
Synchronous Coordination
of Distributed Components

José Proença

Synchronous Coordination
of Distributed Components

Synchronous Coordination
of Distributed Components

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties

te verdigen op woensdag 11 mei 2011
klokke 13.45 uur

door

José Miguel Paiva Proença

geboren te Porto, Portugal, in 1982.

promotor: prof.dr. F. Arbab

copromotor: dr. D. Clarke, Katholieke Universiteit Leuven, Belgium
copromotor: dr. E. de Vink, Technische Universiteit Eindhoven

overige leden: prof.dr. T. Bäck

prof.dr. F.S. de Boer

dr. M.M. Bonsangue

prof.dr. J.-M. Jacquet, University of Namur, Belgium
prof.dr. J.N. Kok

prof.dr. J.J.M.M. Rutten, Radboud University Nijmegen

The work in this thesis was supported by the portuguese foundation FCT
(Funcação para a Ciência e Tecnologia), grant 22485 – 2005, and has been car-
ried out under the auspices of the research school IPA (Institute for Programming
research and Algorithmics).

Copyright c� 2011 by José Proença

Cover design by Kseniya Rogova.
Printed and published by Boxpress BV � Proefschriftmaken.nl.

ISBN: 978-90-8891-265-8
IPA Dissertation Series 2011-05

Acknowledgments

This thesis is the result of four years of work carried out at CWI, and completed
while employed at the Katholieke Universteit Leuven, in Belgium. During this
time I faced many obstacles, which I was able to surpass only with the support of
all my friends and family. To all of you, a warm “thank you”!

I would like to thank my advisors: Farhad Arbab, Dave Clarke, and Erik de
Vink, for their friendship during these years. Farhad always found time in his
busy schedule to discuss any topic, and gave the best and wisest personal advises.
Furthermore, he is an incredible storyteller and prepares delicious Iranian food.
Dave is a good friend and a very creative person, with whom I enjoyed many
conversations, and who later offered me my current position as a researcher in
Leuven. I specially enjoyed our few mountain biking trips and our dinners at
Domus. Erik is a patient and dedicated person, who helped me with the balance
between private and working life. I got acquainted with the great research envi-
ronment provided by CWI through David, also a PhD student by that time, and
Luı́s Barbosa, a brilliant writer and researcher at the University of Minho. David
introduced me to Farhad Arbab and Jan Rutten. I am grateful to them, among
many others, for their personal commitment and enthusiasm that led me into this
fantastic four years journey.

David and Stephanie, both members of SEN3 and paranymphs of my defense,
deserve a special gratitude. David is a good friend since my undergraduate times,
with whom I shared my office and who deserves my trust and admiration. Not
only did we collaborate in the animation work, included in this thesis, but we
also shared amazing moments, such as our trips to Cambridge, Switzerland, and
Croatia. Stephanie started her PhD at around the same time as I did. She showed
me how to appreciate German precision and organisation. I recall with great plea-
sure our waterski adventures, the fun game sessions that she organised, and the
challenging mathematical puzzles that she knows.

I am also thankful for all the moments and discussions with the remaining

5

6 Acknowledgments

members of SEN3, who made my days at work both interesting and exciting.
A big “thank you” to Alexander, Alexandra, Behnaz, Christian, Clemens, Del-
phine, Filippo, Frank, Helle, Helen, Immo, Jan, Lara, Mahdi, Marcello, Milad,
Natallia, Sun Meng, Tom, Young-Joo, and Ziyan. I want to emphasise the partic-
ular good time I had when killing monsters with Immo, eating Korean food with
Young-Joo, camping with Lara and Behnaz, swimming in Budapest’s thermal wa-
ter with Christian, and climbing with Natallia. All these episodes gave a sweet
touch to my PhD student life. I also had the great opportunity to attend several
IPA events, mainly organised by Tijn Borghuis, where I met Paul, Rena, Jörg, José
Pedro Magalhães, Sonja, Mark, among others. Furthermore, I also want to thank
Einar Johnsen and Martin Steffen for the short time I spent in Oslo, and for all the
discussions we had in different places around the globe.

Within CWI I met incredible people, with whom I spent moments that I will
never forget. These include Bas, Bikkie, Christian and Sonja, Chrétien, Domenico,
Eike and Marta, Enav and Sigal (and Shai), Fernando, Hanna, Ishan, Jana and Petr,
Jurjen, Katja, Krzysztof, Li Chao, Lorenzo, Marjan, Mathieu, Rodrigo, Rómulo,
Susanne, Yanjing, and Yunus. Life in Amsterdam was not centred only around
research. I would also like to thank for the great time spent with other new friend-
ships made during my stay in Amsterdam. A big thanks to Daniel and Stephanie
(and Julian), Peter and Wendy, Nikolay, Ronny and Rocio, Dagmar, Sunny, Nils,
Nynke, Ovideo, Jin, Joost and Dina, Tiago and Andreia, Miguel and Claudia, Zé
Pedro Correia, Ivo, Levi, Luciano, and Jorge Laranjo. I recall the long lazy after-
noons at the IJ brewery, enchanting tango salons, energetic salsa evenings, exciting
climbing sessions, numerous home parties, interesting house moves, and revital-
ising trips away from Amsterdam.

Before coming to Amsterdam I lived in Braga, Portugal, and studied at the
University of Minho. There I met a group of great researchers who introduced
me to the scientific world, and to whom I owe part of my interest in research. In
particular, I wish to thank Jorge Sousa Pinto, Alcino Cunha, José Nuno Oliveira,
Luı́s Barbosa, Manuel Barbosa, João Saraiva, Luı́s Pinto, José João Almeida, Pedro
Henriques, and José Manuel Valença, among others. I am also immensely grateful
to all my friends back in Braga, who make me feel at home every time I visit my
cosy country, including Jácome and Carina, Tércio e Marta, Gonçalo, Zé Marques,
João Paulo, Paulo Silva, Nuno, Daniel, Ana Ferreira, Miguel and Ricardo Vilaça,
and many, many others. They all contributed to my mental sanity ever since I met
them.

Living for one year in Leuven, Belgium, I also want to thank all those who
played a special role in my daily life, such as Dave, Ilya, Radu, and Dimiter. In
particular, I want to thank Kseniya. She gave me all the support and attention I
needed, and more importantly, she showed me how beautiful life can be. For that
and so much more, a tender thankful potzelui!

Acknowledgments 7

Last, but not the least, I wish to thank the dearest and most important peo-
ple to me: my beloved family. You have encouraged and supported me in all
possible and imaginative ways. I miss you all. . . A huge “thank you” to minha
Mãe Fernanda, to meu Pai Alberto, to minha maninha Miana, to minhas queridas avós
Teresinha and Ruth, to minha tia São, to meu tio Paulo, to meus priminhos Ricardo,
Pedro, and Rita, and to minha tiazinha Sensa.

Leuven José Proença
March, 2011.

Contents

Acknowledgments 5

1 Introduction 13

2 Dataflow-oriented coordination models 19
2.1 Introduction . 19
2.2 Reo . 20

2.2.1 General description . 21
2.2.2 Constraint automata . 26
2.2.3 Normalised Reo automata 29

2.3 Linda . 35

3 A stepwise coordination model 39
3.1 Introduction . 39
3.2 Preliminaries . 41
3.3 Atomic steps and concurrency predicates 43

3.3.1 Labels and atomic steps . 43
3.3.2 Concurrency predicates . 46

3.4 Behavioural automata . 48
3.4.1 Product of behavioural automata 49
3.4.2 Example: lossy alternator . 50

3.5 Locality and grouping of atomic steps 52
3.6 Concrete behavioural automata . 55

3.6.1 Constraint automata as behavioural automata 55
3.6.2 Reo automata as behavioural automata 58
3.6.3 Linda as behavioural automata 60

3.7 Related concepts . 67
3.8 Conclusions . 69

9

10 Contents

4 Connector colouring & animation 71
4.1 Introduction . 71
4.2 Connector colouring overview . 73
4.3 Colourings . 75
4.4 Encoding into behavioural automata 77

4.4.1 Labels as colourings . 77
4.4.2 Local colourings . 78
4.4.3 Colouring tables as states . 79
4.4.4 Data transfer . 80

4.5 Examples . 81
4.5.1 Lossy-FIFO1 connector . 81
4.5.2 Priority exclusive-router connector 82
4.5.3 Alternating coordinator . 84

4.6 Connector animation . 85
4.6.1 Preliminaries . 86
4.6.2 Graphical notation . 87
4.6.3 Animation specifications – Syntax 88
4.6.4 Animation specifications – Semantics 90
4.6.5 Producing visual animations 90

4.7 Related work . 92
4.8 Discussion and conclusions . 94

5 Constraint-based models for Reo 97
5.1 Introduction . 97
5.2 Reo overview . 98
5.3 Coordination via constraint satisfaction 99

5.3.1 Mathematical preliminaries 100
5.3.2 Encoding primitives as constraints 101
5.3.3 Combining connectors . 103

5.4 Adding state . 105
5.4.1 Encoding state machines . 105
5.4.2 A constraint satisfaction-based engine for Reo 106
5.4.3 Correctness via constraint automata 107

5.5 Adding context dependency . 113
5.5.1 Connector colouring: an overview 113
5.5.2 Context constraints . 115
5.5.3 Correctness of context constraints 117

5.6 Benchmarks . 123
5.6.1 Test cases . 124
5.6.2 Results . 125

5.7 Guiding the constraint solver . 128
5.8 Implementing interaction . 130

Contents 11

5.9 Comparison of Reo models . 131
5.9.1 Reo models . 132
5.9.2 Reo engines . 136
5.9.3 Constraints in Dreams . 138

5.10 Related work . 138
5.11 Conclusion and future work . 141

6 The Dreams framework 143
6.1 Introduction . 143
6.2 Actors – overview . 146
6.3 The big picture . 147

6.3.1 Coordination via a system of actors 147
6.3.2 Synchronous regions . 150
6.3.3 Evolution in Dreams . 151

6.4 Decoupled execution . 155
6.4.1 Restricted actors . 156
6.4.2 Splitting actors . 158

6.5 Decoupled execution of Reo . 160
6.5.1 Splitting the FIFO1 channel 161
6.5.2 The asynchronous drain cannot be split 163
6.5.3 Splitting into synchronous regions 165
6.5.4 Discussion . 167

6.6 Related work . 169
6.7 Conclusions . 171

7 Implementing Dreams 173
7.1 Introduction . 173
7.2 Actor definition . 174
7.3 Distributed algorithm . 178

7.3.1 Actor phases . 180
7.3.2 Split actors . 189
7.3.3 Proactive actors . 190

7.4 Distributed Reo . 192
7.4.1 Example: a reliable LossySync 192
7.4.2 Example: a split FIFO1 . 195
7.4.3 Dreams vs. d2pc . 195
7.4.4 Discussion . 198

7.5 Benchmarks . 199
7.5.1 Test cases . 200
7.5.2 Results . 201

7.6 Scala implementation . 206
7.6.1 Deployment . 207

12 Contents

7.6.2 Proposed graphical plug-in 208
7.6.3 Distributed engines . 209
7.6.4 Existing graphical plug-in . 210
7.6.5 A guided example . 212

7.7 Conclusions . 214

8 Conclusions 217

Bibliography 223

Index 233

Summary 237

Samenvatting 239

Chapter 1

Introduction

Coordination is a relatively recent field, considerably inspired by concurrency the-
ory [83, 85, 91]. Coordination languages and models [90] are based on the philoso-
phy that an application or a system should be divided into the parts that perform
computations, typically components or services, and the parts that coordinate the
results and resources required to perform the computations. The coordination
aspect focuses on the latter, describing how the components or services are con-
nected. In this thesis we study a specific class of coordination models, namely
synchronous, exogenous, and composable models, and we exploit implementation
techniques for such models in distributed environments. Our work concentrates
on the Reo coordination model [8] as the main representative of this class of coor-
dination models.

We motivate our work using a simple example of a web-based system, de-
picted in Figure 1.1. In this example a phone- and an Internet-based service can
be used to book two distinct hotels. The layer performing coordination connects
these services, represented by the mesh of blue clouds, and describes when each
service is allowed to communicate and how the data should be transferred. A

Figure 1.1: Decentralised coordination of web services.

13

14 CHAPTER 1. INTRODUCTION

possible incarnation of the coordination layer is to allow either either the phone-
or the Internet-based services to book a hotel at any given time, giving priority to
the phone when both services try to book a hotel simultaneously, and to alternate
the hotel that is booked. Many other alternative behaviours exist for our booking
example.

In this thesis we target coordination models that are: (i) synchronous in the
sense that the communication between elements is performed atomically in a per-
round fashion, (ii) exogenous because the components or services are not aware of
the coordination, which is described orthogonally, and (iii) composable since the
behaviour of the coordination layer can be completely described from its compo-
sition of smaller building blocks. In our booking scenario, synchrony allows us
to express, for example, that a request for booking a hotel using the phone-based
service can only be sent if one of the hotels can receive this request. In Figure 1.1
we emphasise the composability aspect using multiple clouds, each providing its
own contribution for the global behaviour. Furthermore, the existence of edges
between the clouds reflects our choice of a concurrent model for execution, where
each cloud is regarded as an independent thread of computation that communi-
cates only with its connected clouds.

In this thesis the Reo coordination model is studied in detail. Reo is a channel-
based coordination language with a graphical notation, introduced by Arbab in
2001 [7], wherein complex connectors are built out of a simple set of primitive
connectors. Compliant with our target, Reo is synchronous, exogenous, and com-
posable, yielding an expressive and intuitive coordination model. The Reo model
is currently being used to specify coordination patterns and concurrent systems.
More specifically, Reo has been used in a variety of different areas, such as sys-
tems biology [36], service oriented computing [82], mashups [79], business pro-
cess modelling [17, 103], model driven development [20], and multi-agent sys-
tems [12]. Reo has also been extended to include, for example, timed behav-
iour [13], probabilistic and stochastic models [21, 23, 88], quality of service [15],
resource bounds [81], and reconfiguration [35, 72, 71, 77, 76]. Several tools have
been developed to edit, verify, simulate, and execute Reo systems [16, 41, 75, 37].
However, little effort has been spent so far on its (distributed) implementation as-
pects.

Current engines that execute Reo [37, 16] allow the coordination layer to run
only in a single thread of execution, although the components can execute in par-
allel or on a distributed platform. Furthermore, due to the synchrony aspect these
engines only support small systems, and do not scale. To address these limita-
tions, our approach to implement Reo-like models makes a tradeoff between pre-
compiling the possible behaviour and calculating it at runtime. Furthermore, we
exploit the fact that different parts of a connector can execute concurrently, and
identify parts of the system that can execute independently of each other.

15

Implementations of most models of concurrency and coordination typically
involve synchronisation constructs. These constructs are either explicit, allowing
the users of a model to specify their own tailor-made synchrony, or implicit. This
thesis supports the development of implementations that provide implicit syn-
chronisation constructs, as well as the ones that, like Reo, support user-defined
synchrony. Our work contributes to the field of coordination, in particular to Reo,
by improving existing approaches to execute synchronisation models in three ma-
jor ways:

1. by supporting decoupled execution and lightweight reconfiguration;

2. by increasing performance using constraint satisfaction techniques; and

3. by improving scalability by identifying synchronous regions.

We explain each of these three contributions in more detail below. Throughout
this thesis we support our statements both in theory and in practice. We give for-
mal arguments that show the correctness of our approach with respect to existing
models, and present tools and benchmarks that confirm our claims.

Decoupled execution and lightweight reconfiguration

In this thesis we present the Dreams framework, a distributed framework for com-
positional synchronous coordination models. The Dreams framework is based on
the actor model [1] and creates an actor for each building block of the coordination
model. Each actor consists of a concurrent thread of execution that communicates
asynchronously with other actors. We introduce a distributed protocol that allows
actors to reach consensus about data exchange, and performs the actual commu-
nication of data. We developed a prototype Dreams engine to test this protocol,
using an actor library for the Scala language [57].

Reconfiguring an instance of a coordination pattern consists of changing some
of its parts. The Dreams framework assumes not only that the underlying coordi-
nation model is compositional but also that it evolves in a stepwise manner. The
stepwise development combined with the decoupled execution of actors provide
the necessary conditions for inexpensive reconfiguration, allowing systems that
are expected to be reconfigured frequently to do so in an incremental way, with-
out requiring the full system to be changed. Reconfiguration of a small part of
the system is independent of the execution or behaviour of unrelated parts of the
same system.

Coordination via constraint satisfaction

Computation within the Dreams framework evolves in a stepwise manner. In each
round, descriptions of the behaviour of all building blocks are combined and a

16 CHAPTER 1. INTRODUCTION

coordination pattern for the current round is chosen. In the case of the Reo coor-
dination language, its present models do not come with an efficient (distributed)
implementation technique. Hence, we develope a new semantic and executable
model for Reo based on constraint satisfaction. A Reo connector is seen as a set
of constraints, based on the way the primitives are connected and on their current
state.

We identify the four main concepts that characterise coordination in Reo, viz.
synchrony, data-awareness, state, and context dependency, and describe these
concepts using logical constraints. Our approach is shown to be consistent with
existing Reo models. We apply available constraint satisfaction techniques to de-
rive a more efficient implementation of Reo. Specifically, we developed an initial
implementation using a SAT-solver to search for possible solutions, and compared
its performance with an existing Reo engine. The results strongly support the idea
that constraint satisfaction offers an appealing approach to implementing coordi-
nation languages.

Scalability

Our stepwise approach to coordination is the first factor to contribute to the scal-
ability of the Dreams framework. Implementations that require the knowledge of
all future actions, such as those based on a precomputed automaton, do not scale,
since finding all possible behaviour for all possible states of a concurrent system,
even when possible, can be very expensive and space inefficient. For example, the
number of states generally doubles for every buffer in a connector, assuming all
states are reachable. In our approach infinite state spaces are excluded.

The coordination mechanism should be able to scale up to coordinate a large
number of entities, possibly by exploiting multiple CPU cores or multiple com-
puters across a network. Considering the behaviour for each round at a time is
not enough to achieve this level of scalability, because of the complexity of com-
bining the behaviour of all entities. We improve scalability by identifying regions
that can execute independently, thus achieving truly decoupled execution of con-
nectors.

As mentioned above, we create an actor for each building block involved. The
resulting actors are organised in a graph structure, where edges represent com-
munication links. We identify independent regions of the graph of actors, referred
to as synchronous regions. Actors from each synchronous region can agree on the
coordination pattern to be executed at each round without considering the be-
haviour of the actors outside of this region. Consequently, the constraint problem
representing the behaviour at each round is smaller and more easily solved. We
identify these synchronous regions by recognising that some primitive connectors
have asynchronous behaviour, according to our formal characterisation of asyn-
chronous behaviour.

17

The prototype Dreams engine that executes Reo connectors is based on con-
straint satisfaction and exploits the existence of synchronous regions. We com-
pared compilation and execution times of our engine against a centralised engine
for Reo, obtaining promising results for Dreams. The separation of a single con-
nector into independently executing sub-connectors also allows for a more flexible
framework for development and concurrent reconfiguration of larger coordina-
tion specifications.

Organisation of the thesis

This thesis describes a series of developments that culminated in theDreams

framework, using the Reo coordination model as the main case study. We start
by motivating the need for our distributed approach, and by providing context in
the coordination field. We then develop more efficient implementation techniques
using constraint satisfaction techniques, and introduce a distributed protocol that
can make local decisions to advance the coordination of larger systems.

Chapter 2 – Dataflow-oriented coordination models. We describe two coor-
dination languages, Reo and Linda, and present some of their models. We give
an overview of existing formalisms used in the field that can be used in our dis-
tributed framework. The Reo coordination language, described in this chapter, is
explored in more detail throughout the thesis.

Chapter 3 – A stepwise coordination model. The stepwise coordination model
focuses on aspects of coordination relevant for the Dreams framework. The co-
ordination behaviour is described using a state-based formalism that we call be-
havioural automata. In these automata, labels represent atomic actions, and their
composition is based on the composition of atomic actions. We also encode the
models presented in Chapter 2 as behavioural automata.

Chapter 4 – Connector colouring & animation. We describe the recent connector
colouring (CC) semantics of Reo, which we consider better suited for distribution
than other semantic models. The CC semantics motivated the development of the
Dreams framework and is described in this thesis as an instance of behavioural
automata, providing insight for some of the choices made in Chapter 3. We also
introduce connector animation as an extension of connector colouring that is used
to visualise the dataflow of distributed Reo connectors.

Chapter 5 – Constraint-based models for Reo. In this chapter we represent
coordination using constraints to develop an efficient implementation of the Reo

coordination model using existing SAT-solving and constraint satisfaction tech-
niques. Constraints represent possible coordination patterns, composition of Reo

connectors is achieved by adding conjunctively their constraints, and solutions

18 CHAPTER 1. INTRODUCTION

to the constraints represent atomic actions that the system can perform. A com-
parison between a prototype implementation using a SAT-solver and another ex-
isting Reo engine based on connector colouring indicates the advantage of using
constraint-solving techniques for coordination. We also present correctness proofs
with respect to previous Reo models, and make an extensive comparison of exist-
ing Reo models and implementation approaches.

Chapter 6 – Dreams framework. The Dreams chapter describes coordination
as an activity in a system of actors, where each actor is associated with a be-
havioural automaton, and actors communicate with their neighbour actors us-
ing asynchronous messages. We exploit the combination of the actor model with
the behavioural automata to partition the system of actors into synchronous re-
gions. Actors within a synchronous region reach consensus before communicat-
ing data values, while data exchanged between synchronous regions can be sent
asynchronously. We formalise the correctness of this approach, and illustrate the
intuition behind our approach using Reo.

Chapter 7 – Implementing Dreams This chapter describes the implementation
details of the Dreams framework. We define how actors communicate with each
other, and describe the distributed protocol introduced in Dreams. To illustrate
the protocol, we show traces of the execution of some Reo connectors in our dis-
tributed framework. We also show how to use Dreams to deploy a connector in a
distributed network, and we compare its performance against the performance of
a centralised Reo engine. The Dreams engine is integrated within an existing Reo

toolkit [16].

The main contributions of this thesis result from two main observations re-
garding the implementation of synchronous coordination models in a distributed
environment. First, there is no need to pre-calculate all future behaviour at com-
pile-time: shifting part of this computation to run-time increases scalability and
eases reconfiguration. Second, not all communication in a synchronous system is
performed synchronously. By identifying parts with asynchronous communica-
tion we can restrict the synchronisation process to smaller parts of the coordina-
tion layer, thereby improving the overall performance of the coordination engine.

Chapter 2

Dataflow-oriented coordination models

2.1 Introduction

In a survey of coordination languages [10], Arbab distinguishes three different
approaches to coordination: a data-oriented, a control-oriented, and a dataflow-
oriented approach. The main goal of most data-oriented approaches is to provide
a mechanism to guarantee consistency among shared data. The code for coordi-
nation and computation can be combined, without losing the separation of these
two concerns. In control-driven approaches the separation of coordination and
computation is more explicit. The main focus of control-driven approaches is the
processing or flow of control, and often the notion of a data value is not even
required. Finally, dataflow-oriented approaches sit between data- and control-
oriented approaches, managing who can communicate, where data flow, and what
data values are sent.

The most relevant work in this thesis results from an effort to implement a
distributed engine for the Reo [8, 9] coordination language. The coordination
survey mentioned above refers to Reo as a dataflow-driven coordination model.
An earlier survey by Arbab and Papadopoulos [90] also classifies Manifold [28],
a predecessor of Reo, as a dataflow-driven coordination model. The implemen-
tation approach taken in this thesis fits within a general dataflow-driven view of
coordination languages.

In this chapter we describe different coordination languages and explain data-
flow-driven aspects later in this thesis. We start by describing two important se-
mantic models for Reo followed by two similar semantic models for Linda. In
Chapter 3 we will introduce the so-called stepwise coordination model to capture
our view of dataflow-driven models, and we will present encodings of each of
the coordination models described in this chapter into the stepwise coordination
model.

In this thesis, the Reo coordination language plays a more relevant role than

19

20 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

the other concrete models, as we use it as our main case-study for our distributed
implementation. We emphasise the Reo coordination language, since it is the
main motivator of the work developed in this thesis. We describe Reo in §2.2. We
describe the Linda coordination language in §2.3, be it less detailed Linda [54] is
probably the first and definitely the best known coordination model, categorised
in the surveys mentioned above as a data-oriented coordination model.

As Arbab and Papadopoulos indicate, the separation of data-driven vs. con-
trol-driven coordination is not a clear cut one. For example, data-driven coordi-
nation languages can be used in application domains where the data control the
execution of the components, and vice-versa. Dataflow-driven approaches sit be-
tween control- and data-driven approaches, hence their separation is also not very
clear. We continue to explore the dataflow-oriented aspects of Linda in Chapter 3
by presenting an encoding of Linda into the stepwise model, which follows a typ-
ical dataflow-driven approach.

Contribution This chapter takes the first step toward the main goal of this thesis:
an efficient distributed implementation of a synchronous coordination model. The
implemented model, called the stepwise coordination model, is described in the
next chapter. In this chapter we present existing coordination models that can be
encoded into the stepwise model. Furthermore, the stepwise model leaves some
aspects partially unspecified, which depend on the concrete model being encoded
into the stepwise model.

2.2 Reo

Reo [8, 9] is presented as a channel-based coordination language wherein com-
ponent connectors are compositionally constructed out of an open set of primitive
connectors, also simply called primitives. Channels are special primitives with two
ends. In this thesis we use a fixed set of primitives to illustrate the Reo language,
although user defined primitives are also possible. Being able to compose connec-
tors out of smaller primitives is one of the strengths of Reo. It allows, for example,
multi-party synchronisation to be expressed as a composition of simple channels.
Ends of primitives are regarded as ports. In addition, Reo has a graphical notation
that helps to bring some intuition about the behaviour of a connector, particularly
in conjunction with animation tools, which we will cover in more detail in §4.6.

Most Reo-related tools are being integrated in a common framework known as
Eclipse Coordination Tools (ECT) [16]. The tools included in the ECT framework
comprise a Reo editor, an animation generator, model checkers, editors of Reo-
specific automata, QoS modelling and analysis tools, and a code generator.

The behaviour of connectors is described in terms of dataflow through the
channels and the nodes connecting them, along with the synchronisation and mu-

2.2. REO 21

tual exclusion constraints they that impose. Components attached at the bound-
ary of a connector either attempt to write data to or read data from the ends of
the channels that they are connected to. The connector coordinates the compo-
nents by determining when the writes and takes succeed, often by synchronising
a collection of such actions. Data flow from an end of a primitive to an end of
another primitive to which it is connected, thus synchronising the two ends. A
primitive decides, possibly non-deterministically, whether data is accepted or of-
fered on an end based on the dataflow on its other ends and its state. In principle,
data continue to flow like this through the connector, with primitives routing the
data based on their internal behavioural constraints and the possibilities offered
by the surrounding context. Primitives are executed by locally synchronising ac-
tions or by excluding the possibility of actions occurring synchronously. These
‘constraints’ are propagated through the connector, under the restriction that the
only communication between entities occurs through the channels. Consequently,
the behaviour of a system depends upon the combined choices of primitives and
what possibilities the components offer, none of which is known locally to the
primitives.

This section discusses the Reo language as follows. We start by giving a gen-
eral description of Reo in §2.2.1 to introduce the main concepts, the visual nota-
tion, and some motivating examples. We follow this general description by two
automata models that give a precise and formal semantics to Reo. In §2.2.2 we
present the constraint automata model, which emphasises how the value of data
can affect the dataflow. In §2.2.3 we present a more recent model that focuses on
how the availability of dataflow can affect the behaviour, known in the Reo com-
munity as context dependency. Later in Chapters 4 and 5 we present two more
approaches to describe Reo.

2.2.1 General description

Reo connectors are constructed by composing more primitive connectors. Each
primitive offers a variety of behavioural policies regarding synchronisation, buff-
ering, lossiness, and even the direction of dataflow. Communication with a prim-
itive occurs through its ports, called ends: primitives consume data through their
source ends, and produce data through their sink ends. Source and sink ends cor-
respond to the notion of source and sink in directed graphs, although the names
input and output ends are sometimes used instead. Primitives are not only a means
for communication, but they also impose relational constraints, such as synchroni-
sation or mutual exclusion, on the timing of dataflow on their ends. The behaviour
of such primitives is limited only by the model underlying a given Reo implemen-
tation. For the purpose of this thesis, we do not distinguish between primitives
such as channels used for coordination and the components being coordinated.
Typically, the ‘coordinator’ has more control over the choice of the behaviour of

22 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

primitives, whereas component behaviour is externally determined.
We present a description of Reo’s semantics in terms of general constraints.

The first thing to note is that the behaviour of each primitive depends upon its
current state.1 The semantics of a connector is described as a collection of possible
steps for each state, and we call the change of state of the connector triggered by
one of these steps a round. Dataflow on a primitive’s end occurs when a single
datum is passed through that end. Within any round dataflow may occur on some
number of ends. The semantics of a connector is defined in terms of two kinds of
constraints:

Synchronisation constraints describe the sets of ends that can be synchronised
in a particular step. For example, synchronous channel types typically permit
dataflow either on both of their ends or on neither end, and asynchronous channel
types typically permit dataflow on at most one of their two ends.

Dataflow constraints describe the data flowing on the ends that synchronise. For
example, such a constraint may say that the data item flowing on the source end of
a synchronous channel is the same as the data item flowing on its sink end; or that
there is no constraint on the dataflow, such as for a drain which simply discards
its data; or it may say that the data satisfies a particular predicate, as in the case of
a filter channel.

Connectors are formed by plugging the ends of primitives together in a one-
to-one fashion to form nodes. A node is a logical place consisting of a sink end,
a source end, or both a sink and a source end.2 We call nodes with a single end
boundary nodes, represented by , and we call nodes with a sink end and a source
end mixed nodes, represented by . Data flow through a connector from primi-
tive to primitive through nodes, subject to the constraint that nodes cannot buffer
data. This means that the two ends in a node are synchronised and have the same
dataflow—behaviourally, they are equal. Nodes can be handled transparently by
using the same name for the two ends on the node, as the synchronisation and
dataflow at the two ends is identical.

We now give an informal description of some of the most commonly used
Reo primitives. Note that for all of these primitives, no dataflow is one of the
behavioural possibilities.

1Note that most Reo primitives presented here have a single state.
2Generalised nodes with multiple sink and source ends can be represented using binary mergers

and replicators [22, 37].

2.2. REO 23

a
b
c

Replicator It replicates data synchronously from a to b
and c. Thus, data flow either at all ends or nowhere, and
the values of the data at the ends b and c are the same as
the value at the end a. An n-replicator behaves similarly,
replicating data synchronously from its source end to all of
its n sink ends.

c
a

b

Merger It copies data synchronously from a or b to c, but
not from both. Thus data flow on the ends a and c (and
not on the end b) or on the ends a and c (and not on the
end b), where the values of the data are equal on both ends
where data flow. When both alternatives are possible, the
decision of which dataflow alternative occurs is made non-
deterministically at each round.

a b

LossySync Data flow from a to b, if possible and data flow
at a is always enabled. If data flow at a, dataflow at b is also
possible, in which case the data that flow at ends a and b are
equal.

a b
SyncDrain It acts purely to synchronise ends a and b, thus
data flow at the end a if and only if data flow at the end b,
and there is no constraint on the values of the data.

a b

FIFO1 It has two possible states: empty or full. When the
state is empty it can receive a data item from a, changing
its state to full. When the state is full it cannot receive any
more data, but it can send the data item received previously
through b, changing its state back to empty.

We now present two examples of connectors to illustrate Reo’s semantics, us-
ing the primitives introduced above. We start with a simple example of an exclu-
sive router, and afterwards present a more complex example that coordinates the
control flow of two components.

2.2.1. EXAMPLE. The connector in Figure 2.1 is an exclusive router built by com-
posing two LossySync channels (b-e and d-g), one SyncDrain (c- f), one Merger
(h-i- f), and three Replicators (a-b-c-d, e-j-h and g-i-k). The constraints of these
primitives can be combined to give the following two behavioural possibilities
(plus the no-flow-everywhere possibility):

• ends {a, b, c, d, e, f , h, j} synchronise and a data item flows from a to j,

• ends {a, b, c, d, f , g, i, k} synchronise and a data item flows from a to k. ♦

24 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

a c

b

d

f

e

g

h

i

j

k

Figure 2.1: Exclusive router connector.

The merger makes a non-deterministic choice whenever both behaviours are
possible. Data can never flow from a to both j and k, as this is excluded by the
behavioural constraints of the Merger h-i- f .

For our second example of a Reo connector, we denote the exclusive router us-
ing a node notation ⊗, depicted in Figure 2.1. Each exclusive router node needs to
have exactly one channel pointing towards the node, which will be connected to
the end a in the figure. It also needs to have two channel ends pointing away from
the node, that will be connected to the ends j and k in the figure. Furthermore, we
may define the exclusive router node to have more than two channel ends point-
ing away from the node. We omit the details of the generalisation of the connector
here, which will be presented later in Figure 5.5. We also represent nodes with
multiple sink and source ends, that can be constructed using binary mergers and
replicators [22, 37]. The second example is one of the workflow patterns defined
by Van der Aalst [99], where the execution of two components is synchronised by
what he describes to be a synchronising merger. The Reo connector can be seen
as a precise formalisation of the textual description by Van der Aalst.

2.2.2. EXAMPLE. The synchronising merge connector controls the execution of two
components A and B such that either A executes, or B executes, or both execute
and the connector synchronises on the completion of A and B. The components A
and B are represented by boxes with a source end on the left side, and a sink end
on the right side. We assume that each of these components receives a signal that
triggers its execution via its source end, and that it returns a signal on its sink end
after its execution is complete.

One of the main differences between this connector and the exclusive router
connector is that the synchronising merge connector contains stateful channels,
namely four FIFO1 channels. The behaviour of the synchronising merge connector
depends on the state of its FIFO1 buffers. ♦

The expected behaviour of the connector, involving the flow of data on ends i,
o, and on the ends of A and B, is as follows. Initially, only the source end i can have

2.2. REO 25

i o

A

B

Figure 2.2: Synchronising merge connector.

dataflow, causing one or both of the components to start executing, and changing
the state of two of the FIFO1 buffers to full. After this, the only possible behaviour
is to wait for the components that started to execute to finish and output a signal
each. In the same step the sink end will have dataflow, and the two FIFO1 buffers
will become empty. The two exclusive routers on the right forward the data from
the components A and B to exactly one of the connected synchronous drains. A
simple node would not work in place of either of these exclusive routers because
only one of the three central FIFO1 channels can have data at any given time, thus
a substitute node can never replicate the data into both connected drains. An
animation for this connector can be found online.3

Consider, for instance, the following possible scenario. Initially all the FIFO1
channels are empty, and data is available at the node i. The component A is ready
to receive data, but not the component B. Data can then flow from i to the leftmost
buffer, to the top exit of the exclusive router node, to the component A, and also
to the uppermost buffer. Data cannot flow to any of the other two central FIFO1
channels because this would require B to receive data, which contradicts our orig-
inal assumption regarding B. After this step the top and the leftmost FIFO1 chan-
nels become full. In the next step the component A can output a value, the upper-
most SyncDrain receives the data from A and the upper FIFO1, the data from the
upper FIFO1 also flow through node o. Finally, the long SyncDrain at the bottom
receives data from both ends. After this round all FIFO1 channels become empty
again.

3
http://reo.project.cwi.nl/webreo/generated/syncmerge/frameset.htm

http://reo.project.cwi.nl/webreo/generated/syncmerge/frameset.htm

26 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

2.2.2 Constraint automata

Constraint automata (CA) formalise the behaviour and the dataflow in a Reo con-
nector that controls the interaction of a set of anonymous components. Baier et
al. [22] show that constraint automata can serve as a computational model for
Reo, using a coalgebraic semantics for Reo connectors that assigns to a connector
a relation over infinite timed data streams.

In this section we describe constraint automata and their composition. The
composition will be used later in this thesis in two ways. First, the next section de-
fines the encoding of the constraint automata model in our behavioural automata
model. The composition of the behavioural automata thus obtained from con-
straint automata is based on the composition of constraint automata. Second, in
Chapter 5 we use constraint automata to show compositionality of the constraint-
based model for Reo.

Constraint automata use a finite set of port names N = {x1, . . . , xn}, where xi
is the i-th port of a connector. When clear from the context, we write xyz instead
of {x, y, z} to enhance readability. We write �xi to represent the data value flowing
through the port xi, and use �N to denote the set of data variables {�x1, . . . , �xn},
for each xi ∈ N . We define DCX for each X ⊆ N to be a set of data constraints
over the variables in �X, where the underlying data domain is a finite set D. Data
constraints in DCN can be viewed as a symbolic representation of sets of data-
assignments, and are generated by the following grammar:

g ::= tt

�� �x = d
�� g1 ∨ g2

�� ¬g

where x ∈ N and d ∈ D. The other logical connectives can be encoded as usual.
We use the notation �a = �b as a shorthand for the constraint

(�a = d1 ∧ �b = d1) ∨ . . . ∨ (�a = dn ∧ �b = dn),

with D = {d1, . . . , dn}.

2.2.3. DEFINITION (CONSTRAINT AUTOMATON [22]).
A constraint automaton (over the finite data domain D) is a tuple A = �Q,N ,
→, Q0�, where Q is a set of states, N is a finite set of port names, → is a subset of
Q × 2N × DCN × Q, called the transition relation of A, and Q0 ⊆ Q is the set of
initial states. �

We write q
X|g
−−→ p instead of (q, X, g, p) ∈ →. For every transition q

X|g
−−→ p, we

require that g, the guard, is a DCX-constraint. For every state q ∈ Q, there is a

transition q
∅|tt
−−→ q.

We define CAS ⊆ 2N × DCN to be the set of solutions for all possible labels
of the transitions of constraint automata. That is, X|g ∈ CAS if X = {x1, . . . , xn},

2.2. REO 27

LossySync FIFO1

q

a tt

ab �a = �b
empty full(d)

b �b = d

c �c = d

Figure 2.3: Constraint automata for the LossySync and the FIFO1 channels.

g =
� �xi = vi, and there is a transition q

X|g�
−−→ q� such that g satisfies g�. We call

each s ∈ CAS a constraint automaton step. We interpret each transition q
X|g
−−→ p as

follows. When the automaton is in state q, it is possible to have dataflow at all the
ports in X, while excluding flow at ports in N \ X. The data flowing through the
ports X must satisfy the constraint g, and the automaton evolves to state p. Thus,
in constraint automata synchronisation is described by the set X and dataflow is

described by the constraint g. For every state q ∈ Q, the empty transition q
∅|tt
−−→ q

is present for technical reasons, namely, to simplify the definition of the product,
below. For clarity, we normally do not display the empty transitions when depict-
ing constraint automata in our figures.

2.2.4. EXAMPLE. Most primitives presented in §2.2.1 are stateless, which means
each of their corresponding constraint automata has a single state. The LossySync
channel is formalised by the automaton AL = �Q,N ,→, Q0� with one state and
three transitions, depicted in Figure 2.3, where:

Q = {q} , N = {a, b} , Q0 = {q}

→ =
�
�q, a, tt, q� , �q, ab,�a = �b, q�, �q, ∅, tt, q�

�
♦

2.2.5. EXAMPLE. The FIFO1 channel, depicted as a constraint automaton in Fig-
ure 2.3, has, besides the empty state, multiple states full(d). The FIFO1 channel
is formalised by the automaton AF = �Q,N ,→, Q0� where:

Q = {empty} ∪ {full(d) | d ∈ D} → ={�empty, b,�b = d, full(d)� | d ∈ D}

N = {b, c} ∪ {�full(d), c, �c = d, empty� | d ∈ D}

Q0 = {empty} ∪ {�q, ∅, tt, q� | q ∈ Q} ♦

28 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

Composition

Common port names correspond to the places where connectors are joined. Note
that Reo connectors can only be composed by connecting source ports to sink
ports, such that each port is connected to at most one other port. Therefore, when
composing two constraint automata A1 and A2 representing two Reo connectors,
we require that common ports must be source ports in one connector and sink
ports in the other. However, the constraint automata model does not distinguish
source and sink ends, and the restriction is only required for Reo connectors.

2.2.6. DEFINITION (PRODUCT OF CONSTRAINT AUTOMATA [22]).
Let A1 and A2 be two constraint automata, where Ai = �Qi,Ni,→i, Q0,i� for i ∈
{1, 2}. The composition of A1 and A2 yields the constraint automaton

A1 �� A2 = �Q1 × Q2,N1 ∪N2,→, Q0,1 × Q0,2� ,

where the transition relation → is given by the condition below.

(q1, q2)
X1∪X2|g1∧g2
−−−−−−−→ (p1, p2) iff

q1
X1|g1
−−−→1 p1, q2

X2|g2
−−−→2 p2, and X1 ∩N2 = X2 ∩N1 �

The requirement X1 ∩N2 = X2 ∩N1 states that the steps X1|g1 and X2|g2 can only
be combined into a new transition in the automaton A1 �� A2 when they agree
on the firing of all of their common ports in these transitions. I.e., for all ports
x ∈ N1 ∩N2 it holds that x ∈ X1 ⇔ x ∈ X2.

2.2.7. EXAMPLE. Recall the constraint automata of the LossySync and the FIFO1
channels presented in Example 2.2.4 and in Example 2.2.5, respectively. Observe
that the two automata share exactly one port, the port b, which is a source port
in the LossySync channel and a sink port in the FIFO1 channel. The composi-
tion of these two constraint automata yields AL �� AF, depicted in Figure 2.4.
The transitions with labels a|tt and c|�c = d result from the combination of the

transition q�
∅|tt
−−→ q�, for some state q� ∈ {q, empty} ∪ {full(d) | d ∈ D}, of one

of the automata with a transition t = q
a|tt
−−→ q or t = full(d)

c|�c=d
−−−→ empty of

the other automaton. This reflects that t can be performed ‘independently’ of the
other automaton. On the other hand, the two other transitions correspond to the
combination of a transition with dataflow from each automaton, which can be
understood as “the two transitions must synchronise”. ♦

The automaton AL �� AF presented in Example 2.2.7 exhibits a property that is of-
ten undesired in Reo. The self transition a|tt of the state (q, empty) is a transition
where data is lost by the LossySync channel, disregarding the fact that the FIFO1

2.2. REO 29

AL �� AF = q, empty q, full(d)

a tt a ttab �a = �b ∧ d = �b

c �c = d

ac �c = d

Figure 2.4: Composition of the constraint automata AL and AF.

channel is empty and can receive data. The constraint automata model is not ex-
pressive enough to take into account the availability of the FIFO1 channel, and to
remove the undesired transition. When a model takes into account the availability
of data flow in each port, we say the model captures context dependency. The Reo

automata model described in the next subsection is an example of a model that
captures such context dependency.

2.2.3 Normalised Reo automata

We now describe a simplified variation of the Reo automata model [29], intro-
duced by Bonsangue et al. around four years after the CA model, with the main
purpose of capturing context dependency, a feature missing in the constraint au-
tomata model. Later in this thesis we show how this model can be used by our
distributed framework, by encoding it into our behavioural automata model. The
main difference between Bonsangue et al. and our presentation is that they use
boolean algebra over port names to describe constraints over the context, while
we use sets for the same purpose. Hence we refer to our model as normalised Reo

automata (RA). Furthermore, Bonsangue et al. assume that the product of automata
is defined for automata with disjoint alphabets, achieving synchronisation via an
explicit operation that ‘combines’ two ports. We will assume that products share
the names of the ports that synchronise, to make it easier to relate to the constraint
automata model.

The notion of context dependency was initially introduced in Reo at its incep-
tion, but was formalised first by the connector colouring model, which precedes
the Reo automata model. We describe the connector colouring model in this thesis
in more detail in Chapter 4. A more exhaustive overview of context dependency
in Reo can be found in [37], and in the thesis of Costa [41], where he presents a
similar automata model that captures context dependency for Reo. Costa intro-
duces the intentional automata model to support the ideas behind the connector
colouring model, which he also introduces in his thesis. Similarly to constraint
automata, in intentional automata ports that synchronise are not removed after
composition, hence it requires a larger state space than the presentation of Reo

30 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

automata by Bonsangue et al. where these ports are discarded. Costa also gives
a precise formalisation of the hiding operation of ports as intended initially [19].
We do not consider this in this thesis because it does not influence the distributed
implementation of connectors.

