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Abstract This paper studies structural properties of the optimal resource allocation policy
for single-queue systems. Jobs arrive at a service facility and are sent one by one to a pool of
computing resources for parallel processing. The facility poses a constraint on the maximum
expected sojourn time of a job. A central decision maker allocates the servers dynamically
to the facility. We consider two models: a limited resource allocation model, where the al-
location of resources can only be changed at the start of a new service, and a fully flexible
allocation model, where the allocation of resources can also change during a service pe-
riod. In these two models, the objective is to minimize the average utilization costs whilst
satisfying the time constraint. To this end, we cast these optimization problems as Markov
decision problems and derive structural properties of the relative value function. We show
via dynamic programming that (1) the optimal allocation policy has a work-conservation
property, and (2) the optimal number of servers follows a step function with as extreme
policy the bang-bang control policy. Moreover, (3) we provide conditions under which the
bang-bang control policy takes place. These properties give a full characterization of the
optimal policy, which are illustrated by numerical experiments.

Keywords Constrained Markov decision problems · Monotonicity · Optimal resource
allocation · Shared server pool · Queueing theory

1 Introduction

Today, multimedia data is rapidly gaining importance along with recent deployment of pub-
licly accessible digital television archives, surveillance cameras in public locations, and au-
tomatic comparison of forensic video evidence (Snoek et al. 2006). Typical services include
iris-scan and fingerprint systems that make high-resolution scans and require processing
of the data to identify a person; these services operate in a real-time environment and run
under very strict time constraints. To meet such constraints, these large-scale applications
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typically are being executed on centralized clusters consisting of large collections of com-
puting resources. In large-scale systems, the applications can reserve a number of processing
resources to process the data. This gives rise to a new class of models in which the appli-
cation has to decide how many resources should be reserved. In this decision making, one
has to deal with the following trade-off: if the number of computing resources allocated to
a facility is too low, then the processing power is insufficient to meet strict processing time
requirements; if the number of computing nodes allocated is too high, then it brings forth
high resource allocation costs. In this context, the challenge is to identify policies that meet
the service requirements at minimal allocation costs.

In the literature, a lot of research has been devoted to resource allocation problems.
In Daniel and Chronopoulos (2003), Park (2003), Rana et al. (2002), the authors inves-
tigate resource allocation problems in the context of protocol design. The problem from
an architectural point of view is studied in Czajkowski et al. (1999), Foster et al. (2000),
Wang and Luo (2004). Security assurance in Grid/Cluster job scheduling is studied in
Song et al. (2006), Xie and Qin (2008). Other research is focused on economic mod-
els in a Grid computing environment, e.g., (Sandholm et al. 2006; Buyya et al. 2001;
Guo and Conitzer 2010). Several papers are focused on optimization problems in the context
of resource allocation. In Aziz and El-Rewini (2006), a framework for resource allocation
and task scheduling is presented, where the objective function is to minimize the job com-
pletion time. Nurmi and co-authors (Nurmi et al. 2007, 2008) propose a statistical method
determining when a job should be submitted to a batch queue to ensure that it will be run-
ning at a particular time in the future. Wakamiya et al. (2002) propose a resource-allocation
scheme to share resources fairly among users by solving the utilization-maximization prob-
lem where the utilization ratio is a function of the video quality and the resource allocation
costs.

In this paper, we study a model with a single FCFS queue with a common pool of com-
puting resources in which for each job a number of computing resources has to be allocated
dynamically such that a mean sojourn time requirement is met against minimal allocation
costs. In this context, we study the following two models: (1) a system in which a chosen al-
location cannot be changed during a service of a job, and (2) a system in which it is allowed
to change the allocation during the service of a job. For both models, we show via dynamic
programming that (i) the optimal allocation policy has a work-conservation property that
implies when the system is not empty, the optimal policy is not allowed to keep all comput-
ing resources idle, (ii) the optimal number of servers follows a step function with as extreme
policy the bang-bang control policy, which means a facility receives all computing resources
or none at all, and moreover (iii) we also provide the conditions under which the bang-bang
control policy is optimal. The techniques to prove such results are based on monotonicity
properties of the dynamic programming relative value function (see, e.g., Koole 1998, 2006;
Rykov 2001).

The contribution of the paper is two-fold. First, on the methodological side we provide
a full characterization of the optimal policy for a single-queue system. Interestingly, the
derivation of these results is not obtained via standard induction-based arguments, but is
based on a combination of direct arguments and induction. The results provide new and
valuable insight into optimal resource allocation problems with time constraints. Second, on
the application side we have structured policies that are easy to be implemented in systems
that are highly relevant in practice.

In recent work, the authors have studied similar resource allocation problems in different
settings. In Yang et al. (2011), we study a resource allocation problem in which resources
need to be reserved in advance before they are available. In Yang et al. (2011), we study
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Fig. 1 Arrival and departure of
the jobs

a resource allocation problem in a multi-queue setting in which multiple queues compete
for the same pool of shared resources. The distinguishing feature in this model is that the
optimal resource allocation policy partitions the resource pool in subsets each of which is
dynamically allocated to the different queues. The model under consideration is a special
case in which there is only a single queue, and therefore allows for a full characterization
of the optimal policy which is not directly applicable in the multi-queue setting. This is due
to the techniques used to prove the results which are not generalizable to multiple queues.
These observations make the added value of the present paper compared to the two papers
mentioned above evident.

This paper is organized as follows. In Sect. 2 we formulate the models for the different
cases. Next, we derive the special properties of the optimal policy in Sect. 3. In Sect. 4 we
illustrate these results by numerical experiments. Finally, in Sect. 5 we conclude the paper.

2 Model formulation

Consider a service facility at which jobs arrive according to a Poisson process with arrival
rate λ and have exponentially distributed service requirements. The facility has a single
infinite-sized FCFS queue and a pool of A ≥ 1 parallel and identical servers that can work
together to process a single job. There is a central decision maker that can assign a number
of servers to a job. The service rate of a job depends on the number of servers assigned to
that job. More precisely, when a job has been allocated a servers, the service duration of
that job is exponentially distributed with parameter μ(a), which is strictly increasing in a.
Without loss of generality, we assume that μ(0) = 0. After a job has completed its service, it
leaves the system. Throughout the paper, it is assumed that the stability condition λ < μ(A)

is met, and that the system is in steady state. Figure 1 gives an illustration of the system.
We consider the following cost structure in the facility. When the facility uses a resources

a cost of c(a) is incurred by the system per unit time. Here c(a) is a strictly increasing func-
tion of a. Without loss of generality, we assume that c(0) = 0. Let S denote the sojourn time
of an arbitrary job at the facility. The problem in the system is to find a server assignment
policy that minimizes that long-run average costs subject to ES ≤ α for some α > 0.

