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In this paper, we investigate the identification problem of linear system theory from 

the viewpoint of nonlinear filtering. Following the work of Brockett and Mitter, one 

associates in a natural way a certain (infinite dimensional) Lie algebra of differential 

operators known as the estimation algebra of the problem. For the identification 

problem the estimation algebra is a subalgebra of a current algebra. In this paper we 

study questions of representation and integrability of current algebras as they impinge 

upon the identification problem. A Wei-Norman type procedure for the associated 

Cauchy problem is developed which reveals a sequence of functionals of the 

observations that play the role of joint sufficient statistics for the identification 

problem. 

1. INTRODUCTION 

Consider the stochastic differential system: 

STOCH C 

d8=0 

dx, = A(B)x1dt+ b(IJ) dw, 

dy1 = < c( 8),x1 )dt + dv,. 

65 

( 1) 
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Here { w,} and { v1 } and independent, scalar, standard, Wiener 
processes and { x1} is an ~·-valued process: We assume that (} takes 
values in a smooth manifold 0c..+iRN, and the map o~k(O):= 
(A(O), b(O), c(O)) is a smooth map taking values in minimal triples. 
By the identification problem we mean the nonlinear filtering problem 
associated with Eq. (1); i.e. the problem of recursively computing 
conditional expectations of the form ni(ct))~E[</>(x1 ,(})J<??l'1 ] where<??!', 
is the a-algebra generated by the observations {y.:O~s~t} and </>is 
a member of a suitable class of real-valued functions on !Rn x 0. 

It is now well-known that the solution to nonlinear filtering 
problems of the above type involves in an essential way a linear 
stochastic partial differential equation in the Ito sense known as the 
Duncan-Mortensen-Zakai equation (see the papers of Davis and 
Marcus [1] and Mitter [2] for overview and historical remarks). In 
the present context, this equation takes the form 

(2) 

where p ~ p(t, x, (}) is the joint unnormalized conditional density of x, 
and e given <??!'1• The operators .sll 0 and 380 are given by 

.sll 0 : =-!<b(O), ajox) 2 - tr(A(O)) 

-<A(O)x, o/ox) (3) 

and 

140 : = <c(8), x). (4) 

The Bayes formula, (Kallianpur [3]) implies that 

(5) 

where 

(J.(</>)= SJ </>(x,8)p(t,x,8)dx·d8. (6) 
eul" 

Further, if we let Q(t, (}) denote the (unnormalized) posterior density 
of(} given <??!'1, then it follows (see [ 4]) that, 

(7) 
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It is possible to give a pathwise interpretation of equation (2) (see 
Mitter [5], Davis [6]) by applying a time-dependent gauge 
transformation of the form, 

p(t, x, 8) ~exp( - (c(8), x>y1)· p(t, x, 8). (8) 

Then (applying Ito's rule) p(t, x) satisfies the deterministic partial 
differential equation 

(9) 

where, 

(10) 

f.e 1 and Sf 2 are given by the commutation rules: 

( 11) 

( 12) 

The pathwise form (9) is most suitable for what follows and leads 
to geometrical investigations. By the estimation algebra of the 

identification problem we mean the operator Lie algebra G generated 

by (d0 -86'6) and 86'0 . For more general nonlinear filtering problems, 
estimation algebras analogous to G have been emphasized by 
Brockett and Clark [7], Brockett [8-11], Mitter [12, 2, 5], 
Hazewinkel and Marcus [13] and others (see [14]) as being objects 
of central interest. In the papers [24, 15]) we give a classification 
theorem for identification problems in terms of G. See Theorem 1 
below. 

Our purpose in this paper is to make explicit the structure of the 
Lie algebra G and certain associated representations. These 
representations, especially the nontrivial ones, play an important role 
in sensitivity equations for finite dimensional filters. Sensitivity 
equations are an essential part of various approximate maximum 
likelihood algorithms which are widely used in practice [50, 51]. 
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Following Brockett and Mitter we view the Cauchy problem 
associated with Eq. (9) as a problem of integrating a Lie algebra 
representation. In the mathematical literature, this approach to 
solving p.d.e.'s appears in the work of Steinberg [43]. 

This leads to a Wei-Norman type representation for an infinite­
dimensional Lie group associated to the Lie algebra G. 

Finally, our calculations indicate what functionals of the 
observations constitute a set of joint sufficient statistics for the 
identification problem. 

2. THE STRUCTURE OF THE ESTIMATION ALGEBRA G 

To understand the structure of the estimation algebra G it is well 
worth considering an example. 

J:xwnple l Let 

Then 

.111, 
2 

x2 

2 

and .'-111 x. The Lie algebra C=:.,10 - . .!6'U2,.J:10 }1..A. 1s spanned by 
the sct of opcrators 

(
()2 j'.2 -~2)'• 

2 lx 2 -

: (}}11 \: ,; (J• 
s 112" ( I I 
I ,-x (" I 

and : (J2n. i: 1 • 

n -- 1 

v.l. then !l()t!L°C that D is simply a Lie subalgcbra with two 
)!l'llcT<ttur.., of the infinite dimen..,ional Lie algebra obtained by 
tcmo1111J! the- p1ily11omial ring ;)[ 112 ] with the six dimensional Lie 
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algebra of operators 

( 1) -{ a2 a a 2 }· - 2 st - ox2 ,xax'ax'x ,x,1 .Gs:::IR[& ]®st(l). 

69 

D 

The general situation is very much as in this example. Consider 
the vector space (over the reals) of operators spanned by the set 

!f':= {a 882 ,Xi-38 ,-88 ,XiXj,Xj, J, 
X; xi xi xi 

i = 1, 2, ... , n; j = 1, 2, ... , n }· ( 13) 

Elements of !!' are assumed to act on Y(IR") the Schwartz space of 
rapidly decreasing functions. This space of operators can be given 
the structure of a Lie algebra (of dimension 2n 2 + 3n + 1) under 
operator commutation (the commutation rules being 

where bik denotes the Kronecker symbol). We denote this Lie 
algebra as st(n). The structure of st(n) can be made quite explicit, as 
follows. 