Recall the constraint automaton AL �� AF from Example 2.2.7. To avoid the
undesired behaviour where data is lost when the FIFO1 buffer is empty the con-
straint automata model is extended to capture context dependency, by adding
explicitly the context information to the transitions. Two important examples of
Reo primitives that could not be represented in the CA model are:

Context-dependent LossySync This channel loses data written to its source only
if the surrounding context is unable to accept the data through its sink; otherwise
the data flow through the channel. This corresponds to the initial intention of the
LossySync channel [8].

Priority merger This is a special variant of a merger that favours one of its sink
ports: if dataflow is possible at both sink ports, it prefers one port over the other.

The Reo automata model, when compared to the constraint automata model,
abstracts away from data and introduces guards to capture the context in which
a Reo primitive is evaluated. In normalised Reo automata we assume that the
product of automata synchronises and hides ports with shared names, following
the convention of the Reo automata model, and the context is described by sets
of literals. When possible, we keep the same notation as in the Reo automata pa-
per [29], while trying to preserve the naming notation of the constraint automata
model.

Normalised Reo automata use a finite set of port names N = {x1, ..., xn} as
in constraint automata. A guard g is a set {a1, . . . , ak} of literals derived from N ,
where ai ∈ {xi, xi} and xi ∈ N . We denote the set of all literals of N as LtN ,
and X = {x1, . . . , xm}, where X = {x1, . . . , xm} is a set of ports. Observe that g ∈

N ∪ N . A guard represents which ports have data available to flow, and which
ports cannot have data available. The extra knowledge about the (im)possibility of
dataflow expressed by the guards characterises the context dependency modelled
by the Reo automata model. As for constraint automata, we often write a1 . . . ak
instead of {a1, . . . , ak} and g1g2 instead of g1 ∪ g2.

2.2.8. DEFINITION (NORMALISED Reo AUTOMATON [29]).
A normalised Reo automaton over an alphabet N is a triple A = �Q,N ,→� where
Q is a finite set of states, and → is a subset of Q × LtN × 2N × Q called the transi-
tion relation of A, such that for each �q, g, X, q�� ∈ → the context property X ⊆ g
holds.4 �

4The original definition of the Reo automata model by Bonsangue et al. refers to the context prop-
erty as reactivity property, and also includes a uniformity property, which they use to distinguish between

2.2. REO 31

Context dependent
LossySync

PriorityMerger FIFO1

q

ab ab
ab a

q

ac ac
abc bc

empty full

b b

c c

Figure 2.5: Normalised Reo automata of the context dependent LossySync, the
priority merger, and the FIFO1 primitives.

We write q
g|X
−−→ q� as a shorthand for �q, g, X, q�� ∈ →. Informally, a normalised

Reo automaton over an alphabet N is a non-deterministic automaton with transi-
tion labels RAS = LtN × 2N (Reo automata steps) that obey the context property.
The intuition is that for each label g|X ∈ RAS the ports in X have dataflow when

the context respects g. For example, the transition q
ab|a
−−→ q� can be read as “the

automaton can evolve from q to q� by having dataflow on a when the context is
ready to have dataflow on a and the context refuses dataflow on b (for the current
round)”. The context property reflects the fact that a port can have dataflow only
when the context is ready to accommodate it.

2.2.9. EXAMPLE. In Figure 2.5 we present the normalised Reo automata A�
C, A�

P,
and A�

F, of the context dependent LossySync channel, the priority merger, and the
FIFO1 channel, respectively. The normalised Reo automata of all Reo primitives
presented in this thesis possess the context property. Furthermore, Bonsangue et
al. show that this property is preserved by composition as defined below. ♦

Composition

The composition of normalised Reo automata that we present here is slightly dif-
ferent then what Bonsangue et al. define [29], because we do not require that
the alphabets of the two automata are disjoint, and we require all guards to be
normalised. Compared to their approach, our definition of the product of Reo

automata also captures the synchronisation of shared variables and the normali-
sation of transitions, since we consider normalised transitions only. We introduce
two auxiliary concepts used in the definition of the composition of normalised

Reo automata and a more general automata, and to show some theoretical results such as the fact that
the Sync channel behaves as the identity.

32 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

Reo automata: (1) the set of unsatisfiable guards for a state q, denoted by q#, and
the (2) compatibility of two guards g1 and g2, denoted by g1 � g2.

Given a state q of a normalised Reo automaton A = �Q,N ,→�, we define the
set of satisfiable guards of q as follows:

guards(q) = {g | q
g|X
−−→ q�}. (2.1)

We now define the set q# of all unsatisfiable guards based on guards(q):

q# = {a1 · · · an | guards(q) = {g1, . . . , gn} , ∀i∈1..n · ai ∈ gi} , (2.2)

where for any x ∈ N , x = x. Therefore the set of all unsatisfiable guards con-
sists of all possible combinations of the negations of literals from each reachable
transition.

A remark is in order regarding the correctness of our definition of q# with
respect to the definition of q# presented in the original paper by Bonsangue et al.
[29]. Let (·)◦ be a function that maps guards to logical formulæ in disjunctive
normal form:
�

a11 · · · a1m1 , . . . , an1 · · · anmi

�◦
= (a11 ∧ · · · ∧ a1m1) ∨ . . . ∨ (anm1 ∧ · · · ∧ anmi),

where each aik is a literal and n, mi, i ∈ N. Let q† = ¬(guards(q)◦) be the definition
of q# in the original formulation of Reo automata [29]. We prove that the two
definitions of q#, i.e., q# as defined above and q†, are equivalent. Before relating q†

to q# we establish an auxiliary result.

2.2.10. LEMMA. Let
�

aij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi
�

be a set of literals. Then

n�

i=1




mi�

j=1
aij



 =
�

�
n�

i=1
aij

��� 1 ≤ j ≤ mi

�
.

Proof. We proceed by induction on n. The base case when n = 1 is trivial. As to
the induction step, using the distributive laws for ∧ and ∨:

�n+1
i=1

��mi
j=1 aij

�
=

�n
i=1

��mi
j=1 aij

�
∧

��mn+1
j=1 an+1,j

�

=
���n

i=1 aij
�� 1 ≤ j ≤ mi

�
∧

��mn+1
k=1 an+1,k

�

=
�mn+1

k=1
�� ��n

i=1 aij
�� 1 ≤ j ≤ mi

�
∧ an+1,k

�

=
�mn+1

k=1
�� ��n

i=1 aij ∧ an+1,k
�� 1 ≤ j ≤ mi

��

=
���n

i=1 aij ∧ an+1,k
�� 1 ≤ j ≤ mi, 1 ≤ k ≤ mn+1

�

=
���n+1

i=1 aij
�� 1 ≤ j ≤ mi

�
. ✷

Based on Lemma 2.2.10 we have the following.

2.2. REO 33

2.2.11. PROPERTY. q† = (q#)◦.

Proof. Suppose guards(q) = {g1, . . . , gn}, and let gi = ai1 · · · aimi , for i ∈ 1..n. On
the one hand, by the definitions and the De Morgan laws we have:

q† = ¬(guards(q)◦) = ¬

n�

i=1

mi�

j=1
aij =

n�

i=1

mi�

j=1
aij.

On the other hand, by the definition of (·)◦ we have

(q#)◦ =
�

�
n�

i=1
ai

��� ai ∈ gi

�
=

�
�

n�

i=1
aij

��� 1 ≤ j ≤ mi

�

because ai ∈ gi if and only if ai = aij for some j where 1 ≤ j ≤ mi. Now the
property follows directly from Lemma 2.2.10. ✷

Finally, we define the compatibility of two guards g1 and g2 in N ∪N , written as
g1 � g2, as follows.

g1 � g2 ⇐⇒ g1 ∩ g2 ⊆ N ∧ ∀a ∈ g1g2 · a /∈ g1g2.

The first part of the definition of g1 � g2 states that g1 and g2 cannot expect the
context to negate the same port, i.e., x cannot occur in both guards, for any x ∈ N .
When x appears in both guards then they cannot rely on each other to give ‘reason’
for the absence of dataflow on the port x, an issue explained in more detail in
Chapter 4. The second part simply states that if a literal and its negation both
occur in g1 and g2 they cannot be compatible. We use q# and � in the definition
of the product of normalised Reo automata, presented as Definition 2.2.12.

2.2.12. DEFINITION (PRODUCT OF NORMALISED Reo AUTOMATA).
Let Ai = �Qi,Ni,→i�, where i ∈ {1, 2}, be two normalised Reo automata, and let
s = N1 ∩N2 the set of shared ports over which A1 and A2 must synchronise. The
product of the two automata is

A1 �� A2 = �Q1 × Q2,N1 ∪N2,→� ,

and the transition relation → is given by the following conditions, where we write
g \ s to denote the guard g after removing all the literals in s.

34 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

(q1, q2)
g1g2\ss | X1X2\s
−−−−−−−−−→ (p1, p2) if

q1
g1|X1
−−−→1 p1, q2

g2|X2
−−−→2 p2, g1 � g2, and X1 ∩N2 = X2 ∩N1 (2.3)

(q, p)
gg� |X
−−−→ (q�, p) if

q
g|X
−−→1 q�, g� ∈ q#, g� g�, and X ∩N2 = ∅ (2.4)

(q, p)
gg� |X
−−−→ (q, p�) if

p
g|X
−−→2 p�, g� ∈ p#, g� g�, and X ∩N1 = ∅ (2.5)

�

Condition 2.3 in Definition 2.2.12 is very similar to the composition of con-
straint automata in Definition 2.2.6. The main differences are (1) the shared ports
s are removed from the label, (2) the guards must be compatible by not sharing any
atom of the form x, and (3) the data constraints do not play any role. The Reo au-
tomata model disregards data constraints to focus on context dependency, but the
data constraints can be added orthogonally. The conditions (2.4) and (2.5) repre-
sent the transitions build from only one of the original automata. In the constraint
automata model the same goal was achieved by assuming an ‘empty’ transition

q ∅,tt
−−→ q for every state q of every constraint automaton. In the normalised Reo

automata model we add conjunctively to each guard g another guard g� ∈ q# that
confirms that no transition of the other automaton is ignored.

2.2.13. EXAMPLE. We now present the product of the Reo automata A�
L and A�

F, of
the context dependent LossySync and the FIFO1 channels depicted in Figure 2.5.
The product of these two automata is given by A�

L �� A�
F, presented in Figure 2.6.

When compared to the constraint automata of the LossySync and the FIFO1 chan-
nels, presented in Example 2.2.7, we find two main differences. First, the port b is
hidden in the final system because it is a shared port of A�

L and A�
F. Second, and

most importantly, the behaviour changes in the sense that there is no transition
that loops around the state (q, empty). In the constraint automata model of this
connector, this self transition corresponds to the possibility of data flowing on a
and being lost by the LossySync channel. Note that empty# = {b}. Therefore the

transition q
ab|a
−−→ q of the context dependent LossySync cannot be included in the

resulting automaton because for the guard b we do not have ab� b, more specif-
ically ab ∩ b � N , as required by the condition (2.3) of Definition 2.2.12. That is,
the automaton A�

F, while empty, requires that the port b must have dataflow when
data is available.

♦

2.3. LINDA 35

A�
L �� A�

F = q, empty q, full a a

a a

c c

ac c

Figure 2.6: Composition of the Reo automata A�
L and A�

F.

2.3 Linda

Linda, introduced by Gelernter [54], is seen by many as the first coordination lan-
guage. We describe it using two different semantics, and show in the next chap-
ter how it can be modelled in our distributed framework. Linda is based on the
generative communication paradigm, which describes how different processes in a
distributed environment exchange data. In Linda, data objects are referred to as
tuples, and multiple processes can communicate data using a shared tuple-space,
where they can write or read tuples, as depicted in Figure 2.7.

P1

Pn

...
Shared

tuple-space

action

action

Figure 2.7: Communication between processes and a tuple-space in Linda.

Communication between processes and the tuple-space is done by actions ex-
ecuted by processes over the tuple-space. In general, these actions can occur only
atomically, that is, the shared tuple-space can accept and execute an action from
only one of the processes at a time. There are four possible actions, out(t), in(s),
rd(s), and eval(P), explained below.

• out(t) – Denotes the output of a tuple (data value) t from a process, to be
stored in the shared tuple-space. Note that t can be stored multiple times,
that is, the shared tuple-space is modelled by a multi-set.

• in(s) – Denotes the removal of a tuple t from the tuple-space and the sending
of t to the process, where s and t are related by a binary match relation. We
describe the match relation in more detail below.

• rd(s) – Similar to the in(s) action, except that the tuple t is not removed
from the tuple-space.

36 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

• eval(P) – Denotes the creation of a new process P that will run in parallel
with the other processes. In the literature [54, 90, 33] each process P is also
referred to as an active tuple, as opposed to passive tuples that represent data
values.

More specifically, we write s and t to range over tuples, and we define each
tuple to be a sequence of parameters, generated by the following grammar, where
X ranges over a set of variables.

t ::= v ∈ D
�� X

�� t; t

We denote by Tuple the set of all tuples generated by the above grammar. Each
parameter can be a data value v from a domain D (an actual parameter), or a
variable x (a formal parameter). The interaction between processes and the tuple-
space is based on a pattern-matching relation between tuples. We say t matches s
if t has only D values, and there is a substitution γ whose domain is the set of free
variables of s, such that t = s[γ], where s[γ] denotes the tuple s after substituting
variables in s according to γ. We write t γ-matches s when t matches s and t =
s[γ].

Several variations of Linda were introduced later, such as Java’s popular im-
plementation JavaSpace of Jini [51], and the Klaim language [26], which considers
multiple distributed tuple-spaces. Other implementations of Linda can also be
found in widespread programming languages such as Prolog [97], Ruby (Rinda),5

Python (PyLinda),6 C++ (CPPLINDA),7 Smalltalk [95], and Lisp [47]. Individ-
ual tuple operations in Linda-like languages are atomic, but they do not provide
the global synchronisation supported by Reo. In the remaining of this section we
formalise Linda using the Linda-Calculus[43], and give both course-grained and
fine-grained operational semantics for the Linda-Calculus.

The Linda-Calculus

We use the Linda-Calculus model, described by Goubault [43], to give a formal
description of Linda, studied also by Ciancarini et al. [33] and others. The Linda-
Calculus abstracts away from the local behaviour of processes, and focuses on the
communication primitives between a store and a set of processes. Processes P are
generated by the following grammar.

P ::= Act.P
�� X

�� recX.P
�� P ✷ P

�� end (2.6)

Act ::= out(t)
�� in(s)

�� rd(s)
�� eval(P) (2.7)

5
http://ruby-doc.org/stdlib/libdoc/rinda/rdoc/index.html

6
http://code.google.com/p/pylinda/

7
http://sourceforge.net/projects/cpplinda/

http://ruby-doc.org/stdlib/libdoc/rinda/rdoc/index.html
http://code.google.com/p/pylinda/
http://sourceforge.net/projects/cpplinda/

2.3. LINDA 37

The first case Act.P represents the execution of a Linda action. The produc-
tions X and recX.P are used to model recursive processes, where X ranges over
a set of variables, and P ✷ P is used to model local non-deterministic choice. We
assume that Linda processes do not have free variables, i.e., every X is bound by
a corresponding recX. Finally end represents termination.

We model a Linda store as a multi-set of tuples from Tuple. We use the ⊕ oper-
ator to denote multi-set construction and multi-set union. For example, we write
M = t ⊕ t = {|t, t|} and M ⊕ M = {|t, t, t, t|}, where t is a tuple and {|s, t|} denotes
a multi-set with the elements s and t.

A tuple-space term M is a multi-set of processes and tuples, generated by the
grammar M ::= P | t | M ⊕ M. We adopt the approach of Goubault and provide
an operational semantics for the Linda-Calculus.

We present a set of inference rules that give the operational semantics of the
Linda-Calculus. The relation match ∈ Tuple × Tuple, described in the beginning of
this section, represents the matching of two tuples, and P[γ] denotes the process
P after replacing all of its the free variables according to the substitution γ. We
also write γ = P�/x to denote the substitution of x by the process P�.

2.3.1. DEFINITION (ITS-LINDA). The interleaved transition system for Linda is de-
fined by the inference rules below.

M ⊕ eval(P).P�
−→ M ⊕ P ⊕ P� (eval)

M ⊕ out(t).P −→ M ⊕ P ⊕ t (out)

M ⊕ rd(s).P ⊕ t −→ M ⊕ P[γ]⊕ t if t γ-matches s (rd)

M ⊕ in(s).P ⊕ t −→ M ⊕ P[γ] if t γ-matches s (in)

M ⊕ P[recX.P/X] −→ M ⊕ P�

M ⊕ recX.P −→ M ⊕ P�
(rec)

M ⊕ P ✷ P�
−→ M ⊕ P (left)

M ⊕ P ✷ P�
−→ M ⊕ P� (right)

M ⊕ end −→ M (end)

We use ITS to denote the above transition system. �

The semantics described by the interleaved transition system for Linda follows
a coarse grained approach, and assumes that every two actions must occur in an in-
terleaved way, but never simultaneously. A fine grained approach assumes that
multiple actions can occur at the same time. We augment the interleaved tran-
sition system for Linda with an additional inference rule that captures the fine
grained alternative as follows.

38 CHAPTER 2. DATAFLOW-ORIENTED COORDINATION MODELS

2.3.2. DEFINITION (MTS-LINDA). The multistep transition system for Linda is de-
scribed by the ITS-Linda semantics augmented with the following inference rule.

M1 −→ M�
1 M2 −→ M�

2
M1 ⊕ M2 −→ M�

1 ⊕ M�
2

(par)

We use MTS to denote this new transition system. �

Consider the following sequence of transitions of a tuple-space term in the
Linda-Calculus, illustrating the sending of data between two processes.

rd(42, x).P(x)⊕ out(42, 43).end ⊕ in(42, x).P�(x)
→ rd(42, x).P(x)⊕ end ⊕ in(42, x).P�(x)⊕ �42, 43� (out)

→ rd(42, x).P(x)⊕ in(42, x).P�(x)⊕ �42, 43� (end)

→ P(43)⊕ in(42, x).P�(x)⊕ �42, 43� (rd)

→ P(43)⊕ P�(43) (in)

This simple example illustrates how the communication of processes is modelled
in Linda. We use the notation P(x) as syntactic sugar to denote a process P where
the variable x occurs freely. In the first step the process out(42, 43).end writes
a tuple �42, 43� into the tuple-space, and in the second step the process end is
dropped. In the third step the process rd(42, x).P(x) requests a tuple whose first
element is 42, and reads the tuple �42, 43�. The use of the action rd instead of the
action in results in a non-destructive read, that is, the tuple �42, 43� is not removed
from the tuple-space. The use of the destructive read in is performed in the forth
step, removing the tuple �42, 43� from the tuple space.

In this chapter we presented existing models for coordination, namely for Reo

and Linda, focusing in synchronisation and in dataflow constraints. To avoid de-
scribing our approach to distribute all of these models, we will introduce in the
next chapter a more general model, the stepwise coordination model. We will
show how to instantiate each of the models described in this chapter into the
stepwise model, which captures only the relevant concepts of our distributed ap-
proach.

Chapter 3

A stepwise coordination model

3.1 Introduction

In this thesis we study the distributed implementation for a class of coordination
languages, in particular the Reo coordination language. Having presented some
concrete coordination models in Chapter 2, we take a step back and present a
more abstract model that focuses on the aspects of coordination relevant for dis-
tributed implementation. We call this model the stepwise coordination model, where
the coordination behaviour is described by a state-based formalism which we call
behavioural automata. The goal of the stepwise coordination model is to justify the
assumptions required by the Dreams framework, which is largely independent of
all the specific semantic models mentioned for Reo. The Dreams framework is
described later in Chapters 6 and 7. Also, we want to accommodate several ex-
isting concrete models that can be implemented in the Dreams framework. For
example, the constraint automata model for Reo can naturally be formulated in
the stepwise coordination model, by considering each transition in the stepwise
coordination model to correspond to a specific dataflow in a Reo connector. Our
model can also capture other aspects of coordination, such as context sensitivity,
and does not require the assumption of a finite state space.

The stepwise coordination model serves as the basis for an implementation.
The presentation of the model borrows ideas from the Tile model [53, 14], distin-
guishing evolution in time (execution of the coordination system) and evolution
in space (composition of coordination systems). The key aspects of the stepwise
coordination model are composability of the coordination process and the atomicity
of the execution of actions.

Composability We say a model is composed if it results from the composition
of smaller building blocks. However, not every composed model possesses the
property of composability. The composability property holds for a model based
on a set of attributes of interest: a model is composed if it allows the attributes

39

40 CHAPTER 3. A STEPWISE COORDINATION MODEL

of interest of a composed model to be derived as a composition of the attributes
of interest of its building blocks. In the present setting, the attributes of interest
concern where and which data flow.

Atomicity Coordination occurs in discrete steps, called rounds. Each round re-
quires the consensus of a number of building blocks to be performed atomically.

We postpone the discussion of how the notions of composability and atomicity
relate to similar notions in the literature until §3.7.

We start by briefly describing the main concepts underlying the stepwise coor-
dination model, and how the model will be used. The stepwise model is an exoge-
nous coordination model, that is, we distinguish the elements being composed—
the components—from the part coordinating the communication of these—the
coordinator. See Figure 3.1(a). In the stepwise model, the behaviour of a system
is described by behavioural automata. We take a bottom-up approach and start
by describing atomic steps and concurrency predicates, the core ingredients of be-
havioural automata, before presenting the full definition of behavioural automata
and its composition operator.

The stepwise model is composed because the behavioural automaton of the co-
ordinator can be composed of more primitive behavioural automata. We represent
this composition by the binary operator · �� · . In Figure 3.1(b) we give a graphical
representation for a possible definition of the coordinator as the behavioural au-
tomaton b, resulting from the product of simpler behavioural automata, denoted
by b1 �� b2 �� b3.

Component c1

Component cn

Coordinator b

b1

b2

b3

(a) (b)

Figure 3.1: Diagrams representing (a) a system where n components are attached
to a single coordinator with behavioural automaton b, and (b) a more fine grained
representation of the coordinator, whose behavioural automaton is given by the
product b1 �� b2 �� b3.

A behavioural automaton consists of a labelled transition system where labels
are atomic steps, and each state has an associated concurrent predicate that guides
the composition of atomic steps. More precisely, we say a behavioural automaton
is a tuple

�Q, L,→,O� ,

3.2. PRELIMINARIES 41

where Q is a set of states, L is a set of labels, →⊆ Q × L× Q is a transition rela-
tion, and O : Q → CP maps each state to its observation in CP, which stands for
‘concurrency predicates’ over labels and will be used to guide the composition of
behavioural automata. We will define atomic steps and concurrency predicates
based on labels of transition systems from L. The atomicity aspect is captured by
the labels of behavioural automata transitions. A label represents a step in the
system that has to be performed atomically. The composition of behavioural au-
tomata is based on the composition of labels and on concurrency predicates, as we
explain later.

Organisation of the chapter We provide some preliminaries in §3.2 where we
introduce our notation and recall the definition of labelled transition systems. We
define labels, atomic steps, and concurrency predicates in §3.3, and present be-
havioural automata in §3.4. We discuss some practical consequences of our model
in §3.5, namely locality properties and how to group similar atomic steps. In §3.6
we describe the instantiation process of concrete coordination languages as be-
havioural automata, including the encoding of constraint automata in §3.6.1, the
encoding of normalised Reo automata in §3.6.2, and the encoding of the two se-
mantics for Linda-Calculus in §3.6.3. We wrap up with some discussion and con-
clusions in §3.7 and §3.8, respectively.

3.2 Preliminaries

We consider the coordination of a system as a set of constraints over the exchanges
of data observed on a given set of ports and their flow between these ports. A port
is an abstraction of a variable or an object that produces, consumes, or transports
data, used to communicate values between elements of a coordination system. We
assume a global set of ports, written as P, and for each x ∈ P we write �x to denote
the data value flowing through the port x in a specific round.1 We write D to
represent a global (possibly infinite) data domain. Given a set of ports P ⊆ P, we
define �P = {�x | x ∈ P} to be the set of values �x ∈ D that flow through the ports in
P. A set of ports is often referred to as an alphabet.

Notation 2A denotes the powerset of A. f : A → B is a function with domain
A and codomain B. A � B is a partial mapping from A to B, and is a shorthand
for A → (1 + B) where 1 = {⊥}. We write {a1 �→ b1, . . . , an �→ bn} to denote a
partial map m in A � B, where ai ∈ A, bi ∈ B, m(ai) = bi, and m(a) = ⊥ for
a ∈ A\ {a1, . . . , an}. We also use the shorthands {a1, . . . , an �→ b1, . . . , bn} and

1In the setting of automata models for Reo one can interpret the set P as the set N of port names,
presented in Sections 2.2.2 and 2.2.3.

42 CHAPTER 3. A STEPWISE COORDINATION MODEL

{ai �→ bi}
n
i=1 to denote the partial mapping {a1 �→ b1, . . . , an �→ bn}. For a partial

mapping m : A � B, we write dom(m) to denote the elements in A for which m
is defined, and codom(m) to denote the set B. For a pair of mappings m1, m2, we
write m1 �m2 to denote that ∀x ∈ dom(m1) ∩ dom(m2) · m1(x) = m2(x), and say
m1 and m2 are compatible.

We represent the evolution over time of a coordination system by a labelled
transition system (LTS) with an observation function of states, where the labels of
the transition relation range over a set Lb, and its states have observables in a set
Obs. The labels denote steps performed by the coordination system, while obser-
vations denote properties of each state that we use later to compose behavioural
automata.

3.2.1. DEFINITION (LTS). A labelled transition system over the labels Lb and the
observations Obs is a tuple �Q, Lb, Obs,→,O� where:

• Q is a set of states,

• Lb is a set of labels,

• Obs is a set of observations of states,

• O : Q → Obs is an observation function, and

• →⊆ Q × Lb × Q is a transition relation. �

An example of a labelled transition system is the classical non-deterministic
automaton, where the labels of each transition are taken from some alphabet Lb,
and each state has an observable value of true or false, indicating whether the state
is final or not. The stepwise coordination model we propose is a refinement of an
LTS, where labels correspond to possible atomic executions of the system, and ob-
servations are conditions required to compose LTS’s, represented by concurrency
predicates, both notions defined below.

3.2.2. EXAMPLE (ALTERNATING COORDINATOR). We present a toy example of an
alternating coordinator to illustrate the concepts introduced so far. The alternating
coordinator is represented by AC in Figure 3.2(a). It receives data from two dif-
ferent data writers W1 and W2, and sends data to a reader R. The components
W1, W2 and R are connected, respectively, to the ports a, b and c of the alternating
coordinator. The alternating coordinator describes how data can flow between
the connectors, and coordination is specified by the labelled transition system de-
picted in Figure 3.2(b). Each transition of this labelled transition system represents
a possible step in time of the coordinator AC, describing how the ports a, b, and
c can have dataflow. Initially, the coordinator is in state q0, where only one step
can be performed. This step consists of reading a value w from W1 through a and

3.3. ATOMIC STEPS AND CONCURRENCY PREDICATES 43

sending it to the reader R through c, while reading and buffering a value v sent
by W2 through b. Note that if only one of the writers can produce data, the step
cannot be taken, and the system cannot evolve. In the next state, q1, also only one
step is possible. In this step, the value v is sent to the reader R, and the coordina-
tor returns to state q0. The arrows between states () represent the transition
relation →. In both states there is the possibility of allowing the concurrent ex-
ecution of other automata, provided that this execution does not interfere with
the current behaviour. The conditions of when other automata can execute con-
currently are captured by the observation function O, represented in the diagram
by squiggly arrows () from the corresponding state. We will continue the
example later. ♦

W1

W2

AC R

a

b

c
q0 q1(v)

O(q0) O(q1(v))

s1(v, w)

s2(v)

s1(v, w) = read w from a, read v
from b, and write w to c

s2(v) = write v to c

(a) (b)

Figure 3.2: Alternating coordinator (a), and its behavioural automaton (b).

3.3 Atomic steps and concurrency predicates

The key ingredients of behavioural automata are atomic steps and concurrency
predicates. Each label of a behavioural automata has an associated atomic step in
the set AS, which captures the aspects such as the ports that have flow and the
data flowing though them, and each state has an associated concurrency predi-
cate, which describes which labels from other systems executing in parallel can be
performed independently. We start by describing atomic steps and then introduce
concurrency predicates.

3.3.1 Labels and atomic steps

An atomic step is an abstraction of a basic action that a system can perform. The no-
tion of an atomic step plays a fundamental role in the definition of a behavioural

44 CHAPTER 3. A STEPWISE COORDINATION MODEL

automaton. We assume a global set of labels L for behavioural automata, a global
set of atomic steps AS, and a global function α : L → AS that associates each label
to an atomic step. Recall also that P is a global set of ports and D is a global set of
data values. We characterise the composition of labels based on their atomic steps,
and define the composition of behavioural automata based only on the composi-
tion of atomic steps and on concurrency predicates. An atomic step is defined
over a set of ports P ⊆ P, and describes which ports can have dataflow, and how
data on different ports relate to each other.

3.3.1. DEFINITION (ATOMIC STEP). An atomic step over the alphabet P is a tuple
�P, F, IP, OP, data� where:

• P ⊆ P is a set of ports;

• F ⊆ P is the flow set;

• IP ⊆ F is a set of relevant input ports;

• OP ⊆ F is a set of relevant output ports;

• IP ∩ OP = ∅ relevant input and output ports are disjoint; and

• data : (IP ∪ OP) → D is a data function. �

The flow set F is a set of ports that synchronise, i.e., that have data flowing in the
same atomic step. The sets IP and OP represent the input and output ports of the
atomic step that have dataflow, and whose values are considered to be relevant
when performing a step. Ports in F but not in IP or OP are ports with dataflow,
but whose data values are not relevant, that is, they are used only for imposing
synchronisation constraints. The data values that flow through the relevant ports
are given by the data function data. We distinguish IP and OP to capture the
notion of data dependencies that we use in the Dreams framework, and we do
not relate these sets with source or sink ports. The intuition is that input ports
are matched against output ports from elsewhere, and every input port must be
given a value by a matched output port or an explicit environment function. Later
in this chapter we explore the use of input ports and output ports to capture data
dependency in more detail.

Notation We write AS[P] to denote the set of all atomic steps over the ports in
P, and L[P] to denote the set of all labels � such that α(�) ⊆ AS[P]. We use AS and
L as shorthands for AS[P] and L[P], respectively. For simplicity, we write a1 . . . an
instead of {a1, . . . , an} in the definition of atomic steps when the intention is clear
from the context.

Consider the example of a set of labels with flow on the ports a, b, c and x, y,
whose intended behaviour is to receive data, natural numbers say, from a, b and c,

3.3. ATOMIC STEPS AND CONCURRENCY PREDICATES 45

and to produce data through x and y. Furthermore, the data value produced on x
should be the maximum of the data values obtained through a and b, if available,
and data should flow from c to y directly. If x does not produce data values then
there is no dataflow. The relevant input and output ports are therefore defined
as IP = {a, b, c} and OP = {x, y}, respectively. We choose the flow set to be
F = IP ∪ OP, and assume that P is a set of ports containing at least F. Finally, we
define the data domain D to be N, and the data function data[v1, v2, v3] as follows:

data[v1, v2, v3] = {a �→ v1, b �→ v2, c �→ v3, x �→ max(v1, v2), y �→ v3} (3.1)

where max is the standard maximum function on N. We characterise these labels
by the set S of their associated atomic steps as follows.

S = {�P, F, IP, OP, data[v1, v2, v3]� ∈ AS | v1, v2, v3 ∈ D}

The set S reflects that data flow from a and b to x, and from c to y. Using the
notation �z for the dataflow on a port z we can represent the set of atomic steps
over a set of ports P as

�x := max(�a,�b) and �y := �c

concisely describing the choice of the data values, max(�a,�b) and �c, flowing on x
and y in terms of the dataflow on a, b, and c.

Composition of labels

Let α : L → AS be a mapping from labels in L to atomic steps in AS, and let
�1, �2 ∈ L be two labels. We assume to be given a binary composition operator ⊗
on the set of labels L, such that certain properties hold for α(�1 ⊗ �2), described
below. We also write α(�1)⊗ α(�2) to denote the atomic step α(�1 ⊗ �2).

Composing �1 and �2 can be intuitively understood as “what is the step for a
system where part of it can perform �1 and another part can perform �2”. Such a
composition may not always be possible. Hence, ⊗ : L2 � L is a partial mapping.
Moreover, for technical convenience, we require ⊗ to be associative and to have
an identity element, denoted by idL. Thus, (L,⊗) is assumed to be a commutative
partial monoid �L,⊗�.2 Below we will require for two labels �1 and �2 in L with
atomic steps α(�1) = �P1, F1, IP1, OP1, data1�, α(�2) = �P2, F2, IP2, OP2, data2�, the
composition �1 ⊗ �2 to be defined (but not necessarily exclusively) if the alphabets
P1 and P2 are disjoint. We say �1 and �2 are incompatible if �1 ⊗ �2 is undefined,
which means that �1 and �2 cannot be performed simultaneously. If �1 and �2 are
compatible, then α(�1 ⊗ �2) = �P, F, IP, OP, data� satisfies:

2Not to be confused with partially commutative monoids, or partially trace monoids, where com-
mutativity is partial [80].

46 CHAPTER 3. A STEPWISE COORDINATION MODEL

• P ⊆ P1 ∪ P2;

• IP ⊆ (IP1 ∪ IP2)\(OP1 ∪ OP2);

• data1 � data2;

• F ⊆ F1 ∪ F2;

• OP ⊆ OP1 ∪ OP2; and

• data = data1 ∪ data2.

Based on these conditions we require the identity to be idL to be such that α(idL) =
�∅, ∅, ∅, ∅, ∅�. We introduced the notation m1 �m2 in §3.2 to represent that the
values of the common domain of mappings m1 and m2 match. The requirements
on the sets IP and OP reflect that when composing two atomic steps, the input
ports that have an associated output port are no longer treated as input ports
(since the dependencies have been met), and the output ports are combined.

3.3.2. EXAMPLE. Consider three labels �1, �2 and �3 with atomic steps α(�i) = si
defined below, where D = N and where we write abc instead of {a, b, c}, etc.

s1 = �ab, ab, a, b, {a, b �→ 3, 5}�
s2 = �bc, bc, b, c, {b, c �→ 5, 7}�
s3 = �cd, c, ∅, c, {c �→ 6}�

It is possible to define ⊗ such that s1 ⊗ s2 = �abc, abc, a, bc, {a, b, c �→ 3, 5, 7}�.
An alternative definition can also yield s1 ⊗ s2 = �abc, ac, a, c, {a, c �→ 3, 7}�. In
the alternative definition we ignore the flow of data on b after the composition,
because it has become internal. However, s2 ⊗ s3 has to be undefined, because
their data functions are not compatible: {b, c �→ 5, 7}�/ {c �→ 6}. The opposite
holds for the composition s1 ⊗ s3, which has to be always defined because ab ∩
cd = ∅. ♦

3.3.2 Concurrency predicates

We introduced atomic steps associated to labels of behavioural automata by a
function α. We now introduce concurrency predicates to represent observations of
states by a function O. The intuition is that labels from two systems can be exe-
cuted together (composing their steps using ⊗), but they can also be executed in
parallel, independent of each other, using the concurrency predicates to control
when a label from a system can be interleaved with those from the other system.
Recall that we assume a global set of ports P, a global set of labels L = L[P], and
a global set of atomic steps AS = AS[P].

3.3.3. DEFINITION (CONCURRENCY PREDICATE). A concurrency predicate is a set of
labels in L. We write CP to denote the set 2L of all concurrency predicates. For
C ∈ CP and � ∈ L, we write C(�) to denote � ∈ C. �

3.3. ATOMIC STEPS AND CONCURRENCY PREDICATES 47

For a given state q, an observation function O, and a label �, the concurrency
predicate O(q)(�) can be understood as “the label � from another behavioural au-
tomata can be executed”. The name “concurrency predicate” reflects the main
goal of these observations: concurrency of systems. More specifically, the concur-
rency predicate describes when two systems can execute independently, by listing
for each state the set of labels that do not affect the choice of the next transition.
The composition of concurrency predicates is simply the intersection of sets, i.e.,
the composition of two concurrency predicates C1 and C2 is C1 ∩ C2. Unlike the
composition of labels, the composition of concurrency predicates is total, i.e., any
two concurrency predicates can be composed.

The motivation for introducing concurrency predicates is twofold. First, it cap-
tures a similar notion from various Reo models: the constraint automata model
assumes that every state has the transition ∅, tt (Definition 2.2.3), and the Reo au-
tomata model uses the condition q# when composing automata (Definition 2.2.12).
We believe that this separation between steps and concurrency predicates is more
natural than assuming the existence of specific steps to make the composition be-
have as expected. Second, by making explicit a condition that describes when
steps can be executed concurrently, we do not need to globally evaluate the coor-
dination constraints. Hence, certain labels can be executed locally in a distributed
environment independently of other systems running in parallel.

Notation In most of the following examples it is enough to define the observa-
tion of a state based on the atomic steps of the labels of other systems. For these
cases, we introduce a notation to quickly define a concurrency predicate consist-
ing of all labels that do not have dataflow in a set of ports P0. We write cp(P0) to
denote the concurrency predicate

cp(P0) = {� | α(�) = �P, F, IP, OP, data� , P0 ∩ F = ∅} . (3.2)

Example

Recall the running example of the alternating coordinator from §3.2 on page 42. In
Figure 3.2(b) we described each label and observation informally. In Table 3.1 we
define each of these textual labels as atomic steps and concurrency predicates. In
all transitions, the alphabet P is always {a, b, c}, and the observations only allow
steps where none of the known ports has flow.

When composing two behavioural automata, the composition of labels is used
to combine all possible pairs of labels from the two automata, and the concurrency
predicates are used to include all labels that can be executed independently. In
the next section we study in more detail labelled transition systems where labels
have associated atomic steps and states have associated concurrency predicates,
assuming a possible definition for the composition of atomic steps.

48 CHAPTER 3. A STEPWISE COORDINATION MODEL

Labels Atomic steps

s1(v, w) – �P, abc, ab, c, {a, b, c �→ w, v, w}�

s2(v) – �P, c, ∅, c, {c �→ v}�

States CP

q0 – cp(P)
q1(v) – cp(P)

Table 3.1: Atomic steps of the labels and concurrency predicates of the states of
the alternating coordinator, where v, w ∈ D.

3.4 Behavioural automata

Labels describe each round of the dynamic behaviour of a system. Recall that
we assume a global set of ports P and a global data domain D. We now assume
also a global set of labels L = L[P] with atomic steps AS = AS[P], and with a
composition operator ⊗. Let α be the function that associates labels to atomic
steps. We refine the definition of LTS introduced in §3.2, using labels from L in the
transition relation and concurrency predicates from 2L as observations. We call
the resulting labelled transition systems behavioural automata.

3.4.1. DEFINITION (BEHAVIOURAL AUTOMATA). A behavioural automaton of a sys-
tem over a set of ports P ⊆ P is a labelled transition system

�Q, L[P],→,O� ,

where L[P] is the set of labels over P, → ⊆ Q × L[P]× Q is the transition relation,
and O : Q → 2L is the observation function that maps states to concurrency
predicates. �

Note that we omit set of possible observations with respect to Definition 3.2.1 of la-
belled transition systems, because it is always CP = 2L. The set CP is fixed because
of the assumption of a global set of atomic steps AS. Similarly, we do not include

the function α : L → AS. We also use the notation q1
�
−→ q2 denoting �q1, �, q2� ∈→.

The observation function O returns a concurrency predicate for each state q, such
that for any label � from another behavioural automata, O(q)(�) = true means
that � ∈ O(q), that is, � can execute while the current behavioural automaton is in
state q. We will investigate the local execution of a behavioural automaton further
in this section, exploring properties of the observation function.

Note that no assumption is made regarding the cardinality of the state set Q,
the set of ports P, and the transition relation →. On one hand, assuming a finite
world brings us to finite automata models, where we can formally verify a large
class of properties. On the other hand, we can also assume a black box scenario,
where the set of states, ports, or relations is not provided a priori, or even sce-
narios where these are calculated and given on demand as the system evolves.
This perspective has the advantage of allowing the execution of systems that are

3.4. BEHAVIOURAL AUTOMATA 49

not completely specified. We choose to allow infinite sets of states, ports, and
transitions. Composition can be performed in a stepwise fashion, that is, we can
calculate the possible transitions from the current state resulting from composing
a set of behavioural automata, considering only the transitions from the current
state of each of the behavioural automata involved in the composition. We refer
to a subpart of a behavioural automaton that contains only the states, transitions,
and observations that involve a given state, called the frontier, defined as follows.

3.4.2. DEFINITION (FRONTIER). Let b = �Q, L[P],→,O� be a behavioural automa-
ton and q ∈ Q a state of b. We define b�q �= �Q�, L[P],→�,O�� to be the behavioural
automaton restricted to the state q, called the frontier of b at q, where

• Q� = {q} ∪ {q� | ∃� · q �
−→ q�}

• →�= {�q, �, q�� | q �
−→ q�}

• O� = O�Q�. �
Note that the composition of frontiers, defined bellow, will be again a frontier.

The operator � denotes the standard restriction of functions. It is possible to define
a trace of a behavioural automaton as a sequence of atomic steps, to consider all
traces of a behavioural automaton for a given state, yielding the language accepted
by a behavioural automaton, and setting the stage for the notion of bisimulation.
We will not do this at the abstract level of a behavioural automaton. Instead, we
work out these details for more concrete models below, where more is known
about the definition of atomic steps.

3.4.1 Product of behavioural automata

We now describe the composition of behavioural automata based on the com-
position ⊗ of labels and on the concurrency predicates associated to states via the
observation function O. This composition mimics the composition of existing Reo

models [22, 37, 29].

3.4.3. DEFINITION (PRODUCT OF BEHAVIOURAL AUTOMATA).
The product of two behavioural automata b1 = �Q1, L[P1],→1,O1� and b2 =
�Q2, L[P2],→2,O2�, denoted by b1 �� b2, is the behavioural automaton �Q1 ×

Q2, L[P1 ∪ P2],→,O�, where → and O are defined as follows:

→ =
� �

(p, q), �, (p�, q�)
�
| p �1

−→1 p�, q �2
−→2 q�, � = �1 ⊗ �2, � �= ⊥

�
(3.3)

∪

��
(p, q), �, (p�, q)

�
| p �

−→1 p�, � ∈ O2(q)
�

(3.4)

∪

��
(p, q), �, (p�, q)

�
| q �

−→2 q�, � ∈ O1(p)
�

(3.5)

O(p, q) = O1(p) ∩O2(q) for p ∈ Q1, q ∈ Q2 (3.6)

50 CHAPTER 3. A STEPWISE COORDINATION MODEL

�

Case (3.3) composes all possible combinations of transitions from →1 and →2,
reflecting both behavioural automata executing in parallel. Cases (3.4) and (3.5)
cover the situation where one of the behavioural automata performs a step ad-
mitted by the concurrency predicate of the other. Finally, case (3.6) defines the
composition of two concurrency predicates, given by their intersection.

The empty behavioural automaton �{q} , ∅, ∅,O�, where O(q) = L, is denoted
by 0BA. It is an identity of the operator �� up to isomorphism, defined below. The
isomorphism captures the fact that the state names can differ. We formalise the
properties of 0BA in Proposition 3.4.5.

