
On the Control of the Paint Factory Scale Model
– Case Study of a Production System Located at the TU/e –

Olivier Boutin and Jan H. van Schuppen

olivier.research@gmail.com – J.H.van.Schuppen@cwi.nl

November 14, 2011

1 Introduction

This report is about the modelling and control of a paint factory scale model, lo-
cated at the Technische Universiteit Eindhoven1 (TU/e) in Eindhoven, Nether-
lands. The goal of this study is to apply supervisory control theory (SCT),
as defined by Peter J. Ramadge and W. Murray Wonham in their well-known
article [Ramadge and Wonham, 1989], on a quite realistic system. But the clas-
sical state space explosion problem of SCT arise also in this case study. Thus
we decided to apply the theory of coordination control, in order to synthesise
several smaller supervisors and overcome this complexity issue. The two next
sections describe the physical elements that take part in the scale model and its
desired behaviour. A first attempt at TU/e to fully model the system using the
SCT framework by a student had shown2 that the system is too complex for
the computation of a single supervisor using standard SCT [Hamer, 2007]. We
will see in section 4 how far this student and other ones have managed to model
the physical system and compute a supervisor for it.Section 5 deals with our
current proposition to model this system, thanks to the theory of coordination
control, and includes a discussion of the results at the end.

2 Physical Description

The goal of the paint factory is to deliver to a client any colour this person
orders, after some due processing time. Only the 3 primary colours are stored
in the plant and the system may have to mix some of them to deliver the desired
colour. Up to 12 consecutive orders can be delivered in a row into cups, that
the client will eventually collect. Every time a cup is collected, a new order can
be made. After a given colour has flowed into some of the internal pipes, the
latter usually have to be cleaned by letting cleaning fluid flow into them. This
dirty fluid is eventually flushed into a waste vessel.

1“Eindhoven University of Technology” in English.
2But only to some extent – see the discussions in Section 4.2.

1

olivier.research@gmail.com
J.H.van.Schuppen@cwi.nl

The paint factory is a complex system composed of many physical elements,
a picture of which can be found in Figure 1.

Figure 1: View of the whole paint factory

We will not consider in this report the underlying electronic part of this
system, of which description can be found in [van Rooy, 2007]. Thus we leave
the electric switchboard out of our concern and focus on the physical elements,
as displayed in Figure 2. These elements are described as follows.

Figure 2: Closer view of the physical system

2

The vessels: A total of 9 vessels take part in the paint factory. 4 of them
contain the inputs (the 3 primary colours and a cleaning fluid, as displayed
in Figure 3); another one collects different quantities of primary colours
in order to mix them; and three other vessels are buffers enabling parallel
operations to take place or to store such colours for future use (see the
picture of Figure 5, taken from the back of the plant). The last vessel is
to collect all the waste, i.e. all the colour fluids that are not of interest for
the client and need to be cleaned out.

Figure 3: The input vessels

The pipes: The fluids can flow in the system thanks to pipes, connecting the
different interfaces of the other physical elements, until they eventually
fill cups located at the end of the system, or go to the waste. Cleaning
fluid is to be used to clean a given pipe/vessel after some coloured fluid
has flowed down it. This is why a direct connection is needed from the
cleaning fluid vessel to every pipe/vessel of the system.

The pumps: A pump is located downstream each vessel, in order to drain
specific quantities of fluid into the pipes downstream these vessels.

The valves: The system includes a total of 18 valves. 11 of them have 2 con-
nection points (1 input and 1 output) and can either be open or closed.
They are used to retain the fluids in given parts of the system while other
things happen simultaneously in the rest of the plant. The other 7 ones
have 3 connection points, are always open and connect an input (respec-
tively output) to one of two possible corresponding outputs (resp. input).
They act as routing switches. See the translucent tubes in Figure 4; the
top row is composed of routing switches (2 output tubes) and the bottom
row is composed of open/closed valves.

3

Figure 4: The two kinds of valves in the paint factory

The overhead taps: The paint factory has two overhead mobile taps3, that
are used when a fluid is to be poured into one of several containers. Using
such a mobile device appeared to be more convenient than pluging all the
necessary pipes. Both of the taps consist in a motor and a pouring device
in the form of a nozzle that drive the incoming flow to a desired container.
A sensor is located on top of each of them. The first overhead tap drives
either a mixed colour into a given buffer vessel, or some cleaning fluid, that
have been used into the mixing vessel, to the waste (see Figure 5). The
second one drives either an ordered colour to the exit point, the turntable
(see below), or some cleaning fluid, used in the pipe for ordered primary
colours or the pipe downstream the buffer vessels, to the waste.

The turntable: The turntable is a rotative holder containing 12 cups, dis-
played in Figure 6. The rotation of this element is also driven by a motor
together with sensors, in order to know the current position and decide
when to stop turning.

A schematic design of these elements and the way they are connected can
be found in [van Rooy, 2007, Figure 1.2, page 3] and is reproduced in Figure 7.
All the labels in Sections 3 and 4 will be based on that figure.

Even though these physical parts are well connected in the paint factory,
one needs to express specifications for that plant, so that the sequential order
of events is respected, the colours are not mixed if it is not required, a colour

3These components were called “slides” in all the student reports, apparently because
this element, together with the screw, was assimilated to a slider-crank mechanism – see
www.britannica.com/EBchecked/topic/548729/slider-crank-mechanism, where a crank is
used to change a circular into a repetitive up-and-down or back-and-forth motion of a slide.
But this repetitive property is not prevalent, nor the tap is actually sliding back and forth on

top of a surface but along some tubes. This is why we do not stick to this name.

