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Abstract. We consider the completeness of Hoare's logic with a first-order assertion language 

applied to while-programs containing variables of two (or more) distinct types. Whilst Cook's 

completeness theorem generalizes to many-sorted interpretations, certain fundamentally impor

tant structures turn out not to be expressive. We study the case of programs with distinguished 

counter variables and Boolean variables adjoined; for example, we show that adding counters to 

arithmetic destroys expressiveness. 
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Introduction 

Since the publication of [6] there has accumulated a large body of knowledge 

about proof systems for formally verifying the partial correctness of programs. Proof 

systems have been made which include a wide variety of programming features and, 

in particular, the soundness and completeness of these systems have been successfully 

analysed along the lines first set down in [5]. To obtain information about what has 

been achieved, at least for the sequential control aspects of programming languages, 

see [1]. 
In this note we consider a simple feature of most programming languages which 

has gone unnoticed to date, namely the property that there may be two (or more) 

distinct types of variable or identifier in a single program. We demonstrate that whilst 

* Most of the work for this paper was performed in the course of two visits to the Mathematical 

Centre by the second author in February and July 1982. 
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Cook's account of completeness generalizes to include Boolean variables, it is, 

surprisingly, unable to cope with while-programs with counters. 

In Section 1 we summarize prerequisites and observe that Cook's completeness 

theorem for Hoare's logic for while-programs applied to first-order expressive 

structures generalizes to the many-sorted case. However, in Section 2, we prove 

that adding arithmetic N to an expressive structure A can lead to a non-expressive 

two-sorted interpretation [A, N]. In particular, we prove that adding arithmetic N 
to arithmetic N leads to a non-expressive structure [N, N] and, indeed, that Hoare's 

logic for [N, N] is incomplete (Theorem 2.3). Thus, there is a general completeness 

theorem for the two-type situation, but it cannot be applied to a canonical example. 

1. Assertions, programs and Hoare's logic 

In addition to necessary prerequisites about two-sorted syntax and semantics, we 

outline the fate of Cook's study [6] of Hoare's logic when generalized to the 

two-sorted situation as this is the background of our main results. 

Syntax 

The first-order language L(.!) of some two-sorted signature ~ is based upon two 
sets of variables 

x:, x~,... and 

of sorts 1 and 2 respectively, and the constant, function and relation symbols of 

L(.!) are those of J: together with equality symbols of sorts 1 and 2. 

The usual inductive definition of term now yields two kinds of term giving values 

of sort 1 and sort 2. Atomic formulae have the form 

t;=;s; and R(y~1 ,y~2, ... ,y;;) 

where t;, s; are terms (having values) of sort i, =; is the equality symbol for sort i, 

R is a relation symbol and the yj are variables of sort i1, j = 1, ... , k and i, i; E {I, 2}. 

The well-formed formulae of L(~) are made inductively by applying the logical 
connectives 11, v, 1, -+ and the quantifiers 

Vx} 3x 1 Vx 2 3x2 
I I I 

in the usual way. 

Using the syntax of L(.I) the set WP(~) of all while-programs over .I is defined 

in the obvious way. Note, in particular, that there are two kinds of assignment 
statement 

xJ := t 1 and x2 := t2 
I 

but that Boolean tests in control statements are simply quantifier-free formulae of 
L(J:) and may refer to both sorts. 
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By a specified or asserted program we mean a triple of the form {p}S{q} where 
p, q e L(.:f) and SE WP(.:f). 

Semantics 
The semantics of L(.:f) is based on two-sorted structures A of signature ;r and 

is formally defined in the usual manner. 
The set of ail sentences of L(.:f) which are true in structure A is called the 

first-order theory of A and is denoted Th( A). For <PE L(.:f) the set defined in A 
by <P we denote- </>[A]. 

For the semantics of WP(.:f} on an interpretation A we leave the reader free to 
choose any sensible account of while-program computation in one-sorted structures 
and then to generalize it. Certainly, the operational and denotational semantics 
given in [2] have natural many-sorted generalizations (see [8]). 

We suppose that the meaning of Se WP(.l') on interpretation A is defined as a 
state transformation 

MA(S): STATES( A)_,. STATES(A). 