3.4.4. DEFINITION (ISOMORPHISM OF BEHAVIOURAL AUTOMATA).
Given two behavioural automata b1 = �Q1, L[P1],→1,O1� and b2 = �Q2, L[P2],→2
,O2� we say that b1 and b2 are isomorphic, written as b1 � b2, iff P1 = P2 and there
is a bijection f : Q1 → Q2 such that:

• q �
−→1 q� if and only if f (q) �

−→2 f (q�); and

• O1(q) = O2(f (q)). �

3.4.5. PROPOSITION. We have that 0BA �� b � b and b �� 0BA � b, for every be-
havioural automaton b. ✷

3.4.2 Example: lossy alternator

Recall the behavioural automaton AC of our running example of the alternating
coordinator, illustrated in Figure 3.2, whose atomic steps were formalised in Ta-
ble 3.1. The alternating coordinator has two source ports, a and b, and a sink port
c. Data is received always via ports a and b simultaneously, and sent via port c,
alternating the values received from a and b. We now imagine the following sce-
nario: the data on a becomes available always at a much faster rate than data on
b. To adapt our alternating coordinator to this new scenario, we introduce a lossy-
FIFO1 connector LF and combine it with the alternating coordinator, yielding a
variation of the alternating coordinator LF �� AC.

Recall the definition of cp : P → L given by Equation (3.2), on page 47. The be-
havioural automaton for the lossy-FIFO1 connector is depicted in Figure 3.3, and
its atomics steps range over the set of ports {a, a�}, where a is an input port and
a� is an output port.3 Recall also that the alternating coordinator ranges over the
set of ports {a, b, c}. We depict the interface of both of these connectors on top of
Figure 3.4. After combining the behavioural automata of the two connectors, they

3This lossy-FIFO is also known in the literature [8] as the shift-lossy FIFO1.

3.4. BEHAVIOURAL AUTOMATA 51

empty

full(v)

full(w)

cp(a, a�)

cp(a, a�)

cp(a, a�)

s3(v)

s3(w)
s4(v)

s4(w)

s3(w)s3(v)

s3(v)

s3(w)

where:
s3(v) = �aa�, a�, a�, ∅, {a� �→ v}�
s4(v) = �aa�, a, ∅, a, {a �→ v}�

Figure 3.3: Behavioural automaton of the lossy-FIFO connector.

become connected via their shared port a. The new variation of the alternating
coordinator can then be connected to writers and readers by using the ports a�, b
and c, as depicted at the bottom of Figure 3.4.

LF
a� a

�� AC

a

b

c

LF �� AC

a�

b

c

Figure 3.4: The sink and source ports of LF, AC, and their composition.

Intuitively, the lossy-FIFO connector receives data from the source port a� and
buffers its value before sending it through port a. When the buffer is full it can also
receive data from a�, and the content of the buffer is replaced by the new received
value. The connector resulting from the composition LF �� AC is formalised in
Table 3.2 and in Figure 3.5. The flow sets of the atomic steps of the labels s1(v, w),
s2(v), s3(v) and s4(v) are, respectively, abc, c, a�, and a�a. The set of known ports in
this example is always P = {a�, a, b, c}. Let OLF be the observation function of LF,
and OAC be the observation function of AC. The observation function OLF��AC

52 CHAPTER 3. A STEPWISE COORDINATION MODEL

⊗ s1(u, v) s2(w)

s3(y) ⊥ �P, a�c, a�, c, {a�, c �→ y, w}�

s4(z) ⊥ (for z �= v) ⊥

s4(v) �P, abc, ab, c, {a, b, c �→ v, u, v}� ⊥

LF OLF(empty) OLF(full(v�))

s1(v, w) false false
s2(v) true true

AC OAC(q0) OAC(q1(v�))

s3(v) true true
s4(v) false false

Table 3.2: Atomic steps of the composition of labels from LF and AC (top), and
verification of the concurrency predicate for each label (below).

for LF �� AC results from the intersection of the observations of the states of each
behavioural automaton, and corresponds precisely to the concurrency predicate
cp(a�, a, b, c). Each state in LF �� AC uses two names, the first is the name of a
state from LF, and the second is the name of a state from AC. For simplicity, we
colour two of the states in grey in Figure 3.5 to represent that these two states that
are closely related to their nearest state, and therefore not completely specified.
The main difference between a grey state and the state right next to it is the value
v in full(v). We only draw a few transitions to these disregarded states, to help
to understand the role of these states, without cluttering the diagram with several
similar transitions.

From the diagram it is clear that some transitions originate only from the LF
or the AC connector, while others result from the composition via the operator ⊗.
One can see that the transitions s2(v) and s3(w) can be performed simultaneously
or interleaved; simultaneously because s2(v)⊗ s3(w) is defined, and interleaved
because OLF applied to any of the states of LF contains s2(v) and OAC applied to
any of the states of AC contains s3(w). The possible execution scenarios of these
atomic steps follows our intuition that steps ‘approved’ by concurrency predi-
cates can be performed independently. The steps s1(u, v) and s4(w) can be taken
only when composed, and their composition exists only when the values v and w
match.

3.5 Locality and grouping of atomic steps

We introduce the notion of locality as a property of behavioural automata that
allows ports from different behavioural automata to have always dataflow through
them. Recall that we assume the existence of universal sets of ports P, labels L,
and atomic steps AS.

3.5. LOCALITY AND GROUPING OF ATOMIC STEPS 53

empty, q0 empty, q1(w)

full(v), q0 full(v), q1(w)

cp(a�, a, b, c) cp(a�, a, b, c)

cp(a�, a, b, c) cp(a�, a, b, c)

full(v�), q0 full(v�), q1(w)

s3(v)

s3(v)

s1(w
, v)⊗

s4(v
)

s2(w)

s2(w
)⊗

s3(v
) s3(v)

s3(v)

s2(w)

s2(w)⊗ s3(v)

Figure 3.5: Behavioural automaton for the composition of LF and AC.

3.5.1. DEFINITION (LOCALITY OF BEHAVIOURAL AUTOMATA).
A behavioural automaton b = �Q, L[P],→,O� obeys the locality property if, for any
port set P� such that P ∩ P� = ∅, the following condition holds.

∀� ∈ L[P�] · ∀q ∈ Q · � ∈ O(q). �

Any two behavioural automata with disjoint port sets that obey the locality
property can therefore evolve in parallel in an interleaved fashion. Let b = b1 �� b2
be a behavioural automaton, and � a step from b1. We say � is a local step of b if

(q1, q2)
�
−→ (q�1, q�2) is a transition of b and either q1

�
−→1 q�1 and � ∈ O2(q2), or

q2
�
−→2 q�2 and � ∈ O1(q1)., In the behavioural automaton exemplified in Figure 3.5,

the local steps are exactly the transitions labelled by the steps s2(w) and s3(v).

3.5.2. PROPOSITION. Let b = b1 �� b2 �� b3 be a behavioural automaton where bi =
�Qi, L[Pi],→i,Oi�, for i ∈ 1..3, and assume the locality property from Definition 3.5.1
holds for b1, b2 and b3. Suppose P1 ∩ P3 = ∅. Then, for any step �1 ∈ L[P1] performed
by b1 and q2 ∈ Q2 it holds that

�1 ∈ O2(q2) ⇒ �1 is a local step of b.

Proof. Observe that �� is associative, up to the state names, because the composi-
tion of labels ⊗ is associative. From P1 ∩ P3 = ∅, �1 ∈ L[P1], and from the locality
property in Definition 3.5.1 we conclude that ∀q ∈ Q3 · �1 ∈ O3(q). Therefore, for
any state q3 ∈ Q3 and for a state q2 ∈ Q2 such that �1 ∈ O2(q2), we have that
�1 ∈ O2(q2) ∩ O3(q3). We conclude that �1 ∈ O�, where O� is the observation
function of b2 �� b3, hence a local step of b. ✷

Proposition 3.5.2 has a practical consequence. Consider a composed system
b1 �� · · · �� bn where the locality property holds for each bi. Whenever b1 can

54 CHAPTER 3. A STEPWISE COORDINATION MODEL

perform an atomic step it is sufficient to check the concurrency predicates of its
neighbour systems, i.e., the behavioural automata with shared port sets.

The product of behavioural automata presented in §3.4.1 captures the data-
flow on the relevant ports of a global behavioural automaton. However, when
composing two behavioural automata b1 and b2 into b = b1 �� b2 some informa-
tion regarding internal ports of b might be abstracted away, since it is relevant to
b1 or b2, but not for b. For a centralised implementation where only the global
behaviour is important this abstraction is adequate. In our distributed implemen-
tation of Dreams we need to find a global behaviour b, and for each transition
labelled by � in b we need to find a corresponding transition labelled by �1 in b1
and by �2 in b2, such that �1 ⊗ �2 = �. The underlying coordination models of our
distributed implementation guarantee that we can always recover the atomic step
of each component from a global atomic step. We now explore in more detail the
process of recovering the atomic steps for each component.

Let b = b1 �� · · · �� bn, where b = �Q, L[P],→,O� and bi = �Qi, L[Pi],→i, Oi�.
A simple approach to recover the information about each of the original atomic
steps is to assume the existence of a projection function that is built during the
composition of b1, . . . , bn, which maps each of the labels � in the transitions of b to
a set of atomic steps �1, . . . , �n, such that each �i is a label of bi and � = �1 ⊗ · · ·⊗ �n.
For the implementation we go further and, instead of calculating a transition � for
the current round, we calculate a group γ of labels that differ only on the data
values being transferred, using the knowledge about which ports are input ports
(IP).

In each round, our implementation calculates a group of labels γ with atomic
steps with the same sets of known ports, flow ports, input ports, and output ports,
which differ only on their data functions. This group is indexed by an assignment
of data of the input ports, that is, the type of γ is

γ : (IP → D) → L[P] (3.7)

where γ fulfils the condition

∀m : IP → D · α(γ(m)) = �P, F, IP, OP, data� ,

for some fixed F, OP, and where data�m.

The projection of γ to the behavioural automata b1, . . . , bn yields n groups γ1, . . . ,
γn such that γi : (IPi → D) → L[Pi] is characterised as follows.

∀m : IP → D · α(γi(m � Pi)) = �Pi, F ∩ Pi, IP ∩ Pi, OP ∩ Pi, data � Pi�

and γ(m) = γ1(m � P1)⊗ · · · ⊗ γn(m � Pn).

Recall the notation for the compatibility of maps introduced in the beginning
of this chapter, where m1 �m2 holds when the values of m1 and m2 coincide for

3.6. CONCRETE BEHAVIOURAL AUTOMATA 55

the common domain. The intuition for these conditions is that each γ is a group
of atomic steps that share the same ports, parameterised on the values flowing on
their input ports. If the set IP = ∅, then γ can be regarded as a single label.

3.6 Concrete behavioural automata

The stepwise coordination model describes the coordination behaviour as a be-
havioural automaton. A behavioural automaton is an abstraction of concrete co-
ordination models that focuses on relevant aspects to the execution of the coordi-
nation model. As we will argue, Reo and Linda can be cast in our framework of
behavioural automata. Therefore, both Reo and Linda coordination models can
be seen as specific instances of the stepwise model described above. For a concrete
coordination model to fit into the stepwise model, we need to define:

1. labels in the concrete model;

2. the encoding α of labels into atomic steps;

3. composition of labels; and

4. concurrency predicates for states.

We start by encoding the constraint automata and the Reo automata mod-
els as behavioural automata. Later, because of its relevance in the coordination
community as one of the first coordination languages, we also encode Linda as a
behavioural automaton.

3.6.1 Constraint automata as behavioural automata

Recall the constraint automata model (CA) for Reo described in the previous chap-
ter. A constraint automaton A is a tuple �Q,N ,→, Q0� with a set of states Q, a set
of port names N , a transition relation →, and a set of initial states Q0. The transi-
tion relation is a set of triples in Q× 2N × DCN × Q, where each transition label is
a pair X|dc that associate a set of port names X to a dataflow constraints dc. Each
of these pairs X|dc has a set of solutions in CAS = 2N × DCN , whose elements
are written as X|(

�n
i=1 �xi = di) such that X = {x1, . . . , xn} and g =

�n
i=1 �xi = di

is a data assignment that satisfies dc. The CA model assumes a finite data domain
D, and that data constraints such as tt, �a �= d, or �a = �b stand for simpler data
constraints that use �a = d and the operators ∧ and ∨.

The encoding of the constraint automaton A = �Q,N ,→CA, Q0� is the be-
havioural automaton

�A �CA = �Q, L[N],→BA,O�

with L[N], →BA, O, and the composition of labels as follows:

56 CHAPTER 3. A STEPWISE COORDINATION MODEL

LossySync �� FIFO1

q

a tt

ab �a = �b
�� empty full(d)

b �b = d

c �c = d

q, empty q, full(d)

a tt a ttab �a = �b ∧ d = �b

c �c = d

ac �c = d

Figure 3.6: Product of the constraint automata for LossySync and FIFO1.

• L = CAS, and α is defined as:

α(X|
�n

i=1 �xi = di) =
�
N , X, ∅, X, {xi �→ di}

n
i=1

�
.

• We have q
X|g
−−→BA q� for X|g ∈ L[N] if q

X|g�
−−→CA q� and g satisfies g�.

• Let casi = Xi|gi be a solution for a label from a constraint automaton with
ports Ni, where i ∈ 1..2. Then

cas1 ⊗ cas2 =

�
(X1 ∪ X2)|(g1 ∧ g2) if X1 ∩N2 = X2 ∩N1 ∧ g1 � g2
⊥ otherwise

where g1 � g2 if for every shared port x ∈ X1 ∩ X2 and for any d ∈ D, x = d
satisfies g1 iff x = d satisfies g2.

• O(q) = cp(N) for every q ∈ Q. Recall that cp(N) = {� | α(�) = �P, F, IP, OP,
data�, P0 ∩ F = ∅}, introduced in Equation (3.2).

3.6.1. EXAMPLE. We recall from Figure 3.6 the constraint automata AL and AF
for the LossySync and the FIFO1 channels presented in Example 2.2.4 and Exam-
ple 2.2.5. Let AL = �QL,NL,→1, Q1� and AF = �QF,NF,→2, Q2�. The encoding
of AL into behavioural automata is given below, and depicted in the top part of
Figure 3.7.

�AL�CA = �QL, L[NL],→L,OL�

3.6. CONCRETE BEHAVIOURAL AUTOMATA 57

where

QL = {q} NL = {a, b} OL(q) = cp(NL) for q ∈ QL

s1(v) = ab|(�a = v ∧ �b = v) s2(v) = a|(�a = v)
→L = {�q, s1(v), q� | v ∈ D} ∪ {�q, s2(v), q� | v ∈ D} .

Similarly, the encoding of AF into behavioural automata is given below, and
depicted on top of Figure 3.7.

�AF�CA = �QF, L[NF],CP,→F,OF�

where

QF = {empty} ∪ {full(v) | v ∈ D} OF(q) = cp(NF) for q ∈ QF

NF = {b, c} s3(v) = b|(�b = v) s4(v) = c|(�c = v)
→F = {�empty, s3(v), full(v)� | v ∈ D} ∪ {�full(v), s4(v), empty� | v ∈ D}

The product of the constraint automata for LossySync and FIFO1 is presented
on the bottom of Figure 3.6. The composition of �AL�CA �� �AF�CA yields the
behavioural automaton depicted in the end of Figure 3.7, where

s1(v)⊗ s3(v) = ab|(�a = v ∧ �b = v), and

s2(w)⊗ s4(v) = ac|(�a = w ∧ �c = v). ♦

As expected, the behavioural automaton of the composition depicted in Fig-
ure 3.7 is equivalent to the encoding of the constraint automata AL �� AF, de-
picted in Figure 3.6, where each transition in constraint automata is split into sev-
eral transitions in behavioural automata, one for each solution of the data con-
straints.

Discussion The product of the two behavioural automata presented in Exam-
ple 3.6.1 is equivalent to the product of the two associated constraint automata,
presented in Example 2.2.5 in the previous chapter, with respect to the atomic
steps of the labels of the automata. We expect this equivalence to hold in general,
but we do not give a formal proof. The atomic steps associated to the labels of
behavioural automata in our encoding assume all ports with dataflow are out-
put ports, since the constraint automata model does not capture the direction of
dataflow. An existing implementation of the CA model [22, 16] uses a variation
that adds memory to the state, and introduces the notion of dependencies be-
tween ports, which is similar in spirit to our use of input and output variables.
In this implementation data constraints are not used when deciding the coordi-
nation patterns to be executed, and a notion of dependency between ports guides
the decision of which data flows in the connector.

58 CHAPTER 3. A STEPWISE COORDINATION MODEL

�AL�CA �� �AF�CA

q

s2(w)

s1(v)
�� empty full(v)

s3(v)

s4(v)

q, empty q, full(v)

s2(w) s2(w)s1(v)⊗ s3(v)

s4(v)

s2(w)⊗ s4(v)

Figure 3.7: Composition of �AL�CA and �AF�CA, for any v, w ∈ D.

3.6.2 Reo automata as behavioural automata

The encoding of normalised Reo automata as behavioural automata follows the
same reasoning as the formulation of constraint automata, presented in the pre-
vious subsection. Furthermore, labels in the encoded behavioural automata cor-
respond to the labels of the original Reo automaton, because we consider nor-
malised transitions and there are no data constraints.

Recall the normalised Reo automata model (RA) described in §2.2.3. A nor-
malised Reo automaton A is a triple �Q,N ,→� with a set of states Q, a set of
port names N , and a transition relation →. The transition is a set of triples in
Q × RAS× Q, where Q is the set of states and RAS = AtN × 2N is a set of pairs
consisting of guards written as sets of atoms, and sets of port names. A detailed
definition of guards can be found in §2.2.3. We use the name RAS to refer to Reo

automata (atomic) steps.
We define an encoding �·�RA : RA → BA from Reo automata to behavioural

automata, and the composition of atomic steps such that the composition of the
encoded behavioural automata coincides with the encoding of the composition
of Reo automata. Note that we do not show soundness or completeness of the
encoding.

The encoding of the normalised Reo automaton A = �Q,N ,→RA� is the be-
havioural automaton:

�A�RA = �Q, L[N],→BA,O�

with L[N], →BA, and O as follows:

3.6. CONCRETE BEHAVIOURAL AUTOMATA 59

Context dependent LossySync �� FIFO1

q ab ab
ab a �� empty full

b b

c c

q, empty q, full a a

a a

c c

ac c

Figure 3.8: Product of the normalised Reo automata of the context dependent
LossySync and FIFO1 channels.

• L = RAS, and α is defined as follows.

α(g|X) = �N , X, ∅, ∅, ∅�

• We have q
g|X
−−→BA q� if q

g|X
−−→RA q�.

• Let rasi = Xi|gi be a label from a normalised Reo automaton with ports Ni,
where i ∈ 1..2, and let s = N1 ∩N2. Then

ras1 ⊗ ras2 =

�
g1g2\ss | X1X2\s if X1 ∩N2 = X2 ∩N1 ∧ g1 � g2
⊥ otherwise.

Recall that g1 � g2 iff g1 ∩ g2 ⊆ N ∧ ∀a ∈ g1g2 · a /∈ g1g2.

• O(q) =
�

g|X ∈ L
�� X ∩ N = ∅, ∃g� ∈ q# · g� g�

�
. Recall that from Equa-

tion (2.2) that

q# = {a1 · · · an | {g1, . . . , gn} = {g | q
g|X
−−→ q�}, ∀i∈1..n · ai ∈ gi}.

We recall from Figure 3.8 the normalised Reo automata A�
L and AF for the

context dependent LossySync and the FIFO1 channels presented in Figure 2.5.
Let A�

L = �QL,NL,→1� and AF = �QF, NF,→2�. The encoding of A�
L into be-

havioural automata is depicted in the top part of Figure 3.9, and given as follows.

�
A

�
L
�
CA = �QL,AS[NL],→L,OL�

60 CHAPTER 3. A STEPWISE COORDINATION MODEL

where
QL = {q} NL = {a, b} →L = {�q, s1, q� , �q, s2, q�}
s1 = ab|ab s2 = ab|a

OL(q) =
�

g|X ∈ L
�� X ∩NL = ∅, ∃g� ∈ q# · g� g�

�

Similarly, the encoding of AF into behavioural automata is depicted also on
the top part of Figure 3.9, and given by

�AF�CA = �QF,AS[NF],→F,OF�

where
QF = {full, empty} NF = {b, c}
s3 = b|b s4 = c|c

→F = {�empty, s3, full� , �full, s4, empty�}
OL(q) =

�
g|X ∈ L

�� X ∩NF = ∅, ∃g� ∈ q# · g� g�
�

The product of the normalised Reo automata for the context dependent Lossy-
Sync and FIFO1 channels is depicted at the bottom of Figure 3.8. The composition�
A�

L
�
RA �� �AF�RA of the corresponding encodings into behavioural automata

yields the behavioural automaton depicted at the bottom of Figure 3.9, where

s1 ⊗ s3 = a|a, and
s2 ⊗ s4 = ac|ac

Note that full# = b, s2 = a|a, and NF = {b, c}. Therefore s2 ∈ OF(full) because
{a} ∩ {b, c} = ∅, and a� b. Similarly, s4 ∈ O(full). As expected, the resulting
behavioural automaton resembles to the encoding of the constraint automaton
A�

L �� AF, depicted in Figure 2.6.

3.6.3 Linda as behavioural automata

Linda [54], described in §2.3, is a purely asynchronous language where coordi-
nation is performed by managing a single tuple-space, and components send re-
quests to read or write data. We described two possible approaches for modelling
Linda: (1) a coarse grained approach that assumes that actions can occur only in an
interleaved fashion, and (2) a fine grained approach that considers that two com-
ponents can read or write at the same time (in the same atomic step), subject to
data availability and exclusion constraints. These two approaches correspond to
the semantics given by the interleaved transition system (ITS) and the multistep
transition system (MTS) for the Linda-Calculus described in §2.3.

We define two encoding functions, �·�ITS : ITS → BA and �·�MTS : MTS → BA,
from Linda tuple space terms under the semantics given by the interleaved tran-
sition system and the multistep transition system, respectively, to behavioural au-
tomata. Furthermore, we define the composition of atomic steps that preserve

3.6. CONCRETE BEHAVIOURAL AUTOMATA 61

�
A�

L
�
RA �� �AF�RA

q s1
s2

�� empty full

s3

s4

q, empty q, full(v) s2

s1 ⊗ s3

s4

s2 ⊗ s4

Figure 3.9: Composition of
�
A�

L
�
RA and �AF�RA.

the respective semantics. In both cases, we encode each Linda process P as a
behavioural automaton, and we create a special behavioural automaton that de-
scribes the multi-set of available tuples. The diagram in Figure 3.10 depicts the set
of behavioural automata resulting from the application of the encoding functions
to a Linda tuple space term, where bi is the behavioural automaton corresponding
to a process Pi, and bstore is the behavioural automaton that represents the set of
available tuples. The edge between each bi and bstore reflects the synchronisation
of ports caused by the actions of Linda over tuples.

b1

bn

... bstore

Figure 3.10: Outline of the behavioural automata for the tuple space term P1 ⊕

· · · ⊕ Pn ⊕ T.

We do not address the action eval(P), for a Linda process P. The intuitive
semantics of eval(P) is the creation of a new process P that runs in parallel. In
our setting, this corresponds to have a system described by the behavioural au-
tomaton b = bstore �� b1 �� · · · �� bn that evolves to b �� bn+1, where bn+1 is
the behavioural automaton for the newly created process. However, we make the
distinction between reconfiguration of a system, provided by the composition op-
erator, and the evolution of a system, described by the execution of a labelled tran-
sition system. Behavioural automata describes only the evolution process, and the

62 CHAPTER 3. A STEPWISE COORDINATION MODEL

reconfiguration is achieved via the composition operator ��, which is dealt with
orthogonally. Therefore, we consider only actions that change the state of the sys-
tem in time, and we do not consider the eval(P) action because it is regarded as a
reconfiguration of the system. We redefine the possible actions to be generated by
the following grammar.

Act ::= in(t)
�� out(t)

�� rd(t) (3.8)

Let Act = {a | a ∈ Act} and τAct = {τa | a ∈ Act}. A port a is regarded as a
dual port of a, and flow of data on a port τa represents the flow on the ports a and a
simultaneously. The intuition is that the encoding of processes yields behavioural
automata whose ports are actions in Act; the encoding of tuples yield behavioural
automata whose ports are dual actions in Act; and the composition forces actions
and dual actions to synchronise, i.e., to occur simultaneously. We define the global
set of ports to be P = Act ∪ Act ∪ τAct, and define a = a. The encodings for the
fine- (ITS) and coarse-grained (MTS) approaches are defined below.

Notation We write M(X) to denote the multi-sets over X, which is a shorthand
for the functions of type X → N, mapping each element from X to a natural num-
ber. We also write ⊕ for both multi-set construction and union, A(a) to denote the
number of occurrences of a in a multi-set A, and a ∈ A to denote that A(a) > 0.

ITS to BA

Let M = P1 ⊕ · · · ⊕ Pn ⊕ T be a tuple space term (§2.3). In turn, let T = t1 ⊕

· · · ⊕ tm and m ≥ 0. We define the encoding of M into a behavioural automaton
as follows.

�M�ITS = �P1�ITS �� · · · �� �Pn�ITS �� �T�ITS
Hence, encoding M boils down to encoding Linda processes Pi and the Linda
tuple space T. The tuple space and the processes are each encoded separately
into a different behavioural automaton. Recall that match is a binary relation over
tuples such that a tuple t matches a tuple s if t has only D values, and there is
a substitution γ whose domain is the set of free variables of s, and t = s[γ]. We
say t γ-matches s when t matches s and t = s[γ], and we write P[γ] to denote the
process P after replacing all of its the free variables according to the substitution
γ.

In both encodings of components and Linda tuple spaces we define labels L as
ports, that is, L = P = Act ∪ Act ∪ τAct, and its encoding as atomic steps by the
function α defined below.

α(a) =
�

�P, {a, τact} , ∅, ∅, ∅� if a ∈ Act ∪ Act, {act} = {a, a} ∩ Act
�P, {a} , ∅, ∅, ∅� if a ∈ τAct

3.6. CONCRETE BEHAVIOURAL AUTOMATA 63

The composition of two labels a1, a2 ∈ L is defined as follows.

a1 ⊗ a2 =

�
τact if {a1, a2} /∈ τAct ∧ a1 = a2
⊥ otherwise,

where {a} = {a1, a2} ∩ Act. The tuple space is used to enforce every action a
performed by an actor synchronises with the corresponding action a in the tuple
space encoded as a behavioural automaton. The definition of ⊗ replaces every
pair of ports with dataflow a and a by a new port with dataflow in τa.

We now encode a Linda process P as the behavioural automata

�P�ITS = �QP, L,→P,O�

with components as defined below.

• The set of states QP is given by QP = reach(P), where

reach(out(t).P) = {out(t).P} ∪ reach(P)
reach(rd(s).P) = {rd(t).P} ∪ (

�
{reach(P[γ]) | s γ-matches t})

reach(in(s).P) = {in(t).P} ∪ (
�
{reach(P[γ]) | s γ-matches t})

reach(P ✷ P�) = {P ✷ P�} ∪ reach(P) ∪ reach(P�)
reach(end) = {end}

• The transition relation →P is given by the following conditions.

out(t).P�
out(t)
−−−→ P� if t ∈ Tuple

rd(s).P�
rd(t)
−−→ P�[γ] if s γ-matches t

in(s).P�
in(t)
−−→ P�[γ] if s γ-matches t

P1 ✷ P2
s

−−→ P�
1 if P1

s
−→ P�

1
P1 ✷ P2

s
−−→ P�

2 if P2
s
−→ P�

2

• O(q) = τAct for every state q.

We now define the encoding of a Linda tuple space T as:

�T�ITS = �QT , L,→T ,O�

with components as defined below.

• QT = 2M(Tuple).

• The transition relation →T is given by the following conditions.

M
out(t)
−−−→ M ⊕ t if t ∈ Tuple

t ⊕ M
rd(s)
−−−→ t ⊕ M if s matches t

t ⊕ M
in(s)
−−→ M if s matches t

64 CHAPTER 3. A STEPWISE COORDINATION MODEL

• O(q) = τAct for every state q, as in the encoding of Linda processes.

Note that the input and output ports of the atomic steps obtained with α, in-
troduced in §3.3.1, are always the empty set, that is, the data value flowing on the
ports is not relevant, since the name of the port uniquely identifies the data. Alter-
native approaches to implement the encoding into behavioural automata that use
the data values are also possible, but less transparent. Furthermore, the encoding
we propose is compositional, since we encode each process and the store with their
own behavioural automaton, such that the product of the automata yields the be-
haviour of the tuple space term. It would be simpler, although less interesting, to
encode the tuple space term directly as a behavioural automaton, and ignore the
composition of atomic steps.

3.6.2. EXAMPLE. Recall the example presented in §2.3 of a sequence of transitions
of a tuple space term in the Linda-Calculus. We present below a simplified version
of this example. The labels on the right represent the names of the rules applied
at each transition of the Linda-Calculus.

rd(42, x).P(x)⊕ out(42, 43).P�

(out) → rd(42, x).P(x)⊕ P� ⊕ �42, 43�
(rd) → P(43)⊕ P� ⊕ �42, 43�

This examples illustrates the exchange of data between two processes. The corre-
sponding transitions in the encoded behavioural automaton are presented below.

�rd(42, x).P(x)�ITS ��
�

out(42, 43).P�
�
ITS �� �∅�ITS

τout(42,43)
−−−−−→ �rd(42, x).P(x)�ITS ��

�
P�

�
�� ��42, 43��

τrd(42,43)
−−−−→ �P(43)�ITS ��

�
P�

�
�� ��42, 43�� ♦

Observe that we assume an initial empty tuple space, which is encoded as
�∅�ITS. A more careful analysis shows a one-to-one correspondence between the
interleaved transition system and the labelled transition system of the behavioural
automaton, which we do not elaborate in this thesis.

MTS to BA

Let M = P1 ⊕ · · · ⊕ Pn ⊕ T be a tuple space term, and let T = t1 ⊕ · · · ⊕ tm,
as before. We define the encoding of M into a behavioural automaton using the
multistep semantics as follows.

�M�MTS = �P1�MTS �� · · · �� �Pn�MTS �� �T�MTS

We encode M by encoding the Linda processes Pi and a Linda tuple space T. As
before, the tuple space and the processes are each encoded separately as a be-
havioural automaton. We define labels as pairs

L = 2 ×M(Act)

3.6. CONCRETE BEHAVIOURAL AUTOMATA 65

such that the first element denotes the presence of the tuple space T, while the
second denotes a multi-set of actions that are performed simultaneously, which
was not possible in the interleaved semantics. The mapping α into atomic steps
simply regards the multi-sets of actions as a sets:

α(b, as) = �P, as, ∅, ∅, ∅�

The composition of labels is defined below, and describes two main cases. In
the first case none of the labels is performed in the presence of the tuple space,
hence the multi-set of actions are simply joined. In the second case one of the
multi-set of actions is performed in the presence of the tuple space T, say as1.
Then we require as1 to perform only dual actions or τ-actions, and we also require
each action from one of the multi-sets to have its dual in the same proportions in
the composed multi-set. The composition yields only the corresponding τ actions,
as defined below.

�b1, as1� ⊗ �b2, as2� =






�false, as1 ⊕ as2� if ¬b1 ∧ ¬b2�
true,

�
τa �→ n | a ∈ Act, asi(a) = n, asj(a) = n

��

if i, j ∈ {1, 2} ∧ i �= j ∧
bi ∧ ¬bj ∧ ∀a ∈ Act·
(a /∈ asi ∧ asi(a) = asj(a))

⊥ otherwise

Note that we assume that either as1 or as2 has the tuple space, and thus can per-
form dual actions, but never both at the same time. This assumption is a con-
sequence of allowing only one tuple space in our Linda programs. The above
definition for the composition of labels enforces actions and their duals to ’syn-
chronise’, replacing them by an action in τAct. The multi-set representation of
actions allows more than one action to synchronise in a single atomic step.

We now follow the same steps as with the fine-grained semantics for Linda by
defining the encoding of a Linda process P as follows:

�P�MTS = �QP, L,→P,O�

with components defined below.

• The set of states QP is given by QP = reach(P), defined for the encoding of
ITS into behavioural automata.

66 CHAPTER 3. A STEPWISE COORDINATION MODEL

• The transition relation →P is given by the following conditions.

out(t).P�
�false,out(t) �→1�
−−−−−−−−−→ P� if t ∈ Tuple

rd(s).P�
�false,rd(t) �→1�
−−−−−−−−→ P�[γ] if s γ-matches t

in(s).P�
�false,in(t) �→1�
−−−−−−−−→ P�[γ] if s γ-matches t

P1 ✷ P2
s

−−−−−−−→ P�
1 if P1

s
−→ P�

1
P1 ✷ P2

s
−−−−−−−→ P�

2 if P2
s
−→ P�

2

P1 ✷ P2
�false,as1⊗as2�
−−−−−−−→ P�

2 if P1
�false,as1�
−−−−−→ P�

1 ∧

P2
�false,as2�
−−−−−→ P�

2

Note that the above conditions are very similar to the conditions for the
encoding of →P in the interleaved transition semantics of Linda, with the
only difference that the atomic steps are now (singleton) multi-sets of ports
instead of a single port.

• O(q) = {�b, as� | dom(as) ⊆ τAct}, which means it is always possible to
execute τ actions without considering all processes.

For a Linda tuple space T we define

�T�ITS = �QT , L,→T ,O�

with components as defined below.

• QT = 2M(Tuple), as in the encoding of the ITS.

• The transition relation →T is given by the following conditions.

M
�true,out(t) �→1�
−−−−−−−−−→ M ⊕ t if t ∈ Tuple

t ⊕ M
�true,rd(s) �→1�
−−−−−−−−→ t ⊕ M if s matches t

t ⊕ M
�true,in(s) �→1�
−−−−−−−−→ M if s matches t

The above transition relation is the same as the corresponding transition re-
lation for the encoding of the ITS, using singleton multi-sets as labels instead
of the corresponding action.

• O(q) = {�b, as� | dom(as) ⊆ τAct} is the same as for the encoding of pro-
cesses.

The resulting encoding of the tuple space term M into a behavioural automa-
ton yields the same behaviour as the multistep semantics of the Linda Calculus
without the eval action, but we choose to not provide any proof to support this
claim.

3.7. RELATED CONCEPTS 67

3.7 Related concepts

In this chapter we present a stepwise coordination model based on behavioural
automata. This model represents our view of a dataflow-driven coordination sys-
tem, following the categorisation of Arbab [10]. Each transition in a behavioural
automaton represents the atomic execution of a number of actions by the coordina-
tion system. The behaviour of a system in our stepwise model is described by the
composition of the behaviour of its sub-systems running concurrently, each with
its own behavioural automaton. Furthermore, we allow the data values exchanged
over the coordination layer to influence the choice of how components commu-
nicate with each other as well. We now present a brief discussion about how the
three main concepts that underlie our stepwise model—atomicity, composability,
and dataflow—are viewed in the computer science community. The goal of this
limited survey is to clarify the differences between these three concepts and other
similar concepts that are sometimes interpreted as being synonymous. Further-
more, it explains in what sense our stepwise coordination model is (and is not)
synchronous and composable, and how (and how not) it uses the dataflow infor-
mation.

Atomicity. The notions of atomicity, synchrony, and transactional execution have
been frequently used in similar settings, with similar, although different, mean-
ings. Atomicity is usually associated with a sequence of instructions that are guar-
anteed to execute atomically, i.e., without being interleaved with interfering in-
structions. Achieving atomicity typically involves solving a locking problem: how
to protect shared resources to guarantee that only a single thread or process has
access to it at a given time. Mutexes and semaphores provide common solutions
to achieve atomicity [42]. Synchronisation provides a restricted sense of atomicity,
and it is associated with the notions of causality and time. We interpret synchro-
nisation as synchronisation of actions, and two actions synchronise if they occur
at the same time. Note that true synchrony is not possible in distributed systems,
because there is no way to guarantee that two actions in different computers are
performed at the exact same time. Action synchronisation captures the main idea
underlying process synchronisation [44] and data synchronisation [49], whose distinc-
tion in the literature simply reflects that the execution of different processes must
evolve at the same time, or that multiple copies of the same data must be kept
coherent. Finally, atomicity is known in the database community in the context of
transactions, where actions can be rolled back when necessary.

Our stepwise coordination model is synchronous in the sense of atomicity as
explained above. A set of actions (also referred to as a set of steps) S executes
atomically if no other action can interfere in between the time when the first a ∈ S
starts to execute and when the execution of all of the actions in S is complete.

68 CHAPTER 3. A STEPWISE COORDINATION MODEL

Other actions can still occur in the same time frame, as long as they do not interfere
with the actions in S. The synchronisation of two or more actions yields a new
action, obtained by applying a composition operator ⊗.

Composability. Composability is closely related to concurrency and distribution.
We first clarify the distinction between distributed and concurrent systems. Dis-
tribution involves the execution of a coordination system at multiple locations,
where locations can be computers, networks, but also CPU’s. Concurrency de-
scribes how to approach a given problem using independent and communicating
threads of execution. A non-concurrent program executes its instructions sequen-
tially. Clearly a concurrent program does not have to be distributed across mul-
tiple locations. Furthermore, a program executing in a distributed network does
not have to be concurrent either. A non-concurrent program can be executed in
a distributed network using mechanisms that involve replication and guarantee
consistency of the state of different replicas (e.g., to provide redundancy for fault
tolerance, or to exploit special resources available at only specific locations). Thus,
concurrency can be seen as a means to have more effective distribution, that is,
distributed implementations typically gain from being concurrent.

We now describe what we mean by composability. The systems studied in this
thesis have an underlying abstract model representing their coordination. Having
an abstract coordination model facilitates the proof of interesting properties, such
as correctness or deadlock freedom, and helps us to reason about the behaviour
of the coordination system. A composable coordination model is constructed out
of building blocks that can be analysed independently. The composition of the
building blocks describes how they interact with each other. But are implemen-
tations of a composable coordination model always concurrent? No. Although
a composable coordination model can describe its behaviour using simpler con-
current composable blocks, its implementation can still require a (partially) non-
concurrent execution. Note that the components or services being coordinated can
execute concurrently. The coordination model we present in this thesis describes
a concurrent description of a concurrent model which, at first sight, seems to re-
quire a non-concurrent execution, due to its synchronisation constraints (but, in
fact, it does not).

Dataflow networks and dataflow analysis. Important research on dataflow net-
works can be found in Kahn’s seminal work [66] about Kahn Networks (KN) and
in Kok’s work about the semantics of dataflow for parallel computation [73, 74].
Kahn introduced KN’s back in 1974 to model how processes, executing in se-
quence or in parallel, transform infinite streams of data, using atomic data tokens
as the smallest unit of data being transferred. Kok presents two fully abstract
semantics for a class of dataflow nets introduced by Kahn, emphasising on their

3.8. CONCLUSIONS 69

compositionality aspects. Dataflow models and Kahn networks can be viewed
as specialised channel-based models with respect to Reo that incorporate some
basic constructs for primitive coordination, as discussed by Arbab [8]. The di-
luted notion of local time in Reo, which is used to express atomicity and order-
ing of events, differentiates otherwise ‘equivalent behaviour’ of networks in other
dataflow models that lead to the Brock-Ackerman anomalies [31].

The field of dataflow analysis studies the execution of programs as a series of
transformations of the program state by performing code statements. A simple
overview of dataflow analysis can be found, for example, in the book of Aho et
al. on compilers [3]. A general approach is to relate the possible states before and
after each statement, referred to as the inputs and outputs, by a transfer function.
Multiple predecessor statements can be connected to the input, in which case they
are combined by a meet operator, assuming a meet semilattice over a set of values
D. Multiple successors can also be connected to the output, in which case the data
is replicated. Furthermore, they assume that the set of all transfer functions has
an identity function and is closed under composition. In this setting it is possible
to identify properties of dataflow schemas, and prove the implication of these
properties on the correctness, precision, and convergence of a dataflow algorithm.
This relation between inputs and outputs of statements is closely related to the
notion of data constraints in the context of coordination, using a compositional
model. However, this thesis focuses on synchronisation constraints and does not
exploit this direction.

3.8 Conclusions

We defined the stepwise coordination model to capture the characteristics of the
models that can be used by the Dreams framework. The stepwise coordination
model abstracts from the definition and composition of labels, and imposes general
properties over atomic steps associated with transportation labels and their com-
position. Each of the concrete models defined in Chapter 2 is formulated as an
instance of a behavioural automaton.

By defining and composing labels only in the concrete models, we focus on the
properties provided by behavioural automata which, under certain assumptions,
allows aspects other than synchronisation and data to be incorporated in our dis-
tributed framework. As an example, we have presented how to incorporate the
notion of context dependency (§3.6.2). Other aspects like time [13], quality-of-
service guarantees [15], resource bounds [81], or probability [21, 23, 88], can be
used in the Dreams framework as well. Note that each label has an associated
atomic step, but the opposite does not necessary hold, with the exception of the
identity atomic step which we assume to have a special identity label.

The encoded behavioural automata from automata models for Reo are closely

70 CHAPTER 3. A STEPWISE COORDINATION MODEL

related to its original semantic models, but this is not the case for Linda. We kept
a compositional approach in our encoding of Linda as behavioural automata to
allow the execution of Linda in our framework over multiple locations, possibly
deploying each Linda process and the tuple space in a different location. Alterna-
tively, we could have encoded a tuple space term M = P1 ⊕ · · · ⊕ Pn ⊕ T simply
by considering the labelled transition system presented in §2.3, and disregarding
the composition of the resulting behavioural automata. The specific encoding of
each label as an atomic step is not relevant, because in this alternative approach
atomic steps never need to be composed. The downside of such an approach is
the loss of concurrency, making it less interesting in the context of this thesis.

Chapter 4

Connector colouring & animation

4.1 Introduction

Connector colouring (CC), introduced by Clarke et al. [37], further developed in
Costa’s Ph.D. thesis [41], and extended by Arbab et al. using the tile model [14],
provides a semantics for the Reo coordination language [8] which improves its
preceding semantics in three main aspects.

1. It is the first semantic model of Reo introducing a precise notion of context
dependency, as explained in §2.2.3 when describing the Reo automata model.
We recall this notion below.

2. It is more intuitive, in the sense that it exploits Reo’s graphical notation,
marking each part of a Reo connector with a ‘colour’ describing its be-
haviour. The intuition provided by the graphical representation of connector
colouring is further explored by the animation framework that we describe
later in this chapter.

3. It is better suited for distribution. The main support for this claim are the for-
mal properties of the main composition operator, namely associativity, com-
mutativity, and idempotency. Furthermore, in previous (automata) models
for Reo, the composition of a pair of connectors c1 and c2 yields a new con-
nector c3 that discards c1 and c2 as individual parts of the new connector, and
considers only the new global behaviour. Instead, the connector colouring
semantics describes the new behaviour of c1 and c2 after their composition.

The need for a context dependent semantics for Reo has been motivated and
explained in §2.2.3. We recall the basic ideas behind Reo in §4.2, presented in de-
tail in §2.2. Using a context dependent semantics, we distinguish two different
kinds of absence of flow: (1) the possibility of not having dataflow, and (2) the need
to have no dataflow. This distinction allows the definition of behaviour where

71

72 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

the absence of flow can be either imposed or required. For example, the context-
dependent LossySync is a synchronous channel with a source and a sink end, such
data can either be transferred between these two ends or lost after flowing through
the source end. However, the channel does not lose data non-deterministically,
but it allows data to be lost if the sink end cannot have dataflow. On the other
hand, an empty FIFO1 channel always imposes the absence of dataflow on its sink
end. The composition operator defined in the connector colouring semantics re-
quires all absence of flow to have at least one end imposing its absence, extending
the expressive power of its preceding semantics.