4

www.britannica.com/EBchecked/topic/548729/slider-crank-mechanism

a

b c

Figure 5: The tap (a) on top of the buffer vessels (b). The extra vessel (c) leads
directly to the waste

Figure 6: The turntable and its cups

fluid should not be flushed to waste, and so on. To sum up, the goal of the
specifications is to prevent any undesired event to happen.

3 Specifications

As a matter of fact, we found no single formal specifications in the documen-
tation of the paint factory. They are spread amongst the different reports that
were available, and need to be gathered. Here is an attempt to provide a list
of specifications, as complete as possible, leading to a proper behaviour of the
system. The different rules that the system has to follow are numbered, in order
to come back to them more easily in the remainder of the report.

5

Figure 7: Schematic design of the paint factory

3.1 Path

Rules related to the proper setting of a path thanks to the valves.

Spec1 Before a fluid is pumped into a pipe, the downstream switch valves on
the path to the next vessel or the exit point should be set up in the correct
position. And then, these valves should not move before the end of the
pumping.

Spec2 The valves shutting the pipes of the two overhead taps (Bv4 and Fv2)
should not open when the corresponding tap is moving.

Spec3 Only one of the downstream valves of the cleaning fluid vessel (i.e. Cv1b ,
Cv2 and Cv3) can be open at any time.

3.2 Flow

Rules related to the pumps, the pipes and the elements these pipes feed into.

Spec4 No more than one fluid (be it coloured or a cleaning one) can flow down
a pipe at a time.

Spec5 When a fluid is pumped out into another vessel, the fluid into the latter
should not be pumped out at the same time.

6

Spec6 A cup cannot be filled twice before its content is collected.

3.3 Cleaning

Rules related to the cleaning vessel and some pipes.

Spec7 A pipe has to be cleaned each time some colour fluid has flowed into it
and a vessel has to be cleaned when it is emptied.

Spec8 A (dirty) cleaning fluid should only exit the system into the waste vessel
and a colour fluid should only exit the system into a cup.

4 State of the Art at the TU/e

Several students of the TU/e have worked on that scale model in the scope of
projects, using automata4. Four reports are available ([van den Bremer, 2005],
[Hamer, 2007], [Roberts, 2008] and [Hoefnagels, 2008]) and we will discuss here
how they have dealt with the complexity and the decomposition of the system
into sub-systems.

It is worth mentioning that another report dealing with the modelling of
the Paint Factory is also available [Triepels, 2006]. But what this student calls
supervisors are merely schedulers, designed in an automata framework using
UPPAAL [Behrmann et al., 2004]. As this does not fit in a supervisory control
scope, we will not present it here.

4.1 Work by [van den Bremer, 2005]

This project has been undertaken at a Bachelor’s degree level. This is mostly
why, in our opinion, the proposed models are not really relevant; especially
because of the simplifying assumptions made for the whole model to be man-
ageable. Another reason is that it seems to be the very first student work
dealing with that scale model. So he could not build up on previous work and
knowledge. In fact, the supervisory synthesis work has not actually been fin-
ished. The synthesis steps using the TCT tool5 are provided, but the computed
supervisor has not been validated6.

Every controllable physical element has been modelled in that report. That
is to say, according to the list provided in Section 2: valves (grouped as so-called
manifolds), pumps and motors.

We state now what are the interesting points and what we would like to avoid
in our modelling of the system, justifying why. First, let us list the identified
interesting points:

4Formally speaking, we should talk about generators, because the transition functions of
the models are only partial.

5Available at www.control.utoronto.ca/~wonham/.
6As a matter of figures, the supervisory controller obtained with this modelling (though

wrong) has 7,560 states and 171,336 transitions.

7

www.control.utoronto.ca/~wonham/

• Grouping the valves in so-called manifolds, depending on their role in the
system. These can be seen as sub-systems, although the models provided
in this report are not so reliable.

• The idea of trying to avoid cleaning when it is not needed, to save paint
and time, by specifying the last colour used in a pipe/vessel. Then the
latter would not be cleaned for nothing in case a further order with the
exact same colour happens in the future. But it might also be a loss of
time to always wait for future order before cleaning the pipes and vessels.
Indeed, every new job would have to wait for the cleaning steps first, and
could not be executed right away. Also, this modelling might quickly lead
to a state space “explosion”, by having to store the last used colour as
extra information in the state of a physical system part.

We also have gathered everything that we considered to be a drawback into
the following list:

• The level of abstraction of the system seems very low. This naturally leads
to a lot of small models to take into account. Because he realised that
the generator of the whole plant would include too many states then, the
student made simplifying assumptions that actually allows some undesired
behaviours, (e. g. “opening” or “closing” events for the valves can happen
at any time, which is not reliable). Moreover, when grouping some models
of the physical elements together, too many considerations are taken into
account, so that a lot of self-loops have to be included in the generators.

• Even though two kinds of valves co-exist, all of them are modelled in the
same way. In the report, each valve is said to be either “open” or “closed”,
although the valve switches are in facts always open, and connect either
one of two entry (respectively exit) points to the corresponding exit (resp.
entry) point. This is quite confusing when retrieving what each event of
the generators actually means.

• Several times, there is a confusion between the necessity of disabling the
opening of a valve in a given state of the system and the uselessness of
enabling it in that same state.

• There are some modelling mistakes (forgotten events and initial/marked
states).

• Sub-models are grouped regarding their kind and not their function. This
leads to inconsistent consideration, especially regarding the pumps.

• No sensors are taken into account. So the system never knows when the
right quantities of fluid are reached at some checkpoints, and the overhead
taps never know where they are actually located.

8

4.2 Work by [Hamer, 2007]

This report is a master’s thesis. Even though, there is no direct reference to it,
this work seems to be the extension of the one reported in [van den Bremer, 2005].
In any case, the models are similar, to a large extent. Using so-called model
based engineering7, the system is split into components. The chosen approach
is to model every single controllable part (i.e. valves, pumps and motors) as a
component, using the automata theory formalism.

