .1 is definable by </>EH (1:'1,2) with free variables

x, y of sorts 1, 2; thus,

.1 ={(a, b) E N 1 XN2 : [Ni. N2]F= </>(a, b)}.

220 I.A. Bergstra, J. V. Tucker

Now <f> can be written in disjunctive normal form:

s I

<P = V A </J;,j,
i=I j=I

where </>;,i E L(2:1) u L(2:2) for 1:;;; i:;;; s and 1 :;;; j:;;; t. This can be compressed to

s

<P= V (<Pi"' <t>7),
i=l

where <Pi E L(2:1) and <PT E L(2:2) with free variables x and y respectively. For
1 :;;; i ,;;; s, set

so that Ll ==U:= 1 Ll;. At least one Ll; is infinite, say Ll0 • We choose two points (a, a),
(b, b) E L1 1 with a ;to b. Now

[Nh N 2]1= <P6(a)"' <P~(a) and [Ni. N 2]1= <Pb(b)"' <P'fi(b).

Thus,

This means that (a, b) E Ll 0 c .1 which is not the case. Therefore, [N1 , N2] is not
expressive.

In order to see that HL([N1 , N 2]) is not complete, consider the program

S2 ::= while x "" 0 "' y "" 0 "' z ;to 0

do x :== x __,_ 1 ; y := y -'- 1; z := z -'- 1 od.

Clearly,

In order to prove this valid asserted program using Hoare's logic, an intermediate
assertion e must be found, i.e., a formula such that

Thus,

But

WP[N1,N,i(S2 , x = 0"' y = 0"' z = 0) = SP[N1,N21(true, S1)

and hence 8[N1, N2] = SP(true, S1). This contradicts the fact that SP(true, S1) is not
definable. 0

Hoare's logic for programming /ang11ages 221

3. Concluding remarks

Quite clearly no useful account of the correctness of many-typed programs can
be founded on a first-order assertion language. Fortunately, it is possible to give a
very thorough theory of the partial and total correctness of the basic sequential
constructs in a many-sorted abstract setting if one allows the extension to a weak
second-order assertion language (see [8]). Moreover, allowing hidden functions to
enhance expressiveness is certainly an acceptable step; for initial algebra specification
it is required.

In contrast to Theorem 2.3 one can show the following theorem.

Theorem. If A is expressive and Fis finite, then [A, F] is expressive and consequently
HL([A, F]) is complete.

Finally it should be pointed out that, in logic, preservation theorems are known
for products (cf. the theorem of Feferman and Vaught as in [7]); such properties
still have to be established for program verification logics.

Acknowledgment

We wish to thank E.R. Olderog for useful discussions on the subject matter of
this note.

References

[l] K.R. Apt, Ten years of Hoare's Logic: A survey-Part l, ACM Trans. Programming Languages
and Systems 3 (1981) 431-483.

[2] J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs,
NJ, 1980).

[3] J.A. Bergstra, A. Chmielienska and J. Tiuryn, Another incompleteness theorem for Hoare's logic,
Inform. Control 52 (2) (1982) 159-171.

[4] J.A. Bergstra and J.V. Tucker, Expressiveness and the completeness of Hoare's logic, 1. Comput.
System Sci. 25 (l 983) 267-284.

[5] S.A. Cook, Soundness and completeness of an axiom system for program verification, SIAM 1.
Comput. 7 (1978) 70-90; Corrigendum, SIAM J. Comput. 10 (1981) 612.

[6] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (1969) 576-580.
[7] J.D. Monk, Mathematica/ Logic (Springer, Berlin, 1976).
[8] J. Y. Tucker and J.I. Zucker, Program correctness over abstract data types, with error-state semantics,

Monograph, in preparation.