Motivated by the second and third contribution mentioned above, we devel-
oped in joint work with David Costa a compositional animation framework based
on connector colouring. The results are explained in detail in Costa’s thesis [41],
and are more briefly explained in this chapter. The goal of our animation frame-
work is to automatically derive visual animations to help the developer of Reo

connectors understand the precise behaviour of his/her own connectors. Our
process of generating animations was incorporated in a visual editor for Reo by
Christian Krause [16]. These tools and the animations of some Reo connectors can
be found online.1

Contribution to the thesis Although we presented Reo and its formal semantics
in §2.2, we dedicate a chapter for connector colouring and animations because
of the relevance of the connector colouring in the remainder of the thesis. The
connector colouring focuses on the possible behaviour for a single round of Reo,
and preserves the information regarding the behaviour of each of the primitives
in the connector. These two factors make connector colouring suitable as a basis
for a distributed implementation and motivated the development of the Dreams

framework.
We encode the connector colouring model as behavioural automata, stress-

ing the choices we made when defining behavioural automata, and extend it with
data-related information and with concurrency predicates, which yield a new con-
cept of local colourings. Finally, the animation framework exhibits the need to in-
clude the information regarding how data is flowing, which is not modelled by the
connector colouring semantics, making the animation framework the first means
to model the dataflow of distributed Reo connectors.

Organisation of the chapter We briefly recall Reo and explain the intuition be-
hind the use of colours to describe the behaviour of Reo in §4.2. We then formalise
the connector colouring semantics in §4.3, and its encoding into behavioural au-
tomata in §4.4. We exemplify the connector colouring semantics with three con-
nectors in §4.5. Our animation framework is described in §4.6, and we wrap up

1Available at reo.project.cwi.nl.

reo.project.cwi.nl

4.2. CONNECTOR COLOURING OVERVIEW 73

by describing related workin §4.7 and presenting some conclusions in §4.8.

4.2 Connector colouring overview

The Reo coordination language [8, 9], described in §2.2, is a channel-based lan-
guage where connectors are compositionally built out of a simple set of primitives
connectors. Each primitive connector, also referred to as a primitive, has a set of
ends which act as input or output points of data. For consistency with Chap-
ter 3, we say ‘port’ to each primitive end, and assume a global set of ports P.
Channels are special primitives with two ports. Some of the most commonly used
Reo channels and primitives are presented in the left columns of Tables 4.1 and
4.2, respectively. The composition of two connectors is performed by joining the
shared ports. Ports are joined in a one-to-one manner, and a source port (port that
receives data) can only be joined to a sink port (port that sends data). A mixed
node, depicted by , is the logical place resulting from joining of two ports, and a
boundary node, depicted by , is the logical place with only one port.

The connector colouring (CC) semantics, as presented by Clarke et al. [37],
is based on the idea of colouring the ports of a connector using a set of three
colours—for orientation, indicates the port. The colour marks ports in the
connector where data flow, and the two colours and mark the absence
of dataflow. The main idea is that every absence of flow must have a reason for
excluding the flow of data, for example, because an empty FIFO1 buffer cannot
produce data. The different no-flow colours mark the direction from where the
reason originates. The colour denotes that the reason for no-flow originates
from the context, by exhibiting an arrow coming from the port, and we say that
the port requires a reason for no-flow. Similarly, indicates that the reason for
no-flow originates from the primitive, using an arrow pointing in the direction of
the port, and we say that the port gives a reason for no-flow.

Colouring a connector means associating colours to each of its ports in such a
way that the colours of two connected ports match. The colours of two ports match
if both represent flow, or if the reason for no-flow comes from at least one of the
ports. That is, the valid combinations are: , , and .
Invalid matches of colours include and ; the first pair represents
the case when there is dataflow only in one of two connected ports, and the second
pair represents a reason being created when joining the ports, which is undesir-
able in connector colouring. Each primitive has only a specific set of admissible
colourings, which determine its synchronisation constraints. Each colouring is a
mapping from the ports of a primitive to a colour, and the set of the colourings of
a connector is called its colouring table. Thus, a colouring table represents the set of
all possible behaviour of a Reo connector. Tables 4.1 and 4.2 present all possible
behaviour of the most commonly used Reo primitives. Composition of two con-

74 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

Channel Colouring table Channel Colouring table

Sync
a b

a b
a b
a b

Priority Drain
a b!

a b
a b
a b

SyncDrain
a b

a b
a b
a b

SyncSpout
a b

a b
a b
a b

AsyncDrain
a b

a b
a b
a b
a b

AsyncSpout
a b

a b
a b
a b
a b

LossySync
a b

a b
a b
a b

Context LossySync
a b!

a b
a b
a b

FIFOEmpty1
a b

a b
a b

FIFOFull1
a b•

a b
a b

Table 4.1: Colouring tables for some Reo channels.

Primitive Colouring table

Replicator

a
b
c

a
b

c
a

b

c
a

b

c
a

b

c

Merger

c
a

b
c

a

b
c

a

b
c

a

b
c

a

b

Priority Merger

c
a

b
! c

a

b
c

a

b
c

a

b
c

a

b

Table 4.2: Colouring tables for some Reo primitives.

4.3. COLOURINGS 75

nectors is done by creating a new colouring table with all the possible colourings
with matching colours at their connected ports. In §4.3 we formalise the connector
colouring semantics and the composition of colourings, and define colourings as
atomic steps.

4.3 Colourings

We start by formalising the definitions of colouring and colouring tables. Let
Colour = { , , } be the set of possible colours for each port, and recall
that P is a global set of ports. Furthermore, for any P ⊆ P let P� =

�
x∈P

�
x↓, x↑

�
,

where x↓ denotes that x is a source port, and x↑ denotes that x is a sink port.2 We
formalise colourings as follows.

4.3.1. DEFINITION (COLOURING). A colouring over ports P ⊆ P� is a function
c : P → Colour that maps each port from P to a colour. �

We denote by C the set of all colourings. A colouring over the set P identi-
fies a valid atomic step of a Reo connector with ports P, disregarding any data
constraint. For example, the colouring c1 =

�
a↓ �→ , b↑ �→

�
describes a

scenario where the port a has dataflow and the port b does not have data flow. Fur-
thermore, the port b provides a reason for the absence of dataflow. We drop the
superscripts ↑ and ↓ on the port names when these can be inferred by inspection
of the associated connector. A collection of colourings yields a colouring table,
that describes the possible behaviour of a connector.

4.3.2. DEFINITION (COLOURING TABLE). A colouring table over ports P ⊆ P� is
a set T ⊆ C of colourings with domain P. �

The colouring c1 described above represents one of the possible behaviours of
the empty FIFO1 channel, with source port a and sink port b. Another possible
colouring of this channel is c2 =

�
a↓ �→ , b↑ �→

�
. For simplicity we also

write c1 as ‘a b ’ and c2 as ‘a b ’. For the empty FIFO1 channel,
its colouring table consists of {c1, c2}, describing all the possible steps that this
channel can perform. The colouring table of the empty FIFO1 channel can also be
found in Table 4.1.

Recall that we colour a Reo connector by selecting colourings of each prim-
itive in the connector and verifying that the colours at shared ports match. We
formalise this process by defining the product of colouring tables, presented be-
low.

2We use the notation x↑ and x↓ instead of using disjoint sets of port names, as done by Clarke et
al. [37], for technical convenience. Our presentation of the connector colouring semantics is closer to
automata models for Reo, and our simple extension of data transfer uses the direction of dataflow of
the ports to define how data is transferred.

76 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

4.3.3. DEFINITION (PRODUCT). The product of two colouring tables T1 and T2,
denoted by T1 �� T2, yields the colouring table

{c1 ∪ c2 | c1 ∈ T1, c2 ∈ T2, c1 � c2}.

We define the compatibility relation � below, both for colourings and colours,
relating only those that match, where c1, c2 are colourings and a, b are colours,
and with ↑ =↓ and ↓ =↑ :

c1 � c2 iff x◦ ∈ dom(c1) ∧ x◦ ∈ dom(c2) ⇒ c1(x◦)� c2(x◦)
a� b iff �a, b� ∈ {� , � , � , � , � , � , � , �} �

4.3.4. EXAMPLE. We present as a simple example the connector resulting from
the composition of a context-dependent LossySync with a FIFOEmpty1 channel,
which we call the lossy-FIFO1 connector:

a b c
!

Recall that this example was also used for the composition of constraint automata
and Reo automata, on pages 28 and 34, with the main difference that connector
colouring describes only a single step, corresponding in this case to the transi-
tions from the first state of the automata. Composing the colouring tables of both
primitives, presented in Table 4.1, we obtain the colouring table of the connector
illustrated as follows:

a b c a b c

Each image represents a valid colouring, and only these two colourings exist for
this connector. The first colouring corresponds to the flow of data through the
context-dependent LossySync and into the FIFO1 buffer, and the second colouring
corresponds to the absence of flow in the connector, with a reason for this absence
required from port a. In both colourings, the port c of the FIFO1 buffer (c↓) gives
a reason for no dataflow, as the empty buffer can offer no data. ♦

Example 4.3.4 illustrates that data flowing into the context-dependent Lossy-
Sync cannot be lost if there is a primitive or component willing to accept that
data at its sink port. Furthermore, it also illustrates that an empty FIFO1 buffer
can never produce data, and therefore always gives a reason for no flow to the
context.

Our formalisation of connector colouring slightly differs from its original defi-
nition [37]. We represent the domain of a colouring as source and sink ports, while
the original model does not make this distinction. As a consequence, we avoid

4.4. ENCODING INTO BEHAVIOURAL AUTOMATA 77

the formulation of the so-called flip rule, which states that whenever a colouring
table has a colouring mapping a port x to the colour , then it also needs to
have a similar colouring mapping x to . For example, the original model uses
two extra colourings to the colouring table of the FIFOEmpty1 channel from Ta-
ble 4.1:

�
a b, a b

�
. The matching function matches only equal

colours, and the flip rule states that these extra colourings always exist implicitly,
and therefore do not need to be included explicitly in the colouring table.

4.4 Encoding into behavioural automata

We recall the definition of a behavioural automaton, presented in §3.4. We assume
global sets of ports P, labels L, atomic steps AS, and data, and a global mapping
function α : L → AS from labels to atomic steps. A behavioural automaton is a
tuple �Q, L[P],→,O�, where Q is a set of states, L[P] is a set labels with associated
atomic steps over the ports in P, the relation →: Q × L[P]× Q is a transition rela-
tion, and O : Q → CP is an observation function, where CP = 2L[P]. In this section
we start by encoding each colouring as an atomic step, disregarding the data val-
ues being transferred, and by defining the composition of colourings based on the
product of colouring tables. We then define the observation function and intro-
duce states, extending the connector colouring framework to consider also local
behaviour (as a result from introducing concurrency predicates), introducing lo-
cal colourings, and we describe how a connector evolves after performing a given
colouring.

4.4.1 Labels as colourings

Clearly the notions of a colouring and an atomic step are closely related. We define
labels in behavioural automata to be colourings, that is, L = C, and encode each
colouring c ∈ C as an atomic step by defining the function

α : C → AS

α(c) = �P, X, ∅, ∅, ∅� , (4.1)

where

P = {x | x◦ ∈ dom(c)} and X = {x | c(x◦) = } .

We define AS[P] to be the set of all atomic steps with known ports P, and L[P] as
the set of all labels with atomic steps AS[P]. We also write AS = AS[P] and L =
L[P]. Note that the three last arguments of every encoded colouring are always ∅,
that is, the resulting atomic steps do not describe neither the data flowing in the
channel nor the dependency between source and sink ports. We will later extend
the corresponding atomic steps with data information.

78 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

We define below the composition of any two labels (colourings) c1, c2 ∈ C,
following closely the Definition 4.3.3 of the product of colouring tables.

c1 ⊗ c2 =

�
c1 ∪ c2 if c1 � c2
⊥ otherwise.

(4.2)

4.4.2 Local colourings

We now define a local colouring of a colouring table T = T1 �� T2 as a colour-
ing c that belongs to either T1 or T2, under certain conditions. These conditions
are described by concurrency predicates, introduced in §3.3.2. We associate to
each of these colouring tables Ti a concurrency predicate Ci ⊆ L, consisting of a
set of colourings from other colouring tables that can be executed independently.
Hence we lift the requirement imposed by the original presentation of the connec-
tor colouring semantics that, when combining two colouring tables T1 and T2 into
T1 �� T2, all the colourings from T1 must be combined with a colouring from T2
and vice-versa. We write CP = 2L to denote the set of all concurrency predicates,
and we write O(T) to denote the concurrency predicate, introduced in §3.3.2, as-
sociated to the colouring table T.

Let P be a set of ports used by a colouring table T, i.e., P = {x | x◦ ∈ dom(T)}.
We define the concurrency predicate O(T) as the set of all colourings that assign
the colour to every port that is also in P, that is, the colouring table T ‘allows’
the execution of colourings that give a reason on shared ports with P. We present
below the definition of the concurrency predicate O(T) of a colouring table with
known ports P.

local(P) = {c ∈ C | x◦ ∈ dom(c) ∧ x ∈ P ⇒ c(x◦) = } (4.3)

Thus O(T) = local(P). We now define local colouring based on this definition of
concurrency predicate, and present in Example 4.4.2 a small example that reflects
the notion of local steps, similarly to our example in §3.3.2.

4.4.1. DEFINITION (LOCAL COLOURING). A colouring c from a colouring table T
is a local colouring of T if T = T1 �� T2, and either c ∈ T1 and c ∈ O(T2), or c ∈ T2
and c ∈ O(T1). �

4.4.2. EXAMPLE. Consider the composition of the context LossySync channel and
the full FIFO1 channel, presented in Table 4.3. We define TL = {a b,
a b, a b} and TF = {b c, b c} as the col-
ouring tables of the context LossySync and the FIFOFull1 channels, respectively.
The full colourings are obtained by the product TL �� TF, presented in Defini-
tion 4.3.3.

4.4. ENCODING INTO BEHAVIOURAL AUTOMATA 79

Connector Full colourings Local colourings

a b c
! •

a c
a c
a c
a c

a b
b c
b c

Table 4.3: Colouring table for the lossy-FIFO1 extended with local colourings.

The local colourings of the new connector are all colourings cL ∈ TL such
that cL ∈ O(TF), together with the colourings cF ∈ TF such that cF ∈ O(TL).
The concurrency predicate O(TL) is local({a, b}), and the concurrency predicate
O(TF) is local({b, c}). The first local colouring in Table 4.3 belongs to TL, and the
remainder local colourings belong to TF. Note that, when replacing the context
LossySync by a Sync channel in this connector, the local colourings remain the
same, because the first local colouring in Table 4.3 is also the only local colouring
of the Sync channel with respect to its sink port. ♦

We have now all the ingredients for defining behavioural automata for the prim-
itives presented in this chapter: the definition and composition of labels, and the
concurrency predicate of a colouring table.

4.4.3 Colouring tables as states

We encode all the primitives presented in Tables 4.1 and 4.2 as behavioural au-
tomata, whose transitions are given by colourings and states are colouring tables.
All the primitives mentioned above are stateless, with the exception of the FIFO1
buffer, which has states empty and full. A stateless primitive is a primitive with
a single state, where all atomic steps are from and to the unique state. For any
stateless primitive p with a colouring table Tp presented in this chapter, we define
its behavioural automaton to be as follows:

Ap =
��

Tp
�

, L[P],→p,O
�

where Tp is the unique state, L[P] is the set colourings with atomic steps over P,
and →p and O are given below.

Tp
c
−→p Tp iff c ∈ Tp

O : {q} → CP

O(q) = local(P)

A FIFOEmpty1 behaves as a FIFOFull1 after executing the colouring with flow in
its source port, and equivalently the FIFOFull1 channel assumes the behaviour
of a FIFOEmpty1 after executing the colouring with flow in its sink port. Let

80 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

P = {a, b} be the set of known ports, c1 = a b, c2 = a b,
c3 = a b, c4 = a b, Te = {c1, c2} be the colouring table of
FIFOEmpty1, and Tf = {c3, c4} be the colouring table of FIFOFull1. We define the
behavioural automata of the FIFOEmpty1 channel as follows.

AF = �{Te, Tf }, L[P],→F,O�,

where L[P] and O are defined as above, and →F is defined below.

Te
c1
−→F Tf Tf

c3
−→F Te

Te
c2
−→F Te Tf

c4
−→F Tf

4.4.4 Data transfer

We now redefine labels to include the colouring and the data information as fol-
lows:

L = C × (P � D).

The first element of a label is a colouring describing the synchronisation con-
straints, and the second element is a mapping data : P � D from ports to the
data flowing on it. In our approach, we assume that data is read from the source
ports and replicated to the sink ports with dataflow. To avoid deciding for each
Reo primitive which source ports should be used when copying data to the sink
ports, we impose simple conditions that guarantee that at most one sink port has
dataflow when there exists at least one source ports with dataflow. Hence we re-
quire that each colouring c ∈ C of a primitive connector conforms to at least one
of the following scenarios.

• c has no sink ports with dataflow; or

• c has dataflow in a single source port, and the data flowing in all the ports is
the same.

These assumptions, stemming from the original description of the connector col-
ouring semantics [37], are made here for all primitives considered in this chapter.
Note that we do not require this assumptions for composed connectors. Each
colouring can now be associated with several atomic steps, one for each data
value being transferred. We start by introducing some auxiliary notation. For
any colouring c we define flowc = {x◦ | c(x◦) = }, and Pc and Xc such that
α(c) = �Pc, Xc, ∅, ∅, ∅�. For each primitive with colouring table T, we define the
set of possible labels LT as follows.

LT = {�c, datac,v� | c ∈ T, v ∈ D} datac,v = {x �→ v | x◦ ∈ flowc}

4.5. EXAMPLES 81

We redefine the encoding function α : L → AS to encode colourings and data
mappings into atomic steps as follows, where n ≥ 0.

α(�c, m�) =

�
�Pc, Xc, {x1, . . . , xn} , ∅, m� if flowc = {x↓1 , . . . , x↓n}
�Pc, Xc, {x0} , {x1, . . . , xn} , m� if flowc = {x↓0 , x↑1 , . . . , x↑n}

The composition of labels is presented below, and follows closely the conditions in
§3.3.1. Recall that two mappings m1 and m2 are compatible, written as m1 �m2,
if m1(x) = m2(x) for every x ∈ dom(m1) ∩ dom(m2). The composition of two
labels �c1, m1� and �c2, m2� is defined as follows.

�c1, m1� ⊗ �c2, m2� =

�
�Pc1∪c2 , Fc1∪c2 , IP, OP, m� if c1 � c2 ∧ m1 �m2
⊥ otherwise,

where IP, OP, and m are defined as follows:

• IP = (IP1 ∪ IP2)\(OP1 ∪ OP2);

• OP = (OP1 ∪ OP2)\(IP1 ∪ IP2); and

• m = m1 ∪ m2.

4.5 Examples

We illustrate how the connector colouring semantics helps providing intuition
about the behaviour of Reo using three main examples: our simple running exam-
ple of the lossy-FIFO1 connector, the priority exclusive-router connector (a vari-
ation of the exclusive router described in §2.2.1), and the alternating coordinator
(introduced in §3.2). We abstract from the data being transferred in these exam-
ples, being faithful to the original description of the connector colouring model.

4.5.1 Lossy-FIFO1 connector

Recall the Lossy-FIFO1 connector, obtained from composing a LossySync with a
FIFO1 channel, used as a running example in this section (see Example 4.3.4 and
Example 4.4.2). On top of Figure 4.1 we present the encodings of these two prim-
itives into behavioural automata. The labels �i, for i ∈ 1..7, are defined below.

�1 = a b
�2 = a b
�3 = a b

�4 = b c
�5 = b c
�6 = b c
�7 = b c

82 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

� a b! �col �� � b c �col

TL �1, �2, �3 �� Te Tf

�4

�6

�5 �7

TL, Te TL, Tf�3 ⊗ �5, �3

�1 ⊗ �4

�2 ⊗ �7, �3,
�3 ⊗ �7, �7

�2 ⊗ �6, �3 ⊗ �6, �6

Figure 4.1: Composition of encodings of the context LossySync and the FIFO1.

The composition of the two behavioural automata yields the behavioural autom-
ata depicted at the bottom of Figure 4.1. The product of atomic steps used in the
resulting automaton are listed below. Note the existence of local steps, which in our
example are all atomic steps in the product which do not result from composing
other atomic steps. For example, the automata can perform the local step �6 from
�TL, Tf � to �TL, Te�, where the FIFO1 channel becomes empty without using the
colouring table of the LossySync channel. More precisely, �6 is a local step because
O(TL) = local({a, b}) = {c ∈ C | x◦ ∈ dom(c) ∧ x ∈ {a, b} ⇒ c(x◦) = },
and �6 ∈ O(TL).

�1 ⊗ �4 = a c
�3 ⊗ �5 = a c
�2 ⊗ �6 = a c
�2 ⊗ �7 = a c
�3 ⊗ �6 = a c
�3 ⊗ �7 = a c

4.5.2 Priority exclusive-router connector

Our next example results from the composition of stateless primitives, hence it is
also stateless. The priority exclusive-router connector is depicted in Figure 4.2.
This connector, similarly to the exclusive-router connector presented in §2.2.1,
reads data from a source node a and writes data to either the node j or k, but
not to both. The only difference with respect to the exclusive-router is the priority
merger f -h-i instead of a normal merger. This merger enforces data to flow only
on j or k, and never on both ports, and the choice between flowing data on j or k

4.5. EXAMPLES 83

is influenced by the context. We described the behaviour of the priority merger in
Table 4.2. If the nodes a, j and k are ready to have dataflow, then data will flow
from a to j, and never to k. If j cannot have dataflow, then data can flow from a
and k.

a
c

b

d

f

e

g

h

i

j

k

!

Figure 4.2: Priority exclusive-router connector.

There are three possible scenarios for the behaviour of the priority exclusive-
router. Data can flow from a to j or from a to k, or there can be no dataflow in
the connector. In Figure 4.3 we present two possible colourings with dataflow
on the nodes j and k, respectively. Note an important difference between these
two colourings. For the first colouring, the colour of k↑ has a triangle pointing
outwards, that is, the connector is ‘giving’ reason for the absence of data flow.
For the second colouring, the colour of j↑ has a triangle pointing inwards, which
means it ‘accepts’ a reason for the absence of dataflow. Consequently the port j
will have higher priority than port k. Note that the two LossySync channels do
not need to be context dependent, because the SyncDrain channel will enforce at
least one of the LossySync channels to have dataflow, while the merger provides
a reason for the absence of flow to the other LossySync.

a

j

k

a

j

k

Figure 4.3: Flow colourings for the priority exclusive-router connector.

There are two other colourings with dataflow for the priority exclusive router
not presented here. These colourings differ from the left colouring on Figure 4.2
only in the direction of the reasons between the node k and the priority merger,

84 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

and describe a scenario that requires k↑ to ‘accept’ a reason. In practice, by analys-
ing the no-flow colours we can justify the absence of flow, and find the origin of
the reason for no-flow. In the first colouring the reason originates from the merger,
while in the second case the reason originates from node j. Note also that there is
no local colouring of this connector with dataflow. The no-flow colouring of the
replicator e-h-j in the right colouring of Figure 4.3 can be already considered to
be a local colouring, since it provides a reason for no-flow on all connected ports.
The corresponding behavioural automaton can be easily deduced by constructing
a single-state automaton with one reflexive transition for each colouring.

4.5.3 Alternating coordinator

Our next example is the alternating coordinator, used as a running example in
Chapter 3, and formalised now using the connector colouring semantics. The al-
ternating coordinator has two possible states, depicted in Figure 4.4. Initially the
FIFO1 buffer is empty, as depicted in the left connector, and it evolves to the state
depicted in the right connector, where the FIFO1 is full. This connector receives
data from two ports, a and b, that must arrive simultaneously, and sends the re-
ceived data through port i, sending first the data from a followed by the data from
b. Consequently, it guarantees that data received from a and b is alternated. Other
constraints result from the connector: in case of an empty buffer, data can be re-
ceived on a and b only if the port i can receive data, and no data can be received
from either a or b before the previously received data from b is sent via i. The
colourings in Figure 4.5 reflect the details of the behaviour just described.

a
c

d
b

e

f

g

h

i

a
c

d
b

e

f

g

h

i

•

Figure 4.4: Two possible states of the alternating coordinator.

For each of the states presented in Figure 4.4 there is only one possible colour-
ing with dataflow, depicted in Figure 4.5. The colourings with dataflow for the
first and second state are depicted on the left and right side of the figure, respec-
tively. There are other similar colourings with dataflow for the second state of the
alternating coordinator, that differ only in the direction of the triangles between
the SyncDrain and the Sync channels. These variations represent that the Sync
channel, the replicator a-c-e, and the SyncDrain can receive a reason from either
the FIFO1 channel or from the merger g-h-i.

4.6. CONNECTOR ANIMATION 85

a

b

i
a

b

i

Figure 4.5: Colourings with dataflow of the alternating coordinator.

Other scenarios where the ports a, b, and i receive a reason for the absence
of flow are still possible, but the two colourings presented in Figure 4.5 together
with a colouring with no-flow everywhere for each state are the only possible
colourings when disregarding the direction of dataflow. Let C1 and C3 be the
set of colourings with no-flow everywhere for the first and second state of the
alternating connector, respectively, and let C2 and C4 be the sets of colourings with
the same dataflow as the left and right colourings from Figure 4.5, respectively.
The behavioural automaton of the alternating connector is depicted in Figure 4.6,
where label each arrow in the diagram by a set of colourings C to denote multiple
transitions, one for each element of C. The state Te denotes the first state, where
the FIFO1 channel is empty, and the Tf denotes the state where the FIFO1 channel
is full.

Te TfC1

C2

C3

C4

Figure 4.6: Encoding of the alternating coordinator.

4.6 Connector animation

We described the connector colouring model as an intuitive yet precise seman-
tics to Reo, the first successful approach to capture context dependency. We now
present the connector animation framework, developed in joint work with David
Costa, whose main goal is to automatically produce visual animations that simu-
late the behaviour of a Reo connector, providing a valuable insight when devel-
oping connectors. We do not present the full details of this framework, and direct
the reader to Chapter 5 of Costa’s thesis [41].

The connector animation framework extends the connector colouring seman-
tics with information about the data flowing in the connector, in a similar way to

86 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

our approach in §4.4.4 where we extend labels of behavioural automata to include
also a data function. These two approaches differ in that our encoding focuses
on the data values and the direction of dataflow, while the connector animation
focuses on how to represent the movement, replication, creation, and deletion
of data tokens in a connector. We describe connector animation by introducing
the notions of tokens and locations in §4.6.1, explaining the graphical notation
in §4.6.2, presenting an abstract language for animations in §4.6.3 and §4.6.4, and
briefly describing how these descriptions are used to produce the final animations
in §4.6.5.

4.6.1 Preliminaries

The connector colouring semantics defines colouring tables by assigning colours
to source and sink ports that indicate where there is dataflow at each round. The
connector animation framework describes also how to represent the movement of
data through the connector, introducing two new concepts: data-tokens, or simply
tokens, and locations.

Data-token A token represents a unit of information flowing in the connector,
and is depicted graphically by . We denote by Token the enumerable set of all
data-tokens. Tokens with the same colour are associated to the same data value,
and tokens with different colours can have different data values.

Locations A location is a placeholder for a single token. We assume a finite set
of locations Loc, and use the names �1, . . . , �n to range over locations and α, β, γ to
range over variables of locations. We say that a location is occupied when it holds
a token, and is vacant otherwise.

The purpose of connector animation is to describe how tokens move within
each channel, for a specific colouring, and to combine these descriptions to gen-
erate animations of a composed connector. For example, let α, β, and γ be loca-
tions of a FIFO1 buffer corresponding to the source port, sink port, and buffer,
respectively. We describe an animation of the empty FIFO1 channel as follows.
When there is dataflow, a token at α moves to γ where it remains for the next
round. A full FIFO1 channel moves a token from γ to β. By providing such de-
scriptions for all primitives used in a Reo connector, we generate automatically
visual animations of the composed Reo connectors. These descriptions are for-
malised by the animation specification language, which we will soon present. The
generation of the visual animation of a connector c is made in two phases. First,
the colouring table of the primitives in c are combined, following Definition 4.3.3
to calculate the product of colouring tables, and a colouring is selected. Second,
the animation specifications associated with the selected colouring of each primi-
tive are also combined, yielding a abstract description of the movement of tokens

4.6. CONNECTOR ANIMATION 87

over a connector. We now introduce some graphical notation used in the resulting
animations, together with a simple example.

4.6.2 Graphical notation

We now describe how we choose to represent the animation of a Reo connector,
denoting the execution of a colouring (an atomic step). An animation consists of
the overlay of three different layers described below, illustrated in Table 4.4.

1. The connector representation.

2. The colouring being animated, using a thick background line where there is
dataflow, and triangles when there is a reason for no-flow.

3. The creation, movement, or deletion of data-tokens, represented by the corre-
sponding actions on tokens in the animation.

Connector Colouring Actions over tokens

· · · · · ·

Table 4.4: Example of the three layers of an animation for the FIFO1 channel.

We now present a connector obtained from composing a FIFO1 with a Sync-
Drain channel, which we call the alternating drain connector, to exemplify an
animation generated automatically by the connector animation framework. The
images are screenshots from Flash c� animations produced in the Eclipse Coordi-
nation Tools, that we will explain later in this section.

The alternating drain is depicted on top of Figure 4.7. The animations can only
be generated when all boundary nodes are connected to an environment, that
in our case consists of two writers, each ready to output a value. Note that writ-
ers also have an associated colouring table, which is composed with the colour-
ing tables of the rest of the connector. On the bottom of Figure 4.7 we present
six screenshots of an animation illustrating two rounds of the corresponding be-
havioural automaton. On the left side we see the same colouring decorating the
connector, denoting the flow of data from the left writer to the FIFO1 buffer and
providing a reason from the FIFO1 via the SyncDrain to the right writer for the ab-
sence of dataflow. With respect to the token, the following actions are performed:
the token is created in the writer, it moves until the FIFO1, and stays there for the
next round. On the right of the figure we see the animation of the second round,
where a new token is created by the right writer, and both tokens move to the
SyncDrain. The tokens disappear after meeting in the centre of the SyncDrain.
Each animation represents a trace of the execution of a connector. In this example,
this was the only possible trace with respect to the flow of data.

88 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

↓ ↓

↓ ↓

�
Figure 4.7: Animation of the alternating drain connector.

4.6.3 Animation specifications – Syntax

Connector colouring provides a representation for the presence and absence of
dataflow. We now introduce a simple language, the animation specification lan-
guage (ASL), to represent the four basic dataflow actions for moving, copying, cre-
ating, and deleting tokens, described below. Recall that we assume a finite set of
locations Loc, and use α, β, γ to range over variables of locations.

Move We write α � β to denote the movement of a token from location α to loca-
tion β. It can only be performed when α is occupied and β is vacant.

Copy We write α ! β to denote the duplication of a token in the location α into
location β. It can only be performed when α is occupied and β is vacant.

Create We write � α to denote the creation of a new token in location α. It can
only be performed when α is vacant.

Delete We write � α to denote the deletion of a token in location α. It can only be
performed when α is occupied.

An animation specification is a finite set of basic dataflow actions, where we
write 0 to represent an empty animation specification, and we write as1 ∪ as2 to
denote the composition of two animation specifications. The animation specifica-
tion language is formalised below.

4.6. CONNECTOR ANIMATION 89

(MOVE)
Γ �(α � β)→ (Γ\ {α}) ∪ {β}

if α ∈ Γ, β /∈ Γ

(SKIP)
Γ �(0)→ Γ

(COPY)
Γ �(α ! β)→ Γ ∪ {β}

if α ∈ Γ, β /∈ Γ

(CREATE)
Γ �(� α)→ Γ ∪ {α}

if α /∈ Γ (DELETE)
Γ �(� α)→ Γ\ {α}

ifα ∈ Γ

(SEQ1)
Γ �(as1)→ Γ1 Γ1 �(as2)→ Γ2

Γ �(as1 ∪ as2)→ Γ2
(SEQ2)

Γ �(as2)→ Γ2 Γ2 �(as1)→ Γ1

Γ �(as1 ∪ as2)→ Γ1

(PAR)
Γ1 �(as1)→ Γ�

1 Γ2 �(as2)→ Γ�
2

Γ1 ∪ Γ2 �(as1 ∪ as2)→ Γ�
1 ∪ Γ�

2
if dom(as1) ∩ dom(as2) = ∅

Table 4.5: Semantics of ASL.

4.6.1. DEFINITION (ANIMATION SPECIFICATION LANGUAGE).
Animation specifications over Loc are generated by the following grammar.

as ::= α � β | α ! β | � α | � α | 0 | as1 ∪ as2 �

For simplicity we give lower precedence to ∪ with respect to the other operators,
writing � α ∪ β � γ instead of (� α) ∪ (β � γ). For example, the animation
specification � �1 ∪ �1 ! �2 ∪ �1 � �3 can represent the following behaviour. A
token is created in location �1, duplicated into �2, and then the original token
is moved to �3. Note that this behaviour results from evaluating the animation
specifications from the left to the right. However, we can evaluate it in a different
order. For example, if we consider that initially the location �1 was occupied, this
behaviour is no longer possible, because the creation of tokens is only possible in
vacant locations. However, it is possible to duplicate the existing token in �1 to �2,
move the token from �1 to �3, and only then create the new token in �1.

An animation specification can only be evaluated in a given environment, de-
scribed below. Observe that some animation specifications have no environment
under which they be evaluated. For example, � �1 ∪ �1 � �2 has no possible be-
haviour, because both actions remove a token from �1. Since location �1 is a place-
holder for a single token, it is not possible neither to delete a token in �1 and then
move any token from there, nor the other way around. However, if we compose
this animation specification with � �1 then the resulting animation specification
already has possible behaviours.

90 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

4.6.4 Animation specifications – Semantics

We describe the semantics of animation specifications by formalising the evolu-
tion of frames by animation specifications. A frame Γ ⊆ Loc is a predicate describ-
ing which locations are occupied, i.e., α ∈ Γ iff the location α is occupied. We
now define, for each animation specification as, an evaluation relation over frames.
We write Γ �(as)→ Γ� to denote that when considering a set Γ of occupied loca-
tions, the animation specification evaluates in Γ and produces a new frame Γ� after
performing a set of basic dataflow actions. The semantics is given by the set of ax-
ioms and inference rules presented in Table 4.5. The side-condition in the PAR-rule
refers to the domain of animation specifications, defined below.

4.6.2. DEFINITION (DOMAIN OF ANIMATION SPECIFICATIONS).
We define the domain of animation specifications as follows.

dom(α � β) = {α, β} dom(� α) = {α}
dom(α ! β) = {α, β} dom(0) = ∅
dom(� α) = {α} dom(as1 ∪ as2) = dom(as1) ∪ dom(as2) �

The domain of an animation specification as yields the locations used by as. The
axioms regarding the basic dataflow axioms in Table 4.5 mimic their informal
description presented in §4.6.3. The composition of animation specifications de-
serves some more attention. If the animations specifications refer to different lo-
cations, i.e., if their domains are disjoint, then it is safe to perform both of them
in simultaneously. Otherwise, the animation specifications evaluate the current
frame in sequence. For example, we can show that, for Γ = �1, the following
evaluation is possible.

{�1} �(� �1 ∪ �1 � �2 ∪ � �1)→ {�2} (4.4)

To show Equation (4.4) start by observing that ∅ �(�1 � �2 ∪ � l1)→ {�2}, be-
cause (1) ∅ �(� �1)→ {�1} by rule (CREATE), (2) {�1} �(�1 � �2)→ {�2} by rule
(MOVE), and the evaluations (1) and (2) can be combined with rule (SEQ2) to yield
our initial observation. Note that, by rule (DELETE), {�1} �(� �1)→ ∅. Hence, it
follows by rule (SEQ1) that Equation (4.4) holds.

4.6.5 Producing visual animations

We extend the information regarding each Reo primitive with animations speci-
fications. We require that each port has an associated location. In our examples,
we assume that ports a, b, and c have locations represented by α, β, and ς, respec-
tively, and use the location γ to denote a location represented in the middle of
the connector, with no associated port. We also assume that only colourings with
dataflow can have non-empty animation specifications, i.e., different from 0. We

4.6. CONNECTOR ANIMATION 91

Colourings Animation specification

a b α � β
a b α � γ ∪ �γ ∪ β � γ ∪ �γ
a b � γ ∪ γ � α ∪ � γ ∪ γ � β
a b α � β
a b α � γ ∪ �γ
a b α � γ
a b• γ � β

a
b
c α ! β ∪ α � ς

c
a

b
!

α � ς

c
a

b
!

β � ς

Writer a � γ ∪ γ � α

Reader a α � γ ∪ �γ

Table 4.6: Animations specifications for some Reo channels.

define an animation table to be a mapping from colourings (with dataflow) to ani-
mation specifications, together with a mapping between ports and the associated
locations. In Table 4.6 we present the animation tables for some Reo primitives. In
this table we also depict the animation tables of writers and readers, represented
as Writer and Reader respectively.

Given an animation specification as for a connector and an initial frame Γ, we
can generate a visual animation by finding a Γ� such that Γ �(as)→ Γ�, and the to-
kens are manipulated following the same steps required to prove that Γ �(as)→ Γ�,
i.e., the derivation of this proof. We developed a proof-of-concept implementation
for the connector animation framework, called ReoFlash. Reoflash provides a set
of Haskell libraries to define Reo connecors, colourings, and animation specifi-
cations. It generates automatically a script file that can be directly fed into the
SWFTools,3 which produces a SWF file ready to be visualised using a Flash Player.
Using these libraries we created a small repository of Reo animations, which can
be found online.4

The current implementation, developed mainly by Christian Krause, has been
incorporated in the Eclipse Coordination Tools (ECT) framework [16]. The ECT

3
www.swftools.org

4
reo.project.cwi.nl/webreo/

www.swftools.org
reo.project.cwi.nl/webreo/

92 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

Figure 4.8: Animation of a more complex connector in ECT.

framework consists of a visual Reo editor extended with a set of plug-ins for the
Eclipse platform.5 The animation of Reo connectors is one of such plug-ins. The
user can draw Reo connectors in the editor, and Flash c� animations are generated
in a separate window at runtime. In the animations window a list of possible
animations appears, one for every possible behaviour with dataflow, and the ani-
mations can be executed for either the one round or for a sequence of rounds. The
screenshots in Figure 4.7 were produced using the ECT framework. The ECT be-
comes especially useful when developing more complex connectors, as suggested
by the screenshot in Figure 4.8, where the behaviour is harder to understand. This
figure depicts the discriminator connector, whose behaviour is complex but not
relevant for this section, and will be used again for the benchmarking of our dis-
tributed implementation in Chapter 7.

4.7 Related work

A number of informal and formal models exist for Reo, such as abstract behaviour
types [9], automata models [22, 29, 70, 15], models based on a structural opera-
tional semantics [89, 67], and models based on logic [34, 39, 40]. Furthermore,
the colouring semantics has been modelled using the tiles model [14], which also
describes the data being transferred. We will present a more exhaustive com-
parison between the various Reo models in the next chapter, after introducing
a constraint-based model for Reo. The connector colouring model was the first
model to capture context dependent behaviour, which earlier models did not, do-
ing so in a simple and precise manner. Clarke et al.suggest in the connector colour-
ing paper [37] that Milner’s classic SCCS [84] could be an appropriate model for
‘implementing’ the colouring scheme, by mapping colours to SCCS actions.

The importance of having visual formalisms to model systems accurately has
5
www.eclipse.org

www.eclipse.org

4.7. RELATED WORK 93

been long recognised in the scientific community. Visual languages like Petri
Nets [91], sequence charts [62] and statecharts [58, 59] were introduced to help
building visual system models. For example, for Statecharts, introduced in 1987
by David Harel, the tool Rhapsody [61] that generate running code for Statecharts
models, and use simple animations to facilitate the process of model develop-
ment, specification and analysis. Similarly connector animation facilitates the im-
plementation of tools that support developers in the design and analysis of Reo

connectors, by means of animations. Motivated by the importance of representing
real world animations, Harel et al. proposed an architecture where the executable
model is separated from the animations, called reactive animations [60, 45]. They
presented examples of the Rhapsody tool communicating with flash animations,
where the animations are based on the current state of the executable model. The
Eclipse Coordination Tool suite uses the Reactive Animation principle, and the an-
imations are generated and updated on the fly every time a connector is changed,
but independently of the calculation of the semantics of the connector.

The benefits of using animations is also advocated by the workflow patterns
community. Notably Van der Aalst et al. [99] use it to compare different work-
flow patterns. To explain the differences between the workflow patterns they have
hand-programmed insightful Flash c� animations and offer them together with ad-
ditional information on the web.6 The visual appearance of our animations is
largely influenced by their work. Our approach to obtain the animations differs,
though. We generate the animations automatically according to the formal seman-
tics, while in the approach of Van der Aalst it al. animations are created manually,
according to the textual description of their intended workflow semantics.

Animation of formal models has proven to facilitate the communication be-
tween developers and stakeholders. Hung Tran Van et al. present animations for
Goal-Oriented Requirements [98]. They propose to animate UML state diagrams
to visualise and simulate a specific model using visual elements that represent
real-life actions of the system to be modelled, such as representing a video with
two doors opening associated to the execution of a method called open-door.
Multiple users can interact with an execution of the model, and property viola-
tions are monitored at animation time. Westergaard and Lassen present the BRIT-
NeY Suite Animation tool [102], a tool to create visualisations of formal models,
specially of coloured Petri nets (CPN), which is already integrated in the CPN
Tools. Our experience with Connector Animation is that it greatly facilitates the
task of Reo developers. Connector animation produces, on the fly, quality anima-
tions that comply with the formal semantics of Reo, allowing Reo developers to
focus entirely on the design of new connectors. In contrast, approaches such as
the use of goal-oriented requirements force developers to construct both a model
for the system and an additional model for its animation.

6
http://www.workflowpatterns.com

http://www.workflowpatterns.com

94 CHAPTER 4. CONNECTOR COLOURING & ANIMATION

4.8 Discussion and conclusions

The connector colouring semantics improves previous Reo semantics models by
introducing a more intuitive notation, and by capturing for the first time the no-
tion of context dependency in Reo. The attribution of a visual colour to each
channel end, together with a suitable matching of colours, exploits Reo’s graph-
ical notation to explain the possible behaviour of each connector. The use of a
graphical notation of Reo to provide intuition about the behaviour of Reo connec-
tors is further exploited in the connector animation framework, which simulates
the execution of connectors representing data tokens moving over them.

In the process of encoding colouring tables as behavioural automata we ex-
tended the colouring semantics in two ways. Firstly, we introduced the notion
of local colourings, as a result from our definition of concurrency predicate. Sec-
ondly, we can handle state transitions associated to the execution of colourings,
following the same approach as the modelling of the colouring semantics using
the tiles model [14]. A local colouring does assigns colours to only a subset of
known ports, which is not a valid colouring in the original formulation of con-
nector colouring. When a connector a is composed with a connector b, sharing
ports x1, . . . , xn, then any colouring of a that either assigns the colour or does
not assign any colour to each port xi, is also consider to be a valid colouring of
a �� b. This notion of local colouring emphasises the contribution of the connec-
tor colouring model to the development of a distributed implementation of Reo,
contributing as well to the colouring semantics by allowing local behaviour. Our
Dreams framework, described later in this thesis, exploits this locality.

When analysing the examples presented in §4.5 we can observe several similar
colourings that differ only on the direction of the absence of flow. However, not
all colourings need to be considered. For example, when calculating the colouring
table of a connector we can abstract away from the colours of internal ports (mixed
nodes) and focus only on the colours of the boundary nodes. This corresponds to
the approach taken by the Reo automata model [29], described in §2.2.3, where
internal ports are omitted after the composition of two automata. Furthermore,
a colouring where a reason is received can be ignored from the colouring table
if a similar colouring exists that sends a reason in the same port. For simplicity,
the animations generated by the ECT framework represent only one colouring for
each possible dataflow, and do not represent all possible combinations of no-flow
colours.

An important aspect covered by Costa’s thesis [41], which is not considered
here, is causality. In some connectors it is possible to find valid but unrealisable
colourings where dataflow or a reason for no-flow results from a loop, as depicted
in Table 4.7. These loops are called causality loops, and are handled in Costa’s thesis
by introducing a causality relation that, for each colouring, describes the origin and
destination of the flow of data or the direction of the no-flow arrow. He introduces

4.8. DISCUSSION AND CONCLUSIONS 95

Connector Causality loop Connector Causality loop

Table 4.7: Causality loops in two Reo connectors.

the constructive connector colouring semantics that admits only colourings that do
not have loops on the causality relation, that is, when the transitive closure of the
causality relation is anti-reflexive.