4.2.1 On the Models of the Physical System

The given models of the pumps are actually merged with the ones of the cor-
responding switch valves. Indeed, whatever the pump is, each model usually
only contains 2 states (“on” and “off”) and 2 transitions (to turn it on or off).
Whereas here, events of the transitions of the provided models also embed the
instruction of what destination the fluid will eventually reach, which is a matter
of the switch valves. Some valves are grouped in so-called valve matrices, which
correspond to what were called manifolds in [van den Bremer, 2005]. This time,
the model of the physical system is mixed with the one of the specification, since
they already state that only one fluid can flow in a pipe at a time. The level
of abstraction of the motors is really high, since no information about their
position is used (see Section E.3 of that report). Only the paths that the fluids
have to take are used to drive the succession of the states of the motors. On
the one hand, this helps to have smaller models (which is a big issue in the
SCT framework), but this might be too abstracted in this very case. Since only
the controllable parts of the system are modelled, all the sensor part is actually
included in the events ending a given task, which should actually be considered
uncontrollable. The only kind of specified tasks (or events) are pumping ones.
So they all rely on sensors that tell us when to stop (when the desired quantity
of fluid is delivered). Thus, this is inconsistent with the generators given for the
controllable parts. Another problem is that in most models, different reasons
to turn on or off a physical part are mixed in the model of that very part, so
that erroneous signals can lead to an unwanted state of the system.

4.2.2 On the Models of the Specifications

Only two models of the specification are given, since the missing ones are said
to be similar8. The model for the mixing buffer allows for only doing one colour
mix and does not enable a mix based on 3 colours, so it is not re-usable in our
work as such. Also, the self-loops included in the specification models do not
seem to be accurate, since for instance the event “stop pumping from mixer to
buffer 1” appears in almost every states of the specification for buffer 1 (see
Figure E.23 of that report).

7A modelling framework taught at the TU/e.
8As a matter of figures, the supervisory controller obtained with this modelling (though

wrong to our point of view) has approximately 20,000 states and 85,000 transitions.

9

4.2.3 Other Remarks

Finally, a scenario of a client ordering a mix of 2 colours (primary colours 1
and 2) is provided, in the form of a generator. But the given sequence actually
also includes the interaction with primary colour 3, which is undesired. Such an
order should only include desired states and specify what the system is expected
to do, and not tell how to recover from an error.

Moreover, the validation of the work on the files has not been undertaken,
due to a lack of time.

4.3 Work by [Roberts, 2008]

The goal of this master’s thesis work is to investigate a different supervisory con-
trol scheme, as defined by E. Tronci in [Tronci, 1998]. But the formalism and
synthesis of the specifications provided in that report are not suitable for SCT.
The main drawback of Tronci’s method is that no distinction can be made be-
tween controllable and uncontrollable events. Indeed, uncontrollable events that
lead to a plant failure are modelled thanks to an extra failure state. Hence the
controllability condition, as defined by W. Murray Wonham [Wonham, 2005],
might not be satisfied. Nevertheless, the modelling of the plant is based on au-
tomata and some issues are still relevant in the design of our modelling method.

In that report, schedulers are integrated as plant components. The student
compares two ways of including them in the models. In fact, the second au-
tomata is actually just a projection of the first one, withdrawing the stopping
events of a pumping operation. This student prefers the second alternative be-
cause it has less states and transitions, but this is a mere consequence of that
projection. It does ensure that any pipe is cleaned after it is used, but one would
still need specifications to make sure the sequences of event of a pumping oper-
ation are executed properly, for instance. The problem raised here is related to
the choice of the representative events of an operation (i.e. are the valve events
more representative than any other one?). Another example of such a choice
is for the so-called “output guarantee” property. The events that have been
chosen to represent the fact that enough fluid have flowed down a given pipe is
when valve Fv2 is opened and then closed (the liquid has been sent out of the
system). It would have been much closer to reality to take the sensors signals
into account.

The optimal controller synthesised by the scheme of Tronci takes into account
the required languages (i.e. the actual orders of the client). The students states
that a downside of Tronci’s method is that everytime a desired output is added
to the system, the controller needs to be synthesised again. Nevertheless, if
one does not stick to the admissible specification language, the same drawback
remains in SCT. This scheduling part refers to the required behaviour, and is
not taken into account in the contributions of W. Murray Wonham and his
co-authors. Only in [Cassandras and Lafortune, 2008, Section 3.4.4] appears a
interest for taking into account such requirements in the supervisor synthesis.
In that report, the alternative of computing a controller only for the admissible

10

language and drive the production thanks to a side or upper level real-time
optimiser is suggested and could be investigated. In facts, in Figure 5.8 of
his report, this student gives a sketch of what could be a hierarchical way of
modelling such a plant, with a resource controller at the lower (physical) layer,
and both a supervisory controller (for the admissible tasks) and a task controller
(for the sequence of events to be executed) at a higher level. In Section F.2 is
also suggested a hierarchical way a decomposing tasks, in terms of primary
colours needed for the secondary-colour orders. Hierarchical modelling is at the
heart of complexity management and shall be integrated in our method.

Moreover, we would like to give two more comments about the actual cor-
rectness of that study. The optimisation algorithm is only based on seeking a
shortest path in the state space (i.e. the least number of transitions to reach a
final state). But this criterion is heavily related with the modeller’s skills and
should be more closely related to a physical system measurement. And altough
the paint factory can deliver any colour, only the six primary and secondary
colours are taken into account in that report.