Let ( V, B) be a symplectic vector space over the reals. Thus V is a 
vector space of dimension 2n and B: Vx V-+IR is a nondegenerate 
skew-symmetric bilinear form. The direct sum VEBIR can be given 
the structure of a Lie algebra as follows: 

[, ]:(VEBIR)x(VEBIR)-+VEBIR ((v,k),(v',k'))-+(0,B(v,v')). 

We denote by h(n) the above Lie algebra. The choice of a 
(symplectic) basis makes the matrix of B take the form 

J=( 0 /") 
-I" 0 

( 14) 
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and thus h(n) is nothing but the Heisenberg Lie algebra of dimension 
2n + 1. The symplectic group Sp(B) acts on ( V, B) as a group of 
automorphisms of the symplectic structure B and hence on h(n). This 
immediately defines a semidirect sum sp(2n)EB,h(n), of sp(2n) the 
symplectic Lie algebra (of matrices M with the property M J +JM' 
=0) and h(n). 

One can show that (see Kirillov [16]. Lion and Vergne [17]) that 

st(n) ~ sp(2n)Et>,h(n). ( 15) 

The algebra st(n) has the following faithful matrix representation 
as a subalgebra of sp(2n + 2): 

~o p' q' dJ -----------
0 .4 B q 

~ est(n)-+AW = r. -, 
0 L- -A -p 
-----------
0 0 0 0 

(16) 

where A, B, C, are n x n matrices B = B', C = C' and p, q E !Rn and 
d E IR. (See appendix 1 for the explicit isomorphism between st(n) as 
a Lie algebra of differential operators and as a matrix subalgebra of 
sp(2n + 2).) Since sp(2n) is simple and h(n) is nilpotent, it follows that 
Eq. (15) gives the Levi decomposition of st(n). 

Suppose for a moment that 8 is a known constant (equivalently E> 
is a 1-point manifold). This is then the setting of linear filtering and 
in this case G={d0 -.?J5/2,,qJ'0 }L.A.cst(n) is solvable and the whole 
situation is quite well understood (see Brockett [8, 11], Ocone [18]). 

In the setting of the identification problem however, 8 should be 
treated as a variable and for each {), (d 0 -,qJ'5/2) and ,qJ'0 take values 
in st(n). From the smooth dependence on 8 of the triple 
(A({)),b(8),c(8)), it follows that (d0 -.?46/2) and gJ'0 are smooth maps 
from E> into st(n). The following general viewpoint is essential. 

Let M be a smooth finite-dimensional manifold and let L be a 
finite-dimensional Lie algebra (over the reals) with the usual 
topology. The space LM~ C"'(M; L) of smooth maps from M into L 
can be given the structure of a Lie algebra in following way; given 
cp, if; ELM, define 
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If b( 8)-;/= 0 then G is necessarily infinite-dimensional. 

Proof It is a calculation [see 15]. 0 

Remark 2.2 The conclusions of Proposition 2.2 are not affected if 
in our stochastic differential equation model we introduce an 
additional, known, deterministic input term with known constant 
coefficients. 

3. SOBOLEV LIE GROUPS ASSOCIATED TO {; 

It has been pointed out elsewhere [8, 2, 18, 23, 24, 43] and 
[25] that the Cauchy problem associated with equations of the form 
(9) may be viewed as a problem of integrating a Lie algebra 
representation. To pursue this further one should be able to 
associate Lie groups to G. Since G is infinite-dimensional this 
question merits careful study. We carry out such a study for general 
current algebras and later specialize to the cases motivated by the 
identification problem. 

Let M be a compact Riemannian manifold of dimension r with 
volume element dm. Let L be a Lie algebra (over IR) of dimension 
n < oo. We can always view L as a subalgebra of the general linear 
Lie algebra gl(m; ~)for some m>n (Ado's theorem). 

Hypothesis (H) Let G={exp(L)}acgl(m;~) be the smallest Lie 
group containing the exponential of elements of L. We assume that 
G is a closed subset of gl(m; ~). 

Define the spaces of smooth maps 2i=C"(M;gl(m,~)); !£= 
C00 (M;L); ~=C00(M;G). The space 8l has the structure of an 
infinite-dimensional algebra under pointwise multiplication and 

One can construct Sobolev completions of!£ and t'fi as follows. Let 
{(U",<p")} be a finite covering of C 00 charts for the manifold M. Let 
(x" ... ,x,) denote the associated local coordinates. For 1=(11, ••• ,l,) 
an r-multi-index and f e £1.f, let 

(17) 
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(an m x m matrix of partial derivatives w.r.t. the coordinates x; ). One 
can now define, for f 1, f 2 E ~ 

(18) 

where 

If 12 = trU'f). (19) 

(Here k>r/2). We call ll·llk the Sobolev k-norm and we let ~k• !i'k 

and l'§k respectively denote the (Sobolev) completions of ?ll, !£' and I'§ 

in the norm [j·j[k- By our hypothesis (H) and by the condition k>r/2, 
l'§k is closed in ?Ilk. The condition k > r/2 guarantees that the 
definitions of ~k> f£'k and l'§k do not depend on the choice of charts 
([26, 27, 28]). Furthermore by the Sobolev theorem, ~k is a Banach 
algebra (a matrix Schauder ring) and hence the group operation 

where (fif2)(m)=f1(m)-f2 (m), mEM is continuous. Thus l'§k is a 
topological group. 