We also introduce a simple notion of data transfer, that follows closely the
definition of the data functions and its composition in the stepwise coordination
model, presented earlier in this thesis. We do not use this extension to the connec-
tor colouring in our examples, but we use it later when presenting the implemen-
tation of the Dreams framework.

Chapter 5

Constraint-based models for Reo

5.1 Introduction

Wegner describes coordination as constrained interaction [101]. We take this idea
literally and represent coordination using constraints to develop an efficient im-
plementation of the Reo coordination model [8]. We will adopt the view that a
Reo connector specifies a series of constraint satisfaction problems, and that valid
interaction between a connector and its environment (in each state) corresponds
to the solutions of such constraints [11]. This idea diverges from the existing de-
scriptions of Reo, which are based on dataflow through channels, but we claim
that the viewpoint of constraint satisfaction not only is an appealing alternative
way of thinking about Reo connectors, but it also opens the door to more effi-
cient implementation techniques—a claim supported by experimental results in
§5.6. We use constraints to describe the semantics of Reo connectors in order to
develop more efficient implementation techniques for Reo, utilising existing SAT
solving and constraint satisfaction techniques.

The chapter makes the following technical contributions:

• a constraint-based semantic description of Reo connectors; and

• competitive SAT- and CSP-based implementation techniques for Reo con-
nectors.

Organisation of the chapter This chapter is organised as follows. We briefly re-
call the Reo coordination model in §5.2, where we also present an example of a
Reo connector for illustrative purposes further on. §5.3 describes our encoding
of Reo-style coordination as a constraint satisfaction problem. §5.4 describes an
extension of this encoding to incorporate state, so that connector semantics can
be completely internalised as constraints. Correctness and compositionality prop-
erties are also presented. §5.5 describes how to encode context dependency, as

97

98 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

formulated in the connector colouring model [37], into constraints. §5.6 presents
some benchmarking results comparing an existing engine for Reo based on con-
nector colouring with a prototype engine based on constraint solving techniques,
with and without context dependency. §5.7 describes how to guide the underly-
ing constraint solver to achieve fairness and priority. §5.8 presents some imple-
mentation issues, in particular, it gives a description of an alternative interaction
model that constraint satisfaction enables. §5.9 discusses and compares existing
Reo models and implementations with our constraint-based approach, and dis-
cusses the position of this approach with respect to the Dreams framework. Finally,
§5.10 and §5.11 present related work and our conclusions.

5.2 Reo overview

Reo [8, 9] has been explained in detail in Chapters 2 and 4. We briefly recall
the most relevant aspects of Reo for the sake of presentation. Reo is a channel-
based coordination model, wherein coordinating connectors are constructed com-
positionally out of more primitive connectors, which we call primitives. Primitives
communicate through its ports, also called ends: primitives consume data through
their source ports, and produce data through their sink ports. The behaviour of
each primitive depends upon its current state. The semantics of a connector is
described as a collection of possible steps for each state, and we refer to a round
as the change of state triggered by one of these steps.

Some of the most commonly used Reo primitives are depicted in Table 5.1.
For the purposes of this chapter, we do not distinguish between primitives such
as channels used for coordination and the components being coordinated, in that
both will offer constraints describing their behavioural possibilities. The main dif-
ference between primitives and components is that the connector has more control
over and more knowledge about the possible behaviour of the former than the lat-
ter, though this distinction is blurred in the present framework.

Connectors are formed by plugging the ports of primitives together in a one-
to-one fashion, connecting a sink port to a source port, to form nodes. A node is a
logical place consisting of a sink port, a source port, or both a sink and a source
port. We call nodes with a single port boundary nodes, represented by , and we
call nodes with a sink and a source port mixed nodes, represented by . Data flow
through a connector from primitive to primitive through nodes, subject to the con-
straint that nodes cannot buffer data. This means that the two ports in a node are
synchronised and have the same dataflow—behaviourally, they are equal. Nodes
can be handled transparently by using the same name for the two ports on the
node, as the synchronisation and dataflow at the two ports is identical. We re-
call the example of the exclusive router connector in Example 5.2.1, introduced in
Chapter 2, to illustrate Reo’s semantics.

5.3. COORDINATION VIA CONSTRAINT SATISFACTION 99

5.2.1. EXAMPLE. The connector in Figure 5.1 is an exclusive router built by com-
posing two LossySync channels (b-e and d-g), one SyncDrain (c- f), one Merger
(h-i- f), and three Replicators (a-b-c-d, e-j-h and g-i-k).

a
c

b

d

f

e

g

h

i

j

k

Figure 5.1: Exclusive router connector.

The constraints of these primitives can be combined to give the following two
behavioural possibilities (plus the no flow everywhere possibility):

• ports {a, b, c, d, e, i, h, f } synchronise and data flow from a to j; and

• ports {a, b, c, d, g, k, i, f } synchronise and data flow from a to k.

A non-deterministic choice must be made whenever both behaviours are pos-
sible. Data can never flow from a to both j and k, as this is excluded by the be-
havioural constraints of the Merger h-i- f . ♦

We present in §5.3 a formal definition of the primitives used in this exam-
ple, and we verify that the composition of the primitives yields the expected
behaviour. In this chapter, we address the challenge of implementing Reo by
adopting the view of a Reo connector as a set of constraints, based on the way the
primitives are connected together, and their current state, governing the possible
synchronisation and dataflow at the channel ends connected to external entities.

5.3 Coordination via constraint satisfaction

In this section we formalise the per-round semantics of Reo primitives and their
composition as a set of constraints. The possible coordination patterns can then
be determined using traditional constraint satisfaction techniques.

The constraint-based approach to Reo is developed in three phases:

synchronisation and dataflow constraints describe synchronisation and, the da-
taflow possibilities for a single step;

100 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

state constraints incorporate next state behaviour into the constraints, enabling
the complete description of behaviour in terms of constraints; and

context constraints capture the availability of dataflow for a single step.

The resulting model significantly extends Reo implementations with data-aware
and context dependent behaviour, and enables more efficient implementation tech-
niques. We start by focusing on synchronisation constraints (SC) and dataflow
constraints (DFC), showing its correctness with respect to the constraint automata
model of Reo, before exploring the context constraints and its relation with the
connector colouring model.

5.3.1 Mathematical preliminaries

Let P be a global set of ports of Reo connectors. Let �P denote the set of vari-
ables of P decorated with a little hat. Let D be the domain of data, and define
D⊥

def

=D ∪ {NO-FLOW}, where NO-FLOW /∈ D represents ‘no dataflow.’ Constraints
are expressed in quantifier-free, first-order logic over two kinds of variables: syn-
chronisation variables x ∈ P, which are boolean variables, and dataflow variables
�x ∈ �P, which are variables over D⊥. Constraints are formula in the following
grammar:

t ::= �x | d (terms)

a ::= x | R(t1, . . . , tn) (atoms)

ψ ::= a | � | ψ ∧ ψ | ¬ψ (formulæ)

where d ∈ D⊥ is a data item, � is true, and R is an n-ary predicate over terms.
One such predicate is equality, which is denoted using the standard infix notation
t1 = t2. The other logical connectives can be encoded as usual.

A solution to a formula ψ defined over ports P ⊆ P is a pair of assignments of
types σ : P → {⊥,�} and δ : �P → D⊥, such that σ and δ satisfy ψ, according to
the satisfaction relation σ, δ � ψ, defined as follows:

σ, δ � � σ, δ � ψ1 ∧ ψ2 iff σ, δ � ψ1 and σ, δ � ψ2
σ, δ � x iff σ(x) = � σ, δ � ¬ψ iff σ, δ � ψ
σ, δ � R(t1, . . . , tn) iff (δ� ◦ (t1), . . . , δ�(tn)) ∈ I(R)

Each n-ary predicate symbol R has an associated interpretation, denoted by I(R),
such that I(R) ⊆ D n

⊥
. The data item δ�(t) is either δ(�x) or d, depending on t being

the variable x̂ or the constant d, respectively.
The logic with constraints over boolean variables, plus equality constraints

over dataflow variables, arbitrary terms over the flat D domain, and top-level
existential quantifiers is in NP [100].

5.3. COORDINATION VIA CONSTRAINT SATISFACTION 101

The NO-FLOW value is used in constraints as a special value when no dataflow
occurs. A synchronisation variable set to ⊥ plays exactly the same role. These two
facts are linked by the following constraint, which combines synchronisation and
dataflow by capturing the relationship between no flow on port x ∈ P and the
value NO-FLOW:

¬x ↔ (�x = NO-FLOW) (flow axiom)

This axiom applies to all ports in the connector. Let Flow(P) denote
�

x∈P (¬x
↔ (�x = NO-FLOW)), where P ⊆ P. A solution to a set of constraints that satisfies
Flow(P) is called a firing. Since we are exclusively interested in finding firings
(as opposed to other solutions), we assume that the flow axiom holds for all ports
involved.

5.3.2 Encoding primitives as constraints

Two kinds of constraints describe connector behaviour: synchronisation constraints
(SC) and dataflow constraints (DFC). The former are constraints over a set P of
boolean variables, describing the presence or absence of dataflow at each port—
that is, whether or not those ports synchronise. The latter constraints involve
in addition dataflow variables from �P to describe the dataflow at the ports that
synchronise.

Table 5.1 provides the semantics of some commonly used channels and other
primitives in terms of synchronisation constraints and dataflow constraints. Note
that some of our connectors can have an infinite number of states, especially when
data is involved—a complete account of stateful connectors is given in §5.4 where
state handling is introduced into constraints.

Sync, SyncDrain and SyncSpout channels All three synchronous channels allow
dataflow to occur only synchronously at both channel ends. SyncDrains can be
viewed as data consumers, and SyncSpouts can be viewed as data generators. A
possible variant uses predicates R and Q to constrain the data produced, with a
dataflow constraint such as a → (R(�a) ∧ Q(�b)).

AsyncDrain and AsyncSpout These asynchronous channels allow flow on at
most one of their two ports per round. A refined variant of the AsyncSpout has
dataflow constraint a → R(�a) ∧ b → Q(�b).

Non-deterministic LossySync A LossySync always allows dataflow on port a.
It can in addition, non-deterministically, it allows dataflow on port b, in which
case the data from a is passed to b. Note that the LossySync here is not context-
dependent, i.e., it may lose data when b can accept data. We return to context
dependency in §5.5.

Merger A merger permits dataflow synchronously through one of its source
ports, exclusively, to its sink port.

102 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

Channel Representation SC DFC

Sync a b a ↔ b �a = �b

SyncDrain a b a ↔ b �

SyncSpout a b a ↔ b �

AsyncDrain a b ¬(a ∧ b) �

AsyncSpout a b ¬(a ∧ b) �

LossySync a b b → a b → (�a = �b)

Merger c
a

b
(c ↔ (a ∨ b)) ∧

¬(a ∧ b)
a → (�c = �a) ∧

b → (�c = �b)

Replicator a
b

c
(a ↔ b) ∧
(a ↔ c)

�b = �a ∧ �c = �a

3-Replicator a c
b

d

(a ↔ b) ∧
(a ↔ c) ∧ (a ↔ d)

�b = �a ∧
�c = �a ∧ �d = �a

FIFOEmpty1 a b ¬b �

FIFOFull1(d) a bd ¬a b → (�b = d)

Filter(R) a b
R b → a b → (R(�a) ∧ �a = �b) ∧

(a ∧ R(�a)) → b

Table 5.1: Encodings of Reo primitives.

Replicators A replicator and a 3-replicator allows data to flow only synchro-
nously at every channel end. Data is replicated from the source port to every
sink port. The constraints for the n-replicator (such as the 3-replicator found in
Example 5.2.1) can be easily derived based on the constraints for the replicator, as
show above.

FIFOEmpty1 and FIFOFull1(d) FIFO1 is a stateful channel representing a buffer
of size 1. When the buffer is empty it can only receive data on a, but never output
data on b. When it is full with data d, it can only output d through b, but cannot
receive data on a at the same time.

Filter A filter permits data matching its filter predicate R(�x) to pass through
synchronously, otherwise the data is discarded.

In our approach we use logical formula to describe the behaviour of Reo primi-
tives as both synchronisation and dataflow constraints and require only the flow
axiom to hold. Note that this precludes channels which, for example, profess to

5.3. COORDINATION VIA CONSTRAINT SATISFACTION 103

offer quality of service guarantees. However, this constraint-based framework
allows arbitrary complex concepts to be added to the behaviour of primitives,
provided the underlying constraint solver can reason about these.

Notably, the constraints for some channels, such as SyncDrain and SyncSpout,
are identical, indicating that the model does not strongly account for the direc-
tion of dataflow. Typically, however, some variables will be bound to a value and
others will remain unbound, and data can be seen as flowing from the bound
variables to the unbound ones. In Reo, the direction of the dataflow is used to
govern the well-formedness of connector composition, so that connectors have
the expected semantics, but our constraints ignore this. Our constraints will be
solved classically, in contrast to the intuitionistic model of Clarke [34], which was
designed to avoid causality problems resulting from considering the direction of
dataflow. Yet, in our setting the direction of dataflow can be used to optimise
the constraint solving, as it is generally more efficient to start with constrained
variables than with unconstrained variables, but we do not explore optimisations
beyond those provided in the constraint solver underlying our prototype imple-
mentation.

Other channels can use non-trivial predicates over more than one argument.
For example, it is possible to define a special synchronous drain variant whose
predicate R(�a,�b) constrains the data on both of its ports, for instance, by requir-
ing that they are equal or that the content of a field containing the geographic
location corresponding to the data on �a is nearby the location of �b. The dataflow
constraints of this variation of the synchronous drain can be defined, for example,
as SameLocation(�a.location,�b.location), assuming that −.location extracts the
location field from the data and the predicate SameLocation determines whether
two locations are the same or not.

Splitting the constraints into synchronisation and dataflow constraints is very
natural, and it closely resembles the constraint automata model [22] (see §5.4.3). It
also enables some implementation optimisations. Following Sheini and Sakallah
[96], for example, a SAT solver can be applied to the synchronisation constraints,
efficiently ruling out many non-solutions. In many cases, a solution to the syn-
chronisation constraints actually guarantees that a solution to the dataflow con-
straints exists. The only primitive in Table 5.1 for which this is not true is the filter,
as it inspects the data in order to determine its synchronisation constraints.

5.3.3 Combining connectors

Two connectors can be plugged together whenever for each port x appearing in
both connectors, x is only a sink port in one connector and only a source port in the
other.1 If the constraints for two connectors are ψ1 and ψ2, then the constraints for

1The information about whether a port is a sink or source needs to be maintained at a level above
the constraints. Incorporating such information into the constraints is straightforward.

104 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

their composition is simply ψ1 ∧ ψ2. Existential quantification, such as ∃x.∃�x.ψ,
can be used to abstract away from variables associated to intermediate channel
ends (such as x and �x).

Top-level constraints are given by the following grammar:

C ::= ψ | C ∧ C | ∃x.C | ∃�x.C (top-level constraints)

where ψ is as defined in §5.3.1. Top-level constraints are used to introduce the
existential quantifier, which hides the names of internal ports after composition is
performed. This opens new possibilities for optimisation by ignoring ports that
are not relevant for the final solution. This optimisation can be done statically, but
our engine implementations do not address this, beyond what is already handled
in the SAT and constraint solvers.

The satisfaction relation is extended with the cases:

σ, δ � ∃x.C iff there exists a b ∈ {�,⊥} such that σ, δ � C[b/x]
σ, δ � ∃�x.C iff there exists a d ∈ D⊥ such that σ, δ � C[d/�x].

C[a/x] is the constraint resulting from replacing all free occurrences of x by a in C,
in the usual fashion. Similar for C[d/�x].

The following constraints describe the composition of the primitives for the
connector presented in Example 5.2.1, abstracting away the internal ports:

ΨSC = (a ↔ b) ∧ (a ↔ c) ∧ (a ↔ d) ∧ (e → b) ∧ (c ↔ f) ∧ (g → d) ∧
(e↔ j) ∧ (e ↔ h) ∧ (f ↔ (h ∨ i)) ∧ ¬(h ∧ i) ∧ (g ↔ i) ∧ (g ↔ k)

ΨDFC = (a → (�b = �a ∧ �c = �a)) ∧ (e → �b = �e) ∧ (g → �d = �g) ∧ �j = �e ∧ �h = �e ∧
(h → �f = �h) ∧ (i → �f = �i) ∧�i = �g ∧�k = �g

Ψ = ∃N.∃ �N.(ΨSC ∧ ΨDFC ∧ Flow(N ∪ {a, j, k})
where N = {b, c, d, e, f , g, h, i}

A SAT solver can quickly solve the synchronisation constraint ΨSC (ignoring in-
ternal ports):2

σ1 = a ∧ j ∧ ¬k σ2 = a ∧ ¬j ∧ k σ3 = ¬a ∧ ¬j ∧ ¬k

We now include the dataflow constraints and use the flow axiom to guarantee
consistency between the value of the (boolean) synchronous variables and the
dataflow variables. Hence, using these three solutions, Ψ can be simplified us-
ing standard techniques as follows:

Ψ ∧ σ1 ❀ �j = �a ∧ �k = NO-FLOW

Ψ ∧ σ2 ❀ �k = �a ∧ �j = NO-FLOW

Ψ ∧ σ3 ❀ �a = NO-FLOW ∧ �j = NO-FLOW ∧ �k = NO-FLOW

These solutions say that data can flow either from port a to j but not to k, or from
port a to k but not to j, or that no flow is possible in any of the ports, as expected.

2We use the open source SAT solver: http://www.sat4j.org/.

http://www.sat4j.org/

5.4. ADDING STATE 105

5.4 Adding state

Adding constraints to capture stateful primitives is relatively easy. This involves,
firstly, adding constraints to capture the pre- and post-states for each interaction
described by the constraints, and, secondly, providing details of a Reo engine that
updates constraints in each round based on solutions for the current round. In
addition, we show the correspondence between our encoding and the semantics
of Reo in terms of constraint automata (CA), introduced in §2.2.2.

5.4.1 Encoding state machines

Some primitives, such as the FIFO1 channel, are stateful, i.e., their state and sub-
sequent behaviour change after data have flown through the channel. This is ex-
emplified in the constraint automata (CA) semantics of Reo [22]. The CA model
is described in §2.2.2. We briefly summarise the CA model later in this chapter.
For now, consider the CA of a FIFO1 channel shown in Figure 5.2. Its initial state
is empty. From this state the automaton can take a transition to state full(d) if
there is dataflow on port a, excluding dataflow on port b. The constraint d = �a
models the storing of the value flowing on port a into the internal state variable d.
The transition from full(d) to empty is read in a similar way, except that the data
is moved from the internal state variable d to port b.

empty full(d)

a d = �a

b �b = d

Figure 5.2: Constraint Automata for the FIFO1 channel

To encode state information, the logic introduced in §5.3.1 is extended so that
terms also include n-ary uninterpreted function symbols:

t ::= �x | f (t1, . . . , tn) (terms)

By including function symbols, a term can have a functional structure rather than
just being a variable or a constant. A term t is ground iff t = f (t1, . . . , tn) and ,
for n > 0, each ti for 1 ≤ i ≤ n is ground. Thus a term containing a variable is
not ground. The set D described earlier can now be seen as ground 0-ary unin-
terpreted function symbols; we now consider D to be the Herbrand universe over
the set of uninterpreted function symbols.

Let S be the set of individual stateful primitives in a connector. Add a new set
of term variables statep and state�p, for each p ∈ S, to denote the state before and

106 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

after the present step. State machines of primitives are encoded by encoding their
constraint automata [69]. In §5.4.3 we present the correctness and the composi-
tionality of our encoding with respect to constraint automata. For example, the
state machine of a FIFO1 channel is encoded as the formula:

stateFIFO1 = empty →

(¬b ∧ a → (state�FIFO1 = full(�a)) ∧ ¬a → (state�FIFO1 = stateFIFO1))
∧ stateFIFO1 = full(d) →

(¬a ∧ b → (�b= d ∧ state�FIFO1 = empty) ∧ > ¬b → (state�FIFO1 = stateFIFO1))
∧ (¬a ∧ ¬b) → (state�FIFO1 = stateFIFO1)

The final conjunct captures that no transition occurs when there is no dataflow.
To complete the encoding, we add a formula describing the present state, i.e.,

we add conjunctively a formula that defines the value of statep for each stateful
primitive p, for the current state. In our example, the fact that the FIFO1 is in the
empty state is recorded by the formula stateFIFO1 = empty, whereas the fact that it
is in the full state, containing data d, is recorded by stateFIFO1 = full(d).

In general, the state of primitives will be encoded as a formula of the form
�

p∈S statep = tp, where tp is a ground term representing the current state of p.
This is called a pre-state vector. Similarly,

�
p∈S state�p = tp, is called the post-state

vector. The pre-state vector describes the state of the connector before constraint
satisfaction; the post-state vector describes the state after constraint satisfaction,
that is, it gives the next state. Note that stateless primitives do not contribute to
the state vector.

5.4.2 A constraint satisfaction-based engine for Reo

Constraint satisfaction techniques can now form the heart of an implementation
of an engine performing the coordination described in Reo connectors. The en-
gine holds the current set of constraints, called a configuration, and operates in
rounds, each of which consists of a solve step, which produces a solution for the
constraints, and an update step, which uses the solution to update the constraints
to model the transition to a new state. This is depicted in the diagram in Figure 5.3.

Configuration
�ρ, ε, S�

Solution
σ, δ

Solve

Update

Figure 5.3: Phases of the Reo Engine

5.4. ADDING STATE 107

The configuration of the engine is a triple �ρ, ε, S�, where ρ represents persistent
constraints, ε represents ephemeral constraints, and S is the set of stateful primi-
tives in the connector. The persistent constraints are eternally true for a connector,
including constraints such as the description of the state machines of the prim-
itives. The ephemeral constraints include the encoding of the pre-state vector.
These constraints are updated each round, using a pair of assignments σ, δ that
satisfy the persistent and ephemeral constraints. A full round can be represented
as follows, where the superscript indicates the round number:

�ρ, εn, S� solve
−−→ �σn, δn

�
update
−−−→ �ρ, εn+1, S�

satisfying:

σn, δn � ρ ∧ εn (solve)

εn+1
≡

�

p∈S
statep = δn(state�p) (update)

We use the notation �ρ, ε, S� σ,δ
−→ �ρ, ε�, S� to denote that σ, δ � ρ ∧ ε and ε� =

�
p∈S statep = δ(state�p). The new current state, represented by state�p, is the update

of the previous state, represented by statep. Furthermore, we write c → c� when

there is a pair σ, δ such that c σ,δ
−→ c�, and we write →∗ to denote the reflexive and

transitive closure of →. We use Conf to denote the set of all configurations. We
now provide a more formal account of our encoding of constraint automata into
constraints.

5.4.3 Correctness via constraint automata

In this subsection we address the correctness of our approach. We base our argu-
ment on the constraint automata model of Reo [22], already described in Chap-
ter 2. We briefly recapitulate the constraint automata model below, and define
the language accepted by an automaton. In the process, we fully formalise the
encoding described above.

Constraint automata

We recall the formal definition of constraint automata presented earlier in §2.2.2.
Define DCP to be the set of constraints in our language above only over vari-
ables in the set �P , where P ⊆ P and the underlying data domain is D. This
excludes constraints over synchronisation variables and over constraints involv-
ing NO-FLOW. When clear from the context, we write xyz instead of {x, y, z} to
increase readability, where x, y, z ∈ P.

A constraint automaton over data domain D) is a tuple A = �Q,P ,−→, Q0�,
where Q is a set of states, P ⊆ P is a finite set of port names, −→ is a subset of

108 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

Q × 2P × DC �P × Q, called the transition relation of A, and Q0 ⊆ Q is the set of

initial states. We write q
N|g
−−→ p instead of (q, N, g, p) ∈−→. For every transition

q
N|g
−−→ p, we require that g, the guard, is a DC �N-constraint. For every state q ∈ Q,

there is a transition q
∅|�
−−→ q.

The meaning of transition the q
N|g
−−→ p is that in state q data flow at the ports

in the set N, while excluding flow at ports in P \ N. The data flowing through the
ports N satisfies the constraint g, and the resulting state is p. Thus, in constraint
automata, synchronisation is described by the set N and dataflow is described by

the constraint g. The transition q
∅|�
−−→ q is present for technical reasons, namely,

to simplify the definition of the product, below.
In order to define the language accepted by a constraint automaton,3 we need

to set up some preliminary definitions. Given a set of port names P , define data
assignments to be given by ΣP = (�P � D), namely the partial finite maps from
the dataflow variables to the data domain. Define δ � g, where δ : �P � D and
data constraint g ∈ DCP , as ∅, δ � g (from §5.3.1). Observe that this will be well
formed, as data constraints DCP do not mention synchronisation variables. We
will interpret ΣP as an alphabet. Automata will accept a finite word from the
set Σ∗

P
. As automata have no final states specified, we assume that all states are

accepting states. We formalise the evolution of a constraint automaton using the
notion of a step.

5.4.1. DEFINITION (STEP). A q-step for a constraint automaton A is given by q δ
−→

p, where δ is a data assignment, and there is a transition q
N|g
−−→ p in A such that

�N = dom(δ) and δ � g. �

The behaviour of a constraint automaton is expressed in terms of runs. A run, as
defined by Baier et al. [22], can be described as a sequence of possible steps of the

automaton. A q-run of a constraint automaton A is a finite sequence q0
δ0
−→ q1

δ1
−→

· · ·
δn−1
−−→ qn, where q0 = q and each qi

δi
−→ qi+1 is a qi-step for A. The language

accepted by the automaton A = �Q,P ,−→, Q0� is denoted L(A), defined as fol-
lows, where Ln

q denotes the words accepted in state q of length n, and Lq denotes
all words accepted in state q:

L0
q = {�}

Ln+1
q =

�
δ.w | q δ

−→ q� is a q-step for A, w ∈ L
n
q�
�

Lq =
�

i≥0
L

i
q

L(A) =
�

q∈Q0

Lq.

5.4. ADDING STATE 109

5.4.2. EXAMPLE. Most primitives in Table 5.1 are stateless, which means each of
their corresponding constraint automata has a single state. The LossySync channel
is formalised by the automaton �Q,P ,−→, Q0� depicted on the right below, with
one state and two transitions, where:

Q = {q}
P = {a, b}

Q0 = q
−→ = {(q, {a} ,�, q), (q, {a, b} ,�a = �b, q)}. q

a �

ab �a = �b

♦

5.4.3. EXAMPLE. The FIFO1 channel, already depicted as a constraint automaton
in Figure 5.2, has multiple states, and is formalised by the automaton �Q,P ,−→,
Q0� where:

Q = {empty} ∪ {full(d) | d ∈ D} P = {a, b}
−→ = {(empty, {a} ,�a = d, full(d)) | d ∈ D} Q0 = empty.

∪ {(full(d), {b} ,�b = d, empty) | d ∈ D} ♦

The trivial transition has been omitted in the two previous examples.

Encoding constraint automata as constraints

Given a constraint automata A = �Q,P ,−→, Q0�, an obvious correspondence
exists between subsets N of P and functions P → {⊥,�}. Define χN : P →

{⊥,�} such that χN(x) = � if and only if x ∈ N. If δ is defined over �N ⊆ �P , that
is, δ : �N → D, define δ+ to extend δ to a map in �P such that for each �x ∈ �P \ �N,
δ+(�x) = NO-FLOW.

5.4.4. DEFINITION (ENCODING OF STATES). Recall that we deal with constraints
on a per-state basis. The following conditions characterise constraint ψq corre-

sponding to state q ∈ Q, where q
N1|g1
−−−→ p1, · · · , q

Nn |gn
−−−→ pn are the transitions in

the automaton with source q:

(a) For all σ : P → {⊥,�}, δ : �P ∪ {state, state�} → D and p ∈ Q, such that

σ, δ � ψq, δ(state) = q and δ(state�) = p, there is a transition q
Ni |gi
−−→ p such

that σ = χNi and δ � gi.

3Other notions of the language accepted by a constraint automaton are possible too. The original
account [22] considers relations over timed data streams, each of which is a pair of infinite streams of
positive real numbers and data values. This notion of language is, however, problematic as it fails to
account for finite length computations and for infinite computations where there is dataflow at one
or more ports only a finite number of times. For example, in such a setting the automaton with no
transitions has no semantics, instead of the empty set of words.

110 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

(b) For all transitions q
Ni |gi
−−→ pi and for all δ : �Ni → D such that δ � gi, we have

that χNi , δ+ ∪ {state �→ q, state� �→ pi} � ψq. �

When the conditions (a) and (b) from Definition 5.4.4 hold for a constraint ψq,
we say that ψq encodes state q. These two conditions state that for each dataflow
described by the constraint, there is a transition in the automaton with the same
dataflow, and vice versa. (Note that if there is only one state, all mentioning of
variables referring to states can be dropped.)

These constraints are put together to describe the entire state machine as fol-
lows:

ρA =
�

qi∈Q
((state = qi) → ψqi). (5.1)

5.4.5. EXAMPLE. The constraints for the FIFO1 buffer presented in §5.4.1 are cor-
rect with respect to the constraint automaton in Example 5.4.3. We only show this
for the initial state empty, but it can be easily verified also for the other state.

For the empty state, the corresponding constraints and their possible solutions
are:

ψempty = ¬b ∧ a → (state� = full(�a)) ∧ ¬a → (state� = state)
σ1 = a ∧ ¬b σ2 = ¬a ∧ ¬b
δ1 = state� = full(�a) δ2 = state� = empty

In the constraint automaton, the transitions from the empty state are:

empty
a|d=�a
−−−→ full(d)

empty
∅|�
−−→ empty

The two conditions that confirm the correctness of the constraint ψempty can now
be easily verified, after expanding the constraint state� = full(�a) to the logically
equivalent constraint ∃d.(�a = d ∧ state� = full(d)). ♦

Correctness

Our correctness result shows that, given a constraint automaton of a stateful prim-
itive, every step of the automaton corresponds to a solve-update round in our
constraint satisfaction-based engine for Reo, and vice-versa. Recall that ρA, de-
fined in Equation (5.1), denotes the encoding of the automaton A as a constraint.
In the rest of this chapter we write �ρA, state = q� to denote a configuration of the
constraint solver, where ρA is the persistent constraint, state = q is the ephemeral
constraint, and the state denotes the state variable. Note that we omit the S com-
ponent containing the set of known stateful primitives, which is used to manage
interaction with multiple stateful primitives, as we are dealing with a single au-
tomaton only.

5.4. ADDING STATE 111

5.4.6. THEOREM. Let A be a constraint automata and q a state of A. Then the following
holds:

q δ
−→ p is a q-step of A iff

�ρA, state = q� solve
−−→ �σ, δ��

update
−−−→ �ρA, state = p� ,

where �N = dom(δ), σ = χN and δ� = δ+ ∪ {state �→ q, state� �→ p}.

Proof. Recall Definition 5.4.4 which characterises the encoding of a state q as a
constraint ψq, and the definition of the solve- and the update-arrow, presented in

§5.4.2. The arrow �ρ, ��
solve
−−→ �σ, δ� exists if and only if σ, δ � ρ∧ �, while the arrow

�σ, δ�
update
−−−→ �ρ, ��� exists if and only if �� ≡ state = δ(state�).

• (⇐) Assume �ρA, state = q� solve
−−→ �σ, δ��

update
−−−→ �ρA, state = p�. The first

solve-arrow indicates that σ, δ� � ρA ∧ state = q. Note that ρA ∧ state =
q ⇔

�
r∈Q(state = r → ψr) ∧ state = q, which implies ψq by modus ponens.

Therefore σ, δ� � ψq. Define δ = δ�� �N, where � denotes the standard restric-
tion of function domains. Observe that δ� = δ+ ∪ {state �→ q, state� �→ p}.
Since δ�(state) = q and δ�(state�) = p, it follows from condition (a) in Defi-

nition 5.4.4 that there is a transition q
N|g
−−→ p, where σ = χN and δ� � g. To

show that q δ
−→ p we just need to verify that also δ � g. This follows because

g refers only to variables in �N, and because dom(δ) = �N.

• (⇒) Assume q δ
−→ p. By the definition of a q-step, there is a transition

q
N|g
−−→ p from A such that �N = dom(δ) and δ � g. Let σ = χN and

δ� = δ+ ∪ {state �→ q, state� �→ p}. From condition (b) in Definition 5.4.4,
it follows that σ, δ� � ψq. Observe that, because δ�(state) = q, we conclude
that σ, δ� � state = q. Hence (1) σ, δ� � (state = q → ψq) ∧ state = q.
Furthermore, δ�(state) = q also implies that for every state q� �= q, the for-
mula state = q� does not hold, thus (2) σ, δ� � �

r∈Q\{q}(state = r → ψr).
From (1) and (2) we conclude that σ, δ� � �

r∈Q(state = r → ψr) ∧ state = q.

Therefore, by the definition of the solve-arrow, �ρA, state = q� solve
−−→ �σ, δ��.

Finally, since δ�(state�) = p, we have by the definition of the update-arrow

that �σ, δ��
update
−−−→ �ρA, state = p�. ✷

Compositionality

We now argue that the composition of two constraint automata describing two
connectors composed appropriately (sink-to-source) corresponds to composition
(conjunction) of their corresponding constraints (per state). In both cases, the over-
lapping of port names corresponds to the places where connectors are joined. As-

112 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

sume that we have constraint automata Ai with domains Pi, for i ∈ {1, 2}. In con-
straint automata, the composition of A1 and A2 yields a new automaton where
the transition relation → is given by the condition below.

(q1, q2)
N1∪N2|g1∧g2
−−−−−−−→ (p1, p2) iff

q1
N1|g1
−−−→1 p1, q2

N2|g2
−−−→2 p2, and N1 ∩ P2 = N2 ∩ P1

Assume that ψq1 and ψq2 are the constraints for states q1 and q2 of automata
A1 and A2, respectively, as described above. We claim that ψq1 ∧ ψq2 is the con-
straint modelling state (q1, q2) in the composite automaton given by the above
rule. Note that we would need to add equations such as state1×2 = (state1, state2)
and state�1×2 = (state�1, state�2) to make the format of the equations match. We will
not pursue this here.

5.4.7. LEMMA. Assume condition (a) from Definition 5.4.4 holds for two constraints
ψq1 and ψq2 , and for automata A1 and A2 with domains P1 and P2, respectively. Then
condition (a) also holds for ψq1 ∧ ψq2 and constraint automaton A1 �� A2.

Proof. Let σ�P denote σ restricted to domain P . Assume that σ, δ � ψq1 ∧

ψq2 , where dom(σ) = P1 ∪ P2, dom(δ) = �P1 ∪ �P2 ∪
�

state1, state2, state�1, state�2
�

,
δ(statei) = qi, and δ(state�i) = pi, for i ∈ {1, 2}. It follows that we have σ�P1, δ �
ψq1 and σ�P2, δ � ψq2 and, from the properties of ψqi , that there exists a transition

qi
Ni |gi
−−→ pi such that σ�Pi = χNi and δ � gi. Clearly, δ � g1 ∧ g2, so we are halfway

there. Now we want to show σ = χN1∪N2 . This is simple, because N1 ∩P2 = N2 ∩

P1 guarantees that functions χN1 and χN2 agree where their domains intersect.
Thus we have χN1∪N2 = χN1 ∪ χN2 = σ�P1 ∪ σ�P2 = σ. ✷

5.4.8. LEMMA. Assume condition (b) from Definition 5.4.4 holds for two constraints ψq1

and ψq2 and automata A1 and A2 with domains P1 and P2, respectively. Then condition
(b) also holds for ψq1 ∧ ψq2 and constraint automaton A1 �� A2.

Proof. Given a transition (q1, q2)
N1∪N2|g1∧g2
−−−−−−−→ (p1, p2) in the product automaton,

assume that we have δ such that dom(δ) = �N1 ∪ �N2 and δ � g1 ∧ g2. Firstly, we can
conclude both that δ � gi, for i ∈ {1, 2}. From condition (b) of Definition 5.4.4 with
respect to ψqi , we obtain that χNi , δ+ ∪

�
state�i �→ pi

�
� ψqi . Now as N1 ∩ P2 =

N2 ∩ P1, we obtain χN1 ∪ χN2 = χN1∪N2 , as in the proof of Lemma 5.4.7. We have
immediately that χN1∪N2 , δ+ ∪ {state�1 �→ p1, state�2 �→ p2} � ψqi , for i ∈ {1, 2},
hence χN1∪N2 , δ+ ∪ {state�1 �→ p1, state�2 �→ p2} � ψq1 ∧ ψq2 . ✷

Lemmas 5.4.7 and 5.4.8 show exactly our correctness result of the constraint
engine with respect to constraint automata. We make our claim precise in the
following theorem.

5.5. ADDING CONTEXT DEPENDENCY 113

5.4.9. THEOREM. If ψq1 encodes state q1 from automaton A1 and ψq2 encodes state q2
from automaton A2, then ψq1 ∧ ψq2 encodes state (q1, q2) from automaton A1 �� A2.

Proof. Directly from Lemmas 5.4.7 and 5.4.8. ✷

5.5 Adding context dependency

We have introduced three different types of constraints to capture the behaviour of
Reo connectors, namely synchronisation, data flow, and state constraints. We now
explore one further possibility and present context dependency as an additional
extension that can be modelled by constraints.

One of the main contributions of the connector colouring (CC) framework [37]
is a Reo semantics that expresses context dependency, a feature missing from the
constraint automata model. A primitive depends on its context if its behaviour
changes when there is an increase of data flowing on its ports. That is, when addi-
tional dataflow is possible, earlier valid behaviour is not displayed anymore. Two
important example primitives that cannot be represented in previous semantic
models are:

Context-dependent LossySync This channel loses data written to its source only
if the surrounding context is unable to accept the data through its sink; otherwise
the data flow through the channel. This corresponds to the original intention of
the LossySync channel [8].

Priority merger This is a special variant of a merger that favours one of its sink
ports: if dataflow is possible at both sink ports, it prefers a particular port over the
other.

Context dependency, as described by the CC semantics, supports a more expres-
sive model than other Reo semantics which lack this notion. Context dependency
in Reo is presented in more detail in §2.2.3, where we describe the Reo automata
model [29], and in §4.3, where we describe the connector colouring semantics [37].
In the rest of this section we recall the relevant definitions of the connector colour-
ing semantics, which we encode as constraints and use to show the correctness of
our approach.

5.5.1 Connector colouring: an overview

We now briefly recall the connector colouring (CC) semantics presented in Chap-
ter 4, that we use as the basis to describe context dependency in our constraint
framework. The connector colouring (CC) semantics, as presented by Clarke et
al. [37], is based on the idea of colouring the ports of a connector using a set
Colour of three colours—for orientation, the indicates the port. One colour ()

114 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

Channel Representation Colouring table

Context LossySync a b!
a b
a b
a b

Priority Merger c
a

b
!

c
a

b
c

a

b

c
a

b
c

a

b

FIFOEmpty1 a b a b
a b

Table 5.2: Colouring tables for some primitives.

marks ports in the connector where data flow, and two colours mark the absence
of dataflow (and). denotes that the reason for no-flow originates
from the context, and we say that the port requires a reason for no flow. Similarly,

indicates that the reason for no-flow originates from the primitive and we say
that the port gives a reason for no-flow.

For each port x ∈ P, we write x↓ to denote that x is a source port, and x↑ to
denote that x is a sink port. Let P� =

�
x↓ | x ∈ P

�
∪
�

x↑ | x ∈ P
�

, and X ⊆ P�.
A colouring c : X → Colour maps each port of a Reo connector to a colour, and
a colouring table T is a set of colourings for a connector, one for each possible be-
haviour for the current round. For simplicity, we write x instead of x↓ or x↑ when
the direction of the port name can be inferred by looking at the associated connec-
tor, and we write ’a b’ to denote the colouring

�
a↓ �→ , b↑ �→

�
,

when the corresponding direction of a and b can be inferred. We present in Ta-
ble 5.2 the colouring tables for some primitives.

The composition of two connectors, formally defined below, is done by creat-
ing a new colouring table with all the possible colourings that result from match-
ing the colours of their connected ports. The colour of two ports match if both
represent flow, or if the reason for no-flow comes from at least one of the ports.
That is, the valid combinations are: , , and .

5.5.1. DEFINITION (PRODUCT). (Also presented in Definition 4.3.3.) The product
of two colouring tables T1 and T2, denoted by T1 �� T2, yields the colouring table.

{c1 ∪ c2 | c1 ∈ T1, c2 ∈ T2, c1 � c2}

We define below the binary relation � for both colourings and colours, relating
only those that match, where c1, c2 are colourings and a, b are colours, and with

5.5. ADDING CONTEXT DEPENDENCY 115

↑ =↓ and ↓ =↑:

c1 � c2 iff x◦ ∈ dom(c1) ∧ x◦ ∈ dom(c2) ⇒ c1(x◦)� c2(x◦)
a� b iff �a, b� ∈ {� , � , � , � , � , � , � , �} �

We now use the same example from §4.3 for the composition of two Reo primi-
tives, that we later encode also using our constraint approach.

5.5.2. EXAMPLE. (Also presented in Example 4.3.4.) We compose a context-de-
pendent LossySync with a FIFOEmpty1 channel:

a b c
!

Composing the colouring tables of both primitives, presented in Table 5.2, results
in the colouring table of the connector, illustrated as follows:

a b c a b c

Each image represents a valid colouring, and only these two colourings exist for
this connector. The first colouring corresponds to the flow of data through the
context-dependent LossySync and into the FIFO1 buffer, and the second colouring
corresponds to the absence of flow in the connector, with a reason for this absence
required from port a. In both colourings, port c of the FIFO1 buffer gives a reason
for no dataflow. ♦

5.5.2 Context constraints

To capture context dependency, the constraint-based semantics is extended with
an extra set of context constraints defined in terms of synchronisation variables (P)
and a new set of variables called context variables. The flow axiom is also updated
to link the two sets of variables.

Context variables represent the direction of the reasons for no-flow, and con-
text constraints reflect the valid combinations for the context variables. Context
variables are given by the following set:

{xsnk | x ∈ P} ∪ {xsrc | x ∈ P.}

The context variable xsnk is used when the port x is a sink port, and xsrc when the
port x is a source port. We also write Psnk and Psrc to denote the sets {xsnk | x ∈

P} and {xsrc | x ∈ P}, respectively. Note that for a port x the constraints on the
two context variables xsnk and xsrc typically occur in different primitives—the two
primitives connected at node x. Thus for each mixed port in a connector, we have

116 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

Channel Context Constraints

a b! ¬a → (¬b ∧ ¬asrc ∧ bsnk) ∧ ¬b → ((a ∧ ¬bsnk) ∨ ¬a)

c
a

b
! (c ∧ ¬a) → ¬asrc ∧

(c ∧ ¬b) → bsrc ∧ ¬c → ((¬asrc ∧ ¬bsrc) ∨ ¬csnk)

a b (¬a → ¬asrc) ∧ bsnk

Table 5.3: Context constraints for the channels presented in Table 5.2.

constraints defined in terms of variables x, �x, xsnk and xsrc. The intention is that
xsnk or xsrc is true when the port x gives a reason and false if x requires a reason.
The values of these variables are unimportant when there is flow on x.

Next, we extend the flow axiom to reflect the matching of reasons:

(¬x ↔ �x = NO-FLOW) ∧ (¬x → xsnk ∨ xsrc) (updated flow axiom)

Recall that channels are composed using the same name x for a source and a sink
port. The constraint xsnk ∨ xsrc can be interpreted as follows: The reason for no
dataflow can either come from the sink port (xsnk is true), come from the source
port (xsrc is true), or from both ports at the same time, but the reason can never
come from nowhere (both xsnk and xsrc are false). The constraint thus encodes the
three valid matching no-flow possibilities given above.

The context constraints for the primitives shown in §5.5.1 are presented in Ta-
ble 5.3. The other primitives in Table 5.1 must also be extended to reflect the
valid combinations of context variables, by encoding their colouring tables (see
Clarke et al. [37] for examples).