4.4 Work by [Hoefnagels, 2008]

That report is also a master’s thesis. Its content is the continuation of the pre-
vious reports dealing with SCT, i.e. [van den Bremer, 2005] and [Hamer, 2007].
After the conclusion of [Hamer, 2007] regarding the state space explosion of the
paint factory model, the alternative of the state tree structures (STS), as defined
by Ma and Wonham [Ma and Wonham, 2005], has been invastigated.

4.4.1 On the Models of the Physical System

A first interesting point is that the whole system is divided into logical parts,
namely:

• The primary colours sub-system.

• The cleaning sub-system.

• The mixing vessel sub-system.

• The buffer sub-system.

• The filling station sub-system.

• The flow sensors.

Some abstraction has been used not to have to model every single component.
For instance, the pumps are considered to be controlled together with the valves.
This allows for simplified generators and the actual actions for these resources
is left to be adapted at a lower level.

11

4.4.2 On the Models of the Specifications

When specifications are logical statements (especially of the kind of mutual
exclusions), they are modelled thanks to logical expressions using boolean vari-
ables. Otherwise, when a constraint corresponds to a sequential order of events,
like a recipe, a generator is used to model it in a formal way. The fact that the
boolean variables of these logical expressions should not have the same name as
the variables of the binary decision diagrams is quite confusing and seems to be
part of the suggested way of modelling specifications thanks to STS. In facts, the
former should not include underscore characters (’ ’) in their names, to avoid
problems of name clashes. Moreover, no links are given between the boolean
variables used in a logical expression of the report and the corresponding states
of a previously defined generator, which does not help reading.

The specification for the mixing operation, which is the most complex one,
seems not to be accurate (see Figure A.7 of that report). In particular, the
consecutive colour delivery processes are wrongly interpreted and some internal
states leading to valve closings/openings are missing. Also, the generators of the
two overhead taps are quite different in accuracy. Indeed, Figure A.22 of that
report seems to only model the behaviour of the motor driving the overhead
tap upstream the filling station, while the overhead tap upstream the buffer
sub-system is decomposed into Figure A.14 for the behaviour of the motor and
Figure A.15 for the one of the actual overhead tap. Moreover, the generator of
Figure A.15 is not really consistent, because we do not see the point of defining
extra states to express the last direction (right or left) used by the overhead
tap before stopping. To take into account these moving directions, only the
controllable events “left” and “right” are necessary. In addition, it seems that,
instead of being abstracted, hardware issues have been included in the model
because of the use of an uncontrollable event while the device is moving between
two sensors. We think this event is meant to represent the low level signal “keep
moving in this direction” sent to the motor every period of the system clock,
which is not to be considered at our level of modelling.

4.4.3 Other Remarks

As in [van den Bremer, 2005], this student tends to talk about “opening” or
“closing” switches, which does not really seem convenient to us (see our com-
ments in Section 4.1).

In this report, the STS framework is said to be suitable for this complex
system but there is no justification whatsoever9.

9As a matter of figures, only some measures on the binary decision diagrams of the STS are
available. So we cannot really compare it with the previous works. The sizes of the computed
specifications, optimal controlled behaviour and of all control functions are respectively 638,
44,619 and 715 – the unit seeming to be the number of nodes.

12

5 Our Proposition

In order to overcome the underlying complexity of the paint factory, we have
decided to use the coordination control framework. Its goal is to dedicate a
specific controller to administrate the shared elements of a system and let all
sub-systems deal internally with their local elements, thanks to dedicated con-
trollers making sure the specifications are satisfied. The advantage is to cope
with state space explosion and move from a monolithic control to a distributed
one [Komenda et al., 2010].

5.1 Description of the Case Study

We have decided to address only a sub-part of the whole system. This study
focuses on controlling common pipe Ppi2 , that is used to drive the primary
colours to the mixing vessel. This is the first critical section to manage in the
paths from the primary colour vessels to the turntable – unless only pure primary
colours are always ordered. This sub-system includes all the input fluids of the
system: the 3 primary colours to be mixed in the mixing vessel and the cleaning
fluid. The controllers that we want to synthesise for this smaller system are to
make sure that the 4 fluids do not get mixed in pipe Ppi2 (see Spec4).

For our convenience, we have relabeled some of the physical elements. Ta-
ble 1 shows how this renaming has been applied.

[van Rooy, 2007] Our modelling

Pp1
PB

Pp2
PY

Pp3
PR

Pv1a S1

Pv2a S2

Pv3a S3

Pv1b VB

Pv1b VY

Pv1b VR

Pv4 S4

Mp PM

Mv VM

Cp PC

Cv1a S7

Cv1b VC

Table 1: Renaming conventions

13

A schema of the sub-system we are dealing with is depicted in Figure 8.

Primary colours

To the

waste

Mixer

S4

To the

buffer vessels

FS

P
M

V
M

0

Blue

S1

PB

V
B

Yellow

S2

PY

V
Y

Red

S3

PR

V
R

To the

turntable

Clean.

fluid

S7

V
C

PC

Figure 8: Schematic view of the sub-system we study

At the initial state, we assume that all the pumps are off, all the open/closed
valves are closed and all the switches are on the left position. The possible
positions of the switch valves (left/right) are taken from the point of view of the
flow. For instance, if we want to drive some blue colour from its vessel to the
mixer, Switch S4 is already in the correct position and we will have to open VB,
flip S1 to the right and eventually turn on PB (VM is already closed so there is
no risk of a leak in the mixing vessel).

Based on the previously mentioned drawbacks of the available studies for
this system, we have decided to model the system from scratch. All the models
we have designed will be described in the following sub-sections.

5.2 The Models

The system can be decomposed in both an horizontal and a vertical ways. The
plant can be split into sub-systems, in a horizontal fashion, and then be refined
hierarchically with layers, in a vertical fashion.