Similarly the bracket operation, 

where [f1,f2](m) = [f1(m), f 2(m)] is continuous. Now the next step is 
to give l'§k the structure of a Lie group and then identity !i'k as the 
Lie algebra (tangent space at the identity) of the infinite-dimensional 
Lie group l'§k. The basic idea is to use the exponential map. Define, 

f--+expf 

(expf)(m)=expf(m) mEM. (20) 

We can now appeal to the following version of the "'w-Lemma" 
[27, 29, 30], (a basic result in global nonlinear analysis). 

w-LEMMA Let M be a compact manifold of dimension d and let 
H'(M; !Rm) and H'(M; !RP) respectively denote the Sobolev spaces of 
maps (of order s) from M into !Rm and !RP. Assume s>d/2. Then for 
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any C"' map (,i>:IJ~r_.IRP, the map 

defined by 

( (/) f)(m) = (,i>(f (m)) 

is a C00 map of Sobolev spaces. D 
In the present case, since '§kc !?ltk we conclude that, 

It can be shown further that the differential of exp is the identity 
map at the origin. Hence by the inverse function theorem, there is a 
sufficiently small neighborhood V,,(O) of the origin of Sfk which is 

mapped diffeomorphically onto a neighborhood of the identity in "!Jk. 
Translating exp( V,,(O)) by right multiplication by elements of '!lb we 
obtain a covering of ~§k by C'" charts. We have thus proved, 

PROPOSITION 3.1 The topological group '§k is a Lie group and !!!k is 

its Lie algebra. D 

Remark 3.1 The above result appears in study of Yang-Mills 
fields [31, 32, 33] for the restricted case of G (the gauge group) being 

a compact Lie group. Here we essentially use the fact that for any 
right-invariant Riemannian metric on a Lie group, the exponential 

map is global (i.e. the geodesics are extendable for all time). Further, 
the oJ-lemma furnishes the essential step in the construction of the 
C' structure on C§k· 

We emphasize that whereas in the setting of Yang-Mills fields the 

gauge group G is compact (Su(n) etc.), for the identification problem 
G is not compact. In fact we let, 

L= st(n) G = { cxp(st(n)) }c;. 

From Kirillov [16, 34] it follows that G=St(n)+ is the con­

nt:cted component of the identity in the subgroup St(n) of Sp(2n+2) 
that leaves fixed a nonzero vector in IR 2 " + 2 . Hence it satisfies 
the hypothesis ( H) of this section. We may take m = 2n + 2. 
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In the notation of this section, let, M = E> the parameter space 
(dimE>=r) with a fixed Riemannian metric and associated volume 
element de. The methods of this section apply and we obtain a 
whole family of Sobolev Lie groups {~k:k>r/2} associated to the 
current algebra C00 (E>;st(n))cC 00 (0;sp(2n+2)). The estimation 
algebra GcC00 (0;st(n)) can be completed in the Sobolev norm ll·llk 
and we obtain a closed subgroup of ~k with Lie algebra= 
completion of G in the ll·llk norm. We denote this Sobolev Lie 
group as Gr. Thus it is now possible to associate a family {Gr: k 
integer, k>r/2} of Sobolev Lie groups to a given identification 
problem, - specified by E>, the parameterization (A(O),b(e),c(e)) and 
the Riemannian volume element de. 

Remark 3.2 Diffeomorphisms of E> that preserve the volume 
element de result in isomorphic G~. 

Before we close this section we discuss an alternative approach to 
current algebras and current groups. Given, 

a) A Lie algebra L (over IR say) with bracket [ , ], and dimension= n. 

b) A commutative ring F with unit 1; consider the tensor-product 
space Lp=L®F. LF can be given the structure [, ]p of a Lie 
algebra as follows: 

X; EL,f; eF. 

If F =the ring of C 00 real-valued functions on a manifold M then LF 
can be identified with the current algebra C"'(M; L). The 
identification may be given as follows. Choose a basis 
{X 1,X2,. .. ,Xn} for L. Then any <f>eC"'(M;L) may be represented as 

</>(p)=<f> 1(p)X 1 + ... +<f>.(p)X., peM 

for some uniquely determined c/;; E F. Hence the required 
identification is 

n 

</>+-+ L XJi9 cPi· (22) 
i = 1 
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Furthermore if Hk(M; IR) are the Sobolev completions of F, then 
for k > r/2 we also have the identifications of the Sobolev Lie 
algebras !f?k with the tensor products L©Hk(M; IR). 

This latter approach to current algebras is especially useful in 
treating purely algebraic matters. In the next section we discuss 
representations of the estimation algebra. 

4. REPRESENTATIONS OF THE ESTIMATION ALGEBRA 
OF THE IDENTIFICATION PROBLEM 

In this section we initiate a study of the representations of the 
estimation algebra G. Our idea is to construct representations of the 
current algebra C""(E>;st(n)) and restrict these representations to the 
subalgebra G. We focus on two types of representations. 

Type (I) Representations by differential operators on 
C'-(0; Y'(IR")) the space of smooth maps from E> into the Schwartz 
space of IR". 

Type (II) Representations by vector fields on smooth manifolds. 

The motivation for studying representations of Type (I) derives 
from the fact that G is to begin with given as the Lie algebra 
generated by the differential operators (d 0 -f!.#U 2 ) and f!40 and these 
in fact act on C00 (E>; Y'(IR")). In more general terms we have the 
imaginary spinor representation. (See Appendix 1). 

T_I.::.J: st(n)~ End(f/'(IR")). 

Associated to this we have the current algebra representation 

T_, _-1: C00 (E>; st(n))~ End( C"'(E>; f/'(IR")) 

defined by 

(23) 

where f E C''(E>; Y'(IR")). 

w _Th; representation t;=-i is now restricted to G and we obtain 
· o !4012 and !fio as generators. Now representations of the form 
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(23) are trivial in the sense that the operators T_ 1-1 </> do not 
depend on the derivatives of </>. In what follows we de~onstrate that 
representations that are nontrivial (in the sense that the operator 
associated to </> does depend on the derivatives of </>) are of interest. 
We then proceed to construct such representations. To keep the 
notation from getting too messy we focus on the case when 0 is a 
connected compact subset of the real line. 