Also if S has n variables of sort 1 and m variables of sort 2, then STATES(A) = 
A~ x A2', where A 1, A 2 are the domains of sorts 1, 2 in A, and we suppose that 
MA(S) is represented by a mapping 

Putting together the semantics of L(l:) and WP(l:) we consider the partial 
correctness semantics of the specified programs: {p}S{q} is valid on A, written 
AF={p}S{q}, if when p is true, then either S diverges or S converges to a state at 
which q is true. The set of all specified programs valid on A is called the partial 
correctness theory of A and we write 

PC(A) = {{p}S{q}: AF={p}S{q}}. 

Hoare' s logic 
Hoare's logic for the two-sorted WP(.l') has exactly the same axiom scheme for 

assignment statements and the same rules for composition, conditionals and iteration. 
In addition, any first-order theory T may be employed to prove a specification for 
the underlying data types and T affects program correctness proofs via the Rule of 
Consequence (see (5, 6]). The set of all specified programs provable from T is 
denoted HL( T). 

In this note we are interested in proving correctness with respect to a given 
two-sorted structure A. Cook's work on the single-sorted version of this case 
generalizes to provide us with the following account. 

1.1. Soundness Theorem. If A F= T, then HL( T) c PC(A). 
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The assertion language L(2:) is said to be expressive for WP(2:) over A if for 
any p E L(.I) and SE WP(2:) there is a formula SP(p, S) E L(2) that defines the 
strongest postcondition SPA ( p, S) of S with respect to p over A, 

SP.\( p, S) ={uE STATES(A): 3T [MA(S)( T)lu&p( r)]}. 

Notice that expressiveness is actually a property of the interpretation A rather than 
L(~'). We call HL complete for A if HL(Th(A)) =PC(A). 

1.2. Cook's Completeness Theorem. Suppose L(2) is expressive for WP(2) over A 
and let T=Th(A). Then HL(T)=PC(A). 

In view of Theorem 1.2 we define HL(A) = HL(Th(A)), and observe that HL(A) 
represents the strongest Hoare logic for analyzing correctness on A because it is 
equipped with all first-order true facts about A. 

1.3. Theorem. If A is finite, then A is expressive and HL(A) is complete. 

2. Adding arithmetic 

Semantically, adding counters to while-programs is effected by interpreting the 
two-sorted programming language WP(2:) on certain two-sorted structures of the 
following form. 

Let A and B be single-sorted structures with disjoint signatures 2A and .J:s 
respectively. Then we define the join [A, B] of A and B to be the two-sorted 
structure of signature 2: .. ,, 8 = 2:A u 2:8 whose disjoint domains and operations are 
simply those of A and B. 

What is noteworthy in this operation on structures is that algebraically A and B 
remain independent data types. Adding arithmetic means computing on structures 
[AN] where N is the standard model of arithmetic. Adding Booleans means 
computing on structures [A, IB] where IB = {tt, ff} equipped with ", 1. 

We prove that Hoare's logic is incomplete when applied to structures [A, Nl 

2.1. Proposition. lf[A, B] is expressive, then A and B are expressive. 

Proof. We begin by stating a basic fact about first-order definability on [A, B]. 
Let H be the smallest set of 2:A,B = 2:A u 2:8 formulae that contains L(2A) and 

L ( IH) and is closed under 1, 11, v. Thus, H does not contain formulae with 
quantifiers ranging over different sorts such as 

2.2. Separation of Variables Lemma. Each formula <f> E L(2A,s) is equivalent to a 
formula of H. 
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Proof. The proof follows by induction on the structure of </> (see [3]). D 

Proof of Proposition 2.1 (continued). To prove the proposition we assume [A, B] 

is expressive and prove that A is expressive (the case for B follows mutatis nomine). 

Let </> E L(.IA) and SE WP(.IA). Let SP( </>, S) define the strongest postcondition 

SPCA.BJ(</>, S) on [A, B]. By the Separation of Variables Lemma 2.2, 

s 

SP( </>, S) = V ( tfJ'( "t/Jf ). 
i=I 

Because </> and S involve variables of type A only, the components r./lf for 1:,;;; i,;;; s 

are closed and can be replaced by their propositional values true and false. This 

being done we obtain a formula r./J E L(.IA,B ), equivalent to SP( </>, S), that is first-order 

over 1: A and, indeed, t/J defines SPA ( </>, S) on A. D 

Our main result implies that the converse of Proposition 2.1 is false. Let N denote 

standard model of arithmetic; to be precise let 

N = ({0, 1,. . . }, 0, 1, x+ 1, x _,__ l, x+ y, x· y). 