At each given layer, none of the components is supposed to communicate
information, events or signals, with the other ones. Communication is only
done with elements of the layers directly above or below. For this case study,
the bottom-most layer is a physical layer including all the atomic models of all
the parts. These parts models are then merged in order to get operations, only

14

including the needed parts. Afterward, the operations are coordinated thanks
to local controllers and a coordinator for each shared section.

The coordinators are heavily related to what is shared. The system is to
deliver products, and some available paths between two vessels in the system
are shared between several pumping operations. This lead us to consider that
the coordinators are the shared pipes, in terms of all the parts located in the
shared paths (flow sensors, switches and valves). For the time being, only one
pipe is shared so we only need one coordinator.

Our following systemic view of the system is depicted in Figure 9.

Physical

level

Layers

Operations

Coordination

control

Part1 Part2 Part3

Ope1 Ope2

Modelling elements

Coord. Sched.
?

?
?

Figure 9: Hierarchical view of the paint factory

It seems the system needs to be influenced by both the coordinators (that
deal with the admissible language) and the schedulers (that deal with the re-
quired language). For the time begin, we only tackle the admissible language.
We will inquire in a later stage how to also deal with the required one, following
the track of [Cassandras and Lafortune, 2008, Section 3.4.4]. Also, when the
system will be complex enough, it is still arguable whether or not the different
coordinators will themselves need to be coordinated, until a top-level layer for
the colour orders10.

A missing part in our modelling procedure is how to get the operation mod-
els, from the ones of the different physical parts. Our feeling is that we could
find them by inspecting in the state space of the system, and not of the au-
tomata, how to pump the fluids as desired (how to go from the state “the fluid
is in this vessel” to the state “so many quantity of the same fluid is in that
vessel”?). Then, using a minimisable criterion, we could get an optimal recipe
of actions to take; in other words: the operation models we have designed by
hand. This could be a solution to automate this design. Some references of
insterest are [Feng and Wonham, 2010] and [Ricker and Caillaud, 2007], where
algorithms or general approaches could be found.

After discussing the way of decomposing the system into sub-models, let us
describe the models themselves.

10In other words: does a 4th layer exist?

15

A pumping operation consists in 3 parts: the actual process, its precondi-
tions, and the way to go back to the idle state. The process is to be delimited
by representative events, because we need to be able to know when some fluid is
pumped into the pipe and when it is not the case. We figured the representative
events of a pumping operation are the ones actually driving the fluids, that is
to say the events turning on or off a pump. This in turn marks out a critical
section in the graph, according to the specifications (see Section 5.2). Indeed,
Spec4 tells us that when a pump is operating, no other one should pump any-
thing in the same pipe. For an operation to execute properly, we first need to
set up the corresponding path correctly (moving all the parts in any order). In
the end, we get back to the idle state of the sub-system putting all the local
parts to their own idle state. Also note that, because FS0 and S4 are shared
parts, the events related to them should appear in each sub-system. All the
other events should be local to each corresponding sub-system. Nevertheless,
as a current simplification, since S4, VM and PM are supposed to stand still,
we will abstract these valves and pump away. All these considerations have
lead us to the generator of Figure 10, which we have designed thanks to the
DESTool software [Moor, 2011], a graphical interface based on the libFAUDES
library [Moor et al., 2008].

Figure 10: First draft of a pumping operation

Note that the single transition between states 4 and 5 is an abstraction of
the actual needed quantity (event FS0+1 meaning “flow sensor 0 has detected
one more unit of fluid”). Flow sensors are considered accurate enough to only
deal with integer quantities to mix. We also assume that the events will always
happen as soon as possible. So we will not deal with the emergency character
of events that must happen before something wrong happens (like stopping a
pump before too much fluid has been pumped out).

16

In order to apply the coordination control framework, we need the sub-
system to have specific properties. If the sub-systems are conditionally inde-
pendent, and the specifications conditionally decomposable and controllable,
then we know that the synthesised supervisors will be optimal (size-wise). In
any case, provided extra specific properties, supremal conditionally controllable
sublanguages can be computed [Komenda et al., 2010]. Let us discuss these
properties and the consequences on the modelling if we want to satisfy them.

5.2.1 Nonblockingness of the Sub-systems and of the Plant

The theorems and algorithms available in [Komenda et al., 2010] assume prefix-
closed languages (i.e. for which all states are marked). Some improvement, that
can be found in [Komenda et al., 2011], allows for nonprefix-closed languages.
But the authors expect a new so-called conditional closeness property, which is
only provided for 2 competing sub-systems. While waiting for the proof of the
correctness of the algorithms for any number of competing sub-systems, we will
assume that this property holds true in our case.

To make the sub-systems nonblocking, one needs to mark at least one state,
which expresses a final state or some state that we want to ultimately reach.
As the operations are a never-ending underlying process, we think that the
starting/idle state is an appropriate candidate to be marked. As any other
state does not lead to a legitimate idle state, we will only mark that one.

Besides, event FS0+1 is shared between all sub-systems. And any pumping
operation is to be allowed, except when a competing sub-system has already
been granted access to the corresponding critical section. Then, FS0+1 self-
loops have to be added to all the states that are not in the critical section.
Otherwise, the whole system would tend to turn on all the pumps before count-
ing anything. But this is strictly forbidden by the supervisor, and would thus
lead to an uncontrollable and unrealistic controlled system.

A new version of the model of a pumping operation is given in Figure 11.