For reasons of Taylor series expansions and approximation, it is 
important to know how p satisfying Eq. (9) depends on e. One can 
write down the parabolic system 

[ap la(O) ! ~! J [!;] ~ ae 
(24) . I at -1---------

p - L 0 l A(O)J 

where 

y2 
A(®)=.5fo+Yr2'1 +f.5f2 

and 

aA a.sf o a21 yf a.sf 2 
ae =ae+ Yrae+2aa· (25) 

We shall see that Eq. (24) is intimately connected to the above­
mentioned nontrivial representations. 

Motivated by earlier work of Gell-Mann and others, Robert 
Hermann gave in a series of basic papers the following scheme for 
constructing nontrivial representations of current algebras [35, 36, 37]: 

Let L be a Lie algebra with basis {A 1, .•• ,An} and a faithful 
representation 

cp:L-+End(V) 

Let { qk} be the associated structure constants of L. Let F = C0( ~) 
be the ring of smooth functions on the real line with compact 
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support. Then the following map (for any vector space W) 

<,0: L®F-+End(W®F) 

of . A.®f-+D·®f +d; ®- z= I,2, ... ,n 
l l ox (26) 

is a faithful representation of the current algebra L ® F provided that 
the following conditions hold: 

[D;,dj]= I c~jdk j,i=l,2, ... ,n. (27) 
k=l 

The proof of these conditions follows by a direct calculation 
requiring that <,D be a homomorphism. Clearly the operators {d;} 
form an abelian Lie algebra with the operators { D;} acting on the 
set :dd by adjoint representation. Notice furthcrr that by introducing 
a parameter µ in ( 26) 

(26p) 

one obtains a family { <,0µ} of nontrivial representations of L ® F that 
may be viewed as a deformation of the trivial representation (/J 0 . 

For a complete understanding of the above scheme in its full 
generality, one needs more sophisticated tools (jet bundles, Lie 
algebra cohomology). In this paper we follow the more elementary 
methods of Parthasarathy-Schmidt [38]. 

Given any Lie algebra L one can define its Liebnitz extension L as 
simply the (n +I)-fold cartesian product with a new bracket [.''.·Jn 
defined as follows: 

where X=(X0,X 1, .. .,Xnl· Y=(Y0 , YI> .. ·• Y,.) and Z=(Z0,Z 1, ... ,Zn) 
EL" 

Z 0 =[X0 , Y0 ] 

z k =rt e) [ x" Y,, -r J k = 1, 2, ... ' n. (28) 
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Elements of the form (O,X 1,. •• ,Xn) in L" form a nilpotent 
subalgebra of L., denoted on L~. In case n= 1, then L? is abelian 
and is simply the underlying vector space of L with the natural 
adjoint action defined on it. 

Now let C0'(1R; L.) = L" 0 C0(1R) be the current algebra of 
compactly supported smooth maps of IR into L.- Then one has: 

THEOREM 4.1 [Parthasarathy-Schmidt] The map IT": C0(1R, L)-> 
CQ°(IR; Ln) defined by 

(29) 

is an isomorphism into C0(1R; Ln) of the current algebra C0(1R; L). 

Proof The proof follows from the observation, 

dkk [J, g J = ± (k) [/!') • g(k - r)] 
dx r=O r 

and the definition (28) of the Leibnitz extension commutation 
relations. D 

Now if V is a (possibly infinite-dimensional) vector space and if 

lft:L->End(V) 

is a (faithful) representation, then the map 

lftn:L,.->End(VxVx ... xV) n+I times 

'­

0 

' '-
" 

1 ! 

'-.. 

' " 

'-.. 

" " '-
' 

n! 

1 ! 

'lft(X ol 

(30) 

is a (faithful) representation of the Leibnitz extension. The proof is a 
calculation and is left to the reader. 
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Now take the trivial representation ~" of CQ'(IR;L)") and the 

composition ~."TI". It follows from Theorem 4.1 that 

~"oTI.: C0 (1R;L)~End(Vx ... x V) 

is a (faithful) representation of the current algebra C0(1R; L). Moreover it is a nontrivial representation since it depends on derivatives of elements of C0(1R; L). Explicitly, 

t/J(A)® f' l/l(A) 0 j<•l 
1! n! 

'-.. 
'-.. 

'-.. 

"-, ij;(A) 0 f' (31) 

1! 

0 

L 
Now Hermann's scheme (26) follows as a special case of the above 
construction if we let: 

n = 1 (first Leibnitz extension) 

W=VxV 

D- = [t/J(A;) 0 J 
I 0 t/J(Ai) (32) 

d- = [O t/J(A;)J 
I 0 0 • (33) 

The choices (32), (33), automatically satisfy Hermann's conditions 
(27). 

Returning to the identification problem we let L=st(n) and if;= L, ... 1 the imaginary spinor representation. Then restricting the constru~tions of this section to G c C0'(1R; st(n)) yields a whole family of {t/lk nk:k=l, ... } of nontrivial representations of G. The family can be further enlarged by introducing deformation parameters as in (26p). It should now be clear that the parabolic system (24) 
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precisely corresponds to the member of this family associated with the 
first Leibnitz extension. 

Example 4.1 Once again consider the identification problem of 
Example 2.1. 

G=the Lie algebra of operators generated by .sil00 =(fJ2/2)(c2/ox 2 ) 

-(x2/2) and 1'0 . The first Leibnitz extension yields the nontrit'ial 
representation of G generated by the pair of operators 
on (C"'(E>; .9"(1R1) x 9'(1R1)) 

and 

Thus 

Jl - 2 ox2 2 
.}41 00 - [

e2 ~- x2 

0 

()82 8
2 l 

e2 i_ x2 

2 ox2 2 

en=[x oJ. 0 x 

0 

We now turn to representations of Type II. The primary 
motivation here is what we call the homomorphism principle of 
nonlinear filtering theory, an idea due to Brockett [8]. 