When the system works at full speed, all A computing resources are allocated at each
moment in time. In this case, the average sojourn time is given by the mean sojourn in an
M|M|1 queue with arrival rate λ and service rate μ(A). Therefore, by using all A computing
resources the average sojourn time is equal to 1

μ(A)−λ
. Hence, to ensure that there exists at

least one allocation strategy that meets the time constraint α, the total number of compute
resources A should satisfy the following necessary and sufficient stability condition:

A >
⌈
μ−1(λ + 1/α)

⌉
,

where μ−1(·) is the inverse function of μ(·). Throughout the paper, it is assumed that this
condition is met.
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The objective of the decision maker is to derive an optimal policy based on the number of
jobs in the system. More precisely, when the decision maker observes x jobs in the system,
he can decide to allocate 0 ≤ i(x) ≤ A servers to the first job in the queue. We emphasize
that at any moment in time, there is at most one job in service.

We study two models. First, we study the case in which the resource allocation policy
cannot be changed when a job is being served; only upon the start of the service of the next
job the resource allocation policy can be modified. The second case deals with the fully
flexible case in which the system can change the resource allocation policy at any moment
in time, thus also during the service of a job.

2.1 Limited resource allocation policy

In this subsection we focus on the case in which the resource allocation for a service facility
can only be changed upon the start of the service of a new job. Hence, adding or removing
resources during a service is not allowed. To study this case, we cast the resource allocation
problem as a Markov decision problem.

Define the state space X = N0 × {0, . . . ,A}, where (x, a) ∈ X denotes the state in which
there are x jobs at the facility with a resources allocated to the first job. When the system
is in state (x, a) ∈ X the decision maker can choose actions from the action space A(x,a) =
{b ∈ N0 |a + b ≤ A and ab = 0}, where action b ∈ A(x,a) denotes the available number of
resources for allocation. Here, the restriction ab = 0 models the fact that when a service is
ongoing (i.e., a > 0), the service allocation cannot be changed (i.e., b = 0). The transition
rates when the system is in state (x, a) ∈ X and action b ∈ A(x,a) is chosen are given by

p
(
(x, a), b, (x ′, b′)

) =

⎧
⎪⎨

⎪⎩

λ, x ′ = x + 1 and b′ = a + b,

μ(a + b), x ′ = [x − 1]+ and b′ = 0,

0, otherwise,

with [x]+ = max{x,0}. The first line in the expression above models arrivals, the second
line models service completions, and the third line prohibits any other state transitions. Note
that when a service completes, the resource allocated for that facility is released completely.
Finally, when the system is in state (x, a) ∈ X and action b ∈ A(x,a) has been chosen, the
direct cost is r((x, a), b) = c(a + b) per time unit. The quadruple (X , A,p, r) completely
describes the Markov decision process.

Define a decision rule π(x,a) as a probability distribution on A(x,a), i.e., when the system
is in state (x, a) ∈ X , the decision maker chooses action b ∈ A(x,a) with probability π(x,a)(b).
Let the policy π denote the collection of decision rules for all states. Let uπ

t (x, a) denote
the total expected costs up to time t when the system starts in state (x, a) under policy π .
Note that for any stable and work-conserving policy, the Markov chain satisfies the unchain
condition, so that the average expected costs g(π) = limt→∞ uπ

t (x, a)/t is independent of
the initial state (x, a) (see Proposition 8.2.1 of Puterman (1994)). The goal is to find a policy
π∗ that minimizes the long-term average costs under the time constraint, thus

min
π

g(π) subject to ES ≤ α.

Note that due to Little’s Law the number of jobs L in the facility can be related to the so-
journ time S by EL = λES. Using this knowledge, the constrained Markov decision problem
can be rewritten as an unconstrained Markov decision problem using Lagrange multipliers
(see Sect. 12.6 of Altman (1999)). To this end, we uniformize the system (see Sect. 11.5 of
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Puterman (1994)). Therefore, assume that the uniformization constant λ + μ(A) = 1; This
can always obtained by scaling. Uniformizing is equivalent to adding dummy transitions
(from a state to itself) such that the rate out of each state is equal to 1; then we can consider
the rates to be transition probabilities. Now, let V (x, a) be a real-valued function defined on
the state space. This function will play the role of the relative value function, i.e., the asymp-
totic difference in total costs that results from starting the process in state (x, a) instead of
some reference state. The long-term average optimal actions are a solution of the optimality
equation (in vector notation) g ·e+V = T V , where T is the dynamic programming operator
acting on V , defined as follows

T V (x, a) = τ
x

λ
+ c(a) + λH(x + 1, a) + μ(a)H([x − 1]+,0)

+ (
1 − λ − μ(a)

)
V (x, a)

= τ
x

λ
+ c(a) + λH(x + 1, a) + μ(a)H([x − 1]+,0)

+ (
μ(A) − μ(a)

)
V (x, a), (1)

where τ is the Lagrange multiplier, and where the function H(·, ·) is given by

H(x,a) = min
b∈A(x,a)

{V (x, a + b)}.

The first term in the dynamic programming operator (1) corresponds to the service require-
ment ES ≤ α. When τ increases, the value of ES decreases. Therefore, there exists a value
of τ ∗ such that ESτ∗

> α for all facilities and there exists another τ ′ such that ESτ ′
< α,

where τ ′ = τ ∗ + ε for a small ε ≥ 0. Note that we can obtain the expected sojourn time at
the facility for a given policy by setting r((x, a), b) = 0 for all states (x, a) and actions b in
the optimality equation. The optimal policy is to randomize between the associated policies
πτ∗

and πτ ′
so that the equality ES = α is achieved for the facility. This is consistent with

the fact that the optimal policy will be randomized in exactly one state (see Sect. 12.6 of
Altman (1999)). The second term represents the cost of using a resources. The third term
is involved with the decision making upon arrival of a job. The fourth term deals with the
decision making when a job has completed its service. The final term is the dummy term due
to uniformization. Note that the decision making is modeled uniformly through the function
H(·, ·).

2.2 Fully flexible resource allocation policy

In this section we study the case in which the service facility has full flexibility in the re-
source allocation policies. The resource facility can change the resource allocation during a
service of a job, and it does not have to wait for the job to be finished. Since our system has
Poisson arrivals and exponential service times, it suffices to consider only the moments that
an event occurs. Therefore, the only difference with the previous case, discussed in Sect. 2.1,
is that this system allows to change the allocation at arrival instants.