5.2.2 Output Control Consistency

Definition 1 (Output Control Consistency [Wong and Wonham, 1996]). A pro-
jection P : E∗ → E∗

k , where Ek ⊆ E, is output control consistent (OCC) for a
language L ⊆ E∗ if for all strings s ∈ L of the form

s = σ1 . . . σl or s = s′σ0σ1 . . . σl, l ≥ 1,

where s′ ∈ E∗, σ0, σl ∈ Ek and σi ∈ E \Ek, for i = 1, 2, . . . , l− 1, σl ∈ Eu, then
σi ∈ Eu, for i = 1, . . . , l − 1.

In our case, this property implies that all local events that can precede an
uncontrollable coordinated event should also be uncontrollable. In our way of
modelling, the detection of a unit of fluid in Pipe Ppi2 by FS0 (triggered by
event FS0+1) is uncontrollable, because this event cannot be launched as a
result of the action of a button, for instance. Flow sensors act on their own and
signal when they have detected some quantity of fluid.

17

Figure 11: A nonblocking pumping operation

It turns out that projections P i+k
k are not OCC11. Indeed, for OCC to be

satisfied, either FS0+1 should be controllable, or only located in the critical
section, or all the local events of a sub-system should be uncontrollable. But
none of these choices is possible in our way of modelling the system. Neverthe-
less, if we try and compute the supremal controllers for our sub-systems, we get
correct results. It then seems that some hypothesis needs to be loosen in the
theory, or that some specific set-up needs to be included in the allowed cases.
Our intuition is that it is because, during the real-time execution of the differ-
ent operations, event FS0+1 will actually always be preceded by a coordinated
controllable event (i.e. turning on the corresponding pump), but this is not
known by the competing sub-systems.

As we cannot satisfy this property, we choose not to modify the previous
version of the model of a pumping operation.

5.2.3 Language Observability

Definition 2 (Observer property [Wong and Wonham, 1996]). A projection P :
E∗ → E∗

k , where Ek ⊆ E, is an L-observer for a language L ⊆ E∗ if for all
strings t ∈ P (L) and s ∈ L, P (s) ≤ t implies that there exists u ∈ E∗ such that
su ∈ L and P (su) = t.

In the coordination control framework, we need the projections P i+k
k to be

(P i+k
i)−1(Li)-observers. This property implies that all the strings in a sub-

system using only local events (i.e. that would be projected to ε using the
alphabet of the coordinator) should eventually lead to the initial state.

11In facts, we check whether they are local control consistent, simply because OCC is not
implemented in our tool. It is known that LCC implies OCC [Schmidt and Breindl, 2008].

18

The event set of the coordinator includes at least all the shared events. This
means that FS0+1 has to be part of it. Thus, all the states that are co-reachable
from state 4 should either include transitions with events that will be added to
the event set of the coordinator, or transitions enabling to eventually come
back to state 0. As a matter of fact, if a valve or a switch is put back to its idle
position, we somehow undo the process. So we have chosen to add transitions
pointing back to states 0, 1 and 2. Then, we have added event onPB to the
event set of the coordinator, because this cannot be undone before the right
quantity of fluid has flowed down the pipe.

Then, as a matter of consistency, we have also added the transitions back
to state 6 from states 7 and 812. This new version of the model of a pumping
operation is depicted in Figure 12.

Figure 12: A nonblocking pumping operation satisfying the observer property

Because switch S4 should not move during such a pumping operation, the
events related to it do not appear in the model. Nevertheless, S4 is definitely
involved in the cleaning operation, and events leftS4 and rightS4 are in the
coordinator model because S4 is in the common path. One would like to design
the cleaning operation after the pattern of Figure 12. But, to satisfy the observer
property for the cleaning operation, we should withdraw the transitions leading
back to a previous state after the actual pumping of the cleaning fluid (because
events leftS4 and rightS4 are now involved). Nevertheless, it appears that this
property is not needed either, as long as we have conditional controllability of
the specifications; which is the case with the model of Figure 13, that we will
use in the remainder of this study.

12We do not add transitions back to states 7 and 8 from state 0. They would mean that we
have started a new process and are actually already included in the model as the transitions
to states 1 and 2 from state 0.

19

Figure 13: The cleaning operation

Specifications are meant to avoid undesired states (what is allowed or not),
but never actually tell how to do things. This is why the recipes of the operations
should not appear in the specifications.

So far, we are only addressing Spec4, which implies that, out of pumps PR,
PY , PB and PC , only one of them can be turned on at a time. This specification
is an implementation of the classical mutual exclusion pattern. We first express
the relationship between two such pumps, as depicted in Figure 14 (where the
local events of each sub-system have been gathered around the idle state 0), and
then we compose all the sub-specifications together, to get the whole Spec4. To
be maximally permissive and allow as much parallelism as possible, all the local
events of each sub-systems are always allowed while another one is operating, be
it already in the critical section or not. For technical reasons, we had to put a
dummy FS0+1 event on the idle state as well. Indeed, as the different processes
will be executed, this very event will actually never happen, because each of the
mutual exclusions state that it should only happen after turning on a pump.
But it is needed in fact, as an uncontrollable event allowed in the idle state of all
the sub-systems, to make sure that the specifications are controllable, following
the definition [Ramadge and Wonham, 1989].

20

Figure 14: Mutual exclusion between the pumping of blue and yellow fluids in
pipe Ppi2

Figure 15 shows what are the whole specifications after composing the 6
binary mutual exclusion specification models.

Figure 15: Mutual exclusion between all the fluids in pipe Ppi2

According to the coordination control framework, the coordinator, denoted
Gk, should add nothing new to the whole system. It is actually to be taken as the
merging of some splitting of the sub-systems, as depicted in Figure 16, in terms
of event sets. Note that sometimes, more events are included in the coordinator
than the mere intersection of the event sets of the different sub-systems.