5.5.3. EXAMPLE. Recall Example 5.5.2, where we compose a context-dependent
LossySync with FIFOEmpty1 channel. The constraint of this connector is given
by Ψ, defined below. We write ΨSC, ΨDFC and ΨCC to denote the synchronous
constraints, the dataflow constraints, and the context constraints of our example,
respectively.

ΨSC = b → a ∧ ¬c
ΨDFC = b → (�a = �b) ∧�

ΨCC = ¬a → (¬b ∧ ¬asrc ∧ bsnk) ∧
¬b → ((a ∧ ¬bsnk) ∨ ¬a) ∧ (¬b → ¬bsrc) ∧ csnk

Ψ = ∃b,�b, asrc, asnk, bsrc, bsnk, csrc, csnk.
ΨSC ∧ ΨDFC ∧ ΨCC ∧ Flow({a, b, c} ♦

The context constraints, represented by ΨCC, can be understood as follows.
The first line says that, if there is no dataflow on a, then there is no dataflow on

5.5. ADDING CONTEXT DEPENDENCY 117

b and a reason goes from a to b. The second line says that no dataflow on b im-
plies that b must receive a reason when a has flow. Besides b,�b, the variables
{asrc, asnk, bsrc, bsnk, csrc, csnk} are also bind by the existential quantifier as they are
necessary only to exclude non-solutions, when it is not possible to provide rea-
sons for the absence of flow. For example, the cases when the context-dependent
LossySync loses data without a reason, or when the FIFO1Empty1 fails to receive
a value without receiving a reason. The actual values chosen for such variables do
not matter.

A SAT solver can solve the constraint ΨSC yielding the solutions:

σ1 = a ∧ b ∧ ¬c σ2 = a ∧ ¬b ∧ ¬c σ3 = ¬a ∧ ¬b ∧ ¬c

Using these solutions, we can simplify Ψ using standard techniques, as in §5.3.3,
to derive the corresponding dataflow constraints. The novelty in this setting is the
context constraints. Using the solutions σ1, σ2 and σ3 to simplify Ψ, we obtain the
following constraints on the context variables (which are hidden by the existential
quantifier):

Ψ ∧ σ1 ❀ csnk
Ψ ∧ σ2 ❀ ⊥

Ψ ∧ σ3 ❀ asnk ∧ ¬asrc ∧ bsnk ∧ ¬bsrc ∧ csnk

Only the first and the last constraints are satisfiable. We can conclude that:

• σ1 is a solution that gives a reason on the port c, without imposing any re-
strictions on the value csrc, as csnk → csnk ∨ csrc;

• σ2 is not a valid solution, i.e., it is not possible for the context-dependent
LossySync to lose data since the FIFOEmpty1 does not provide a reason for
losing data; and

• σ3 is a valid solution where no dataflow occurs in the channels, provided
that there is a reason given to a, i.e., that asnk is true. As with σ1, no restric-
tions are imposed on the value of csrc.

5.5.3 Correctness of context constraints

Our approach to context dependency is equivalent to the 3-colouring semantics
of Clarke et al. [37]. However, there are two main advantages of encoding the 3-
colouring semantics as constraints. First, we can use well-known techniques for
constraint satisfaction to find solutions for the behaviour efficiently. The bench-
mark results presented later in this chapter support this claim. Second, it permits
the description of other constraints, such as data constraints, which may not be
added to the CC framework directly.

118 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

σ f (σ) σ f (σ)

x x↓ �→ x x↑ �→
¬x ∧ xsrc x↓ �→ ¬x ∧ xsnk x↑ �→
¬x ∧ ¬xsrc x↓ �→ ¬x ∧ ¬xsnk x↑ �→

Table 5.4: Definition of f .

In this subsection we formalise the equivalence between these two approaches.
We start by introducing some auxiliary definitions, and present our main claim in
Theorem 5.5.5. The equivalence of our approach with the 3-colouring follows by
construction. The proof of this equivalence results from the following observa-
tions.

1. The constraints of each primitive p are defined so that there is a surjection f ,
defined in Table 5.4, from the solutions of the synchronisation and context
constraints onto the entries of the colouring table of p.

2. The mapping f is compositional, namely, when composing two primitives p
and q with a shared variable x, composing their colouring tables and apply-
ing f to find the possible solutions is equivalent to apply f to each colouring
table and then finding the solutions for the conjunction of these constraints
and the updated flow axiom.

Let σ be an assignment. For each pair x, xs ∈ dom(σ), where s ∈ {src, snk},
f (σ) is the colouring table that maps x↓ or x↑ to the colouring represented in Ta-
ble 5.4. Furthermore, by the definition of f every colouring is associated to a fixed
set of possible solutions, which can be trivially written as a constraint. That is, the
inverse function f−1 will always produce solutions of possible constraints. It can
be easily shown that the colouring tables of the primitives in Table 5.2 are obtained
by applying f to the solutions of the synchronisation and context constraints pre-
sented in Table 5.3. For example, the synchronisation and context constraints for
the FIFOEmpty1 are ¬b ∧ (¬a → ¬asrc) ∧ bsnk, and its possible solutions are:

σ1 =a ∧ asrc ∧ ¬b ∧ bsnk;

σ2 =a ∧ ¬asrc ∧ ¬b ∧ bsnk; and

σ3 =¬a ∧ ¬asrc ∧ ¬b ∧ bsnk.

It follows from the definition of f that f (σ1) = f (σ2) = a b, and f (σ3) =
a b, which is what we expect.

Observe that for every Reo connector the set of variables used in its synchro-
nisation and context constraints must obey certain properties, captured by the
notion of variable set defined below.

5.5. ADDING CONTEXT DEPENDENCY 119

5.5.4. DEFINITION. A variable set is a finite set V ⊆ P ∪ Psrc ∪ Psnk such that

x ∈ V ∩ P iff xsrc ∈ V ∩ Psrc ∨ xsnk ∈ V ∩ Psnk. �

We write V to denote the set of all variable sets. We say two sets of variables V1
and V2 are compatible, written as V1 �V2, if V1 and V2 are variable sets, and for
every x ∈ V1 ∩ V2 ∩ P, x is a sink port in V1 and a source port in V2 or vice-versa,
that is,

V1 �V2 iff V1, V2 ∈ V ∧ V1 ∩ V2 ⊆ P (5.2)

Note that if V1, V2 ∈ V then V1 ∪ V2 ∈ V, that is, V is closed under union. Intu-
itively, two connectors with constraints over the variable sets V1 and V2 can only
be composed if the source and sink ports are connected in a one-to-one fashion.
Recall that the composition of two Reo connectors, introduced in §5.3.3, requires
that every shared port of the composed connectors is a source port in one of the
connectors, and a sink port in the other connector.

We now assume that, for every primitive p, the colouring table is given by the
surjection f defined in Table 5.4 with respect to the solutions of the synchroni-
sation and context constraints. Let fv(·) be a function that returns the free vari-
ables of a constraint. A constraint Ψ is defined over a variable set V whenever
fv(Ψ) ⊆ V. Let also [[·]]V be a function that yields the set of all possible solutions
of Ψ over V, that is,

[[Ψ]]V = {σ | σ � Ψ, dom(σ) = V} .

Define F to be the lifting of f to sets, i.e., F(Σ) = { f (σ) | σ ∈ Σ}. Finally, let �
denote the composition of two synchronisation and context constraints Ψ1 over
the set V1 and Ψ2 over the set V2, where V1 �V2, defined as follows:

Ψ1 � Ψ2 = Ψ1 ∧ Ψ2 ∧
�

x∈V1∩V2

(¬x → xsnk ∨ xsrc),

where the last constraint reflects the update on the flow axiom. The correctness
of the composition of our encoding as constraints with respect to the connector
colouring semantics is formalised by the following theorem.

5.5.5. THEOREM. For any pair of constraints Ψp over the variable set V1 and Ψq over the
variable set V2 such that V1 �V2, it holds that:

F([[Ψp]]V1) �� F([[Ψq]])V2 = F([[Ψp � Ψp]]V1∪V2).

Before proving this theorem we prove four auxiliary lemmas. The first lemma
relates shared variables of Reo connectors and the domain of the colourings de-
rived from specific solutions of the same connectors. In the following we use the
symbol ◦ to range over {↑, ↓}, and define ↑ =↓ and ↓ =↑.

120 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

5.5.6. LEMMA. Let σ1 and σ2 be assignments for variable sets V1 and V2, and V1 �V2.
Then the following holds.

x◦ ∈ dom(f (σ1)) ∧ x◦ ∈ dom(f (σ2)) iff x ∈ V1 ∩ V2.

Proof. Let x be such that x◦ ∈ dom(f (σ1)) and x◦ ∈ dom(f (σ2)). By the definition
of f , if x◦ ∈ dom(f (σ1)) then x must occur also in dom(σ1), and similarly, x must
also occur in dom(σ2). Therefore x ∈ V1 ∩ V2. For the other implication, assume
that x ∈ V1 ∩ V2. Also x ∈ P because V1 �V2. By the definitions of f and because
V1, V2 ∈ V, we conclude that x↑ ∈ dom(f (σ1)) and x↓ ∈ dom(f (σ2)) or x↓ ∈

dom(f (σ1)) and x↑ ∈ dom(f (σ2)). ✷

We say two assignments σ1 and σ2 are compatible, written as σ1 � σ2, iff ∀x ∈

dom(σ1) ∩ dom(σ2) · σ1(x) = σ2(x). The second lemma provides a sufficient con-
dition for any two assignments σ1 and σ2 be compatible.

5.5.7. LEMMA. Let σ1 and σ2 be assignments for variable sets V1 and V2, where V1 �V2,
and ∀x ∈ V1 ∩ V2 · f (σ1)(x◦)� f (σ2)(x◦). Then σ1 � σ2. Moreover, we have that
f (σ1) ∪ f (σ2) = f (σ1 ∪ σ2).

Proof. We prove σ1 � σ2 by contraposition. Assuming ¬(σ1 � σ2), there exists
x ∈ V1 ∩ V2 such that σ1(x) �= σ2(x). Note that from Equation (5.2) we con-
clude that x ∈ P. Without loss of generality assume σ1(x) = � and σ2(x) =
⊥. Then f (σ1)(x◦) = and f (σ2)(x◦) �= , for some ◦ ∈ {↑, ↓}. Thus
¬(f (σ1)� f (σ2)). Similarly for σ1(x) = ⊥, σ2(x) = �. We conclude that σ1 � σ2.
✷

The next lemma relates the new constraint from the updated flow axiom to the
matching of colourings.

5.5.8. LEMMA. For the constraint ¬x → (xsnk ∨ xsrc), where {x, xsrc, xsnk} ⊆ V, it
holds that:

c ∈ F([[¬x → (xsrc ∨ xsnk)]]V) iff c(x↓)� c(x↑). (5.3)

Proof. The proof follows by unfolding the definitions of F, and by applying
Lemma 5.5.7.

c ∈ F([[¬x → (xsrc ∨ xsnk)]]V)
≡ �By the definition of F�

c = f (σ), σ � ¬x → (xsrc ∨ xsnk), and dom(σ) = V
≡ �Partition σ into σ� and σ�� such that dom(σ�) = {x, xsrc, xsnk}�

c = f (σ� ∪ σ��), σ� � ¬x → (xsrc ∨ xsnk), and dom(σ��) = V\ {x, xsrc, xsnk}

5.5. ADDING CONTEXT DEPENDENCY 121

Observe now that σ� � σ��, hence we know that f (σ� ∪ σ��) = f (σ�) ∪ f (σ��).
Furthermore, the possible solutions for σ� are the following:

x ∧ xsrc ∧ xsnk x ∧ ¬xsrc ∧ xsnk ¬x ∧ xsrc ∧ xsnk ¬x ∧ ¬xsrc ∧ xsnk
x ∧ xsrc ∧ ¬xsnk x ∧ ¬xsrc ∧ ¬xsnk ¬x ∧ xsrc ∧ ¬xsnk .

Let Σ be this set. The last step of the proof above is equivalent to

c = f (σ�) ∪ f (σ��), σ�
∈ Σ, and dom(σ��) = V\ {x, xsrc, xsnk} .

Observe that f (σ�), for σ� ∈ Σ, are exactly the set of all possible colourings c� such
that c�(x↓)� c�(x↑), where dom(c�) =

�
x↓, x↑

�
. It is now sufficient to observe

that f (σ��) yields any possible colouring, assigning colours to all the remaining
ports apart from x, not mentioned on the right-hand-side of the equivalence in
Equation (5.3). ✷

Our final lemma leading to the proof of Theorem 5.5.5 relates the matching
of the colouring yield by two different assignments and a new assignment that
satisfies the constraint ¬x → xsrc ∨ xsnk.

5.5.9. LEMMA. For σ1 and σ2 such that dom(σi) = Vi, for i ∈ {1, 2}, σ1 � σ2, and
V1 �V2:

f (σ1)(x◦)� f (σ2)(x◦) iff
(σ1 ∪ σ2) � ¬x → xsrc ∨ xsnk and {x, xsrc, xsnk} ⊆ dom(σ1 ∪ σ2).

Proof. For simplicity let c1 = f (σ1) and c2 = f (σ2). Let also {x, xsrc, xsnk} ⊆ V.
Note that c1 and c2 will have disjoint domains, because V1 �V2. Observe that:

c1(x◦)� c2(x◦)
= �Because dom(c1) and dom(c2) are disjoint�

(c1 ∪ c2)(x◦)�(c1 ∪ c2)(x◦)
= �By Lemma 5.5.8�

c1 ∪ c2 ∈ F([[¬x → xsrc ∨ xsnk]]V)
= �By the definition of F and [[·]]V�

c1 ∪ c2 ∈ { f (σ) | σ � ¬x → xsrc ∨ xsnk, dom(σ) = V}

= �Because σ1 � σ2 and ci = f (σi)�

f (σ1 ∪ σ2) ∈ { f (σ) | σ � ¬x → xsrc ∨ xsnk, dom(σ) = V}

= �By set inclusion and because V ⊆ {x, xsrc, xsnk}�
(σ1 ∪ σ2) � ¬x → xsrc ∨ xsnk and {x, xsrc, xsnk} ⊆ dom(σ1 ∪ σ2) ✷

We are now in a position to prove Theorem 5.5.5.

122 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

Proof. (Theorem 5.5.5)

F([[Ψp]])V1 �� F([[Ψq]])V2

= �By the definition of F�
�

f (σ1) | σ1 ∈ [[Ψp]]V1

�
��

�
f (σ2) | σ2 ∈ [[Ψq]]V2

�

= �By the definition of [[·]]V��
f (σ1) | σ1 � Ψp, dom(σ1) = V1

�
��

�
f (σ2) | σ2 � Ψq, dom(σ2) = V2

�

= �By the definition of ���
{ f (σ1) ∪ f (σ2) | σ1 � Ψp, σ2 � Ψq, dom(σ1) = V1, dom(σ2) = V2,

x◦ ∈ dom(f (σ1)) ∧ x◦ ∈ dom(f (σ2)) ⇒ f (σ1)(x◦)� f (σ2)(x◦)}
= �By Lemma 5.5.6�

{ f (σ1) ∪ f (σ2) | σ1 � Ψp, σ2 � Ψq, dom(σ1) = V1, dom(σ2) = V2,
x ∈ V1 ∩ V2 ⇒ f (σ1)(x◦)� f (σ2)(x◦)}

= �By Lemma 5.5.7, from where we also conclude that σ1 � σ2�

{ f (σ1 ∪ σ2) | σ1 � Ψp, σ2 � Ψq, dom(σ1 ∪ σ2) = V1 ∪ V2,
x ∈ V1 ∩ V2 ⇒ f (σ1)(x◦)� f (σ2)(x◦)}

= �By Lemma 5.5.9, and because σ1 � σ2 and dom(σ1 ∪ σ2) = V1 ∪ V2�

{ f (σ1 ∪ σ2) | σ1 � Ψp, σ2 � Ψq, dom(σ1 ∪ σ2) = V1 ∪ V2,
x ∈ V1 ∩ V2 ⇒ (σ1 ∪ σ2) � ¬x → xsrc ∨ xsnk}

= �Because σ1 � σ2�

{ f (σ1 ∪ σ2) | (σ1 ∪ σ2) � Ψp, (σ1 ∪ σ2) � Ψq, dom(σ1 ∪ σ2) = V1 ∪ V2,
x ∈ V1 ∩ V2 ⇒ (σ1 ∪ σ2) � ¬x → xsrc ∨ xsnk}

= �Using σ = σ1 ∪ σ2 and replacing implication by an universal quantifier�
{ f (σ) | σ � Ψp, σ � Ψq, dom(σ) = V1 ∪ V2, ∀x∈V1∩V2 · σ � ¬x → xsrc ∨ xsnk}

= �Because σ � Ψ1 and σ � Ψ2 iff σ � Ψ1 ∧ Ψ2�

{ f (σ) | σ � Ψp ∧ Ψq ∧
�

x∈V1∩V2 ¬x → xsrc ∨ xsnk, dom(σ) = V1 ∪ V2}

= �By the definition of ��

{ f (σ) | σ � Ψp � Ψq, dom(σ) = V1 ∪ V2}

= �By the definition of F and [[·]]V�

F([[Ψp � Ψq]]V1∪V2).
✷

By proving Theorem 5.5.5 we show that our constraint-based approach for
describing context dependency is equivalent to the 3-colouring semantics. As a
result, searching for valid colourings is reduced to a SAT solving problem, that is,
the set of solutions for synchronous and context constraints of a connector coin-
cide with its valid colourings. In the next section we exploit the practical conse-

5.6. BENCHMARKS 123

quences of this equivalence, and compare the execution times of an engine based
on the connector colouring semantics with our constraint-based engine.

5.6 Benchmarks

We compare two prototype engines based on constraint satisfaction with an opti-
mised engine for Reo based on the connector colouring semantics [37]. For this,
the data constraints are ignored, and solving the constraints only yields where data
can flow, but not which data flow. We evaluate the constraints-based approach
using implementations based on both context independent (CI) and context de-
pendent (CD) semantics (§5.5). In the connector colouring semantics, the CI se-
mantics corresponds to using two colours while the CD semantics corresponds
to using three colours. We have implemented the context dependent semantics
for only one of the constraint engines, as the results we present already provide
solid evidence that the constraint-based approach is significantly better than using
connector colouring. A few more words regarding the three engines:

CC engine We use an optimised engine based on connector colouring [37] as a
reference for our benchmark results. The engine has been incorporated into
the Eclipse Coordination Tools.4 This engine supports both context depen-
dent and independent semantics, as explained in §5.5, and it is, to the best
of our knowledge, the fastest existing implementation that computes the be-
haviour of Reo connectors on-the-fly.

SAT engine This is a constraint engine using the SAT4J Java libraries,5 which are
free and included in the Eclipse standard libraries. The main concern of the
project responsible for the SAT4J libraries is the efficiency of the SAT solver.
We chose SAT4J because it is a well known library for SAT solving, with
the portability advantages provided by the Java platform. We avoid solu-
tions that have no dataflow by adding conjunctively the constraint

�
x∈P x

to the constraints of the connector for the CI semantics. We do not add this
disjunction in the CD semantics because the context dependency already
guarantees that the data flow unless there is an explicit reason that forbids
the flow of data.

CHOCO engine We developed a second prototype constraint engine using the
CHOCO open-source constraint solver6 which offers, among other things,
state-of-the-art algorithms and techniques,and user-defined constraints, do-
mains and variables. In the future, we expect to achieve finer control over

4
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

5
http://www.sat4j.org/

6
http://choco.emn.fr/

http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
http://www.sat4j.org/
http://choco.emn.fr/

124 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

the strategies for solving the constraints, and to add support for non-boolean
variables. The CHOCO-based engine implements only the context indepen-
dent (CI) semantics. We avoid solutions with no flow by using a strategy
that gives precedence to solutions where the synchronisation variables are
set to true. Using this strategy, the solution with no flow at all in the connec-
tor can still be found, but only when it is the only valid solution.

5.6.1 Test cases

We present four test cases constructed out of stateless channels. For each case we
replicate part of the connector a number of times and measure the time taken to
find a solution for the coordination problem, which includes the time to required
build the data structures corresponding to the connector and the encoding of its
behaviour as constraints. We also add active environments to the connector, i.e.,
we attach data writers and data readers to every port where we expect data to be
written or read, respectively. Defining this environment is important for the CC
engine because it reduces the number of possible solutions, and because one of
the optimisations of the CC engine is to start computing the colouring table start-
ing from the sources of data. Incorporating an active environment significantly
reduces the time taken by the CC engine, allowing for a fairer comparison.

x0 x1 xn−1 xn
W R

x1 y1

xn yn

W1 R1

W2 R2

Wn Rn

Figure 5.4: Left to right: n synchronous channels composed in sequence (SEQ)
and in parallel (PAR).

The first two test cases consist of n synchronous channels in sequence (SEQ)
and in parallel (PAR), respectively, as depicted in the left and right of Figure 5.4.
Note that a sequence of n synchronous channels is semantically equivalent to a
single synchronous channel, but the search for a solution becomes more complex,
especially when the topology of the connector is not exploited.

The next test case is a generalisation of the exclusive router (ExR), introduced
in §5.5, for n outputs. The generalised exclusive router is depicted on the left
side of Figure 5.5. It passes data from the data writer to exactly one of the data
readers. Finally, we use a variation of the exclusive router, the inclusive router
(InR), depicted in the right side of Figure 5.5. The inclusive router replicates data
provided by the writer to at least one of the data readers. When compared with

5.6. BENCHMARKS 125

i

o1

on

W

R1

R2

Rn

i

o1

on

W

R1

R2

R2

Figure 5.5: Left to right: exclusive (ExR) and inclusive (InR) router connectors
generalised for n outputs.

the exclusive router, it uses LossySync channels to connect the data readers to
the SyncDrain channel instead of Sync channels. Consequently, more than one
reader can receive the data produced by the data writer, although only one of the
LossySync channels will not lose data. The number of possible solutions increases
exponential when using the CI semantics, which favours the constraint engine
(since only one solution is computed). When using the CD semantics with the
active environment there is only one solution for the constraints, which consists
of the data being replicated to all available readers.

5.6.2 Results

All the benchmarks were executed on a Macbook laptop with a 2 GHz Intel Core 2
Duo processor and 4 GB of RAM, running Mac OS 10.6. For each coordinate in the
graphs, we performed 10 different executions and computed the average value.
We tested the CC-, SAT-, and CHOCO-based engines using the CI semantics, and
the CC- and SAT-based engines using the CD semantics. The benchmark results
for the CC engine are presented in Figure 5.6, and the benchmark results for the
constraint engines are presented in Figure 5.7, using one graph for each test case.
In the graphs we write Seq for the sequence of Sync channels, Par for the set of
Sync channels in parallel, ExR for the exclusive router, and InR for the inclusive
router. For each engine, semantics (CI and CD), and connector, we selected a
range of possible sizes for the connector. For each size, we measured the time
for finding a solution 10 times, and represented the average value in the graph
using a marking, as explained in the legend of the graphs. Furthermore, a solid
line represents the evaluation of the executions using the context independent
semantics (CI), and a dashed line represents the evaluation of executions using
the context dependent semantics (CD).

The results show that implementations based on constraint-solving techniques
scale better and are more efficient than the implementation based on connector

126 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

Seq – CI
Par – CI
ExR – CI
InR – CI
Seq – CD
Par – CD
ExR – CD
InR – CD

size

tim
e

(m
ili

se
c)

Figure 5.6: Results from the execution of the CC engine for the context dependent
semantics (CD) and independent semantics (CI).

colouring.
Firstly, the maximum connector size for the constraint solving approach is

much larger than for the CC-based implementation. We measured the maximum
size of connectors reached when running out of memory or taking more than 1
minute. While the maximum size of the connectors tested for the CC engine range
between 6 (Par-CD) and 100 (Par-CI), for the CHOCO engine these values ranged
between 2,000 (InR-CI) and 17,000 (Par-CI), and for the SAT engine these values
range between 800 (InR-CD) and 80,000 (Par-CI).

Secondly, the constraint solver-based engines are significantly faster at finding
solutions, as can easily be seen from the graphs. We present a comparison based
on the workload—size of connector—an engine can handle within one second. For
the Seq benchmark, the CC-based implementations could only handle connectors
of size 89 (CC-CD) to 94 (CC-CI) in 1 second, in contrast to connectors of size
15,500 (CHOCO-CI), 28,000 (SAT-CI) and 27,500 (SAT-CD) in the constraint-based
implementations. This means that the increase in workload ranges from 164 to
308. The case for the Par benchmark is more impressive: 5 (CC-CD), 7 (CC-CI)
vs. 41300 (CHOCO-CI), 55000 (SAT-CI), and 1000 (SAT-CD). Thus, the increase in
workload ranges from 200 to 7857. Notice that as the context dependent semantics
require more variables to encode, they take significantly longer to solve in the
constraint-based approach compared to context independent semantics. The ExR

and InR benchmarks exhibit similar increases in workload, being able to deal in
one second with connectors that are between 46 and 1000 times larger.

The main difference between execution of the CC engine and of the constraint

5.6. BENCHMARKS 127

Choco – CI SAT – CI SAT – CD

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500
Par

size

tim
e

(m
ili

se
c)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

350

400
Seq

size

tim
e

(m
ili

se
c)

0 500 1000 1500
0

500

1000
1500
2000
2500
3000

3500
4000
4500
5000

InR

size

tim
e

(m
ili

se
c)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200
400
600
800

1000

1200
1400
1600
1800
2000

ExR

size

tim
e

(m
ili

se
c)

Figure 5.7: Results from executing the CHOCO and SAT engines.

engines is that the former takes into account the topology of the connector, and
calculates all possible solutions whenever a new primitive is added to the set of
constraints. The constraint engines disregard the topology of the connector, and
return only one possible solution. As a consequence, the CC engine favours con-
nectors with a smaller number of solutions, while the constraint engine favours
connectors where more solutions can be found. The inclusive router test case in
Figure 5.6 illustrates this point very clearly. For the CC engine the use of a con-
text dependent semantics reduces the number of possible solutions, and for that
reason the engine is much more efficient than using a context independent seman-
tics. For the SAT engine the number of solutions has the opposite effect, since it
is much faster to find a solution under the context independent semantics. This
test case also shows that, even though the context dependency requires more com-
plex reasoning, the number of solutions is more relevant for the efficiency of the
engine.

Consider now Figure 5.7. The difference between results obtained when using

128 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

the CHOCO-based engine and the SAT-based engine are smaller in the connec-
tor with a sequence of Sync channels. This is due to the way we avoid no-flow
solutions in both cases. By avoiding no-flow solutions, there is only one possible
solution to the constraints consisting of data flowing from the writer to the reader.
In the CHOCO engine we give precedence to the flow on the ports, so the engine
only has to verify that it is in fact a solution. The SAT engine starts by trying the
no-flow assignment for each port, with the additional constraint that at least one
port has to have flow, which is not optimal for this scenario. And the context has
little influence in this case because the variables that deal with the context are not
relevant (and thus unconstrained) when the synchronisation variables are set to
true.

When performing the benchmarking we also noticed that in certain cases the
solution is found unusually rapid. This happened quite frequently, for example,
when executing the inclusive router using the context dependent semantics. The
existence of these lucky runs reflects that the heuristics used by the constraint
solver are not as predictable as the compositional method used by the CC en-
gine. The graphs do not exhibit this phenomenon because we only represent the
average of the executions.

5.7 Guiding the constraint solver

Constraint satisfaction is performed by splitting the domain of a variable into two
or more parts and by propagating constraints [6]. It is well known that the per-
formance of the solver depends on the order in which variables are resolved. We
choose to exploit this ‘flexibility’ for a variety of goals, namely, fairness, priority,
avoiding no-flow solutions, and efficiency. This section suggests how the con-
straint solver can be guided with respect to these goals, but it is not yet supported
by tools.

The following criteria, often used in conjunction, can help to guide the con-
straint solving process:

Variable ordering — Choose which variables to resolve first. For example, try
evaluating variables corresponding to ports with data, such as from exter-
nal components or from a full FIFO1 buffer, or select variable corresponding
to high priority choices. Variables can be ordered locally, within a primi-
tive to achieve a local notion of priority, or across parts of the connector or
even globally across the entire connector to achieve a more global notion of
priority by making the solver consider particular connectors before others.

Solution ordering — Choose the order in which that values are examined for
each variable. For example, try solving constraints with a synchronisation
variable set to � before trying with ⊥. Solution ordering can be applied

5.7. GUIDING THE CONSTRAINT SOLVER 129

to other data domains, though it is not immediately clear what the conse-
quences of this would be.

We now describe how this can be used. In general, the ordering imposed
on variables is partial, leaving room for the constraint solver to makes its own
choices.

Fairness — To implement nondeterministic choice fairly, the constraint solver
needs to avoid resolving constraints in the same order each time it runs.
Otherwise, it is possible that the same solution is always chosen. This can
be achieved by randomising the variable ordering each time the constraint
solver is invoked and/or changing the order in which the values of split
variables are explored. In the presence of other constraints on the variable/-
value ordering, randomisation can occur modulo the imposed ordering.

Priority — Priority can be achieved by appropriately ordering the variables and/-
or the solutions to achieve the desired effect. The more global or comprehen-
sive the ordering, that is, the more variables the ordering talks about, the
more global the notion of priority. Purely local notions concerning as few as
one variable are also sensible. For example, preferring flow over no-flow on
the output port of a LossySync achieves a local preference for dataflowing
through the LossySync.

Avoiding no-flow solutions — To give priority of flow over no-flow, the solver is
forced to try x = � before x = ⊥ when resolving synchronisation variables
x ∈ P. This needs to be done for all variables corresponding to sources of
data.

Efficiency — In general, the most efficient way to solve constraints is by starting
with sources of data (such as inputs from components or full FIFO1 buffers),
and moving in the direction of dataflow. Thus, the topology of the connector
can also be used to help determine the variable ordering.

5.7.1. EXAMPLE. Consider again the Priority Merger channel from Table 5.3. It
performs a merge of ports a and b into port c, giving priority to port a whenever
both a and b are possible. The ordering constraints to achieve this consist of visit-
ing variable a before visiting b, and then considering a = � before a = ⊥. ♦

The exact degree to which the underlying constraint solver can be manipu-
lated depends upon the implementation of the constraint solver. For instance,
CHOCO7 provides some control, such as setting the order of values for a set of
variable, though not to the extent described here. In other settings, the client of
the constraint solver may have little influence on its internal algorithms. We also

7CHOCO constraint programming system, available at http://choco.sourceforge.net/

http://choco.sourceforge.net/

130 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

need to ensure that the various orderings are preserved by optimisations and by
the composition of constraints. For example, if a variable is eliminated, what hap-
pens to the orderings related to the eliminated variable? More research is required
to better understand this issue.

5.8 Implementing interaction

Interaction between components and the engine in our model differs from previ-
ous descriptions of Reo, as depicted in Figure 5.8. The usual interaction model
for Reo components has two steps: firstly, a component attempts to write or take
a data value; secondly, in the current or in some subsequent round the engine
replies, with a possible data value. This is how Reo is implemented in Reolite [37]
and in the current ECT toolkit [16].

C

ok / ok(d)

write(v) / take

Coord C

state'
C = s(â)

!(â, state
C ,state'

C
)

CoordC

ok / ok(d)

write(v) / take

Coord C

state'
C = s(â)

!(â, state
C ,state'

C
)

Coord

Figure 5.8: (Left) Reo-style interaction. (Right) Interaction in our approach.

In our model, components play a more participatory role, wherein they pub-
lish a ‘meta-level’ description of their possible behaviour in the current round in
the form of a constraint. The engine replies with a term that the component in-
terprets as designating its new state and, if required, the dataflow that occurred.
This is (a part of) the solution of the constraints, typically just the value assigned
to the state�C variable.

The new (interactive) approach can easily be wrapped to look like the previous
(non-interactive) approach as follows, so that components written for an older
version of the Reo engine can be used with this version:
write: Component C issues a write of data d to port a:

1. Pass the constraint a → (�a = d ∧ state�C = ok) ∧ ¬a → state�C = no to the
constraint solver.

2. If the constraint solver returns state�C = ok, return control to the component.

3. Otherwise, try again with the same constraint in the next solver round.

take: Component C issues take on port a satisfying constraint R(x):

1. Pass the constraint a → (R(�a) ∧ state�C = ok(�a)) ∧ ¬a → state�C = no to the
constraint solver.

5.9. COMPARISON OF REO MODELS 131

2. If constraint solver returns state�C = ok(�a), return control with value �a to the
component.

3. Otherwise, try again with the same constraint in the next solver round.

In general, the interaction protocol between the constraint solver and the com-
ponent consists of the component/primitive issuing constraints to the solver over
a certain set of variables and the solver returning the values of those variables
to the component/primitive. Typically, it is sufficient to encode the information
returned by the constraint solver in the value stored in the state variable.

5.9 Comparison of Reo models

The surface syntax of Reo is presented in terms of channels and their connect-
ing nodes. In order to offer intuition as to how Reo works, analogies have been
drawn between the behaviour of a connector and the flow of electricity in an elec-
trical circuits or water flow through pipes [8, 16]. Such systems have a natural
equilibrium-based realisation, which does not extend to dataflow in Reo, and this
becomes apparent when implementing Reo. Indeed, even describing Reo purely
in terms of dataflow can be misleading, as the direct approach to implementing
Reo, by plugging together channels and having them locally pass on data accord-
ing to the channel’s local behavioural constraints, does not work. The channel
abstraction offers no help as channels are only capable of locally deciding what to
do, whereas the behaviour of a connector typically cannot be locally determined:
it is impossible to make choices that are local to channels in order to satisfy the
constraints imposed by the entire connector.

This means, for example, that a proposed implementation based on the MoCha
middleware [56], which provides all the primitive channels Reo has and noth-
ing else, cannot possibly work without additional infrastructure. (This was already
identified by Guillen Scholten [56].) Specifically, some form of backtracking or
non-local arbitration is required to guarantee the atomicity between the send-
ing of data and the receiving of data, while obeying the constraints imposed by
the connector. An attempt to provide a distributed model for Reo based on the
speculative passing of data combined with back-tracking has been made [46], but
the result was too complex, possibly because it followed too closely the channel
metaphor.

To see why, consider the connector in Figure 5.9. Port x could speculatively
send data through both the FIFO buffer (x-y), satisfying its local constraints, and
through the Sync channel (x-v). Node v would then send the data through the
Sync channel (v-w). Node w must also send data into the SyncDrain (w-z), but no
data will ever arrive at port z (in this round), so the SyncDrain cannot synchronise.
Thus the constraints of all the primitives are not satisfied, based on the wrong

132 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

initial choice at x, so the entire dataflow needs to be rolled back. In a distributed
setting, this is unlikely to be a feasible approach to implementing Reo.

y

v

x

z

w

Figure 5.9: Example Reo connector illustrating the need for global choices.

Although Reo is described in terms of channels and their connecting nodes,
existing Reo models are instead based on four main concepts: synchronisation,
dataflow, state transition, and context dependency. Every model of Reo focusses
on one or more of these concepts. Recent efforts to implement Reo are based di-
rectly on one of its formal semantic models. This means that the limitations of a se-
mantic model are inherited by implementations based on that model—primitives
cannot offer arbitrary behavioural possibilities, but are restricted by the semantic
model underlying the implementation. However, in general there is consider-
able freedom in choosing an implementation approach. We therefore present a
comparative discussion of some of these models and their implications for the im-
plementation of Reo. We break our discussion into two parts. Firstly, we discuss
existing models of Reo. Then we compare existing implementation approaches,
including some failed attempts.

5.9.1 Reo models

Models of Reo try to capture one or more of the following features: synchroni-
sation, dataflow, state, context dependency, and, more recently, reconfiguration.
Some models aim to be comprehensive, covering as many features as possible,
whereas others focus on one or two in order to better understand specific issues.

Synchronisation corresponds to two or more actions occurring atomically; it is
the only notion common to all Reo models. We consider mutual exclusion or
asynchrony, namely, expressing that two actions cannot occur together, as falling
under the umbrella of synchronisation.

Data aware models describe the values of data being communicated, as well as
permitting synchronisation that depends upon the value being sent. For example,
synchronisation at the sink port of a filter channel, depends upon the value passed
through its source port. Models not mentioning data can still be implemented to
forward data, but not to transform it nor base synchronisation upon it.

Context dependency is a notion required to model behaviour that changes with
the context in which the connector is placed. For example, the original intended

5.9. COMPARISON OF REO MODELS 133

behaviour of a LossySync channel is that it will lose data only if the primitive con-
nected to its sink port does not accept the data [8]. Related to context dependency
are the notions of priority, which prefers one transition (in an automata model)
over another whenever both are possible, and maximal flow, which prefers data
to spread as far as possible into a connector (all other things being equal) [89].
Different approaches have been explored, as it is unclear from the informal de-
scriptions of Reo what exactly context dependency should mean, in particular,
regarding its interaction with non-determinism.

Reconfiguration occurs when channels are unplugged from each other and re-
plugged in a new configuration. This can be initiated from within a connector
or as an external action. We did not mention reconfiguration before, but recent
work proposes a number of approaches [35, 77, 71]. The contemporary Ph.D. the-
sis of Krausse [76] focuses mainly in the reconfiguration of Reo connectors. For
this discussion we restrict to the impact that facilitating reconfiguration has on
determining the behaviour of a connector.

Abstract behaviour types The original semantics of Reo is defined in terms
of abstract behaviour types [9], which are co-inductively defined relations over
timed data streams (a timed stream paired with a value stream). These models ac-
count for synchronisation, dataflow, and, implicitly, state changes. They mention
neither context dependency nor reconfiguration.

This semantics provides little guidance for implementing Reo, so we do not
consider it further.

Automata-based models Various automata-based models for Reo exist. We
consider the following four: constraint automata (CA) [22], intensional constraint
automata (ICA) [41], port automata (PA) [70], and Reo automata (RA) [29]. These
models provide the semantics of each Reo primitive and their composition, by
representing the synchronisation possible in a connector and possibly a descrip-
tion of the dataflow in the transitions of the automata. In all of these models syn-
chronisation is represented by a set of ports in each transition, and the dataflow
by constraints.

CA is the only automata model of Reo that captures data, as the other models
focus on different issues. PA were devised to study decomposition of automata,
and hence they capture only synchronisation and state. Neither CA nor PA have
context dependency, so they can only express a variant of LossySync which makes
a non-deterministic choice between passing the data onwards and losing it. Con-
text dependency was later incorporated in an automata model, firstly in ICA, by
reverse engineering ideas from connector colouring, and, subsequently and more
compactly, in RA.

Reconfiguration in the presence of an automaton-based model requires both

134 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

maintaining a description of the connector and completely re-computing the un-
derlying semantics of a connector whenever reconfiguration occurs [35].

Additional variants of constraint automata proposed as Reo models include
notions of time [13], resource bounds [81], quality-of-service guarantees [15], or
probability [21, 23, 88].

Connector colouring Connector colouring [37] is based on the simple idea that
ports in a connector where data flow and where data does not flow can be col-
oured with different colours (see §5.5). Each primitive has a set of colourings de-
scribing its possible behaviours. The semantics of a connector is determined by
plugging together the colourings of the primitives in such a way that the colours
match, meaning that dataflow either occurs or does not occur at the node. Con-
nector colouring follows the shape of the connector, and computes all possible
behaviours for the given step.

Two variants of connector colouring exist. The first, called 2-colouring (CC2),
has one colour representing dataflow and one representing no dataflow. The sec-
ond, called 3-colouring (CC3), splits the no dataflow colour into two to capture
context, as described in §5.5. CC2 captures only synchronisation, whereas CC3
captures both synchronisation and context dependency. Both connector colouring
schemes abstract away from the data passed and state transition, but this infor-
mation can be added in implementations, as long as the value of the data does not
affect synchronisation and it is not transformed.

As connector colouring is computed on-the-fly, reconfiguration has no impact
on the computation of connector semantics, as the most recent version of the con-
nector is used to compute the colouring table.

SOS Mousavi et al. present a structural operational semantics (SOS) formalisa-
tion of Reo using Maude [89]. Two versions of the semantics were developed:
the original formulation (SOS) and an extension with a notion of maximal flow to
capture a notion of context dependency (SOS+FLOW), which is not as flexible as
the corresponding notion enforced by 3-colouring. Khosravi et al. further explore
this idea using Alloy [67]. One advantage of the SOS approach is that it deals with
causality issues in connectors (which we deliberately ignore, as most other mod-
els of Reo do). Clarke [34] explores causality in depth, presenting Reo semantics
in terms of the proof theory of intuitionistic linear logic and zero-safe Petri nets.
These approaches do not consider reconfiguration.

An alternative operational semantics is based on the Tile Model [53, 14]. Tiles
can be composed in three different ways to generate proof steps: horizontally, ver-
tically, or in parallel. Horizontal composition represents synchronisation, and can
be performed only when the effect of one tile matches the trigger for another tile.
Vertical composition represents changes of the system in time, requiring that the

5.9. COMPARISON OF REO MODELS 135

final configuration of one tile matches the initial configuration of another tile. Fi-
nally, parallel composition represents concurrent execution of tiles. This approach
extends connector colouring (both 2- and 3-colouring) to include data, state and a
primitive notion of reconfiguration (though not causality). As such, the tile mod-
els (TILE2 and TILE3) are two of the most complete semantic descriptions of Reo.

Constraint-based approach Our constraint approach deals with synchronisa-
tion, data awareness, state, and context dependency in an orthogonal and uni-
form way. We defined different constraints for each of these notions, which are
then added conjunctively to capture any combination of them (along with certain
axioms connecting the various kinds of variables). Beyond the other models, con-
straints can be used to express that multiple inputs are available on a particular
node, whereas other models deal only with a single datum (or do not mention
data at all).

Reconfiguration was not considered for the model presented in this chapter,
though it would be implemented by rewriting the appropriate constraints.

Model Data
Awareness

State
Context

Dependency
Reconfiguration

ABT � � ✗ None
CA � � ✗ Re-compute

ICA ✗ � � Re-compute
PA ✗ � ✗ Re-compute
RA ✗ � � Re-compute

CC2 ✗ ✗ ✗ Compatible
CC3 ✗ ✗ � Compatible
SOS � � ✗ Compatible

SOS+FLOW � � � Compatible
TILE2 � � ✗ Some
TILE3 � � � Some

Constraints � � � Compatible

Figure 5.10: Comparison of Reo models. Regarding the reconfiguration, None
means that reconfiguration is unfeasible; Re-compute means that reconfigura-
tion would require re-computing the entire semantics; Compatible means that the
model is compatible with reconfiguration, because semantics are computed on-
the-fly; and Some means that the model has some notion of reconfiguration built
in.

Table 5.10 presents a comparison of the various approaches along four dimen-
sions of interest (all models express synchronisation). Only three of the models

136 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

receive three ticks, namely SOS+FLOW, TILE3, and Constraints. SOS+FLOW was
not considered for implementation as the notion of maximal flow is not as flexible
as the notion of context dependency enforced by 3-colouring. As TILE3 extends
the 3-colouring model to include data awareness and state, and we have shown
how to encode synchronisation, data awareness, state, and 3-colouring style con-
text dependency into constraints, we conclude that these are semantically compa-
rable approaches.

5.9.2 Reo engines

The coordination abstractions provided by the Reo model impose some imple-
mentation challenges, so most approaches to implementing Reo involve directly
implementing some semantic model. Each semantic model induces different char-
acteristics and limitations on implementations based on it. We now compare exist-
ing and possible implementations of Reo on the implementation approach, on the
numbers of solutions computed, and on whether the behaviour is pre-computed.

implementation approach The approaches we cover include a speculative ap-
proach, compilation into automata, connector colouring, a search-based ap-
proach, and constraint solving.

number of solutions computed when determining what to do in the next step,
two approaches are possible:

1. (all-sol) find all possibilities for a round, and choose one of them non-
deterministically (or based on some other scheme); and

2. (one-sol) find only some (typically one) of the possible solutions.

pre-computed behaviour when computing the behaviour of a connector, two ap-
proaches are possible:

1. (all-steps) pre-compute all future behaviour a priori; and

2. (single-step) compute the behaviour of a single step at a time.