In the fully flexible case, the state space is given by X = N0, where x ∈ X denotes that
there are x jobs at the facility. The action space is given by Ax = {0, . . . ,A}, where action
a ∈ Ax denotes the number of resources that one has allocated in state x ∈ X . The transition
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rates when the system is in state x ∈ X and action a ∈ Ax is chosen are given by

p(x, a, x ′) =

⎧
⎪⎨

⎪⎩

λ, x ′ = x + 1,

μ(a), x ′ = [x − 1]+,

0, otherwise.

Finally, when the system is in state x ∈ X and action a ∈ Ax has been chosen, the direct
cost is r(x, a) = c(a) per time unit. The tuple (X , A,p, c) completely describes the Markov
decision process for this problem.

Let V (x) denote the relative value function in this case. Then, the dynamic programming
operator acting on V , defined as follows:

T V (x) = τ
x

λ
+ λV (x + 1) + min

a∈Ax

Ta(x), (2)

where

Ta(x) = μ(a)V ([x − 1]+) + (
1 − λ − μ(a)

)
V (x) + c(a)

= μ(a)V ([x − 1]+) + (
μ(A) − μ(a)

)
V (x) + c(a).

The first term in the expression T V (x) corresponds to the constraint ES ≤ α of the facility,
similar to the limited resource allocation model, see (1). The second term models the arrivals
of jobs to the facility. The first term in the expression Ta(x) denotes the departure of a job
in case action a has been chosen. The second term in Ta(x) is the uniformization constant.
The last term in Ta(x) models the direct cost.

3 Structural properties of the optimal policy

In the previous section, we described two models and a solution technique to obtain the
optimal policy. However, the optimal policy also possesses structural properties that provide
fundamental insight. Moreover, this also enables one to determine the optimal policy with
less computational effort due to a reduction of the solution search space. Therefore, in this
section, we derive a full characterization of the optimal policy for both models.

3.1 Limited resource allocation policy

The structure of the optimal policy for a service facility with the limited resource allocation
policy is more intricate than the case with dedicated resources. In order to study the structure,
in principle, one needs to solve the optimality equation g + V = T V with T V given by (1).
However, the optimality equation is hard to solve analytically in practice. Alternatively, the
optimal actions can also be obtained by recursively defining Vl+1 = T Vl for arbitrary V0. For
l → ∞, the maximizing actions converge to the optimal ones (for existence and convergence
of solutions and optimal policies we refer to Puterman (1994) and Aviv and Federgruen
(1999)). The backward recursion equation is given by

Vn+1(x, a) = τ
x

λ
+ c(a) + Hn(x + 1, a) + μ(a)Hn([x − 1]+,0)

+ (
μ(A) − μ(a)

)
Vn(x, a), (3)
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where the function Hn(·, ·) is given by

Hn(x, a) = min
b∈A(x,a)

{Vn(x, a + b)}.

For ease of notation, we also define the set of optimal actions in state (x, a) by argHn(x, a)

defined as

argHn(x, a) = arg minb∈A(x,a)
{Vn(x, a + b)}.

The backward recursion equation (3) allows us to prove structural properties of the relative
value function V through induction on n in Vn. By using this, we can show that the optimal
allocation policy has the following properties:

Property (i) monotonicity: this implies that the optimal policy is a step function. Thus for
all a ∈ argH(x + k,0) and b ∈ argH(x,0), we have a ≥ b for all k ≥ 0.

Property (ii) work-conservation: this implies that if the system is not empty, then the
optimal policy is not keeping all computing resources idle. Thus the minimal element of
argH(x,0) is strictly positive for all x > 0.

Property (iii) bang-bang control: if the condition c(a)μ(a + 1)−μ(a)c(a + 1) ≥ 0 holds
for all a ∈ A(x,b), then the optimal policy is a bang-bang control policy, which means using
all servers or no server at all.

Monotonicity Property (i) has already been studied in Yang et al. (2011) in a multi-queue
setting. In a single-queue setting, the proofs can be slightly generalized by not relying on
the fact that argH is a singleton. Therefore, for completeness, we have added the proof of
Property (i) in Appendix A. In order to prove Properties (ii) and (iii), we need the following
additional properties.

Property 3.1 (non-decreasingness) The relative value function V is increasing in the num-
ber of jobs, i.e.,

V (x + 1, a) − V (x, a) ≥ 0,

for all x ∈ X and 0 ≤ a ≤ A.

Property 3.2 (convexity-related properties) For a single-queue system, the following prop-
erties hold

(i) V (x + 1, a) − 2V (x, a) + V (x − 1, a) ≥ 0 for all x ≥ 1 and a ≥ 0,
(ii) V (x, a) − V ([x − 1]+, a) − H([x − 1]+,0) + H([x − 2]+,0) > 0 for all x ≥ 0 and

a > 0,
(iii) The minimal element of argH(x,0) is strictly positive for all x ≥ 2, and
(iv) H(x + 1,0) − 2H(x,0) + H(x − 1,0) ≥ 0 for all x ≥ 1.

Property 3.3 (submodularity) The relative value function satisfies a version of submodu-
larity, namely,

V (x, a + k) − V (x, a) − V (x + 1, a + k) + V (x + 1, a) > 0,

for all x ≥ 1, a > 0, and k > 0.
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Property 3.4 (monotonicity) If the service rate μ(a) and cost function c(a) are strictly
increasing functions in a, then for all a ∈ argH(x + k,0) and b ∈ argH(x,0), we have
a ≥ b for all k ≥ 0.

Now, we proceed to prove the work-conservation Property (ii) and the bang-bang control
Property (iii) of the optimal policy. Recall that we assumed c(0) = μ(0) = 0. First, we start
with the proof of the work-conservation property.

Theorem 3.5 (work-conservation) If the service rate function μ(·) and cost function c(·)
are strictly increasing functions, then the minimal element of argH(x,0) is strictly positive
for all x > 0.

Proof Based on part (iii) of Property 3.2, we have that the minimal element of argH(x,0)

is strictly positive for all x ≥ 2. Therefore, we only need to prove that each element of
argH(1,0) is strictly positive. This can be proven by the contradiction method. Assume that
0 ∈ argH(1,0). Then it follows that H(1,0) = V (1,0). Based on the optimality equation
and the assumption that c(0) = μ(0) = 0, we have

V (1,0) − V (0,0) = τ

λ
+ λ[H(2,0) − H(1,0)] + μ(A)[V (1,0) − V (0,0)].

Since μ(A) + λ = 1, it follows

λ[V (1,0) − V (0,0) − H(2,0) + H(1,0)] = τ

λ
.

Because we have τ > 0. Then, it holds that

V (1,0) − V (0,0) − H(2,0) + H(1,0) > 0. (4)

However, based on our assumption H(1,0) = V (1,0) and the fact that V (0,0) ≥ H(0,0),
it holds that

V (1,0) − V (0,0) − H(2,0) + H(1,0) ≤ 2H(1,0) − H(0,0) − H(2,0).