21

G1 G'1 G'2Gk

Figure 16: How to get the coordinator from the sub-systems

As stated before, events FS0+1 and onPB have to be included in the coor-
dinator event set. But for the mutual exclusion to operate well, we still need
to know when a sub-system has released the critical section. This is why the
events related to turning off the pumps also have to be included in this event
set. Then, we need to extract the model of the coordinator from the one of
the plant. However, we would like to avoid to compute the model of the plant,
being the composition of all sub-systems. But we can take advantage of the fact
that the intersection of the event sets of all sub-systems is be to included in Gk.
This allows us for constructing the model of the coordinator as the composition
of the projection of each subsystem on the event set of the coordinator that we
have just designed. In other words and in our case:

Pk(L) = Pk(G1||G2||G3||G4) = Pk(G1)||Pk(G2)||Pk(G3)||Pk(G4).

In the end, we get the coordinator model depicted in Figure 17. Note that,
as such, it does not satisfy the specifications (several pumps can be activated
at the same time). So will need to apply a controller to it.

Figure 17: Model of the coordinator of pipe Ppi2

22

As a matter of fact, figures of the models we deal with are gathered in
Table 2. Gi, i ∈ [1..3] corresponds to the pumping of a primary colour, whereas
G4 is the pumping of the cleaning fluid. It is easy to note that the state space
of the whole system is much greater than the one of each sub-system.

Whole plant G1 G2 G3 G4 Gk

♯ states 15309 9 9 9 17 135

♯ events 27 7 7 7 9 11

♯ transitions 134899 24 24 24 63 437

Table 2: Sizes of the plant generators

5.3 The Control Synthesis

Thanks to the algorithms given in [Komenda et al., 2011], we get the following
supervisors.

First, we compute the supervisor for the coordinator. As we can see in
Figure 18, this controller indeed makes sure that the pumping operations cannot
happen at the same time.

Figure 18: Optimal controller for Gk

Then, provided this supervisor, we can compute the ones for the coordinated
sub-systems. As an example, the controller for the blue pumping operation is
depicted in Figure 19. The pattern for the pumping operation is still appearing
(see Figure 12), and all the states and transitions around this are meant to deal
with the parallelism of the pumping operations: as long as we are not in the
critical section, any other sub-system can pump some fluid in the shared pipe.

23

Figure 19: Optimal controller for G1

The synthesised supervisors are 40 to 400 times smaller than the one that
would have been computed for the whole system, as displayed in Table 4.

Specs Supplant SupGi
, i ∈ [1..3] SupG4

SupGk

♯ states 6 9261 65 63 11

♯ events 27 27 15 15 11

♯ transitions 96 85750 234 226 18

Table 3: Sizes of the supervisor generators

It is interesting to note that even though G4 is more complex than the other
pumping operations (see Table 2), its supervisors is less complex than the ones
synthesised for the other operations. We have not found any reason for that
yet.

A conjecture about the conditions for the framework to be applicable is that
the language of the supervisor of the coordinator be included in the ones for the
coordinated sub-systems, that is

∀i, SupCk ⊆ Pk(SupCi∪k). (1)

It is indeed the case with our models and this could solve the failure to
satisfy the OCC and observability properties. But, this workaround implies to
first try and compute the supervisors, even though some properties are missing,
in the hope that it would be fine in the end, which is not really convenient.

24

5.4 Concluding Remarks

What we have presented so far seems to be the “best” solution to us. But before
getting something working on, we had taken several choices that appeared not
to lead to a correct modelling. In order to help other modelers and to share our
knowledge, we will come back here on such “false good ideas”. . .

Unlike in the work of Subsection 4.2, we decided to explicitly take the events
of the pumps into account. Indeed, we needed representative events to consider
the actual pumping process. We started using signals, but this was artificial and
it added unnecessary complexity, in terms of extra events, states and transitions.

We have also tried to assign a colour to the counting events of a flow sensor.
But, apart from the fact that this is not how it behaves in reality, if the coor-
dinator becomes empty (the counting events not being shared any more), then
the composition of the local supervisors becomes too big to be used (because
no synchronisation can actually operate).

Moreover, for the model of the cleaning operation depicted in Figure 13, it
was indeed possible not to add the transitions leading back to a previous state
after state 10 is reached. This would lead to an observable model and some
different figures in the synthesis of the supervisor, as displayed in bold characters
in Table 4. It appears that some models are less complex, but complexity should
not be the only criterion. Indeed, the models would be less close to reality and
less consistent in our opinion.

Whole plant G4 Gk Specs Supplant SupG4
SupGk

♯ states 12393 17 135 6 7889 59 11

♯ events 27 9 11 27 27 15 11

♯ transitions 106364 60 437 96 71001 207 18

Table 4: Different sizes for an observable cleaning operation

5.5 Suggestions for Extension of Work

In order to control the complete scale model, we could investigate the following
points:

• Add more operations, and the related parts and specifications.

• Model the system thanks to Petri nets, so that the synchronisations/parallelisms
appear clearly, and then decompose the system according to the synchro-
nisations.

• Think about an initialising process, that would clean everything first, in
case of previous emergency breakdown.

• Work with unobservable events, e.g. clogs in the pipes.

25

Below are some pending questions that should be adressed in the next stages
of this study.

1. How to cope with the required language and not only the admissible one (as
expressed in [Cassandras and Lafortune, 2008])? The actual goal of the
system is to eventually deliver orders. So we will also have to effectively
tell the system what to do. In addition, does it make sense to hierarchi-
cally group and control the different coordinators? (see the discussions in
Section 5.2)

2. How to get the sub-systems (i.e. the operations) from the actual models
of the physical parts? Isn’t related somehow to the specifications? (see
the discussion in Sections 5.2, and 3.1)

3. Could it be possible to infer the so-called post-condition of relation (1),
without having to compute everything for nothing?