Suppose for a given <P there exists a finite-dimensional stochastic 
differential system (in the Ito sense) of the form: 

(34) 

(35) 

Such recursive estimators are of obvious practical interest. One 
might view the pair of Eqs. (34)-(35) and the pair of Eqs. (2) and (5) 
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as defining alternative realizations of the same input-output map 
y1-. ni(qJ ). Brockett argued in [8] that under technical hypothesis 
there should be a homomorphism from the Lie algebra G = {.silo -
J$'6f2,Jt0 }L.A. to the Lie algebra of vector fields generated by 
(f -!(c":g/cz)g) and g. This homomorphism principle has been 
verified in several situations (Brockett [8, 9]; Ocone [18]; Liu­
Marcus [39]; Benes [ 40]). The question of existence of such 
homomorphisms (Type II representations) is thus of interest in 
connection with the existence of optimal finite-dimensional recursive 
estimators of the form (34)-(35) for nontrivial statistics. Hazewinkel 
and Marcus [13] have isolated classes of nonlinear filtering problems 
for which the appropriate estimation algebra admits no such Type II 
representation. 

One of the results is that the Lie algebra G of the identification 
problem admits faithful Type II representations, and further, that the 
homomorphism principle is verified. 

First let {A 1, A2, ••• , A.} be a basis for a finite-dimensional Lie 
algebra L and let <I>: L-. Vect(N) be a (faithful) representation of L, 
where Vect(N) is the Lie algebra of smooth vector fields on a finite­
dimensional manifold N (recall Ado's theorem). Let Yi =<l>(A;), 
i=l,2,3, ... ,n. Let P=MxN and rc:P-+-M be the canonical 
projection. 

Then the map 

n n 
<I>,: C"'(M; L)-+- Vect(P) L AJ~f;-+- L (rc*f;)Yi 

i = 1 i = 1 

(where n*f; is the pull-back off;) is a (faithful) representation of the 
current algebra C00 (M; L) as a Lie algebra of vertical vector fields on 
P. 

One can choose N to be the connected simply connected Lie 
group associated to Land <I>: L-+- Vect(N) the natural representation 
of Las the Lie algebra of left-invariant vector fields on N. 

S~ecialize the above construction to M = E> the parameter 
manifold and L= st(n) and restrict the representation <I> to the 
esti~ation algebra G of the identification problem. In this 'way, we 
obtam Type II representations. 

In wha~ f~Ilows we construct a class of Type II representations 
that are mtimately related to Kalman filtering and lead to the 
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computation of conditional statistics. First we recall the following 
result of Brockett [11]: Once again treat e as a constant and 
consider the linear filtering problem, with the associated Kalman­
Bucy filter equations for state estimation: 

For this system of equations, one obtains a pair of vector fields (on a 
manifold of dimension n(n + 1)/2+ n), 

Brockett showed that the Lie algebra of vector fields { a0 , b0 h.A. is 
a homomorphic image of the estimation algebra of the filtering 
problem, the homomorphism being specified by 

i b 2 (c,x)2 
d 00 = 2 ( ,a;ax> -(a/ax,Ax>--2---+a0 

E40 =(c,x)-+b0 • 

The homomorphism has a kernel consisting of the set of operators 
of multiplication by a constant. The kernel simply arises due to the 
fact that the Duncan-Mortensen-Zakai equation computes the 
unnormalized conditional density. To get rid of the kernel one should 
then append an equation to (36) for computing the normalization 
o"i( 1). It can be verified that (for Gaussian initial conditions) the 
following does the job: 

(c, z) 2 
ds=-2-dt-(c,:)dy1 s0 =0 (37) 

(38) 

Taking Eqs. (36) and (37) together, we now define a new pair of 
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vector fields (on a space of dimension n + n( n + 1)/2 + 1 ), 

\ AP+PAT +.bbT -PccTP - c 
J (A-PccT)z l [ p l 

2 , 0 l . b = 0 

(c,;> J -(c, z) 

(39) 

THEOREM 4.2 The Lie algebra of vector fields generated by ii0 and E0 

is isomorphic to the estimation algebra of the linear filtering problem, 
the isomorphism being given by, 

(40) 

We now use the above result to produce a faithful representation 
of Type II for the estimation algebra G of the identification problem. 
Treat 0 now as a variable. Consider the system of embedding 
equations, 

d8=0 

dz =(A(8)- Pc( 8)cr(8))z.dt + Pc(O)dy, 

~ = A(O)P + PAT(8) +b(8)bT(8)-Pc(8)cT(8) P 

( 41) 

The system of Eqs. (41) evolves on a manifold which looks locally 
like ex~n(n+l)2+n+ 1 . Associate with (41) a pair of vector fields 
(first order differential operators), 

+ tr((A(O) P + PAT(8) + b(8)br(8)-Pc(8)cr(8) P). CjoP) 

+ 1(c( 8), z) 2 ~. _ 
cS 

(42) 
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and 

b6 = <Pc(B), a;az)-<c(8), z) a;a:s. (43) 

(Here a;aP=[8/8Fii]=(8/8P)T=nxn symmetric matrix of 

differential operators.) Consider the Lie algebra of vector fields 

generated by a6 and b6. Since a6 and b6 are vertical vector fields 
with respect to the fibering ex !Rn(n+l)/2+n+l~e, so is every vector 

field in this Lie algebra. Using Theorem 4.2 and the nonoccurence of 

differential operators involving a;ae we conclude: 

COROLLARY 4.2 The map 

defined by 

is a faithful representation of the Lie algebra of the identlfzcation 
problem as a Lie algebra of vertical vector fields on a finite 
dimensional manifold fibered over e. 

Remark 4.1 Detailed proof of Theorem 4.2 involve tedious Lie 

bracket calculations. These are only slight modifications of 
Brockett's calculations in [11] to take into account the 
normalization Eqs. (37) or (41) and hence are omitted. See also 

Hazewinkel [52]. 

Example 4.2 Consider again the model 

with 

e2 a2 x2 
d =---- and ;/J0 =x. 