Consider the structure [N1> N2] of signature .Iu wherein N 1 = N has signature .I 1 

and N 2 = N has signature 2:2 , i.e., [N1, N 2] is a pair of algebraically independent 

copies of N. We are looking at the case of adding arithmetic to arithmetic, so to say. 

2.3. Theorem. The two-sorted structure [Ni. N2] is not expressive and HL([N1, N2]) 

is not complete. 

Proof. Consider the following program: 

s ::= x := 0; z := 0; 

while x ¥- y do x := x + 1 ; z := z + 1 od 

with x, y variables of sort 1 and z a variable of sort 2. The strongest post-condition 

of S with respect to true is 

SP(true, S) ={(a, b, c) E N1 x N 1 x N2 : a= b = c = n EN}. 

Suppose SP(true, S) is first-order definable over [N1, N 2]; then clearly the 'diagonal' 

.1 = { (a, b) E N 1 x N2 : a = b = n EN} is first-order definable: to this latter statement 

we derive a contradiction. 
By the Separation of Variables Lemma 2.2, it is sufficient to show that .1 is not 

definable by a formula of H(1:'1.2). 
Suppose as a contradiction that .1 is definable by </>EH (1:'1,2) with free variables 

x, y of sorts 1, 2; thus, 

.1 ={(a, b) E N 1 XN2 : [Ni. N2]F= </>(a, b)}. 
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Now <f> can be written in disjunctive normal form: 

s I 

<P = V A </J;,j, 
i=I j=I 

where </>;,i E L(2:1) u L(2:2) for 1:;;; i:;;; s and 1 :;;; j:;;; t. This can be compressed to 

s 

<P= V (<Pi"' <t>7), 
i=l 

where <Pi E L(2:1) and <PT E L(2:2 ) with free variables x and y respectively. For 
1 :;;; i ,;;; s, set 

so that Ll ==U:= 1 Ll;. At least one Ll; is infinite, say Ll0 • We choose two points (a, a), 
(b, b) E L1 1 with a ;to b. Now 

[Nh N 2 ]1= <P6(a)"' <P~(a) and [Ni. N 2 ]1= <Pb(b)"' <P'fi(b). 

Thus, 

This means that (a, b) E Ll 0 c .1 which is not the case. Therefore, [N1 , N2] is not 
expressive. 

In order to see that HL([N1 , N 2]) is not complete, consider the program 

S2 ::= while x "" 0 "' y "" 0 "' z ;to 0 

do x :== x __,_ 1 ; y := y -'- 1; z := z -'- 1 od. 

Clearly, 

In order to prove this valid asserted program using Hoare's logic, an intermediate 
assertion e must be found, i.e., a formula such that 

Thus, 

But 

WP[N1,N,i(S2 , x = 0"' y = 0"' z = 0) = SP[N1,N21(true, S1) 

and hence 8[N1, N2] = SP(true, S1). This contradicts the fact that SP(true, S1) is not 
definable. 0 
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3. Concluding remarks 

Quite clearly no useful account of the correctness of many-typed programs can 
be founded on a first-order assertion language. Fortunately, it is possible to give a 
very thorough theory of the partial and total correctness of the basic sequential 
constructs in a many-sorted abstract setting if one allows the extension to a weak 
second-order assertion language (see [8]). Moreover, allowing hidden functions to 
enhance expressiveness is certainly an acceptable step; for initial algebra specification 
it is required. 

In contrast to Theorem 2.3 one can show the following theorem. 

Theorem. If A is expressive and Fis finite, then [A, F] is expressive and consequently 
HL([A, F]) is complete. 

Finally it should be pointed out that, in logic, preservation theorems are known 
for products (cf. the theorem of Feferman and Vaught as in [7]); such properties 
still have to be established for program verification logics. 
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