Based on part (iv) of Property 3.2, it follows that V (1,0) − V (0,0) − H(2,0) + H(1,0) is
non-positive. This is in contradiction with (4). Therefore, we conclude that each element of
argH(1,0) is strictly positive, which completes the proof. �

Next, we prove that the optimal allocation policy has the bang-bang control property. To
this end, the following result is needed.

Lemma 3.6 The following inequality holds

V (x, a) − H(x − 1,0) >
c(a)

μ(a)
,

for all x ≥ 1 and a > 0.

Proof Since a > 0, it holds that V (x, a) = H(x,a) for all x. Therefore, based on the opti-
mality equation, we have
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V (x, a) − V (0,0) = τ
x

λ
+ c(a) + λ[V (x + 1, a) − H(1,0)] + μ(a)H([x − 1]+,0)

+ [μ(A) − μ(a)]V (x, a) − μ(A)V (0,0).

Since λ + μ(A) = 1, the equation above implies that

λ[H(1,0) − V (0,0) + V (x, a) − V (x + 1, a)] = τ
x

λ
+ c(a) + μ(a)[H([x − 1]+,0)

− V (x, a)]. (5)

Because of the definition of the value function, it holds that V (0,0) ≥ H(0,0). This implies
that

H(1,0) − V (0,0) + V (x, a) − V (x + 1, a) ≤ H(1,0) − H(0,0) + V (x, a)

− V (x + 1, a). (6)

Based on parts (i) and (ii) of Property 3.2, we obtain that

V (x + 1, a) − V (x, a) ≥ V (2, a) − V (1, a) ≥ H(1,0) − H(0,0). (7)

Combining (6) and (7), we conclude that

H(1,0) − V (0,0) + V (x, a) − V (x + 1, a) ≤ 0.

Because τ > 0, (5) implies that

c(a) + μ(a)[H(x − 1,0) − V (x, a)] < 0,

and hence V (x, a) − H(x − 1,0) > c(a)

μ(a)
. �

We are now ready to prove the optimality of the bang-bang control policy.

Theorem 3.7 (bang-bang control) For a single-queue system, the following properties hold

(i) argH(0,0) = {0}.
(ii) if c(a)μ(a + 1) − μ(a)c(a + 1) ≥ 0 for all a ∈ A(x,b), then argH(x,0) = {0,A} for all

x > 0.

Proof We use the contradiction method to prove this theorem. To start, let a ∈ argH(0,0).
Then H(0,0) = V (0, a). Now assume that a > 0, then based on the definition of the value
function, we have

V (0,0) − V (0, a) = −c(a) + λ[H(1,0) − H(1, a)] − μ(a)H(0,0)

+ μ(A)[V (0,0) − V (0, a)] + μ(a)V (0, a)

= −c(a) + λ[H(1,0) − H(1, a)] + μ(A)[V (0,0) − V (0, a)].

Since λ + μ(A) = 1, we have that

λ[V (0,0) − V (0, a)] = −c(a) + λ[H(1,0) − H(1, a)].
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Because H(1,0) − H(1, a) ≤ 0 and c(a) > 0 for a > 0, we have V (0,0) − V (0, a) < 0,
which is in contradiction with the assumption that 0 < a ∈ argH(0,0). Therefore, we con-
clude that argH(0,0) = {0}, which proves part (i).

To prove part (ii), we assume that there exists x ≥ 1 and a ∈ argH(x,0) such that 0 <

a < A. Then we have V (x, a) = H(x,0) for all 0 < a < A. Because of the definition of the
value function, V (x, a) = H(x,a) for all x. Based on the optimality equation, we have

V (x, a + 1) − V (x, a) = c(a + 1) − c(a) + λ[V (x + 1, a + 1) − V (x + 1, a)]
+ [μ(a + 1) − μ(a)]H(x − 1,0)

+ μ(A)[V (x, a + 1) − V (x, a)]
− μ(a + 1)V (x, a + 1) + μ(a)V (x, a).

This implies that

λ[V (x, a + 1) − V (x, a) − V (x + 1, a + 1) + V (x + 1, a)]
= c(a + 1) − c(a) + [μ(a + 1) − μ(a)]H(x − 1,0) − μ(a + 1)V (x, a + 1)

+ μ(a)V (x, a).

Since V (x, a) = H(x,0), we have V (x, a + 1) ≥ V (x, a), and hence

λ[V (x, a + 1) − V (x, a) − V (x + 1, a + 1) + V (x + 1, a)]
≤ c(a + 1) − c(a) + [μ(a + 1) − μ(a)]H(x − 1,0) − μ(a + 1)V (x, a) + μ(a)V (x, a)

= c(a + 1) − c(a) + [μ(a + 1) − μ(a)][H(x − 1,0) − V (x, a)]. (8)

Based on Property 3.3, it holds that V (x, a + 1) − V (x, a) − V (x + 1, a + 1) +
V (x + 1, a) ≥ 0. Therefore, inequality (8) implies that

c(a + 1) − c(a) + [μ(a + 1) − μ(a)][H(x − 1,0) − V (x, a)] ≥ 0,

which is equivalent to

V (x, a) − H(x − 1,0) ≤ c(a + 1) − c(a)

μ(a + 1) − μ(a)
. (9)

Based on the condition c(a)μ(a + 1) − μ(a)c(a + 1) ≥ 0 of part (ii), we have

c(a)μ(a + 1) − c(a)μ(a) + c(a)μ(a) − μ(a)c(a + 1)

= c(a)[μ(a + 1) − μ(a)] − μ(a)[c(a + 1) − c(a)] ≥ 0,

which implies that

c(a + 1) − c(a)

μ(a + 1) − μ(a)
≤ c(a)

μ(a)
, and hence V (x, a) − H(x − 1,0) ≤ c(a)

μ(a)
,

which is in contradiction with Lemma 3.6. This proves part (ii). �

The following corollary follows directly from combining Theorems 3.5 and 3.7.

Corollary 3.8 Under the assumption c(a)μ(a + 1) − μ(a)c(a + 1) ≥ 0 it holds that
argH(x,0) = {A} for all x > 0 and a ∈ A(x,b).
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3.2 Fully flexible resource allocation policy

In this section we focus our attention to optimal allocation strategies for the system in which
the allocation of the number of servers is allowed to change when a job is already in service.
We shall adopt the same techniques in deriving the structure of the optimal policy as in the
previous section.

We adopt the same techniques of proof as described in Sect. 3.1. We start by rewriting (2)
for the fully flexible system as a set of backward recursion equations. This set of equations
is given by

Vn+1(x) = τ
x

λ
+ λVn(x + 1) + min

a∈Ax

T n
a (x), (10)

where T n
a (x) is given by

T n
a (x) = μ(a)Vn([x − 1]+) + [

μ(A) − μ(a)
]
Vn(x) + c(a).