00 2 8x2 2 

The estimation algebra G={sd'00,M0 h.A.· The embedding Eqs. (41) 

take the form 

dz = - pzdt + pdy, ds = 22 / 2dt- zdy,. 
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Then, 

? 0 -- 0 i 2 0 =Uf2-p~)-=+ ( - pz)-::+--= av oz 2 os 

a a = P-= + (-z)-::. oz OS 

The induced map on Lie brackets is given by,, 

( 
~) ;i 2k 0 - 2k [. - ? <l>x 8 -. -8 -: k-0,1,-, ... ex OS 

D 

The embedding Eqs. (41) have the following statistical interpretation. 
Assume that the initial conditions for the conditional density take 
!he form 

p0(x, IJ) = (2n det (1:(8)))-"12 ·exp {-(x- µ( 8))1' 

(44) 

where IJ->(µ(8), 2:(8), Q0 (8) is a smooth map, 2:(8) is a positive 
definite 11 x n matrix for every 8 Ee and Q0 ( 8) > 0. Suppose that the 
system of Eqs. (41) is initialized at 

Append to the system (41) the output equation 

(46) 
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Now if Eq. (41) is solved with the initial condition (45), one can 
show by differentiating Q1 that Q1 satisfies Eq. (7). In other words, 
the system (41)--(46) is a finite-dimensional recursive estimator for 
the unnormalized posterior density Q1 = Q( t, B) evaluated at B0 . We 
have thus verified the homomorphism principle of Brockett: that 
finite dimensional recursive estimators for conditional statistics must 
involve Lie algebras of vector fields that are homomorphic images of 
the Lie algebra of operators associated with the unnormalized 
conditional density equation. Notice that, although Q(t, 80 ) can be 
computed by a finite dimensional filter for every B0 , the computation 
of the entire posterior density function Q(t, .) appears to admit no 
finite-dimensional filters in general (unless e the parameter set is 
finite). 

The Type II representations above for the estimation algebra G 
once again have the feature that the vector field associated to an 
element <fi E G does not depend on the derivatives of ef;. In other 
words, the representation of Corollary 4.2 is a trivial representation 
of the estimation algebra G. One can construct nontrivial 
representations of Type II by taking the same approach as we did 
with Type I representations-use Leibnitz extensions. This amounts 
to taking the B-sensitivity equations associated to ( 41). Sensitivity 
equations are used in practical implementations of maximum 
likelihood identification algorithms [50, 51]. For dim 0=1, we 
obtain, 

d8=0 

dz =(A( B)-Pc( 8) cT(8))zdt +Pc( 8)dy, 

dz 1 =(A(8)-Pc( 8)cT( 8))z 1 dt 
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dP 1 _ aA _ _ r _aAr 
dt=A(8)P1 + 88 P+P1A (B)+Pae 

ds =!<c(8),z)2 dt- <c(8),z)dy1 

ds1 = <c(8),z) { (c(B),z1)dt+ (!~, =) dt} 

-<c(8),i1 )dy1 -<~~·Ydyr. ( 41.8) 

In Eq. (41.8) z1 and P 1 are to be interpreted as oz/88 and aP;ae 
respectively. 

To the system (41.8) we associate a pair of vector fields, 

a~1 = <(A(B)- Pc(8)cr(8)) i, 8/8i) 

-(P 1 c(B)cT(B)i, o/oi 1 ) 

+ <(A(8)-Pc(B)cT(8))i1 

+C;-P :e(c(B)cT(e)J)=. a~l) 
+ tr((A(8) P +PA r(8) + b(8) bT(B) 

-Pc(8)cT(8)P)o/oP) 

(( e - aA _ _ T _aAr 
+tr A( )Pi+ ae P+P1A (8)+Pae 
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-Pc(8)cr(e)J\-P :8(c(8)cr(8))P )a;aP) 

+ t<c(8), z)2 a;a.s 

/-8C ) + ·'{ 88,a;az1 -(c(8),z)a/as 

89 

The vectorfields a6 1 and b61 may be viewed as partial 
prolongations of the vector fields a6 and b6. 

Using essentially the same arguments as those following Theorem 
4.1 we can show: 

THEOREM 4.3 The map 

<J>t: G-* Vect(fR2(n + 1+n(n+1)/2) X 8) 

defined by 

extends to an isomorphism of Lie algebras. D 

Higher order Leibnitz extensions <D~ may be constructed in a 
similar manner. 

In the next section we use Lie algebraic techniques for solving the 
basic initial-value problems arising in the identification problem. 
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5. ON INTEGRATING THE ESTIMATION ALGEBRA Cl 

The primary Cauchy problem of interest in this paper is the one 
associated to Eqs. (9): 

(47) 
p(O, x, 8) = p0 (x, 8), 

for a suitable class of prior joint probability densities p0 . The 
operators 2 0 , 2 1 and 2 2 all lie in the estimation algebra G. By the 
integration problem for G, we mean the problem of constructing a 
fundamental solution to Cauchy problems of the type (47) above. In 
the situation where 0 is a 1-point manifold, (the linear filtering 
problem), Brockett observed that this is equivalent to the problem of 
constructing canonical coordinates of the second kind in a 
neighborhood of the identity in G, the finite dimensional, connected, 
simply connected Lie group associated to G. Hence it is natural to 
look for a (Wei-Norman) representation, 

where d1, ... , .s:I" span G. 
This approach to initial-value problems appears explicitly in the 

work of Wei and Norman [41, 42] and in the more recent paper of 
Steinberg [43]. In fact Steinberg's paper is very relevant to our 
problems since he devotes most attention to the Lie algebra st(n) of 
this paper. Brockett's paper [11] contains a nice exposition of this 
circle of ideas and applications to filtering. Also relevant is the thesis 
of Ocone [23] and the papers [18, 44]. 

We note first that solving (47) is equivalent to constructing the 
fundamental solution of, 

(49) 
p(O,x) = p0 (x) 
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due to the relationship (gauge transformation) given by Eq. (8). 
Henceforth we treat only Cauchy problems of the type ( 49). Further, 
the coefficients g;(·) in the Wei-Norman representation (48) are 
given by a system of ordinary differential equations obtained by 
substitution of the formula (48) in (49) and taking into account the 
relations (of Baker-Campbell-Hausdorff-Zassenhaus). 