Speculative approach This approach to implementing Reo consists of specu-
latively trying to send data through channels and rolling back when an incon-
sistency arises. Had such an approach been successfully implemented, it would
have computed one solution at a time (one-sol) for a single step (single-step). This
is all speculation, however, as this approach was never successfully implemented
due to the inherent impossibility of locally making the globally consistent choices,
and the difficulty of managing distributed rollback and subsequent retries.

5.9. COMPARISON OF REO MODELS 137

Automata-based implementations This approach to implementing Reo com-
piles the behaviour of a connector into an automaton [79], and thus pre-computes
all future behaviour at compile-time (all-steps, all-sol). Implementations of all-steps
semantics do not scale, since finding all possible behaviour for all possible states
of a concurrent system is very expensive and space inefficient. For example, the
number of states generally doubles for every FIFO1 buffer in a connector, assum-
ing all states are reachable. Certainly, infinite state spaces are excluded. Further-
more, implementations based on automata models are inherently centralised, and
lose all potential parallelism, as a connector is implemented using a single au-
tomaton. On the other hand, this means that they can be efficient at run-time,
though they need to be re-computed when reconfiguration occurs. They trade off
run-time efficiency for flexibility.

Connector colouring-based implementations These implementations encode
the behaviour of the next step of a connector as a colouring table and compose the
colouring tables using a notion of matching, as described above in §5.5. Imple-
mentations based on this approach compute all solutions (all-sol) for a single step
(single-step). The disadvantage of computing all steps is the overhead of comput-
ing choices that are not used.

Reolite [37] was the first prototype implementation based on connector colour-
ing. A more recent and efficient engine is incorporated into the Reo toolset [16].
The latter version was used as a comparison in our benchmarking. Connector col-
ouring also forms the basis of our upcoming distributed implementation, which
we discuss below in §5.9.3.

Search-based implementation These include implementations based on the
SOS models and, hypothetically, on the Tile models. The Maude implementa-
tion of SOS [89] could find a single solution (one-sol), whereas the implemen-
tation of SOS+FLOW [89] computed all possibilities (all-sol), which were then
ordered based on a maximal flow test. The result was extremely inefficient, al-
though the encoding of SOS+FLOW in Alloy [67] potentially offers a better one-

sol-implementation technique using SAT solving. Unfortunately, no benchmarks
were presented in that paper, and as the implementation is very much a prototype,
we have not included it here for comparison. We are not aware of an implemen-
tation of TILE2 or TILE3 using Maude, as for SOS.

Constraint satisfaction The implementation approach described in this chapter
is based on constraint satisfaction techniques to derive efficient executable imple-
mentations of Reo. The constraints are solved per round (single-step) and use the
heuristics of the constraint solver to stop the search for solutions once a single
solution is found, avoiding exploring the full solution space (one-sol).

138 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

We summarise the classification of implementation approaches discussed in
this section in Table 5.8.

Implementation
Approach

Number of
Solutions

Pre-computed
Behaviour

Speculative approach one single

Compilation into automata all all

Connector colouring all single

Search-based one single

Constraint satisfaction one single

Table 5.8: Classification of Reo implementations approaches.

5.9.3 Constraints in Dreams

The distributed framework Dreams, the main contribution of this thesis, described
in the next chapter, started to be developed prior to our constraint-based approach
for coordination. Dreams executes Reo connectors in a distributed environment,
and restricts communication so that it can occur only through primitives, and
thereby prohibiting both a global agent and direct node-to-node communication.
This restriction imposes additional obligations on the implementation of primi-
tives. Specifically, it requires them to play a significant role in the global constraint
resolution process, for instance, to pass around colouring tables and to serve as the
conduits for all ‘coordination communication,’ as well as for normal communica-
tion.

In the distributed implementation the primitives follow a distributed protocol
to achieve consensus regarding how data should flow in each round, and only
then data is passed through the primitives. The initial implementation of Dreams

relied on connector colouring, but now we incorporated the constraint-solving
techniques described in this section to improve efficiency. The Dreams framework
and its implementation will be described in Chapters 6 and 7, respectively.

5.10 Related work

Wegner describes coordination as constrained interaction [101]. As such, coor-
dination systems can be modelled by interaction machines. Interaction machines
react to real-time interactive behaviour, representing the external world by infi-
nite streams of inputs, allowing them to go beyond Turing machines in expressive
power. The implementation model of Reo presented in this chapter, which is

5.10. RELATED WORK 139

extended with an interaction layer, can be regarded as a concrete realisation of
Wegner’s interaction machine.

However, surprisingly little work takes Wegner’s view of coordination as con-
strained interaction literally, representing coordination as constraints. Montanari
and Rossi express coordination as a constraint satisfaction problem, in a similar
but more general way [87]. They describe how to solve synchronisation problems
using constraint solving techniques. Networks are viewed as graphs, and the tile
model is used to distinguish between synchronisation and sequential composition
of the coordination pieces. In our approach, we clarify one possible semantics of
the coordination language Reo in these terms, giving a clear meaning for each
variable, and describing the interaction with the external world within the solve
and update stages. Lazovik et al. also utilise constraints to solve a coordination
problem [78]. They provide a choreography framework for web services, where
choreography is formalised as a constraint programming task, and where both
the Business Process and the requests are modelled as a set of constraints. This is
an example of a concrete application of constraints to coordination, using a cen-
tralised and non-compositional approach.

Taking a more practical approach, Minsky and Ungureanu introduce the Law-
Governed Interaction (LGI) mechanism [86], implemented by the Moses toolkit.
This mechanism targets distributed coordination of heterogenous agents using a
policy that enforces extensible laws. Laws are constraints specified in a Prolog-
like language, enforced on regulated events of the agents, such as the sending or
receiving of messages. The authors give a special emphasis to the deployment
and execution of the mechanism, where a trusted server provides certified con-
trollers which enforce the laws, instead of relying on a centralised coordination
mechanism. However, laws are local, in the sense that can only refer to the agent
being regulated. This allows them to achieve good performance using LGI. In the
presence of true global constraints, as in Reo, LGI would require more complex
algorithms.

Frølund [52] presents synchronisers as a part of an actor coordination frame-
work. He gives semantics for these constructs in terms of constraints, but does not
use constraint solving as an implementation technique. The constraints perform
the matching of atomic sets of actions along with pattern matching of data, but
they do not deal with the communication of data, as our model does. Frølund’s
synchronisers cannot be plugged together like channels, but they can be com-
posed by overlapping the domains of multiple synchronisers.

The analogy between Reo constraints and constraint solving problems has al-
ready been drawn in general publications about Reo [10]. Since then more spe-
cific approaches that utilise a constraint-based perspective over Reo have been
proposed. Examples of these approaches consider model checking and at the
use of mashups. Klüppelholz and Baier describe a symbolic model checking ap-

140 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

proach for Reo [69]. Constraint automata are represented by binary decision di-
agrams, encoded as propositional formulæ. Their encoding is similar to ours,
though they use exclusively boolean variables, whilst we deal with a richer data
domain. Maraikar et al. [79] present a service composition platform based on Reo,
adopting a mashup’s data-centric approach. They combine several RSS feeds into
a user interface using a Reo connector, that is executed using the CHOCO con-
straint solver (referred in §5.7 and §5.6). The work by Maraikar et al. can be seen
as an example of an application of the basic ideas that we present in this chapter.

The timed concurrent constraint (tcc) programming framework [94] was in-
troduced by Saraswat et al. to integrate the concurrent constraint (cc) program-
ming paradigm [93] with synchronous languages. Time units are rounds, all the
constraints are updated in each round, as ours are, whereas inside each round
the constraints are computed to quiescence. cc programs are compiled into an
automata model, where states are cc programs and transitions represent evolu-
tion within a round while solving the constraints. In contrast, transitions in the
constraint automata model for Reo describe the evolution between rounds. Fur-
thermore, the tcc approach avoids non-determinism as it targets synchronous lan-
guages, whilst Reo, as a coordination language, embraces non-determinism.

Andreoli et al. [5, 4] also use (linear) logic as the basis for coordination, com-
bining it with the object-oriented paradigm. They utilise proof search to reason
about coordination, as opposed to the use of constraint satisfaction techniques to
derive efficient implementations. Clarke follows a similar approach and presents
a Reo semantics, also based on proof search, using an extension of linear logic
with temporal modalities in an intuitionistic setting [34].

A small overview of other coordination models and its relation with Reo,
briefly discussed in §3.1, is now in order. The survey of Papadopoulos and Arbab
[90] compares several coordination languages, classifying languages based on
tuple spaces as data-driven models, as opposed to Reo’s channel-driven model.
Manifold [28] is another example of a channel-driven model presented in the sur-
vey, upon which Reo was built. Linda [54], one of the first coordination languages,
provides a simple executable model consisting of a shared tuple space that com-
ponents use to exchange values. Several other variations, such as Java’s popular
implementation JavaSpace of Jini [51], and the Klaim language [26], which consid-
ers multiple distributed tuple spaces, followed the basic ideas behind Linda. The
foundations of Klaim are presented as a process calculus, in particular as a variant
of the π-calculus [85] with process distribution and mobility, where communica-
tion occurs via shared located repositories instead of channel-based communica-
tion primitives. Individual tuple operations in Linda-like languages are atomic,
though they do not provide the global synchronisation imposed by Reo.

Coordination languages such as SRML [48] and Orc [68] are oriented towards
the coordination of web-services. SRML is a language developed in the context

5.11. CONCLUSION AND FUTURE WORK 141

of the SENSORIA project, where the interaction between two component services
can be either synchronous or asynchronous, depending on whether an acknowl-
edgement is required or not. Orc assumes a centralised coordinator that commu-
nicate with the component services only via asynchronous messages, instead of
describing one to one communication. It also assumes that each service can reply
at most once. Reo takes the same exogenous approach as Orc, moving the coor-
dination logic from the components to the coordinator, and introduces new syn-
chronisation capabilities, not captured by the Orc language. An exhaustive formal
comparison between Reo and Orc was performed by Proença and Clarke [92].

Coordination models have been applied to coordinate solvers of distributed
constraint satisfaction problems (DCSP) [18]. Our coordination model comes full
circle and is based on (D)CSP.

5.11 Conclusion and future work

We presented a new semantics and executable model for the Reo coordination
model based on constraint satisfaction. This was motivated by one main concern.
There is no efficient implementation technique for the existing models of Reo.
The channel-view of a Reo connector becomes a mere a metaphor. Instead, a Reo

connector is seen as a set of constraints, based on the way the primitives are con-
nected together, and their current state, governing the possible synchronisation
and dataflow at the channel ends connected to external entities. The circuit repre-
sentation of a Reo connector then serves as a convenient graphical representation
of how primitive constraints compose to yield the constrained interaction that it
expresses.

We contribute to the state-of-the-art of Reo in two ways:

• We identify the four main concepts that characterise the Reo coordination,
synchrony, data-awareness, state, and context dependency, and describe
these concepts using logical constraints. We show the correctness of our ap-
proach with respect to the first three concepts using the constraint automata
model as a reference, and we give full proof of correctness for the latter con-
cept based on the connector colouring semantics.

• We reuse existing constraint satisfaction techniques to derive more efficient
implementations of Reo. Specifically, we developed two prototype imple-
mentations, one which uses a SAT solver and another which uses a con-
straint solver to search for possible solutions, and compared their perfor-
mance with an existing Reo engine based on connector colouring. The re-
sults strongly support the idea that constraint solving is a viable approach
for implementing coordination languages.

142 CHAPTER 5. CONSTRAINT-BASED MODELS FOR REO

In our first publication of this work [39], we explored the decomposition of
Reo into constraints, extended the framework presented here to model interaction
with an unknown external world, beyond what is currently possible in existing
implementations of Reo. In that paper we assume that parts of the constraints are
still unknown in the beginning of the constraint solving phase. The correspond-
ing constraints could be requested from external entities when required. Clarke
and Proença introduced a local logic [38], wherein constraints from only part of
a connector need be consulted when searching for valid solutions. This means
that partial solutions over only some of the variables are admitted, making this
approach more scalable. Furthermore, partiality allows one to reason about ‘in-
complete’ constraints, which can be extended during the constraint satisfaction
process, enabling a new model of interaction with the external world.

Ongoing work on Reo tools and on the distributed engine of Reo in Dreams

seek to extend the support based on the model proposed here. In particular, the
distributed engine currently uses constraint solving techniques for synchronisa-
tion and context variables only. This means that data constraints are not incorpo-
rated, and the only interaction allowed is writing and reading on channel ends, as
explained in §5.8, which can be improved using the constraint-based model with
data proposed in this chapter. Constraints provide a uniform and flexible frame-
work in which one may foresee in the future an assimilation of other constraint
based notions, such as service-level agreements. Future work will explore these
directions, in particular the increased expressiveness offered by constraints and
the external interaction modes the model offers. In addition, we plan to exploit
the parallelism inherent in constraints.

Chapter 6

The Dreams framework

6.1 Introduction

Dreams1 (distributed runtime evaluation of atomic multiple steps) is a framework
that supports a distributed coordination engine, where each part of the engine
runs independently and interacts with the other parts by exchanging behavioural
automata, transition labels, and data values.

Figures 6.1 and 6.2 illustrate the main idea behind Dreams. Figure 6.1 de-
picts a centralised coordination of four different services, connecting a phone-
based and an Internet-based service to book hotels. Each hotel provides its own
reservation service. All services interact with a single coordination mechanism.
So far, all existing implementation approaches for Reo, as we describe in §6.5.4,
are centralised. The Dreams framework exploits the compositionality and local-
ity features of behavioural automata to support the execution of the coordination
mechanism in a distributed network, based on an asynchronous communication
mechanism between all computational nodes of the network. Figure 6.2 illustrates
the concept of a distributed coordination engine. Each cloud represents an inde-
pendent thread of execution of the coordination layer, which cooperates with the
clouds it is connected to. The global behaviour results from the composition of
the behaviour of all connected clouds.

The Dreams framework was originally developed as a distributed framework
for the Reo coordination model, although it can also be used for other coordina-
tion models, provided that they can be encoded as behavioural automata. We use
the three colouring semantics of Reo (Chapter 4) to illustrate the use of the Dreams

framework. Furthermore, we integrate our implementation with the existing tools
for the Reo model. For efficiency reasons, our implementation includes a solver
that applies constraint satisfaction techniques, as described in Chapter 5.

1
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools#DistributedReoEngine

143

http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools#DistributedReoEngine

144 CHAPTER 6. THE DREAMS FRAMEWORK

Figure 6.1: Coordination of web-services via a centralised engine. A phone- and an
Internet-based service to book one of two hotels.

The distribution mechanism introduced by the Dreams framework addresses
limitations of centralised approaches to implementing of synchronous languages.
The three main concerns tackled by Dreams are not dealt with by all previous
implementations of Reo, due to their centralised nature. Note that most other
coordination languages and middleware (e.g., JavaSpace [51] and JBoss2) also im-
plement only centralised control. Specifically, Dreams supports decoupling, it scales
better than previous approaches, and it supports reconfiguration at low cost.

Decoupling Parts of the system should be able to execute independently, subject
to the constraints imposed by the coordination specification. For example, two
independent communication events that do not depend on each other should be
able to proceed in parallel. This provides a high level of concurrency.

Scalability The coordination mechanism should be able to scale up to coordi-
nate a large number of entities, possibly by exploiting multiple CPU cores or by

2
www.jboss.org

Figure 6.2: Coordination of web services via a distributed engine.

www.jboss.org

6.1. INTRODUCTION 145

distributed execution.

Reconfigurability Reconfiguring an instance of a coordination pattern consists
of changing some of its parts. Systems that are expected to be reconfigured fre-
quently should be able to do it in an incremental manner, without requiring the
full system to be changed. Furthermore, reconfigurations applied to a small part
of the system should be independent of the execution or the behaviour of unre-
lated parts of the same system.

Dreams achieves decoupled execution in two steps. The core idea behind de-
coupled execution is the use of an underlying actor model [1, 2]. Primitive coor-
dinators, which we simply call actors, exchange asynchronous messages amongst
themselves. In the Reo setting, an actor of Dreams manages one or more Reo

channels, Reo nodes, or connectors. The communication among actors follows
the graph structure of the corresponding Reo connector, which restricts the po-
tential communication partners of each actor to its neighbours only. In the second
part of this chapter we explore the locality aspect described in §3.4 and in §4.4.2.
By identifying independent regions of the graph of actors, the Dreams framework
restricts the number of actors involved in each round of the coordination process,
relaxing the restriction that all actors must be involved in every round. We do
not address failure in the Dreams framework, and assume that the exchange of
messages between actors always succeeds in finite time. However, we envisage
failure addressed orthogonally at a later stage, outside this thesis, as suggested by
existing techniques for distributed programming [55].

In this following we explain the Dreams framework in two steps. This chapter
focuses on how the actors should be connected to guarantee the desired global be-
havioural automaton, based on the behavioural automata of the individual actors.
In Chapter 7 we describe how actors can agree and execute their parts of a global
behaviour, and present a distributed algorithm for the involved actors.

Organisation of the chapter In this chapter we present the Dreams framework,
described as a system of actors each with two distinct kinds of behaviour. In
§6.2 we introduce the notion of an actor, and make the distinction between reac-
tive behaviour and coordination behaviour. In §6.3 we describe how actors are con-
nected in the Dreams framework, present the basic assumptions regarding their
behaviour, introduce the concept of synchronous regions, and present an overview
of the evolution of the system of actors in time. We explore aspects of locality and
the behaviour of actors to define the necessary conditions under which parts of a
system can evolve independently of the rest of the system in §6.4. These indepen-
dent parts are the so-called synchronous regions. We present the ideas behind the
Dreams framework in §6.5 using the Reo coordination language to illustrate the
approach. We also compare Dreams with other existing ways to implement Reo,

146 CHAPTER 6. THE DREAMS FRAMEWORK

and explain how we improve on the state of the art. We finish with a description
of related work outside the Reo world and draw conclusions in §6.6 and §6.7.

6.2 Actors – overview

The primitive entities in the Dreams framework are actors. An actor is an active
entity that runs concurrently with other actors and communicates with them us-
ing a reliable, order-preserving asynchronous message passing mechanism. We
describe actors at two different levels of abstraction. At a lower level we use the
actor model reference to describe how each actor communicates with others and
how the message passing mechanism works. We call this the reactive behaviour.
The actor model is a well studied formal model of concurrent computation, intro-
duced already in 1973 by Hewitt, Bishop and Steiger [63]. We refer the interested
reader to Agha’s work for an overview of the actor model [1, 2]. At a higher level,
we incorporate a specific behavioural automaton into each actor that describes the
coordination protocol, and we call this the coordination behaviour.

Reactive behaviour The reactive behaviour describes how each actor reacts to
incoming messages, following the actor model. In this model actors are primitive
entities that communicate via asynchronous messages. Actors receive messages,
and react by making local decisions, by (1) creating more actors, (2) sending mes-
sages, and (3) adapting to respond to future messages.

Coordination behaviour The Dreams framework provides the means to coordi-
nate a set of components or services according to some behavioural automaton
(BA), as we define in Chapter 3. We associate with each actor a behavioural au-
tomaton, and the coordination behaviour of a system in the Dreams framework is
defined by the composition of the behavioural automata of all actors in the system.

In Dreams the execution of a behavioural automaton occurs in rounds, and
in each round there is a consensus on which step should be executed next. The
reactive behaviour describes how to exchange behavioural automata restricted to
the current state, referred to as frontiers (at page 49), among a set of connected
actors, and also describes how to transfer data between components based on the
resulting composition of the frontiers.

A system in the actor model is called a configuration, and consists of a collec-
tion of concurrently executing actors together with a collection of messages that
have been sent but not yet received. Message sending is fair, i.e., the delivery of
messages can be delayed only for an arbitrary finite but bounded amount of time.
Every actor has a unique name and reacts to the messages it receives according to
a specific behaviour. The behaviour of an actor is deterministic, and is defined in
terms of three basic operations:

1. create new actors;

6.3. THE BIG PICTURE 147

2. send a finite number of messages to other actors; and

3. aquire new behaviour.

The sending of messages in the actor model is asynchronous. Each actor has
an associated mail queue, and sending a message from actor A to actor B consists
of appending this message to the end of the mail queue of B. After appending the
message, A continues its computation and B keeps evaluating the messages in its
mail queue, in the order of their arrival.

The Dreams framework distinguishes two orthogonal concerns during the life
span of the actors. The main concern in the Dreams framework is to coordinate
components or services based on an actor system with a static topology. In a static
environment, there is no creation of new actors. Furthermore, in the actor model
each actor can send messages to any actor in the same system, but we restrict the
scope of the potential communication of each actor to its set of neighbours only,
which does not change with time. This is a strong assumption that simplifies the
reasoning about the reactive behaviour. We formalise this assumption in §7.2.

The second concern is reconfigurability. The evolution of the coordination be-
haviour in rounds makes reconfiguration versatile, since there is no additional
cost for reconfiguring the system between steps. Reconfiguration takes place be-
tween rounds, and can therefore be seen as an orthogonal issue to the execution
of each round. During a round we assume a static topology.

6.3 The big picture

A system built on top of Dreams consists of a set of actors that can communicate
with each other within a static topology, as depicted in the example in Figure 6.3.
Each actor has an associated behavioural automaton, characterising its coordina-
tion behaviour, and follows a specific protocol to interact with its neighbours to
guarantee that the system behaves according to the composite behavioural au-
tomata of all connected actors. In this section we give an overview of the dis-
tributed protocol, explaining some basic assumptions about the actors, how they
are connected to each other, and how the system evolves in time. We leave the full
details of the protocol for Chapter 7. Note that an actor is completely specified
by its behavioural automaton, hence we often use actors and their behavioural
automata interchangeably.

6.3.1 Coordination via a system of actors

We now describe the role of actors in the coordination view of the Dreams frame-
work. The coordination view is represented by a system of actors, as exemplified
in Figure 6.3. Each of the clouds depicted in the figure represents a single actor,

148 CHAPTER 6. THE DREAMS FRAMEWORK

Figure 6.3: Graph structure of a system of actors in Dreams.

and the edges between clouds reflect the fact that the connected actors know each
other as neighbours. Actors can send messages only to their neighbour actors. As
mentioned at the end of §6.2, we assume that actors cannot send references to ac-
tors in messages and cannot create new actors. Thus the topology of the graph is
static.

We extend each actor with its coordination information, assuming that each
actor has an associated behavioural automaton (BA), as described in Chapter 3. The
behavioural automaton of an actor is directly related to the topology of the connec-
tor as follows. Let b1 = �Q1, L[P1],→1,O1� and b2 = �Q2, L[P2],→2,O2� be two
actors. Recall that, according to the definition of behavioural automata, the set
L[Pi] consists of labels of transitions corresponding to actions that bi can perform,
each associated to an atomic step in AS[Pi] via a function α. The set Pi contains the
ports used by these atomic steps. There is an edge between the actors b1 and b2 if
and only if P1 ∪ P2 �= ∅. Therefore, edges between actors reflect the existence of
shared port names between behavioural automata.

Furthermore, we distinguish two different kinds of actors, proactive actors and
non-proactive actors. Intuitively, an actor is proactive if it has a port whose data
values do not depend on any data value flowing through another port of the actor,
and it is non-proactive otherwise. We formalise a proactive actor as an actor that
has at least one proactive port, which we define below. But before that, we introduce
the notion of value-independence between two ports, which is the key concept
behind a proactive port.

6.3.1. DEFINITION (VALUE-INDEPENDENT PORTS).
A port x is value-independent from port y in state q, written x �q y, if for all

P, F, IP, OP ⊆ P, and label �i ∈ L[P] such that α(�i) = �P, F, IP, OP, datai�, the
following holds.

If q �1
−→ q1 and q �2

−→ q2 with data1(x) = a and data2(y) = b,

then there exists q �3
−→ q3 with data3(x) = a and data3(y) = b. �

6.3. THE BIG PICTURE 149

empty full(v)

�1(v)

�2(v)
q

�4(w)

�3(v)

α(�1(v)) = {ab, a, a, ∅, {a �→ v}}
α(�2(v)) = {ab, b, ∅, b, {b �→ v}}

α(�3(v)) = {cd, cd, c, d, {c, d �→ v, v}}
α(�4(w)) = {cd, c, c, ∅, {c �→ w}}

Figure 6.4: Behavioural automata of the FIFO1 (left) and LossySync (right) chan-
nels.

Note that �1, �2 and �3 do not need to be distinct. Intuitively, Definition 6.3.1 states
that if x can deliver a and y can deliver b, then x and y must be able to deliver a and
b in a single step. We now define proactive ports as the ports that can send or receive
data that originates from or is consumed by the actor, respectively. Intuitively, a
port x is a proactive port when its data value does not depend on the value of any
of the other ports.

6.3.2. DEFINITION (PROACTIVE PORT). A port x ∈ IP ∪ OP is proactive in state q
if there exists a transition q �

−→ q� such that α(�) = {P, F, IP, OP, data} and ∀y ∈

IP ∪ OP · x �q y. �

Finally, we formalise below a proactive actor as an actor with proactive ports. An
actor that is not proactive is called non-proactive actor.

6.3.3. DEFINITION (PROACTIVE ACTOR). We say an actor is proactive if its behav-
ioural automata has a proactive port for one of its state. �

We refer to a label � with an atomic step α(�) = �P, F, IP, OP, data� as a proactive
step if it involves a proactive port x ∈ IP ∪ OP. The intuition behind the definition
of proactive actors is that these actors will either produce data or consume data ab
initio : only proactive actors have interest to initiate communication. To exemplify
the proactive-related concepts we use the FIFO1 and the LossySync channels.

6.3.4. EXAMPLE. Recall the FIFO1 Reo channel, presented in previous chapters
using different formalisms (pages 23, 56, 59, 74, and 102). We depict the be-
havioural automata of a FIFO1 channel with a source port a and a sink port b
on the left side of Figure 6.4. Each arrow labelled with �i(v) represents a collec-
tion of labels, one for each data value v ∈ D. The definition of the labels �1(v)
and �2(v) is not important, since we only need to know the corresponding atomic
steps. While in state empty the port a is proactive, because for any value v ∈ D the
step �1(v) is proactive. It is enough to observe that α(�1(v)) has no output ports,
hence ∀y ∈ OP · x �empty y trivially holds. The port b is not a proactive port in

150 CHAPTER 6. THE DREAMS FRAMEWORK

state empty because it is neither an input nor an output port in any of the available
transitions. ♦

6.3.5. EXAMPLE. Recall now the LossySync channel. We depict the behavioural
automata of a LossySync channel with a sink port c and a source port d on the
right side of Figure 6.4. The LossySync channel is not a proactive actor because its
two ports are not value-independent. For example, let v, w ∈ D such that v �= w.

Then q
�3(v)
−−→ q where the value v flows though c, and q

�3(w)
−−−→ q where the value w

flows through d. However, there is no label � such that q �
−→ q�, v flows through c,

and w flows though d. Hence neither c or d are proactive ports. ♦

We depict proactive actors using a thicker line for the border of their clouds,
as exemplified in Figure 6.3. Proactive actors are the initiators of the distributed
protocol, which we introduce in §6.3.3. Furthermore, proactive actors are the only
actors that can decide which atomic step the Dreams configuration performs next.

6.3.2 Synchronous regions

Scalability mentioned in §6.1 is achieved via a true decoupling of the execution,
which we address next. The specification of a Dreams configuration as a set of
connected actors that can execute concurrently, as depicted in the example from
Figure 6.3, already provides a basic decoupling of the execution. We go beyond
this basic decoupling by analysing the behavioural automata of the actors and
identifying links between actors that require only asynchronous communication.
We depict these truly asynchronous connections using dotted lines, as shown in
the example in Figure 6.5.

=⇒

Figure 6.5: Creation of two synchronous regions in a Dreams configuration.

The presence of asynchronous communication yields what we call synchronous
regions, depicted in Figure 6.5 by a grey background to group actors that belong
to the same region. Actors in the same synchronous region must reach consensus
among themselves before each round of communication, but actors from different
synchronous regions can communicate asynchronously between rounds. Reduc-
ing the number of actors involved in the search for a consensus also reduces the

6.3. THE BIG PICTURE 151

complexity of this search, which is visible in the results of our benchmarks pre-
sented in §7.5. This approach is possible only because we reason about both the re-
active behaviour (asynchronous communication) and the coordination behaviour
(typically synchronous communication) simultaneously.

In §6.4 we address the challenge of how to identify asynchronous communi-
cation. Recall that the composition of behavioural automata always requires the
shared ports to synchronise, i.e., their actors must communicate in a synchronous
manner. Furthermore, two behavioural automata with disjoint sets of ports can
always evolve in parallel. Our approach relies on the fact that behavioural au-
tomata can have ports that are partially independent. Consider, for example, the
behavioural automaton of the FIFO1 channel, an automaton with two ports that
we analyse in detail in §6.5.1. In any of its states, the dataflow on one of the ports
is independent of the dataflow on the other port. We formalise how to generate
two new behavioural automata by partitioning the ports of a single automaton,
and the conditions under which such a partitioning preserves the behaviour of
the original automaton, in §6.4.2. In general, such partitioning does not preserve
the behaviour of the original automaton, but in truly asynchronous behavioural
automata, such as the automaton of a FIFO1 channel, the behaviour is preserved.

This chapter introduces a special splitting of actors used to identify synchro-
nous regions. The two new resulting actors communicate with each other using
asynchronous messages only. More specifically, the two new actors can send in-
formation regarding their state updates only to each other, and can produce only
state changes that are not associated with the execution of an atomic step. For
example, given two split actors A and B, if A changes state after a round it must
communicate this change to actor B, which in turn can also change its state, al-
though B may not have performed an atomic step. These state changes can be
regarded as reconfigurations, and are not captured by the coordination behaviour.

6.3.3 Evolution in Dreams

This section describes how the execution of actors the Dreams framework evolve
in time. Following the same ideas behind the constraint satisfaction-based engine
for Reo as discussed in §5.4.2, the system evolves in rounds. Each round consists
of the following four phases.

Request

Consensus

Propagate

Update

Request Every proactive actor with a non-empty set of proactive ports P for the

152 CHAPTER 6. THE DREAMS FRAMEWORK

current state sends a message to each of the actors it is connected to, that is, to
every actor with which it shares a port in P, asking for its behavioural automa-
ton. In turn, the neighbours will also ask the behavioural automata of their own
neighbours, and so on.

Consensus The actors reply with their behavioural automata until one of the
proactive actors collects the behavioural automata of all actors. This proactive ac-
tor finds the product of these automata and nondeterministically selects a possible
atomic step as such that q as

−→ q� where q is the current state in the final behavioural
automaton.

Propagate The selected atomic step is propagated to all actors along with the
data according to the data function defined in as.

Update Each actor updates the state of its behavioural automaton according to
the atomic step as.

In Chapter 7 we describe the algorithm implemented by the reactive behaviour,
where each actor has an associated stage and communicates with its neighbour
actors using a message passing mechanism. In this section we focus on the as-
sumptions and properties of the Dreams framework, and how it relates to existing
work. Note that the consensus phase in each round requires only the transitions
from the current state. Therefore, each actor needs only to provide a behavioural
automaton restricted to the current state, defined in Definition 3.4.2, as the frontier.

– idle
– committing

– committed

Figure 6.6: Simplified diagram relating the possible phases for each actor.

At the system level we have the four phases for each round presented above.
At the level of each actor we distinguish different actor phases, to be introduced
next. Figure 6.6 presents a simplified diagram with phases for each actor. A
complete description of the phases of each actor is presented in §7.3. An actor
is initially idle, represented by the colour , until it receives a request for its
behavioural automaton. After the reception of a request, it forwards the request
to its remaining neighbours (all its neighbours except the sender of the request)
and becomes committing, represented by the colour . Once it has received all
replies, the actor collects the required behavioural automata and returns its own
behavioural automaton together with the collected replies to the actor that sent
the initial request and becomes committed, represented by the colour . The
consensus phase will be performed by a proactive actor. Once each actor receives

6.3. THE BIG PICTURE 153

(a) (b) (c)

Figure 6.7: Example of the evolution of a round in a system in Dreams.

the resulting atomic step for the current round, it propagates the data, and be-
comes idle again.

6.3.6. EXAMPLE. In Figure 6.7 we give an example of the evolution of a round
of a Dreams configuration, using a simplified version of the graph in Figure 6.3.
This example gives some intuition of how the distributed algorithm works. Thick
border lines denote proactive actors. We assume that the three proactive
actors in Figure 6.7 (a) have a proactive port, and each of them starts the request
phase by sending a request message to the actor in the centre. In (b) the three
actors in grey are committed, and the left actor is still waiting for a reply to its
request for the behavioural automaton of the middle actor. Only the left actor will
receive the behavioural automaton of the whole system, while the other actors
will only have a partial information about the global behaviour. The details of
why only the left actor waits for a reply will be presented in Chapter 7, where
we explain the distributed algorithm. Finally, Figure 6.7 (c) represents a possible
result of the update phase after the previous round is finished. In this round
only the top right actor starts the request phase, where we can safely conclude
that only that actor has proactive atomic steps in the new state of its behavioural
automaton, i.e., the other proactive actors cannot perform any proactive step to
produce or consume data. ♦

Imagine now the following scenario. A proactive actor A can perform a proac-
tive step and sends a request for communication. Imagine that, as a result of the
consensus stage, it is not possible to perform the proactive step. None of the ac-
tors in the configuration changes the state of its behavioural automaton, and the
proactive actor continues its useless efforts again and again to perform its proac-
tive step with no success, since there is no atomic step that causes any change to
the current configuration. To avoid this kind of scenarios we introduce two new
assumptions that enable a proactive actor to identify when the sending of a re-
quest is no longer useful because no dataflow is possible. The first assumption is
about the behavioural automata of actors, and the second assumption relates to
how the choice of the next step is made in the consensus phase.

154 CHAPTER 6. THE DREAMS FRAMEWORK

6.3.7. ASSUMPTION (SILENT NO-FLOW). Let b be a behavioural automaton of an actor,
and q1

�
−→ q2 a transition where α(�) = �P, F, IP, OP, data�. We assume that if F = ∅,

then q1 = q2, i.e., transitions that do not have dataflow in any of the ports do not change
the state of a behavioural automaton.

6.3.8. ASSUMPTION (AVOID NO-FLOW). When a proactive actor selects a label � in the
consensus phase, where α(�) = �P, ∅, ∅, ∅, ∅�, and performs the corresponding tran-
sition, then there is no other label �� starting from the current state such that α(��) =�

P�, F�, IP�, OP�, data�
�

and F� �= ∅, that is, transitions with dataflow have precedence
over transitions without dataflow.

Using these two assumptions we can guarantee that no dataflow can occur in
the current configuration after a step with no dataflow is taken. We make this
statement precise in the following proposition.

6.3.9. PROPOSITION. When all actors comply with the Assumptions 6.3.7 and 6.3.8,
whenever a no-flow atomic step is taken (with the empty flow set) all following atomic
steps will also be no-flow atomic steps.

Proof. Let q �
−→ q� be a transition performed by a behavioural automaton such that

α(�) = �P, F, IP, OP, data� and F = ∅. By Definition 3.3.1 of an atomic step, also
IP = ∅, OP = ∅ and data = ∅. By Assumption 6.3.7 q = q�, that is, there is no
state change, and by Assumption 6.3.8 there is no transition with dataflow, which
could trigger a state change. ✷

This proposition justifies why a proactive actor does not need to send a request
while idle if the previous consensus phase selected a transition with an atomic step
�P, ∅, IP, OP, D�.

We now argue why we consider these assumptions to be reasonable. The gen-
eral idea is that only dataflow is observable of atomic steps. Since we expect
to observe all state changes, transitions with no dataflow should not cause state
changes. Assumption 6.3.7 formalises the intuition that a behavioural automaton
can change only when there is dataflow. Alternatively, we could have extended
the definition of an atomic step with a new boolean to represent whether a state
change occurs. We believe that the model is clear and more intuitive without los-
ing expressiveness if we simply forbid state changes labelled with atomic steps
with no dataflow. Assumption 6.3.8 justifies the implementation choice of not to
perform atomic steps with no dataflow.

Note that in Reo, the context dependency described in Subsections §2.2.3, §4.3,
and §5.5.2, conforms to and reinforces Assumption 6.3.8: when data is available
in a context, it must flow unless there is a reason for no flow. Furthermore, in our
constraint-solving approach for Reo without context dependency, we impose an
additional constraint

�
P, which states that only solutions where one of the ports

has flow are relevant.

6.4. DECOUPLED EXECUTION 155

Writer Reader

Figure 6.8: Synchronous regions separated by a FIFO1 channel.

Summary We defined the Dreams framework to be a set of connected actors,
where each actor has a behavioural automaton. We distinguished proactive actors
from non-proactive actors as the actors that can produce or consume data. We
also introduced the notion of a synchronous region, which plays a major role in
tackling scalability, and briefly mentioned how we plan to identify such regions.
Furthermore, we gave an overview of how each round in Dreams evolves, intro-
ducing extra assumptions to detect situations where there is no need to start the
request phase.

Next, we explore local executions in §6.4, taking advantage of the behavioural
automata of the actors, and the fact that certain regions of the system can stop the
protocol until the behavioural automaton of the boundaries of a region changes.

6.4 Decoupled execution

In Reo, constraint solving techniques (Chapter 5) improve the efficiency of the
consensus stage compared to previous approaches based on the join of colouring
tables. However, the scalability problem remained, as revealed by the benchmarks
in §5.6. In these benchmarks, execution time appears to grow exponentially with
the size of the connectors involved. Our approach to tackle this problem is to re-
duce the number of actors involved in the consensus phase. Solving the constraint
satisfaction problem of a given connector is in general less efficient than solving
twice the constraint satisfaction problem for a connector with half the size.

Recall the empty FIFO1 channel in Reo. The behaviour of the source and sink
ports of this FIFO1 channel are partially independent. The source port can have
dataflow independently of the sink port, and the sink port will always have no
dataflow independently of the source port. By considering that the two ports are
independent, we can assume that the consensus phases involving the two ports
of the FIFO1 can evolve independently, yielding smaller regions to search for so-
lutions, depicted with a grey background in Figure 6.8. We call these regions syn-
chronous regions. We avoid the name ‘independent region’ because the behaviour
of each region is not completely independent: they can evolve independently, but
they have to report their state changes to the other regions using asynchronous
messages. Below, we justify why actors such as the FIFO1 can have ports that
can be considered independently, based on their behavioural automata. Using
this formalisation we show why the FIFO1 channel can induce different regions,
and why another so-called asynchronous Reo primitive—the asynchronous drain

156 CHAPTER 6. THE DREAMS FRAMEWORK

channel—fails to do so.
Up to now we considered all actors in the Dreams framework to be connected

and required in each round. However, the stepwise coordination model intro-
duced in Chapter 3 admits the possibility of concurrent executions of a connector,
as a consequence of the concurrency predicates described for each state of the be-
havioural automata. The concurrency predicates describe when atomic steps of a
subpart of a global behavioural automaton b can also be considered atomic steps
of b, which we called local steps. If two or more disjoint local steps can be per-
formed at some point in time, then they can be performed independently of each
other in any order, or even in parallel in the same round.

The Dreams framework evolves by collecting all possible behavioural autom-
ata, and only then a proactive actor selects a possible atomic step. The final be-
havioural automaton is known only after considering all behavioural automata:
it is not calculated during the sending of and replying to requests for the be-
havioural automata. We made this choice to avoid extra communication between
actors, although some techniques exist for distributed constraint solving [104]
where a possible local solution is communicated and verified, requiring a back-
tracking mechanism when the verification fails. As a consequence, we cannot find
a local step without collecting the behavioural automata of all connected actors.

b...

x1

xn

...

y1

ym

=⇒ b1
...

x1

xn

b2
...

y1

ym

Figure 6.9: Splitting of an actor with asynchronous behaviour.

In our approach, we find actors with asynchronous behavioural automata and
split them into two new actors, such that the sets of known ports of the behav-
ioural automata of the new actors form a partition of the set of known ports of
the behavioural automaton of the original actor. We depict the splitting of actors
in Figure 6.9. However, when splitting an actor the coordination behaviour can
change. Hence we impose soundness and completeness criteria that guarantee
the preservation of the behaviour.

6.4.1 Restricted actors

Each of the new behavioural automata b1 and b2 in Figure 6.9 is a copy of the
original behaviour b, restricted to its own set of associated ports. The splitting of
actors is accomplished through the following restrict and filter functions, which

6.4. DECOUPLED EXECUTION 157

we define for behavioural automata as follows.

α(restrictX(�)) = �P ∩ X, F ∩ X, IP�X, OP�X, data�X�

if α(�) = �P, F, IP, OP, data�

filterX(→) = {
�
q, �, q�

�
| q �

−→ q�, α(�) = �P, F, IP, OP, data�, F ∩ X �= ∅}

The operator � denotes the standard restriction of functions. The restriction func-
tion restrictX over labels needs to be defined for the concrete instance of a label,
such as colourings (Chapter 4) or constraints (Chapter 5). The function restrictX
prunes a label by ignoring all ports not in X, and the function filterX removes all
transitions that do not have dataflow on any of the ports in X. Note that when
splitting a behavioural automaton by applying the restrict and the filter functions
to a partition of the ports, and considering all combinations of the restricted au-
tomaton, we can introduce new undesired behaviour. Later in this chapter we
show how splitting an asynchronous drain channel produces such. Therefore, we
will introduce some conditions that must hold when splitting actors, which will
guarantee that the behaviour of the original behavioural automaton is preserved.

Filtering a set of ports X in the connector colouring model is achieved by re-
moving colourings where some of the ports from X have dataflow. In the con-
straint-based approach this is achieved by adding conjunctively the constraint
�
{¬x | x ∈ X}. Restricting a set of ports X in the connector colouring is done

by removing references to the colour of the ports in X. In the constraint approach,
this is done by adding an existential quantifier binding the variables in X over the
constraints.

In Table 6.1 we exemplify the result from applying the functions filter{x} and
restrict{x} in the stepwise coordination model, in the connector colouring model,
and in the constraint-based model. For simplicity, we disregard data constraints
in the three cases. We choose the non-deterministic LossySync, which is a stateless
primitive. The filtering process removes the possibility of having dataflow on y,
by extracting �1 and c1, and by adding the constraint ¬y. The restriction process
ignores occurrences of y, by removing it from the remaining atomic steps and
colouring tables, and by adding the existential quantifier ∃y. We formalise the
restriction of an actor as follows.

6.4.1. DEFINITION (RESTRICTED ACTOR). Let b = �Q, L[P],→,O� be a behaviour-
al automaton and X a set of ports. Restricting b to X yields the automaton �Q, L[P],
→�,O�, where

→
�=

��
q, restricX(�), q�

�
|
�
q, �, q�

�
∈ filterX(→)

�
. �

Notation Let b = �Q, L[P],→,O� be a behavioural automaton, X a set of ports,
and � ∈ L a label. We write b(X) to denote the behavioural automaton b restricted

158 CHAPTER 6. THE DREAMS FRAMEWORK

x y =⇒ x y/ / / /

Beh. automaton 2-Colourings Sync. constraint

q¬ {x, y}

�1, �2, �3 q c1
−→ q

q c2
−→ q

q c3
−→ q

y → x

α(�1) = �xy,xy,∅,∅,∅�

α(�2) = �xy, y,∅,∅,∅�

α(�3) = �xy, ∅,∅,∅,∅�

c1 = {x �→ , y �→ }

c2 = {x �→ , y �→ }

c3 = {x �→ , y �→ }

σ1 = {x �→ �, y �→ ⊥}

σ2 = {x �→ �, y �→ ⊥}

σ3 = {x �→ ⊥, y �→ ⊥}

⇓ ⇓ ⇓

new atomic steps:
α(�1) : filtered
α(�2) = �x, x,∅,∅,∅�

α(�3) = �x,∅,∅,∅,∅�

new colourings:
c1: filtered
c2 = {x �→ }

c3 = {x �→ }

new constraint:
∃y · (¬y ∧ (y → x))
σ2 = {x �→ �}

σ3 = {x �→ ⊥}

Table 6.1: Filtering and restriction for the non-deterministic LossySync.

to X, and �X to denote the label restrictX(�). When X = {x} we also write �x

and b(x) instead of �X and b(X).