By performing backward recursion, the optimal allocation policy can be obtained, which
has the following properties.

Property (i) monotonicity: this implies that the optimal policy is a step function. Thus for
all a ∈ arg mina∈Ax+1{Ta(x + 1)} and b ∈ arg mina∈Ax {Ta(x)} we have a ≥ b for all x ≥ 0.

Property (ii) work-conservation: this implies that if the system is not empty, then the
optimal policy is not keeping all compute resources idle. Thus, the minimal element of
arg mina∈Ax {Ta(x)} is strictly positive for all x > 0.

Property (iii) bang-bang control: if c(a)μ(a+1)−μ(a)c(a+1) ≥ 0 holds for all a ∈ Ax ,
then the optimal policy is a bang-bang control policy, which means using all servers or no
server at all.

The proof of monotonicity Property (i) is given in Appendix B (the ideas are similar to
the multi-queue setting studied in Yang et al. (2011)). Additionally, we need the following
properties of the relative value function from the same paper to prove Properties (i) and (ii).

Property 3.9 (convexity) Assume that the functions μ(·) and c(·) are strictly increasing
functions, then V (x) is a convex increasing function in x, i.e., V (x) > V (x − 1) and V (x +
1) − 2V (x) + V (x − 1) > 0 for all x ≥ 1.

Property 3.10 (monotonicity) Assume that the functions μ(·) and c(·) are strictly in-
creasing functions in a. Then the optimal resource allocation strategy is given by a non-
decreasing curve, i.e., for each a ∈ arg mina∈Ax+1{Ta(x + 1)} and b ∈ arg mina∈Ax {Ta(x)}
we have a ≥ b for all x ≥ 0.

We proceed to derive parts (ii) and (iii). We start with the work-conservation property.
Recall that without loss of generality, it is assumed that c(0) = μ(0) = 0. The following re-
sult shows that if the system is not empty, then the optimal policy will not keep all computing
resources idle.

Theorem 3.11 (work-conservation) The minimal element of arg mina∈Ax {Ta(x)} is strictly
positive for all x > 0.
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Proof We use the contradiction method to prove this theorem. Assume there exists x > 0
such that the minimal element of arg mina∈Ax {Ta(x)} is 0. Then, Property 3.10 implies that
arg mina∈Ax {Ta(0)} = {0}. Therefore, by applying the optimality equation, we obtain

V (x) − V (0) = τ
x

λ
+ λ[V (x + 1) − V (1)] + μ(A)[V (x) − V (0)].

Since λ + μ(A) = 1, this is equivalent to

λ[V (1) − V (0) + V (x) − V (x + 1)] = τ
x

λ
.

Because the time constraint of the facility is finite, we have τ > 0. Hence, it holds
that V (1) − V (0) + V (x) − V (x + 1) > 0. However, Property 3.9 directly implies that
V (1) − V (0) + V (x) − V (x + 1) ≤ 0, which contradicts the convexity of Property 3.9. This
completes the proof. �

In order to prove that the optimal allocation policy has the bang-bang control property,
we need the following lemma.

Lemma 3.12 Let b ∈ arg mina∈Ax {Ta(x)} for arbitrary x ≥ 1, then the following inequality
holds

V (x) − V (x − 1) ≥ c(b)

μ(b)
.

Proof From the definition of the value function, we have

Ta(0) = μ(a)V (0) + [μ(A) − μ(a)]V (0) + c(a) = μ(A)V (0) + c(a),

which implies that arg mina∈Ax {Ta(0)} = {0}. For x > 0, let b ∈ arg mina∈Ax {Ta(x)}. Then
Theorem 3.11 implies that b > 0. Moreover, based on the optimality equation, it holds that

V (x) − V (0) = τ
x

λ
+ λ[V (x + 1) − V (1)] + μ(b)V (x − 1) + μ(A)[V (x) − V (0)]

− μ(b)V (x) + c(b).

Since λ + μ(A) = 1, this is equivalent to

λ[V (1) − V (0) + V (x) − V (x + 1)] = τ
x

λ
+ c(b) + μ(b)[V (x − 1) − V (x)].

Based on τ > 0 and Property 3.9, it holds that V (1) − V (0) + V (x) − V (x + 1) ≤ 0, and
hence

c(b) + μ(b)[V (x − 1) − V (x)] < 0,

which is equivalent to V (x) − V (x − 1) > c(b)

μ(b)
. This completes the proof. �

We are now ready to prove the optimality of the bang-bang control policy.

Theorem 3.13 (bang-bang control) The following properties hold

(i) arg mina∈A0{Ta(0)} = {0}.
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(ii) If c(a)μ(a + 1) − μ(a)c(a + 1) ≥ 0 holds for all a ∈ Ax , then arg mina∈Ax {Ta(x)} =
{0,A} for all x > 0.

Proof First, we prove that arg mina∈A0{Ta(0)} = {0}. To this end, the definition of the value
function implies

Ta(0) = μ(a)V (0) + [μ(A) − μ(a)]V (0) + c(a) = μ(A)V (0) + c(a),

which immediately shows that arg mina∈A0{Ta(0)} = {0}. This concludes the proof of
part (i).

To prove part (ii), we use the contradiction method. Assume that there exists x > 0 and
b = arg mina∈Ax {Ta(x)} such that 0 < b < A. Then 0 < b < A, which implies that Tb+1(x)−
Tb(x) ≥ 0. Since

Tb+1(x) − Tb(x) = c(b + 1) − c(b) + [μ(b + 1) − μ(b)][V (x − 1) − V (x)],
this implies that

V (x) − V (x − 1) ≤ c(b + 1) − c(b)

μ(b + 1) − μ(b)
.

Based on the condition of the lemma, we have c(a)μ(a + 1) − μ(a)c(a + 1) ≥ 0 for all
a ∈ Ax . Therefore, it holds that c(b+1)−c(b)

μ(b+1)−μ(b)
≤ c(b)

μ(b)
. Thus V (x) − V (x − 1) ≤ c(b)

μ(b)
. However,

based on Lemma 3.12 it holds that V (x) − V (x − 1) > c(b)

μ(b)
for all x > 0, which is in

contradiction. This completes part (ii) of the proof. �

By combining Theorems 3.11 and 3.13 we obtain the following result.

Corollary 3.14 arg mina∈Ax {Ta(x)} = {A} for all x > 0.