(50) 

To illustrate, 

Example 5.1 (Ocone [18, 23]) Let 0 = { 1 }. Then a solution to the 
Cauchy problem, 

ap =(~~- x2)p+xy P 
at 2 ax2 2 t 

p(O, x) = p0(x) Po E L2(1R) 

takes the form, 

where, 

1 82 x 2 
.sdl=----

28x2 2 

and the g;'s satisfy the Wei-Norman equations: 

and g;(O)=O, i=l,2,3,4. 

(51) 

The system (52) may be solved by quadrature and {g2,g3 } 

constitutes the joint-sufficient statistics for this linear filtering problem. 
In particular, the inequality g1 (t)=t~O for t~O is compatible with 
the fact that .sd1 only generates a semigroup. In fact using the 
Mehler formula (see e.g. Davies [45], Ocone [18]) one can write 
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down the expression: 

p(t,x) = J _1 e-1/2coth(x2 +z 2)t exz/sinh(t) 

-oo2nsmh(t) 

·eg4(t) eg2(t)z. Po(g3(t) + z) dz. (53) 

In order to ensure the validity of the basic formula (50) one needs 
a common, dense (in L2 (1R)), invariant, set of analytic vectors for the 
Lie algebra spanned by d 1, d 2, .913 and d 4 . Such a set is 
constructed as the linear span of eigenvectors of the operator d 1 

(see Ocone [18]). O 

The approach of Wei-Norman-Steinberg is originally set up for 
finite dimensional Lie algebras. However, it is now possible to extend 
it to infinite dimensional current algebras and their subalgebras. In 
the present context {d 1,d2,. .. ,d'} would be a basis for st(n) and 
the g; 's would be functions of time t as well as the coordinate 8 on 
the underlying parameter manifold 0. The functions g; play the role 
of canonical coordinates of the second kind in a neighborhood of the 
identity on C"°(G; St+(n)) or one of the associated Sobolev Lie 
groups. To illustrate, consider our favorite example. 

Example 5.2 Let 

Then, for the Cauchy problem, 

ap =(di+ . .912) at Yi p 

p(O, x, 0) =Po= Po(x, 8), (54) 

since the associated estimation algebra is spanned by the set of 
operators 

---- 82nx 82n+2_ e2n+21. {82 a1 x 2 a 
2 ox2 2 ' ' ax, ' n=O, 1,2, .. } 
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we seek a representation of the form, 

Equivalently, we look for a representation of the form 

93 

In Eq. (57) the g;'s are to determined by substitution into (54). This 

step yields a system of first order partial differential equations, 

ag 1 (t 8) = 1 
at ' 

ag2 (t, 8) = cosh(g 18) y, 
at 

ag 3 (t, 8) = - -8
1sinh(g 1 G) }', 

at 

(58) 

and g;(0,8)=0 for i= 1, 2, 3, 4 and 8E0. Now suppose that e is a 

bounded set and O <f; closure (0). Then using (58) our Cauchy 

problem may be explicitly solved and using a scaled version of the 
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Mehler formula, we have a representation, 

where, 

00 1 

p(t,x, O}= L J2nsinh(IBlt} 

·exp ( -!coth2 (I~~ +z )- tlel) 

·exp((JI Bls~:h( I BI t)) 
·exp(g4 (t, 8)82)·exp(g2(t, 8)· JI Biz) 

. Po(g3(t, 8) e2 JI e1z, O)dz 

(59) 

D 

Our purpose in following through this exercise is to illustrate that 
in the identification problem, even though the estimation algebra is 
infinite dimensional it is possible to solve the integration problem in 
a manner that is a natural generalization of the Wei-Norman­
Steinberg technique. This happens precisely because the estimation 
algebra is a current algebra and the construction of canonical 
coordinates of the second kind is rigorously justified by the results of 
section 3. 

Obtaining explicit formulas analogous to (59) for general linear 
system identification problems with many state variables is another 
matter. The essential complexity is in obtaining analogues of the 
Mehler formula and constructing analytic vectors. The details are 
extremely tedious, but the calculations of Steinberg [ 43], (see pages 
418-423 of his paper especially Theorem 7.5) using Lie-transforms 
show the main steps. 

6. ON SUFFICIENT STATISTICS FOR THE 
IDENTIFICATION PROBLEM 

In his paper [ 46], Giorgio Picci investigated the relationships 
between the problem of identifiability of a linear system driven by 
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deterministic inputs with white-noise corrupted measurements. In 
particular, he also isolated the maximally-identifiable parameters and 
minimal sufficient statistics associated with this problem. The former 
are precisely the Markov parameters {c(O)dk(O)b(8),k=O, 1,2, ... , 
2n-1} and the latter are simply a sequence of input dependent 
functionals of the observations that completely determine the 
likelihood-ratio [47,48]. 

Our setting of the identification problem as a nonlinear-filtering 
problem differs from Picci's in three essential ways: 

a) we treat here the joint state and parameter identification 
problem; 

b) the fundamental solution associated to the Cauchy problem 
(49) and not the likelihood ratio contains the full information; 

c) the input is white noise and not a known deterministic function 
of time. 

Consider the functions g2 and g3 of Example 5.2 determined by 
the differential Eqs. (58). Expand the solutions to these equations: 

CXl t (12k 
g2(t,e)= ~ e2k I(2k)'JiO'dc; 

k-0 0 . 

(60) 

It follows that all the information contained in the observations 
{y u: 0 ~a~ t} concerning the joint unnormalized conditional density 
p(t, x, 0) is contained in the sequence, 

(61) 

Hence the sequence T is a joint sufficient statistic for the 
identification problem (Example 5.2) viewed as a nonlinear-filtering 
problem. 