4. Is there really a sensor that detects when some liquid in a vessel is below
a certain level? (as stated in [Roberts, 2008, Section F.3, page 92])

26

References

[Behrmann et al., 2004] Behrmann, G., David, A., and Larsen, K. G. (2004). A
Tutorial on UPPAAL. www.uppaal.com.

[Cassandras and Lafortune, 2008] Cassandras, C. G. and Lafortune, S. (2008).
Introduction to Discrete Event Systems. Springer, 2nd edition.

[Feng and Wonham, 2010] Feng, L. and Wonham, W. M. (2010). On the com-
putation of natural observers in discrete-event systems. Discrete Event Dy-
namic Systems, 20(1):63 – 102.

[Hamer, 2007] Hamer, J. (2007). Model Based Engineering of a Paint Factory
with Supervisory Control Theory. Master’s thesis, Technische Universiteit
Eindhoven, Eindhoven, Netherlands. Report SE 420492, System Engineering
Group.

[Hoefnagels, 2008] Hoefnagels, N. (2008). Supervisory machine control based on
State Tree Structures for the paint factory model. Master’s thesis, Technische
Universiteit Eindhoven, Eindhoven, Netherlands. Report SE 420519, System
Engineering Group.

[Komenda et al., 2010] Komenda, J., Masopust, T., and van Schuppen, J. H.
(2010). Synthesis of Safe Sublanguages satisfying Global Specification using
Coordination Scheme for Discrete-Event Systems. In Proceedings of the 10th

International Workshop on Discrete Event Systems, WODES’10, pages 436
– 441, Berlin. Technische Universität Berlin.

[Komenda et al., 2011] Komenda, J., Masopust, T., and van Schuppen, J. H.
(2011). Coordinated Control of Discrete Event Systems with Nonprefix-
Closed Languages. In IFAC World Congress, Milan, Italy. To be published.

[Ma and Wonham, 2005] Ma, C. and Wonham, W. M. (2005). Nonblocking
Supervisory Control of State Tree Structures, volume 317 of Lecture Notes in
Control and Information Sciences. Springer-Verlag, Berlin.

[Moor, 2011] Moor, T. (2011). DESTool.
www.rt.eei.uni-erlangen.de/FGdes/destool/index.html. Retrieved on
18 July 2011.

[Moor et al., 2008] Moor, T., Schmidt, K., and Perk, S. (2008). libFAUDES
– An open source C++ library for discrete event systems. In Proceedings
of the 9th International Workshop on Discrete Event Systems, WODES’08,
Gothenburg, Sweden.

[Ramadge and Wonham, 1989] Ramadge, P. J. and Wonham, W. M. (1989).
The Control of Discrete Event Systems. Proceedings of the IEEE, 77(1):81 –
98.

27

www.uppaal.com
www.rt.eei.uni-erlangen.de/FGdes/destool/index.html

[Ricker and Caillaud, 2007] Ricker, S. L. and Caillaud, B. (2007). Mind the
Gap: Expanding Communication Options in Decentralized Discrete-Event
Control. In Proceedings of the 46th IEEE Conference on Decision and Control,
pages 5924 – 5929, New Orleans, Louisiana, USA.

[Roberts, 2008] Roberts, R. J. Y. (2008). Synthesis of supervisory control based
on logic specifications. Master’s thesis, Technische Universiteit Eindhoven,
Eindhoven, Netherlands. Report SE 420525, System Engineering Group.

[Schmidt and Breindl, 2008] Schmidt, K. and Breindl, C. (2008). On Maximal
Permissiveness of Hierarchical and Modular Supervisory Control Approaches
for Discrete Event Systems. In Proceedings of the 9th International Work-
shop on Discrete Event Systems, WODES’08, pages 462 – 467, Gothenburg,
Sweden.

[Triepels, 2006] Triepels, J. (2006). Model Based Engineering of a paint factory
with UPPAAL. Master’s thesis, Technische Universiteit Eindhoven, Eind-
hoven, Netherlands. Report SE 420490, System Engineering Group.

[Tronci, 1998] Tronci, E. (1998). Automatic synthesis of controllers from formal
specifications. In Proceedings of the 2nd IEEE International Conference on
Formal Engineering Methods, Brisbane, Australia.

[van den Bremer, 2005] van den Bremer, W. A. P. (2005). Design of a Super-
visory Controller for the SE-Paint Factory. Bachelor’s Thesis, Technische
Universiteit Eindhoven, Eindhoven, Netherlands. BEP report SE 420429,
System Engineering Group.

[van Rooy, 2007] van Rooy, H. W. A. M. (2007). The Paint Factory Reference
Manual. Technical Report SE No Number, Technische Universiteit Eind-
hoven, Eindhoven, Netherlands.

[Wong and Wonham, 1996] Wong, K. C. and Wonham, W. M. (1996). Hierar-
chical control of discrete-event systems. Discrete Event Dynamic Systems:
Theory and Applications, 6(3):241 – 273.

[Wonham, 2005] Wonham, W. M. (2005). Lecture notes on control of discrete-
event systems. University of Toronto, Department ECE. Lecture notes.

28

	Introduction
	Physical Description
	Specifications
	Path
	Flow
	Cleaning

	State of the Art at the TU/e
	Work by PF-prem-mod
	Work by PF-sec-mod
	On the Models of the Physical System
	On the Models of the Specifications
	Other Remarks

	Work by PF-BSP
	Work by PF-STS
	On the Models of the Physical System
	On the Models of the Specifications
	Other Remarks

	Our Proposition
	Description of the Case Study
	The Models
	Nonblockingness of the Sub-systems and of the Plant
	Output Control Consistency
	Language Observability

	The Control Synthesis
	Concluding Remarks
	Suggestions for Extension of Work