4 Numerical results

In this section, we illustrate the structural properties of the optimal allocation policies. To
this end, we have conducted numerical experiments for a variety of cost functions c(·) and
service rates μ(·) having different characteristics. These parameter choices are given in Ta-
ble 1 for 7 experiments. The other parameters in our experiments are set as follows: A = 85
(this represents the number of servers in the DAS-3 cluster that we used, see The Distributed
ASCI Supercomputer 2011), λ = 2, μ = 0.7, and τ = 1. Note that μ is defined as μ(1), the
service rate of using a single server (used for normalization of the server speed). Moreover,
we fixed the value of τ , since we are only interested in the structural properties of the optimal
allocation policy.

In Experiments 1–4, the functions c(·) and μ(·) satisfy the conditions of the bang-bang
control property (see Theorems 3.7 and 3.13). For these experiments, the results for both
models are shown in Fig. 2. In this figure, we see that the results are in agreement with
Corollaries 3.8 and 3.14.

In Experiments 5–7, the conditions of the bang-bang control property are not satisfied.
Since c(·) and μ(·) are strictly increasing functions, the optimal allocation policy satisfies
the monotonicity property, which implies that the optimal policy follows a step function.
The experimental results of Experiments 5–7 for the limited resource allocation model and
the fully flexible resource allocation model are shown in Figs. 3 and 4, respectively.
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Table 1 Parameter choices for c(·) and μ(·)
Experiment 1 c(a) = a μ(a) = aμ

Experiment 2 c(a) = √
a μ(a) = a2μ

Experiment 3 c(a) = 3√a μ(a) = √
aμ

Experiment 4 c(a) = a1.5 μ(a) = a2μ

Experiment 5 c(a) = a2 μ(a) = √
aμ

Experiment 6 c(a) = √
a μ(a) = 3√aμ

Experiment 7 c(a) = a2 μ(a) = a1.5μ

Fig. 2 Optimal action a as a
function of x for experiment 1
to 4

Note that in the experiments we did not consider the service time requirement that is
imposed in the system. Evidently, adding the restriction ES ≤ α subject to the stability con-
dition discussed in Sect. 2 will lead to a different optimal policy. However, the optimal
policy under minimal costs when meeting the service requirement still has the same struc-
tural properties, i.e., a non-decreasing step function. The only difference with the results
presented here is that this policy will be randomized in exactly one state (see Sect. 12.6 of
Altman (1999)).

5 Conclusion

In this paper we have explored the structural properties of the optimal allocation policy in
two different systems. Both systems are capable to change the number of computing re-
sources dynamically. However, one system deals with updating the number of computing
resources only upon the start of the service of a new job whilst in the other system that can
be done during the service of a job. In both systems, one needs to optimize the resource allo-
cation costs on the one hand while satisfying a service requirement on the sojourn time of a
job on the other hand. We applied dynamic programming to show that the optimal resource
allocation policy has a work-conservation property. It follows a step function with as ex-
treme policy the bang-bang control policy. Also, we provide the conditions under which the
bang-bang control policy is optimal. The techniques to show these results are not obtained
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Fig. 3 Optimal action a as a function of x for the limited resource allocation model

by standard induction arguments, and thus provide a foundation for studying generalized
systems in which these techniques can be applied.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Limited resource allocation policy

In the appendix, we add the proofs of Property 3.1, 3.2, 3.3, and 3.4.

Proof of Property 3.1 The proof is by induction on n in Vn. Define V0(x, a) = 0 for all states
x and actions a. Then, clearly, V0(x, a) is increasing in all components of x. Now, assume
that Vn(x +1, a)−Vn(x, a) ≥ 0 for some n ∈ N. Now, we prove that Vn+1(x, a) satisfies the
increasingness property as well. Then

Vn+1(x + 1, a) − Vn+1(x, a) = τ

λ
+ λ[Hn(x + 2, a) − Hn(x + 1, a)]

+ μ(a)[Hn(x,0) − Hn([x − 1]+,0)]
+ [μ(A) − μ(a)][Vn(x + 1, a) − Vn(x, a)]. (11)
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Fig. 4 Optimal action a as a function of x for the fully flexible resource allocation model

Note that the first term τ/λ and the last term with Vn(x + 1, a) − Vn(x, a) are positive.
Hence, based on the induction hypothesis, we have

Vn+1(x + 1, a) − Vn+1(x, a) > λ[Hn(x + 2, a) − Hn(x + 1, a)]
+ μ(a)[Hn(x,0) − Hn([x − 1]+,0)]. (12)

Let b ∈ argHn(x + 2, a) and c ∈ argHn(x,0). Then,

Vn+1(x + 1, a) − Vn+1(x, a) > λ[Vn(x + 2, a + b) − Vn(x + 1, a + b)]
+ μ(a)[Vn(x, c) − Vn([x − 1]+, c)]

≥ 0. (13)

Clearly, the inequality above holds because of the induction hypothesis. Hence, we conclude,
by taking the limit as n → ∞, that V (x, a) is increasing in x. �

Property 3.1 shows that the costs that the system incurs increases as the number of cus-
tomers in the system increases. In fact, more can be said about the rate at which the costs
increase; the increase in costs is higher when more customers are in the system. Hence, this
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implies that the relative value function is a convex function. In the sequel we will show that
this is indeed true. However, before doing so, we need a preparative lemma.

Lemma A.1 The value function satisfies the following property:

H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0) < 0,

for all x ≥ 1.

Proof Let x ≥ 1, then

V (x,0) − V (x − 1,0) = τ

λ
+ λ

[
H(x + 1,0) − H(x,0)

] + μ(A)
[
V (x,0) − V (x − 1,0)

]
.

Since λ + μ(A) = 1, the equation above implies,

λ
[
V (x,0) − V (x − 1,0)

] = τ

λ
+ λ

[
H(x + 1,0) − H(x,0)

]
.

Therefore,

λ
[
H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0)

] = −τ

λ
.

Thus, H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0) < 0, since −τ/λ < 0. �

Lemma A.1 is almost the inequality that represents convexity of the value function. This
would be the case when H would be replaced by V . However, for the proof of convexity, we
need three additional properties to hold as well. The following proof makes these properties
explicit.

Proof of Property 3.2 The proof is by induction on n in Vn. Define V0(x, a) = 0 for all
states x and actions a > 0 and V0(x,0) = ε > 0 for all x. Then, clearly, V0(x, a) satisfies
all properties. Now suppose that the properties hold for some n ∈ N. We prove that the
properties also hold for n + 1. Therefore, we start with convexity first.

Property (i) Let x ≥ 1 and suppose that a = 0. Then,

Vn+1(x + 1,0) − 2Vn+1(x,0) + Vn+1(x − 1,0)

= λ
[
Hn(x + 2,0) − 2Hn(x + 1,0) + Hn(x,0)

]

+ μ(A)
[
Vn(x + 1,0) − 2Vn(x,0) + Vn(x − 1,0)

]

≥ λ
[
Hn(x + 2,0) − 2Hn(x + 1,0) + Hn(x,0)

]

≥ 0. (14)

The equality following by expanding Vn+1 into Vn. The first inequality follows by using
Property (i) of the induction hypothesis. The last inequality follows by using Property (iv)
of the induction hypothesis.