There is some evidence to believe that the sequence T (or some 
variation of it) is universal in the sense that it does not depend on 
the underlying parameterization or state space dimension of the 
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problem. This is borne out in the driving-noise free case by our 
results [15]. Making this precise would entail elaborate calculations 
of the type mentioned at the end of section 5. 

Our calculations show the difficulty in explicitly computing the 
conditional density. The statistics themselves are generated by an 
infinite dimensional bilinear system. 

7. CONCLUSIONS 

In this paper, we have examined the structure of the estimation Lie 
algebra G of the identification problem. This Lie algebra and its 
representations arise in the computation of the conditional density 
and in the study of finite dimensional recursive filters for this 
problem. It is shown that G is a solvable, infinite dimensional 
subalgebra of the current algebra C00 (8; st(n)). Although G is infinite 
dimensional we are able to associate with it a family of Sobolev Lie 
groups { Gf}. The conditional density is computed by solving the 
Cauchy problem (47) or (49) for G~, which is related to finding 
canonical coordinates of the second kind in a neighborhood of the 
identity. We indicate how this is done. 

Motivated by the search for finite dimensional recursive filters, we 
have constructed representations of the current algebra C '°( 8; st(n)) 
and restricted these to the subalgebra G. Since the Kalman-Bucy 
filter solves the filtering problem for known 0, it is reasonable to 
attempt a Taylor expansion of the unnormalized conditional density 
p(t, x, 0) about a known lJ0 or a current estimate lJ1 [50], 52]; the 
equations for computing p and ap;ae yield a realization of nontrivial 
Type I representation of G. On the other hand, a realization of a 
Type II representation of G is given by the finite dimensional filter 
that computes the unnormalized a posterior density Q(t, ()) evaluated 
at a point. Further nontrivial Type II representations are realized by 
augmenting these filters with the derivatives with respect to {) of the 
states of these filters; these may also be useful in approximations and 
in other computations [50]. Finally, the inherent difficulty and 
structure of the joint state and parameter estimation problem has 
been emphasized by providing an infinite set of finite dimensionally 
computable sufficient statistics for the conditional density. 

Given the structure of the identification problem developed in this 
paper, the key remaining question is that of translating some of the 
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structural properties into actual approximation methods for the 
identification problem. For example, Taylor series expansions of the 
unnormalized conditional density and some type of truncation of the 
sufficient statistics of section 6 should be pursued. 
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Appendix 1 

Consider the algebra An(IR) with unit 1 over the reals generated by 
the elements p1, .•. ,pm q1,, .. ,qn and governed by the relations, 

(A.l) 

The algebra A.(IR) is known as the Wey/ algebra. By defining the 
bracket of any two elements x, y in the Wey! algebra to be 

[x,y]=xy-yx, 

one introduces the structure of an infinite-dimensional Lie algebra 
over A"(IR). The set of polynomials of total degree ~ 2 in the 
variables p1,. . .,p", q1,. . .,q. is a Lie subalgebra of A.(IR). This 
subalgebra is isomorphic to st(n) (see section 2). For example, with 
n = 1 this isomorphism is given by, 

0 0 0 0 

0 a b 0 
+->![a(pq +qp) +bq2 -cp2 ] 

0 c -a 0 
(A.2) 

0 0 0 0 

and 

0 x y z 

0 0 0 y 

0 0 0 
+->2(xp+ yq) +z· l. 

-x 
(A.3) 

0 0 0 0 

Now as mentioned in section 2, st(n) = sp(2n) Ef\ h(n) where h(n) is 
the Heisenberg algebra and sp(2n) is the symplectic algebra. Let H(n) 
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denote the connected simply connected Lie group associated to h(n). 
The group H(n) admits a series of irreducible unitary representations 
u_,, A. E IR- { O} acting on L2(1R") which is given infinitesimally by the 
assignments 

(A.4) 

We can extend the representation (A.4) of h(n) to a representation of 
st(n) by the additional assignments 

(A.5) 

The representation of st(n) given by (A.4) and (A.5) integrates (by 
Nelson's criterion) to give a unitary representation T;. of St(n) the 
connected simply connected Lie group associated to st(n). We call 
this the spinor representation. The representation L,-= 1 of the Lie 
algebra st(n) of section 2 is the analytic continuation of the 
representation T1. Of course it does not integrate to give a group 
representation since 82/8x2 generates only a semigroup. (See the 
work of Kirillov [16, 34] for more details.) 
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We call LM with the Lie algrebra structure [·,·JM defined above, a 
current algebra. 

Remark 2.1 Current algebras play a fundamental role in the 
physics of quantum fields [19] and in the geometric theory of Yang­
Mills fields [20]. Elsewhere in mathematics they are studied in the 
guise of local Lie algebras or Lie algebra bundles [21, 22]. The 
following is immediate. 

PROPOSITION 2.1 For the identification problem, the estimation 
algebra G generated by the operators 

.9io-~6=! ~8),~\_/_8 ,A(O)~ - <c(8),x)2 
2 ~ 8x/ ~x / 2 

and 
!JJ0 = <c(8), x), 

is a solvable subalgebra of the current algebra coc'(E>; st(n)). D 

If e is a finite set then clearly cao(e; st(n)) is finite dimensional 
and so is G (this feature has been exploited by Hijab [ 49]). In 
general, when dime~ 1, the following proposition is of interest. 

PROPOSITION 2.2 Assume that b(8) = 0 (no driving noise), and e is a 
smooth connected manifold of dim~ 1. Then one of the following 
situations holds: 

a) the map 8--+A(8) is nonconstant and G is isomorphic to the 
"shift" Lie algebra with basis { X 0 , X 1, X 2 ,. .. } and commutation 
relations 

i,j~ 1 

b) the map B--+A(B) is constant and G is finite dimensional and 
isomorphic to a Lie algebra with basis { X 0 , X 1, .•• , Xd and 

commutation relations 

[X 0 ,X;]=Xi+t i= 1,2, ... ,k-1 

k - 1 

[X 0 ,Xk]= L p;X; 
i ~ 1 

where P; are constants. 