Now let x ≥ 1 and suppose that a > 0. Then

Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1(x − 1, a)
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= λ
[
Vn(x + 2, a) − 2Vn(x + 1, a) + Vn(x, a)

]

+ μ(a)
[
Hn(x,0) − 2Hn([x − 1]+,0) + Hn([x − 2]+,0)

]

+ [
μ(A) − μ(a)

][
Vn(x + 1, a) − 2Vn(x, a) + Vn(x − 1, a)

]

≥ μ(a)
[
Hn(x,0) − 2Hn([x − 1]+,0) + Hn([x − 2]+,0)

]

≥ 0. (15)

The equality following by expanding Vn+1 into Vn. The first inequality follows by using
Property (i) of the induction hypothesis. The last inequality follows by using Property (iv)
of the induction hypothesis. Thus, for all x ≥ 1 and a ≥ 0, Vn+1(x + 1, a) − 2Vn+1(x, a) +
Vn+1(x − 1, a) ≥ 0.

Property (ii) Let x ≥ 0 and suppose a > 0. Then, based on the optimality equation, we
have

Vn+1(x, a) − Vn+1([x − 1]+, a) = τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]

+ μ(a)
[
Hn+1([x − 1]+,0) − Hn+1([x − 2]+,0)

]

+ [
μ(A) − μ(a)

][
Vn+1(x, a) − Vn+1([x − 1]+, a)

]
.

Recall that the uniformization constant λ+μ(A) = 1. Thus, the equation above is equiv-
alent to

λ
[
Vn+1(x, a) − Vn+1([x − 1]+, a)

] = τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]

+ μ(a)
[
Hn+1([x − 1]+,0) − Hn+1([x − 2]+,0)

]

− μ(a)
[
Vn+1(x, a) − Vn+1([x − 1]+, a)

]
.

The equation above implies that

μ(a)
[
Vn+1(x, a) − Vn+1([x − 1]+, a) − Hn+1([x − 1]+,0) + Hn+1([x − 2]+,0)

]

= τ

λ
+ λ

[
Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1([x − 1]+, a)

]
.

Hence, by using Property (i) of the induction hypothesis and because of τ > 0, the right-
hand side of the equation is positive. Hence, we have Vn+1(x, a) − Vn+1([x − 1]+, a) −
Hn+1([x − 1]+,0) + Hn+1([x − 2]+,0) > 0.

Property (iii) We prove the property by means of contradiction. Assume that there exists a
x ≥ 2 such that the minimal element of argH(x,0) is 0, i.e., min{argH(x,0)} = 0. This, by
definition, implies that Vn+1(x,0) = Hn+1(x,0). Therefore,

Hn+1(x,0) − Hn+1(x − 1,0) − Vn+1(x − 1,0) + Vn+1(x − 2,0)

≥ Vn+1(x,0) − 2Vn+1(x − 1,0) + Vn+1(x − 2,0)

≥ 0.
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The first inequality follows by taking action a = 0 in the second term Hn+1(x − 1,0).
The second inequality follows by Property (i) of the induction hypothesis. However, based
on Lemma A.1 we know that Hn+1(x,0)−Hn+1(x −1,0)−Vn+1(x −1,0)+Vn+1(x −2,0)

< 0. Therefore, we conclude that min{argH(x,0)} > 0 for x ≥ 2.

Property (iv) Let x ≥ 1. Since x − 1 ≥ 0, we have x + 1 ≥ 2. Thus by using Property (iii)
of the induction hypothesis, we have a∗(x) := min{argH(x,0)} > 0. Therefore,

Hn+1(x + 1,0) − 2Hn+1(x,0) + Hn+1(x − 1,0)

≥ Vn+1(x + 1, a∗(x + 1)) − Vn+1(x, a∗(x + 1)) − Hn+1(x,0) + Hn+1(x − 1,0)

≥ 0.

The first inequality follows by taking action a∗(x + 1) in Hn+1(x,0). The second in-
equality follows by Property (ii) of the induction hypothesis.

We conclude the proof by taking the limit as n → ∞. �

Property 3.2 shows that the relative value function is convex. However, in proving this
one needs three additional properties simultaneously in the proof by induction Property (i)
depends on (iv), which depends on (ii) and (iii). Now, we are ready to study the submodu-
larity property of the optimal policy.

Proof of Property 3.3 We prove the submodularity property by induction on n in Vn. Let
V0(x, a) = 0. Clearly, the submodularity property holds. Now assume that the property holds
for some n ∈ N and for all x ≥ 0. We proceed to prove that Vn+1(x, a) satisfies the property
as well. Therefore, fix x ≥ 1 and a > 0, then

Vn+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

= λ[Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)]
+ [

μ(a + k) − μ(a)
][

Hn(x − 1,0) − Hn(x,0)
]

+ μ(A)
[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]

− μ(a + k)Vn(x, a + k) + μ(a)Vn(x, a)

+ μ(a + k)Vn(x + 1, a + k) − μ(a)Vn(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]

+ [
μ(a + k) − μ(a)

][
Hn(x − 1,0) − Hn(x,0)

]

+ μ(A)
[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]

− [
μ(a + k) − μ(a)

]
Vn(x, a + k) − μ(a)Vn(x, a + k) + μ(a)Vn(x, a)

+ [
μ(a + k) − μ(a)

]
Vn(x + 1, a + k) + μ(a)Vn(x + 1, a + k) − μ(a)Vn(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]

+ [
μ(A) − μ(a)

][
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]

+ [
μ(a + k) − μ(a)

][
Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0)

+ Hn(x − 1,0)
]
. (16)
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The first equality follows from expanding Vn+1 into Vn. The second equality follows from
adding and subtracting μ(a)Vn(x, a + k) and μ(a)Vn(x + 1, a + k). The third equality fol-
lows from standard algebraic manipulations. Based on the induction hypothesis, we have

Vn+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

≥ [
μ(a + k) − μ(a)

][
Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0)

+ Hn(x − 1,0)
]
. (17)

By using Property (ii) of Property 3.2 and by noting that μ(·) is a strictly increasing function,
we obtain

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0) + Hn(x − 1,0) > 0. (18)

Thus, we have shown that [V (x, a +k)−V (x, a)]−[V (x +1, a +k)−V (x +1, a)] > 0. �

Based on the submodularity property of the optimal policy, we can study monotonicity
properties of the optimal policy. The following proof formalizes this statement posed in
Property 3.4.

Proof of Property 3.4 For x = 0, the only feasible action in argH(0,0) is a0 = 0, since there
are no customers to serve. For x = 1, if a1 = 0 ∈ argH(1,0), then all a2 ∈ argH(2,0), we
have a2 > a1 [Property (iii) of Property 3.2]. Hence, a2 > a1 ≥ a0. Now, for x ≥ 1 and a1 > 0
it suffices to show that the relative value function satisfies an extension of submodularity,
namely

[V (x, a + k) − V (x, a)] − [V (x + 1, a + k) − V (x + 1, a)] > 0, (19)

for all k > 0. If this property holds, then since V (x + 1, ax+1 + k) − V (x + 1, ax+1) ≥ 0,
we have that V (x, ax+1 + k) − V (x, ax+1) > V (x + 1, ax+1 + k) − V (x + 1, ax+1) ≥ 0 with
ax+1 the minimal element of argH(x +1,0). Hence, this implies that all minimizing actions
ax ∈ argH(x,0) in state x satisfy ax ≤ ax+1.

Based on Property 3.3, we complete the proof as this property implies that ax is an
increasing function in x. �

Appendix B: Full flexible resource allocation policy

In the appendix, we add the proofs of Properties 3.9 and 3.10.

Proof of Property 3.9 The proof is by induction on n. Let V0(x) = x2 for all x ≥ 0. Then
V0(x + 1) − V0(x) = 2x + 1 > 0, and V (x + 1) − 2V (x) + V (x − 1) = 2 > 0. Therefore,
V0 is a convex increasing function in x. Now, assume that the statement holds for k, then we
prove that the statement also holds for k + 1. To this end, define

T k
a (x) = μ(a)Vk([x − 1]+) + [

μ(A) − μ(a)
]
Vk(x) + c(a).

Then, for x ≥ 0, we have

Vk+1(x + 1) − Vk+1(x) = τ

λ
+ [λVk(x + 2) − λVk(x + 1)]
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+ [min
a

{T k
a (x + 1)} − min

a
{T k

a (x)}]

> min
a

{T k
a (x + 1)} − min

a
{T k

a (x)}.

The inequality holds because the first two terms are positive. Let a∗ be the smallest element
of arg mina{T k

a (x + 1)}, then, for x ≥ 0, we have

Vk+1(x + 1) − Vk+1(x) > T k
a∗(x + 1) − min{T k

a (x)}
≥ T k

a∗(x + 1) − T k
a∗(x)

= μ(a∗)Vk(x) + [
μ(A) − μ(a∗)

]
Vk(x + 1) + c(a∗)

− μ(a∗)Vk([x − 1]+) − [
μ(A) − μ(a∗)

]
Vk(x) − c(a∗)

> 0.

Therefore, by induction, we derive that V (x + 1) − V (x) > 0.
Now we proceed to prove convexity of the relative value function. Assume that convexity

holds for k, then we need to prove convexity for k + 1. Then, for x ≥ 0, we have

Vk+1(x + 1) − 2Vk+1(x) + Vk+1(x − 1)

= [
λVk(x + 2) − 2λVk(x + 1) + λVk(x)

]

+ [
min

a
{T k

a (x + 1)} − 2 min
a

{T k
a (x)} + min

a
{T k

a (x − 1)}]

> min
a

{T k
a (x + 1)} − 2 min

a
{T k

a (x)} + min
a

{T k
a (x − 1)}.

The inequality holds because the first expression between the brackets is positive due to the
induction hypothesis. Now assume that a∗

1 is the smallest element of arg mina{T k
a (x + 1)}

and a∗
2 is the smallest element of arg mina{T k

a (x − 1)}. Then, we have

min
a

{T k
a (x + 1)} − 2 min

a
{T k

a (x)} + min
a

{T k
a (x − 1)}

≥ [
c(a∗

1 ) − c(a∗
1) − c(a∗

2 ) + c(a∗
2)

]

+ [
μ(a∗

1 )Vk(x) − μ(a∗
1)Vk

([x − 1]+) − μ(a∗
2)Vk

([x − 1]+) + μ(a∗
2)Vk

([x − 2]+)]

+ [(
μ(A) − μ(a∗

1 )
)
Vk(x + 1) − (

μ(A) − μ(a∗
1)

)
Vk(x) − (

μ(A) − μ(a∗
2 )

)
Vk(x)

+ (
μ(A) − μ(a∗

2)
)
Vk

([x − 1]+)]

= (
μ(a∗

1 ) − μ(a∗
2 )

)[
Vk(x) − Vk

([x − 1]+)]

+ μ(a∗
2)

[
Vk(x) − 2Vk

([x − 1]+) + Vk

([x − 2]+)]

+ (
μ(A) − μ(a∗

1)
)[

Vk(x + 1) − Vk(x)
]

− [
μ(A) − μ(a∗

1) + (
μ(a∗

1 ) − μ(a∗
2)

)](
Vk(x) − Vk

([x − 1]+))

= μ(a∗
2)

[
Vk(x) − 2Vk

([x − 1]+) + Vk

([x − 2]+)]

+ (
μ(A) − μ(a∗

1)
)[

Vk(x + 1) − 2Vk(x) + Vk

([x − 1]+)]

≥ 0.
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The first inequality follows from taking a potentially suboptimal action in the second term
of mina{T k

a (x + 1)}− 2 mina{T k
a (x)}+ mina{T k

a (x − 1)}. The two equalities follow by rear-
ranging the terms. The last inequality follows by the induction hypothesis and by noting that
μ(A) − μ(a∗

1) is positive. Hence, using mathematical induction we have proved that V (x)

is a convex increasing function in x. �

Proof of Property 3.10 Let a ∈ arg mina∈Ax+1{Ta(x + 1)} and b ∈ arg mina∈Ax {Ta(x)} be an
arbitrary optimal allocation in states x +1 and x, respectively. The proof is by contradiction.
Suppose that b and a such that a < b, then

Ta(x) − Tb(x) = [
μ(b) − μ(a)

][
V (x) − V

([x − 1]+)] − [
c2(b) − c2(a)

]

≥ 0.

By Property 3.9 we have that V is a convex increasing function in x. Together with the fact
that μ(·) is a strictly increasing function, and thus μ(b) − μ(a) > 0, we have

Ta(x + 1) − Tb(x + 1) = [
μ(b) − μ(a)

][
V (x + 1) − V

(
x)

] − [
c2(b) − c2(a)

]

>
[
μ(b) − μ(a)

][
V (x) − V

([x − 1]+)] − [
c2(b) − c2(a)

]

≥ 0.

However, this implies that a is not optimal for state x + 1, since b has a smaller value.
Hence, a ≥ b, and this establishes the non-decreasing curve as stated in the theorem. �
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