6.4.2 Splitting actors

We now use restriction of actors to define the splitting of an actor.

6.4.2. DEFINITION (SPLITTING OF AN ACTOR). Let b = �Q, L[P],→,O� be a be-
havioural automaton, and X, Y a partition of P, i.e., X ∩ Y = ∅ and X ∪ Y = P.
We define the splitting of an actor with b as its behavioural automaton over the
partition X, Y to be the pair of actors with behavioural automata b(X) and b(Y). �

Figure 6.9 represents a split of actors where b1 = b(X) and b2 = b(Y), for
X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We postpone the presentation of con-
crete examples to §6.5, where we use Reo and its connector colouring semantics
to exemplify the splitting of actors.

By splitting actors we discard some information from the original behavioural
automaton. However, we are interested only in specific splitting situations, where
the original behaviour is preserved. Let b = �Q, L[P],→,O� be an original be-
havioural automaton, and b(X) = �Q, L[PX],→X ,OX� and b(Y) = �Q, L[PY],→Y,
OY� be a pair of split actors. Both split actors share the same state space, viz. Q,

6.4. DECOUPLED EXECUTION 159

and we expect each to mimic the corresponding state changes of the other split
actor. This is achieved by each split actor sending an asynchronous message with
its atomic step to the other split actor. whenever it changes its state. This is part of
the reactive behaviour, which we explain in detail in §7.3. Split actors update their
status upon receiving such an atomic step from their twin split actors. Seman-
tically, the combined coordination behaviour of the two split actors is subject to
soundness and completeness criteria, defined below. These conditions must hold
to guarantee the preservation of the coordination behaviour of b.

6.4.3. DEFINITION (SOUNDNESS CRITERIA). Let P be a set of ports and X, Y a par-
tition of P. We say the splitting of b = �Q, L[P],→, O� into b(X) = �Q, L[PX],→X ,

OX� and b(Y) = �Q, L[PY],→Y,OY� is sound iff for every pair of transitions q �1
−→X

q1 and q �2
−→Y q2, there is a pair of labels r, t ∈ L[P] where �1 = rX and �2 = tY, and

a state q� ∈ Q, such that:

q r
−→ q1 (6.1)

q t
−→ q2 (6.2)

q r
−→ q1

t
−→ q� or q t

−→ q2
r
−→ q�, and q rX⊗ tY

−−−→ q� (6.3)

if q r
−→ q1

t
−→ q�1 and q t

−→ q2
r
−→ q�2, then q�1 = q�2. (6.4)

�

The soundness criteria state that each transition from b(X) or b(Y) corresponds
to some transition in b. Note that the state space Q is the same in b, b(X) and
b(Y). Equations (6.1) and (6.2) state that each transition in the new behavioural au-
tomata corresponds to an analogous state change in b, as can be inferred from the
definition of restriction (Definition 6.4.1). Equation (6.3) says that b must be able
to perform r and t sequentially in some order, having q1 or q2 as an intermediate
state, and it must also be able to perform the step rX⊗ tY, leading to the same
target state q�. Finally, Equation (6.4) says that when b can perform r and t in any
order, then they must reach the same ending state, that we know by Equation (6.3)
to be the state reached by rX⊗ tY. The intuition is that each split actor can evolve
independently of the other actor, and can adapt deterministically to state changes
performed by its twin split actor, respecting the original behaviour.

6.4.4. DEFINITION (COMPLETENESS CRITERIA). We say that for a partition X, Y
the splitting of b = �Q, L[P],→, O� into b(X) = �Q, L[PX],→X ,OX� and b(Y) =

�Q, L[PY],→Y,OY� is complete iff for every transition q �
−→ q� of b one of the follow-

160 CHAPTER 6. THE DREAMS FRAMEWORK

ing conditions holds:

q �X
−→X q� (6.5)

q �Y
−→Y q� (6.6)

� = rX
⊗ tY, and q r

−→ q1
t
−→ q� or q t

−→ q2
r
−→ q�

where q rX
−→X q1, q tY

−→Y q2. (6.7)

�

The completeness criteria state that every transition of b can be performed by
either b(X), b(Y), or by the composition of a step from each of these behavioural
automata. Equations (6.5) and (6.6) hold when the transition in q is not filtered in
the construction of one of the restricted actors. If a transition by � in b is filtered
by both split actors, then Equation (6.7) must hold, that is, � must be obtained by
composing the two atomic steps rX and tY, one from each split actor, both starting
from the same state as b, and the target state must be reachable by performing
these two atomic steps in b in any order.

Consider the behavioural automaton b of the non-deterministic LossySync pre-
sented in Table 6.1. The splitting of b over the partition {x} , {y} yields the be-
havioural automata b(x) and b(y). In this example we also describe the behavioural
automaton b(y). The behavioural automaton b(y) has a single atomic step after
the restriction: �y

3 = �y, ∅, ∅, ∅, ∅�. This splitting is not complete with respect
to b, because the atomic step corresponding to the sending of data through the
channel is lost. More specifically, the completeness conditions do not hold. The

transition q �1
−→ q does not come directly from a transition in b(x) or b(y) (Equa-

tions (6.5) and (6.6)). Moreover, Equation (6.7) does not hold either, because there
are no transitions r and t in → such that rx and ty belong to the split actors, and
� = rx ⊗ ty.

In the next subsection we exemplify a more complex behavioural automaton
in the context of Reo that can be split, and another example that cannot be split.
We show that the soundness and completeness criteria hold in the first case, and
show where they fail for the second case. Furthermore, we present a variation of
the second example that satisfies the soundness and completeness criteria.

6.5 Decoupled execution of Reo

This section uses the Reo coordination language to illustrate the decoupling of ex-
ecution of the stepwise model, described in §6.4, in a more concrete scenario. The
existing implementation of the Dreams framework, which we describe in Chap-

6.5. DECOUPLED EXECUTION OF REO 161

ter 7, currently incorporates only two concrete incarnations of behavioural au-
tomata: connector colouring and the constraint-based semantic models of Reo.

x

y

sd
z

s1

s2

s3

f
s4

=⇒

s1

s2

x

y

sd z
s3

f
s4

Figure 6.10: Encoding of a Reo connector as a Dreams configuration.

The Dreams framework maps each Reo channel directly to an actor with the
concrete incarnation of the behavioural automaton given by its Reo semantics.
Merging and replicating of dataflows are performed by Reo nodes with multiple
source and sink channel ends, which are also Reo primitives, each with a well-
defined behavioural automaton, encoded as a single actor. We depict a possible
encoding of a Reo connector into the Dreams framework in Figure 6.10, according
to the extreme scenario where every node and channel is encoded as a separate ac-
tor. Alternatively, we can also define a single actor with the combined behavioural
automaton of the full connector, resulting in a centralised implementation of this
connector. In the examples presented in this section we use the connector colour-
ing semantics [37], described in Chapter 4, and give examples of a Reo primitive
that can be split, a Reo primitive that cannot be split (although intuition may
suggest otherwise), and larger Reo connectors that benefit from the decoupled
execution gained by splitting of actors.

Notation We represent labels as colourings with a data function, as defined in
§4.4.4. That is, L = C × (P � D), where C, P, and D are the global sets of
colourings, ports, and data values. Let col be a colouring, that is, a mapping from
ports to colours. We write

� = col(�a1 = v1, . . . ,�an = vn)

to assign to the variable � the label with atomic step α(�) = �P, X, IP, OP, data�,
where n ≥ 0, P is the set of known ports of the primitive with colouring col, X
is the set of ports with a flow colour, IP and OP form a partition of {a1, . . . , an}

containing its source and its sink ports, respectively, and data(ai) = vi.

6.5.1 Splitting the FIFO1 channel

Recall the behavioural automaton of the FIFO1 channel in Table 6.2. We use the
connector colouring semantics, and use parameterised steps and states over a gen-

162 CHAPTER 6. THE DREAMS FRAMEWORK

eral data value v to denote a family of steps and states, respectively. We also use
the notation introduced in §3.3.1 for concurrency predicates, where ¬P denotes all
atomic steps that do not have flow on any of the ports in the set P.

a b

q0

q1(v) ¬ {a, b}

¬ {a, b}

�1(v)

�2

�3(v)

�4

�1(v) = {a �→ , b �→ } (�a = v)
�2 = {a �→ , b �→ }

�3(v) = {a �→ , b �→ } (�b = v)
�4 = {a �→ , b �→ }

Table 6.2: Behavioural automaton of the FIFO1 channel.

We split the actor for the FIFO1 channel into two actors by applying Defini-
tion 6.4.2, based on the filtering of its colouring tables and on the restrictions of
colourings. Each of the split actors represent one of the two ends of the FIFO1
channel. The result is presented in Tables 6.3 and 6.4. Recall that filtering a colour-
ing table consists of removing all colourings that have flow on a given set of ports
X, and restricting a colouring c consists of restricting the domain of c to X. We
depict the removed transitions and colourings in Tables 6.3 and 6.4 in grey colour,
by crossing out their text, and using dashed lines in the state diagrams.

a b/ / / /

q0

q1(v)
¬ {a, b} ∪�
�b

2, �b
3(v), �

b
4

�

¬ {a, b} ∪�
�b

2, �b
3(v), �

b
4

�

�a
1(v)

�a
2

�a
4

�a
1(v) = {a �→ , / / / / /b �→ } (�a = v)
�a

2 = {a �→ , / / / / /b �→ }

/ / / / / / / / / / / / / / / / / / / /�3(v) = {a �→ , b �→ } (�b = v)
�a

4 = {a �→ , / / / / /b �→ }

Table 6.3: Behavioural automaton the FIFO1 after restricting to port a.

We now verify that the soundness and completeness criteria presented in §6.4
hold for the restricted behavioural automata presented in Tables 6.3 and 6.4.

6.5. DECOUPLED EXECUTION OF REO 163

a/ / / / b

q0

q1(v)
¬ {a, b} ∪�
�a

1(v), �
a
2, �a

4
�

¬ {a, b} ∪�
�a

1(v), �
a
2, �a

4
��b

2

�b
3(v)

�b
4

/ / / / / / / / / / / / / / / / / / / /�1(v) = {a �→ , b �→ } (�a = v)
�b

2 = {/ / / / /a �→ , b �→ }

�b
3(v) = {/ / / / /a �→ , b �→ } (�b = v)
�b

4 = {/ / / / /a �→ , b �→ }

Table 6.4: Behavioural automaton the FIFO1 after restricting to port b.

Soundness Equations (6.1) and (6.2) can be easily verified by observing that for
every �x

i from the new behavioural automaton the transition �i exists that per-
forms the same state update in the original behavioural automaton. To show
Equation (6.3) observe that the composition of all possible combinations of la-
bels from the same state are defined as follows: �a

1(v)⊗ �b
2 = �1(v), �a

2 ⊗ �b
2 = �2,

�a
4 ⊗ �b

3(v) = �3(v), and �a
4 ⊗ �b

4 = �4. It is now easy to see that for every compo-

sition �a
i ⊗ �b

j = �k considered before, if q
�k
−→ q� in the original automaton, then

q
�i
−→a q1

�j
−→b q� or q

�j
−→b q2

�i
−→a q�, where →a and →b are the transition relations of

each of the new behavioural automata. Finally, Equation (6.4) can also be verified
by analysing every possible combination of atomic steps �a

i and �b
j starting from

the same state, and observing that whenever q
�i
−→ q1

�j
−→ q�1 and q

�j
−→ q2

�i
−→ q�2,

then q�1 = q�2.

Completeness In this example completeness can be easily shown by observing

that for every transition q �
−→ q� in the original automaton either q �X

−→X q� or

q �Y
−→Y q� holds in one of the restricted automata. That is, no transition is filtered

by both split actors, therefore Equations (6.5) or (6.6) always hold.

6.5.2 The asynchronous drain cannot be split

We follow a similar approach to split the asynchronous drain channel. The split
of this channel into two actors with a channel end each is not sound, i.e., does not
satisfy the soundness criteria, as we will show soon. The splitting where one of
the split actors is restricted to all the ports and the other does not have any ports
is trivially sound and complete, although not useful in our framework.

The asynchronous drain is a stateless primitive with two source ends, which

164 CHAPTER 6. THE DREAMS FRAMEWORK

can receive data from either of its ends, but not from both ends at the same time.
The purpose of this example is to show that the kind of asynchrony exhibited by
the asynchronous drain channel differs from the asynchrony in the FIFO1 channel.
Furthermore we demonstrate a variant of the asynchronous drain channel that
makes the same pair of split actors sound and complete.

a b

q

�1, �2, �3, �4

�1 = {a �→ , b �→ }

�2 = {a �→ , b �→ }

�3 = {a �→ , b �→ }

�4 = {a �→ , b �→ }

Table 6.5: Behavioural automaton of the asynchronous drain channel.

We present in Table 6.5 the behavioural automaton of the asynchronous drain
channel using its connector colouring semantics. This channel is stateless, i.e., it
has only one possible state. Apart from the data function, the atomic steps are
exactly the same as in the FIFO1 channel, the main difference being that here we
have only one state. Following Definition 6.4.2 we obtain two split actors whose
behavioural automata have only reflexive transitions, defined in Table 6.6.

a b

�a
1 = {a �→ }

�a
2 = {a �→ }

�a
4 = {a �→ }

�b
2 = {b �→ }

�b
3 = {b �→ }

�b
4 = {b �→ }

Table 6.6: Behavioural automata of a splitting of the asynchronous drain.

The absence of state changes compared to the FIFO1 channel breaks one of
the soundness criteria, by introducing new behaviour. More specifically, Equa-

tion (6.3) does not hold. For example, q
�a

1
−→a q in b(a) and q

�b
3

−→b q in b(b), but it

does not hold that q �1⊗�3
−−−→ q in the original automaton b, which corresponds to a

step with dataflow in both ports. The intuition behind this failure is that the asyn-
chronous drain in fact imposes an exclusion between its ports, but this is lost when
we consider each port in isolation. We believe that the name ‘asynchronous drain’
found in the literature [8, 9, 22] is therefore misleading. In view of the above dis-
cussion it would make sense to rename it to ‘exclusive drain’ or similar. However,
for consistency with the literature, we use the established name for this channel.

Consider now a different drain channel, called non-deterministic drain. This

6.5. DECOUPLED EXECUTION OF REO 165

b b(a) b(b)

�1 = {a �→ , b �→ } – –
�2 = {a �→ , b �→ } �a

2 = {a �→ } �b
2 = {b �→ }

�3 = {a �→ , b �→ } �a
3 = {a �→ } –

�4 = {a �→ , b �→ } – �b
4 = {b �→ }

Table 6.7: Atomic steps of the non-deterministic drain and its split.

channel differs from the asynchronous drain as follows. The flow of data on
both ends is now possible, and it can always provide a reason for no-flow. We
define in Table 6.7 the valid colourings for the behavioural automaton b of the
non-deterministic drain, and for the behavioural automata b(a) and b(b) of its split
actors. The intuition behind this drain is that it can always choose to receive or
not receive data through either of its ends, independently of the context and of the
behaviour of its other end. The soundness and completeness conditions hold for
the splitting of the non-deterministic drain, which can be easily verified as there
is only a single state. The soundness and completeness capture the independence
of the two ends of the non-deterministic drain, which does not exist in the case of
the asynchronous drain. Note that there is no extra communication between the
two actors to communicate their state changes, since there is never a state change.
Therefore, intuitively the non-deterministic drain must be the same as two com-
pletely independent Reo primitives, each with a single end, which is true for the
resulting split actors.

6.5.3 Splitting into synchronous regions

We have shown that the FIFO1 channel and a non-deterministic drain can be split
into new actors without changing their original behaviour. Other Reo channels
too can each be split into two new actors, each actor engaged with only one of the
ends of the channel. Some examples are variations of the FIFO1 channel, such as
the FIFO2 channel (a buffered channel with two memory slots instead of one), the
shift lossy FIFO1 channel (a channel that buffers at most one value, but replaces the
content of the buffer when new data arrives), and the variable channel (a channel
that behaves as the shift lossy FIFO1 except the buffered value is replicated before
sending, so once it becomes full it never gets empty again). Checking soundness
and completeness of the splittings of these channels is analogous to our previous
examples. We now explore the advantages of splitting actors in Reo connectors,
based on the splitting of the FIFO1 channel.

We use the sequencer connector as a motivating example to illustrate the advan-
tages of the splitting of actors. The sequencer connector is depicted in the lower
part of the connector in Figure 6.11. It consists of a sequence of FIFO1 channels

166 CHAPTER 6. THE DREAMS FRAMEWORK

a

b

c f

e

d

•

Figure 6.11: Synchronous regions induced in the sequencer connector.

in a loop, where only one of the FIFO’s is full. Data is replicated between each
pair of FIFO1 channels, producing data sequentially every time data flows from
one FIFO1 to the next one. The most typical use of this connector is as a syn-
chronisation barrier to alternate the flow of n synchronous channels. Figure 6.11
shows how the sequencer is used to guarantee that a flow from a to d is always
followed by a flow from b to e, which is followed by a flow from c to f , and so
on. By considering each of the ends of the FIFO1’s as an independent end, we de-
duce three implicit regions each of which can evolve independently of the other
regions, without adding or removing any behaviour. These three regions are de-
picted using a different background colour for each region. In Figure 6.13 we
present the corresponding Reo connector as a system of actors, where each node
and channel is implemented by an actor, apart from the FIFO1 channels, each of
which is implemented by a pair of split actors. We depict actors associated with
nodes by to improve readability.

Recall now the synchronising merge connector, presented in Figure 2.2 in §2.2.
The synchronising merge connector imposes the following behaviour on the two
components A and B. When A, B, or both are invoked by the presence of data on
their source ports (on their left), then they cannot be invoked again until each of
the previously invoked components produces a value through its sink port (on its
right). If the components A and B have independent ends, then two synchronous
regions arise from the splitting of the FIFO’s, as depicted in Figure 6.12. Therefore,
replacing an asynchronous component by a pair of components combined with
the synchronising merge connector still yields a new system with independent
ports i and o. In Figure 6.14 we present the synchronising merge connector viewed
as a system of actors. We assume that the components A and B communicate only
asynchronously, depicted by a dotted line between their source and sink ports.

6.5. DECOUPLED EXECUTION OF REO 167

i o

A

B

Figure 6.12: Synchronous regions of the synchronising merge connector.

a

b

c f

e

d

Figure 6.13: System of actors for the sequence connector.

6.5.4 Discussion

Recall the comparison of existing implementation approaches to Reo presented
in §5.9. We extend this comparison by introducing the distinction between cen-
tralised and distributed implementations, and comparing a new approach: the
commit and send approach, embodied in the Dreams framework. We summarise
our findings in Table 6.8.

We compare five different implementation approaches for Reo, plus the new
commit and send approach. The speculative approach consists of trying to send
data through the channels and rolling back when an inconsistency arises. The
automata-based approach [79] pre-computes all future behaviour at compile time.
Implementations based on connector colouring [37] compute all solutions for the
behaviour of each round, described as colouring tables, and deal with data trans-

168 CHAPTER 6. THE DREAMS FRAMEWORK

Figure 6.14: System of actors for the synchronising merge connector.

Implementation
Approach

Number of
Solutions

Pre-computed
Behaviour

Distributed

Speculative approach one single �
Compilation into automata all all ✗

Connector colouring all single ✗

Search-based one single ✗

Constraint satisfaction one single ✗

Commit and send one single �

Table 6.8: Classification of Reo implementation approaches.

fer orthogonally. Existing search-based implementations are based on SOS models
and implemented either in Maude or in Alloy [89, 67], and can also be based on
the Tile models [53, 14]. Finally, the constraint-based approach [40] described in
Chapter 5 utilises SAT solving techniques to search for single solutions in each
round.

The speculative approach is the only approach prior to Dreams that aims to
achieve a distributed implementation of Reo. However, as mentioned in §5.9.2,
this approach was never successfully implemented. Therefore, Dreams is the first
successful implementation of a distributed engine for Reo, and is based on a com-
mit and send approach. We describe this new approach to compute only one possi-
ble solution, and to compute a single behaviour instead of pre-computing all pos-
sible behaviour alternatives. The Dreams framework requires only the behavioural
automaton of each round to describe the behaviour relative to the current state,
and requires the discovery of only a single atomic step in each round.

Note that the perspective of the commit and search approach is different from

6.6. RELATED WORK 169

the remaining implementation approaches. The number of solutions and the pre-
computed behaviour are minimum requirements of the commit and send approach,
while these are consequences of the remaining implementation approaches. That is,
the commit and send approach does not implement a one-solution approach, but
requires only one solution to be calculated. In practice, the commit phase of the
Dreams framework relies on the stepwise coordination model, which is an abstrac-
tion of another coordination model such as the connector colouring, constraint
automata, or a set of constraints. The fact that the Dreams framework requires
only one possible solution makes it suitable to use any of the other centralised
approaches to implement Reo as the underlying concrete coordination model of
Dreams. As mentioned earlier, we have implemented the connector colouring and
the constraint-based models as encodings of the stepwise coordination model.

Hybrid deployment – an ideal scenario. Centralised implementations have an
advantage over distributed implementations with respect to their runtime coor-
dination overhead. When it is feasible to precompute all behaviour alternatives
a priori, avoiding the consensus phase at each round, this approach makes the
execution of a static connector (disregarding reconfiguration) more efficient. For
some scenarios, the lower overhead is more relevant than considerations for scal-
ability or easy reconfiguration. This suggests that some complex scenarios may
benefit from a hybrid deployment using multiple implementations. More specif-
ically, some parts of a connector can be compiled using a centralised approach
(e.g., constraint automata), each considered as an individual actor, which can be
deployed in a different location. The Dreams framework can then perform the
coordination among these connector parts.

Ideally, a connector would be partitioned automatically into its synchronous
regions by an automatic splitting mechanism, and each region would be compiled
separately to run as a single actor. This results in maximal concurrency among
synchronous regions while avoiding costly synchronous communication across
actors, which can reside in different physical locations. Note that although we call
this an ideal scenario, the developer of a system may still desire to force a single
synchronous region to be distributed across a network, for example, because of
hardware requirements.

6.6 Related work

In this chapter we introduced Dreams, a new framework used to distribute con-
nector-type coordination, and gave a general overview of its implementation. We
assume the actor model as the basis for a reliable and asynchronous communi-
cation, and presented a small comparison of our distributed approach compared
with other approaches to implement Reo in §6.5.4. Now we take a wider perspec-

170 CHAPTER 6. THE DREAMS FRAMEWORK

tive and consider other approaches for distributed coordination. In particular, we
start by addressing the most popular formalisms used in the industry, and then
look at some languages and tools that involve distributed coordination.

The industry standard for coordination of web services, the business process
execution language (BPEL) [30], is a block-structured language that uses a cen-
tralised execution model, much like the automata-based implementations of Reo.
Reo has also been used for the composition of web services. The mashup environ-
ment SABRE [79] built using Reo, provides tools to combine, filter and transform
web services and data sources like RSS and ATOM feeds.

Linda [54], one of the first coordination languages, provides a simple exe-
cutable model consisting of a shared tuple space which components use to ex-
change values. The survey of Arbab and Papadopoulos [90], and the more recent
classification of Arbab [10], classify Linda and its derivatives as data-oriented as op-
posed to Reo’s dataflow-oriented model. Individual tuple operations in Linda are
atomic, but Linda lacks the arbitrary multiparty rendezvous communication that
Reo provides through synchrony. There have been many attempts to distribute
Linda based on replication [24] or partitioning [27] of the tuple space. These im-
plementations usually use some form of the two-phase commit (2pc) protocol to
preserve the atomicity of operations. The current implementation of the Dreams

framework is not as mature and optimised as these dedicated approaches for the
asynchronous communication described by the shared tuple space mechanism.
However, we believe that the Dreams framework can be used to efficiently de-
scribe and implement these systems, provided an intelligent use of the splitting of
actors is in place to avoid synchronisation of actions when unnecessary.

The two phase commit protocol, as well as some of its variants, is well known
in the context of fault tolerance in distributed systems. These models are usually
based on a centralised coordinator that exchanges asynchronous messages with a
set of participants. The protocol checks if all participants agree to perform some
transaction, or if there is any that aborts, and communicates this decision back to
the participants.

The distributed two phase commit (d2pc) protocol [32], introduced by Bruni et al.
as an extension of the 2pc protocol, can be compared to the distributed agreement
protocol in the Dreams framework, which we explain in detail in Chapter 7. Both
approaches try to achieve a global consensus, which consists of a commit or abort in
the case of the d2pc protocol and a description of a step in the case of Dreams. This
work served as inspiration for the development of the Dreams framework. The
d2pc protocol has been specified in the Join calculus coordination language [50],
and differs from the original 2pc protocol in that each participant initially knows
only a set of its neighbours, and the participants exchange their sets of known
neighbours until they commit and know who the involved participants are, or
until all of them abort. Baragati et al. developed a prototype application [25] for

6.7. CONCLUSIONS 171

two different platforms based on the d2pc protocol, using as a case study a rescue
unit composed of a central base and several teams. Experiments in the Dreams

framework involving real case studies have not been performed yet.
We now describe a more practical approach, taken by Minsky and Ungure-

anu, who developed the Law-Governed Interaction (LGI) mechanism [86], imple-
mented by the Moses toolkit. This mechanism coordinates distributed heteroge-
neous agents, using a policy that enforces extensible laws. Agents execute events
that are regulated by some controllers that enforce the laws. Laws are specified in
a Prolog-like language, but as opposed to Reo, they reflect local properties only
and do not require non-local synchronisation. The authors emphasise the need to
replace a centralised controller imposing the laws of the full system by certified
controllers, one for each connection. As with Linda and the 2pc protocol, this re-
flects a need to decentralise coordination, which is the main concern of the Dreams

framework.
The Dreams framework attempts to solve (coordination) constraints imposed

on concurrent actors, which makes it natural to consider existing techniques for
constraint solving in a distributed setting. The constraint-based approach has
been successfully applied in the domain of Reo, as described in Chapter 5. Yokoo
addresses the distributed constraint satisfaction problem [104] typically by using
partial solutions that are exchanged among different participants, and different
types of search algorithms such as backtracking and hill climbing. This suggests
that the use of a constraint-based approach to implement Reo can open new pos-
sibilities for optimising the distributed execution of Reo connectors.

6.7 Conclusions

In this chapter we introduced Dreams, a framework that provides a distributed
implementation based on the actor model for coordination models that can be
encoded with behavioural automata, and how it is used in the context of Reo. We
summarise below our analysis that shows how the Dreams framework achieves
the goals we set out in the introduction.

Decoupling The basic building blocks of the Dreams framework are actors, which
execute concurrently. Dreams takes advantage of this concurrency by identifying
parts of the connector that can be executed independently. We call these parts
synchronous regions. We propose a simple approach to exploit these synchronous
regions, without computing them statically, yielding a true decoupling of execu-
tion.

Scalability As a consequence of decoupling the execution of the instances of
stepwise models such as Reo connectors, no global consensus is required. Fur-
thermore, the behaviour is computed only for each step, avoiding the state explo-

172 CHAPTER 6. THE DREAMS FRAMEWORK

sion resulting from computing all possible future behaviour. These two factors
form the basis for a scalable implementation. The implementation of Dreams also
allows different parts of a connector to execute across physical machine bound-
aries.

Reconfiguration The single-step semantics provides a very low deployment
overhead, reducing the cost of reconfiguration. Furthermore, reconfiguring a con-
nector affects only the synchronous regions that it modifies, while the rest of the
connector continues to execute.

Currently we have a functioning implementation of the Dreams framework.
We describe the details of the implementation of Dreams in Chapter 7 – Imple-
menting Dreams. The distributed implementation benefits from some of the im-
plementation optimisations offered by centralised schemes, specifically the com-
pilation of a connector into the automata of its synchronous regions.

Chapter 7

Implementing Dreams

7.1 Introduction

The Dreams framework coordinates a set of components or services using a collec-
tion of independent executing entities which we call actors. Actors communicate
with each other using asynchronous message passing, and their behaviour is de-
scribed from two different perspectives. The coordination behaviour is given by the
stepwise coordination model, and describes how data should be propagated be-
tween components in each round. The reactive behaviour describes how each actor
sends and reacts to incoming messages.

In Chapter 6 we described the basic assumptions of the reactive behaviour, and
we explained in detail how the coordination behaviour is used. In this chapter we
present a more detailed definition of the reactive behaviour:

• by introducing a syntax for specifying the reactive behaviour in a variation
of SAL (Simple Actor Language);

• by specifying a fixed set of messages that actors can send; and

• by defining how each actor reacts to each message.

An actor is initially idle, and can evolve in two different ways. It can either
participate in a round in the coordination process, or it can enter a suspension
phase where the actor can be reconfigured. Either way, it eventually returns to
the idle phase. We depict these two scenarios in the simplified diagram in Fig-
ure 7.1. The messages exchanged between actors can represent requests for the
behavioural automaton for the current round, requests for data, replies with a be-
havioural automaton or with data, steps for the current round with an optional
data value, or suspension and reconfiguration messages.

Our implementation of Dreams is distributed in the sense that actors execute
concurrently, and messages are sent asynchronously. Furthermore, the splitting

173

174 CHAPTER 7. IMPLEMENTING DREAMS

Reconfigure Perform
round

– idle
– committing

– committed
– suspended

Figure 7.1: Two alternative scenarios for an actor in an idle phase: reconfigure, or
perform a round.

of actors described in the previous chapter and our distributed algorithm exploit
the idea that concurrent actors can be running in different machines, by allowing
independent parts of the coordination layer to execute side by side. However, we
do not model failure in our algorithm, which we leave for future work.

Organisation of the chapter This chapter starts by introducing the syntax used
to represent actors with an informal description of how an actor evolves in §7.2.
We then explain in §7.3 the phases of an actor’s lifecycle in Dreams, and for each
phase we describe what messages it can receive, and how it reacts to them. To ex-
emplify the protocol induced by the reactive behaviour we show the traces of exe-
cution of simple Reo connectors in §7.4, by means of diagrams based on message
sequence charts. We compare the performance of Dreams with that of a centralised
implementation of Reo in §7.5. In §7.6 we present more details of the current im-
plementation of Dreams, showing how a connector is deployed in a distributed
network. We wrap up with conclusions and related work in §7.7.

7.2 Actor definition

We define the reactive behaviour as a variation of the Simple Actor Language (SAL)
introduced by Agha and Thati [2]. Our variation ignores the creation or sending
of actors and uses the pattern-matching process offered by the actor library im-
plemented by Haller et al. for the Scala programming language [57]. The actor
library of Scala is faithful to the actor model introduced in §6.2. Our Scala imple-
mentation of Dreams mimics the reactive behaviour using a syntax different than,
yet similar to, the one that we use in this chapter. We give more details of the Scala
implementation in §7.6.

An actor a is a triple �A, AB, M� of an actor identifier A, a description of the
reactive behaviour AB and a queue M of messages sent to a that have not yet been
consumed. We call this queue the mailbox of a. The only operations on a mailbox
M are the sending of a message to M (enqueue) and the consumption of a message

7.2. ACTOR DEFINITION 175

(dequeue) given a list of patterns. The consumption of a message is specified by
a list of patterns that can be unified with the received messages. When a received
message matches a recognised pattern, a specific command is triggered. The list
of patterns and actions does not need to be exhaustive, i.e., they do not need to
capture all possible messages. An actor evolves by reacting to a message, which
involves finding the first message in its mailbox that matches one of its current
patterns, and executing the command associated with that pattern.

7.2.1. DEFINITION (REACTIVE BEHAVIOUR). The syntax of a reactive behaviour is
described by AB in the following grammar.

AB ::= BDef 1 . . . BDef n Com
Com ::= v := Exp; Com

| if (Exp) then Com1 else Com2
| send Exp to A; Com
| become B(Exp1, . . . , Expn)

BDef ::= def B(x1, . . . , xn) {
Pat1 ⇒ Com1;
...
Patm ⇒ Comm;

}

Pat ::= Msg(Pat1, . . . , Patn)
| x

Com represents a command performed by an actor, BDef represents a behaviour def-
inition, Pat represents a pattern, A represents an actor, Exp represents an expression,
B is an identifier of a behaviour definition, and x represents a variable. �

Expressions (Exp) Expressions consist of variables, constants, and operations
over expressions. We assume the existence of the following data structures: boole-
ans, integers, strings, sets, mappings, actor identifiers, behavioural automata, and
transition labels. Booleans have the usual logic operators ∧, ∨, and ¬. Integers
have arithmetic operators +, −, ×, and /, and also comparison operators >, <,
and =. Strings can also be compared via equality. Sets are defined using a com-
prehension set syntax {element | conditions}, and have the inclusion operator ∈.
Mappings are a particular case of sets, defined using the same set notation intro-
duced in §3.2, and we write m\x where m is a mapping and x ∈ dom(m) to denote
the mapping m after removing the entry that maps x to some value. A messages is
a tuple consisting of a message identifier Msg, that can be regarded as a string, and
a sequence of expressions Exp1, . . . , Expn, written as Msg(Exp1, . . . , Expn). Mes-
sages can be compared via the equality operator, but also unified against patterns,
as we will describe soon. Actor identifiers also have the equality operator defined.

176 CHAPTER 7. IMPLEMENTING DREAMS

Finally, behavioural automata and their transition labels have equality operators
and specific operators to evolve a behavioural automaton or to select an label from
the current state of a behavioural automaton. We will introduce the notation for
these operations during the explanation of the distributed algorithm in §7.3. We
do not present any type restrictions, although they are present in Scala’s imple-
mentation.

Commands (Com) A command is given by the grammar above, and can take
one of four different forms. The command “v := Exp; Com” represents the def-
inition of a fresh variable v that can be used only inside the command Com fol-
lowing the attribution. The command “if (Exp) then Com1 else Com2” is a tra-
ditional if-then-else, where the expression Exp yields either true or false. The
command “send Exp to A; Com” represents the enqueueing of a message Exp
at the end of the mailbox of the actor with identifier A, followed by the evalua-
tion of the command Com. Finally, a command typically finishes with “become
B(Exp1, . . . , Expn)”, where the actor assumes a new reactive behaviour, given by
the definition B with actual parameters Exp1, . . . , Expn. Note that, syntactically, a
command can be seen as a sequence of instructions terminating on a become or an
if-then-else command (each of whose branches must eventually terminate with a
become). As a consequence, the syntax ensures that actors never terminate.

Behaviour definitions (BDef) A definition of a reactive behaviour consists of an
identifier B with a list of variables acting as formal parameters, and a body with
a list of possible reactions to messages. The formal parameters are accessible only
within the body. Each reaction has a pattern that can be unified with messages
from the mailbox. An actor evolves by trying to unify the head of the mailbox with
one of the patterns, in their order of appearance. If no pattern is is unified, then
the next message in the mailbox is tested against the patterns until all messages
are tested or a pattern unifies with a message. In the first case the actor waits
for new messages, and in the second case it removes the message from the list
and performs the command associated with the pattern, replacing the variables
of the pattern with the unified values in the command. When a match is found,
the executed command will end up in some “become B(Exp1, . . . , Expn)”. After
this, the actor will try to evaluate the head of the mailbox again, using the reactive
behaviour defined by B.

Patterns (Pat) A pattern can be either a variable or a message identifier with
a sequence of patterns. We say a message matches a pattern if the pattern is a
variable, or if the message identifier is the same as the message identifier of the
pattern, and the arguments of the message match the arguments of the pattern.

7.2. ACTOR DEFINITION 177

(VAR)
�A , BDef ∗ v := Exp; Com , M� , Γ →

�A , BDef ∗ Com[Exp/v] , M� , Γ

(IFTHENELSE-1)
Exp � true

�A , BDef ∗ if (Exp) then Com1 else Com2 , M� , Γ →

�A , BDef ∗ Com1 , M� , Γ

(IFTHENELSE-2)
Exp � false

�A , BDef ∗ if (Exp) then Com1 else Com2 , M� , Γ →

�A , BDef ∗ Com2 , M� , Γ

Table 7.1: Basic rules for the evolution of commands in a Dreams configuration,
where Exp � v represents the evaluation of an expression Exp into a value v.

(SND)
�A , BDef ∗ send Msg to A�; Com , M� , �A� , AB , M�� , Γ →

�A , BDef ∗ Com , M� , �A� , AB , enqueue(Msg, M�)� , Γ

(RCV)

def B(x1, . . . , xn) {Pats} ∈ BDef ∗

σ1 = {Exp1/x1, . . . , Expn/xn} (Msg, Pat⇒Com, σ2)
Pats
←−− M

�A , BDef ∗ become B(Exp1, . . . , Expn) , M� , Γ →

�A , BDef ∗ Com[σ2, σ1] , M\Msg� , Γ

Table 7.2: Communication rules for the evolution of a Dreams configuration.

The unification of a message with a pattern that matches the message results in a
substitution of variables with values in the command associated with the pattern.

Operational semantics We present a simple operational semantics for the reac-
tive behaviour to clarify the narrative explanation. Dreams configuration consists
of a collection of actors, where each actor is triple �A, AB, M�, as explained in the
beginning of this section. As a convention, we use Γ to denote a Dreams config-
uration and we write BDefs∗ as a shorthand for a finite sequence of behavioural
definitions.

The evolution of a system of actors is described by the rules in Table 7.1 and
Table 7.2. The basic rules in Table 7.1 reflect the traditional interpretation of the
variable attribution and the if-then-else commands. The communication rules in
Table 7.2 explain how the reactive behaviour uses the mailboxes of the actors.

We use the following notation in the communication rules in Table 7.2. The
function enqueue(x, M) represents the mailbox M with the value x at the end of
the queue; M\Msg denotes the mailbox M after removing the first occurrence of
the message Msg; the variables σ1 and σ2 denote substitution of variables; and

178 CHAPTER 7. IMPLEMENTING DREAMS

Com[σ1, σ2] represents the command Com after applying the substitutions σ1 and
then σ2. Finally, (Msg, Pat⇒Com, σ2)

Pats
←−− M denotes a successful search for the

first message in M that matches the a pattern from Pats. The result of the search is
a triple, where Msg is the message found in M, Pat⇒Com is the first pattern found
in Pats that matches Msg, and σ is the substitution obtained by unifying Msg with
Pat.

7.3 Distributed algorithm

We now describe the behaviour of each actor in the Dreams framework. The com-
bined behaviour of all actors yields the evolution of Dreams as described in §6.3.3.
Proactive actors initiate the algorithm by requesting the behavioural automata of
their neighbours, which in turn send requests to their own neighbours. An ac-
tor replies to the request for its behavioural automaton once it has collected all
information about its neighbours, which results in a breadth-first traversal of the
graph of actors. The graph traversal is not managed by any global entity, and the
existence of multiple proactive actors introduces some extra complications.

Recall from §6.2 that the underlying actor model assumes the existence of a
unique name for each actor. The Dreams framework assumes also a total order
among actors based on their unique names.1 More specifically, it assumes a total
order among proactive actors. We specify the order by introducing a unique in-
teger value rank associated with each proactive actor, such that the decisions of a
proactive actor with a higher rank prevails over decisions by an actor with a lower
rank. We do not address which actors should have higher rank, nor do we exploit
a scenario where the order changes during the evolution of an actor. After the
initial request of each proactive actor is sent only the proactive actor with highest
rank will get a reply with the behavioural automaton of the full system. At this
stage the winning proactive actor chooses a step from the behavioural automaton
and sends it to its neighbours, who propagate the data across the graph of actors
according to the chosen step.

Figure 7.2 depicts the possible phases of an actor. Each phase represents a
different reactive behaviour, i.e., it has its own behaviour definition, and reacts
differently to received messages. The labels of the diagram depict the received
messages, and the messages Reply, AS and Data are shorthands for a set of related
messages. We will explain each of these messages later in this chapter. Note that
each actor reacts deterministically to each received message, as it will be clear after
describing the details of the distributed algorithm, although the simplifications in
the diagram from Figure 7.2 suggest otherwise. An actor changes phase when it
performs the command become B(Exp1, . . . , Expn), where B is the new behaviour

1One can, for instance, imagine the rank of an actor to be the binary representation of the unique
string Name of the actor, interpreted as an integer.

7.3. DISTRIBUTED ALGORITHM 179

RequestBA Reply

AS

RequestBA

AS

Data

Reply

Reply

Data

Upd

Reconfigure

Suspend

Release

– idle – committing – committed

– waiting for data – suspended

Figure 7.2: Simplified diagram with the transitions between the phases of an actor
triggered by received messages.

definition corresponding to the new phase. The intuition is that each actor can
be in one of five different phases: idle (), committing (), committed (),

waiting for data (), or suspended ().

An idle actor can receive a request for its behavioural automaton and become
committing or committed, receive a suspend request and become suspended, or
receive an update message from a split actor and update the state of its coordina-
tion behaviour. Only split actors can receive these update messages, as explained
in §7.3.2. Each request includes the rank of the proactive actor responsible for the
original request, which we use to resolve race conditions.

A committing actor is an actor that after forwarding the request for a be-
havioural automaton to all of its neighbours waits for their replies, after which
it evolves to the committed phase.

In the committed phase, an actor waits for a transition of the behavioural au-
tomata, with an associated step, plus some optional data. If the actor needs more
data, it will evolve to the state ‘waiting for data’ until it collects all needed data.

A suspended actor can receive messages that change its coordination behav-
iour or even its connections to neighbour actors. We only briefly mention the be-
haviour of a suspended actor because the focus of this thesis is on the synchronous
coordination of components or services, and not on the reconfiguration of connec-
tors. To reason about reconfiguration, we would need to relax the assumption
over the reactive behaviour that states that actors cannot be created or sent via
messages. We leave the study of techniques to express and apply reconfigurations
as future work.

180 CHAPTER 7. IMPLEMENTING DREAMS

7.3.1 Actor phases

We explain the behaviour definition of each phase individually. In each phase we
describe the messages that can be sent and received by an actor in that phase. Note
that the Dreams framework utilises a fixed set of messages. We now introduce
some conventions that simplify our presentation. For each actor we assume the
existence of two variables each with a fixed value, that can be easily modelled by
including them as formal parameters of all BDef . These variables are neighbours,
consisting of a set of connected actors, and ba, containing the behavioural automa-
ton of the actor. We also assume an extra variable sender that refers to the actor that
sent the message being processed. Finally, we use the special name INIT to denote
a command that initialises the actor. Every actor starts in the Suspended phase
with a message that triggers the execution of the INIT command. The initialisa-
tion of an actor generally consists of the command become Idle(), where Idle() is
defined below. For proactive actors, the initialisation also includes the sending of
requests for the behavioural automata that start the distributed algorithm, which
we present in §7.3.3.

Idle –

We define the behaviour of an actor in Dreams in the idle phase as follows:

def Idle() {
Suspend(lock) ⇒ become Suspended({lock});
RequestBA(rank)⇒ children := neighbours\ {sender} ;

if (children = ∅)
then send BA(ba) to sender;

become Committed()
else sendRequests(rank, children);

invited = {a �→ rank | a ∈ children} ;
become Committing(rank, sender, invited, ba);

Upd(s) ⇒ . . .
Admin(action)⇒ execute(action); become Idle()
otherwise ⇒ become Idle();

}

To avoid cluttering the code with unnecessary detail we use a sans serif type-
face to denote macros that capture sequences of commands that we explain only
informally. For such detail, the corresponding code of the implementation is avail-
able online.2

2Available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/reo-engine/cwi.
reo.engine/src/cwi/reo/engine/redrum/Primitive.scala.

http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/reo-engine/cwi.reo.engine/src/cwi/reo/engine/redrum/Primitive.scala
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/reo-engine/cwi.reo.engine/src/cwi/reo/engine/redrum/Primitive.scala

7.3. DISTRIBUTED ALGORITHM 181

When an actor executes the reactive behaviour Idle() it always consumes the
first message in the mailbox, because every message can match one of the patterns.
In particular, the last pattern otherwise is just a variable that can be unified with any
message. This pattern simply discards the message, removing it from the mailbox.
For the other patterns, we have four possible cases.

1. The received message is Suspend(lock), where lock is a string that identifies
who requested the suspension. In this case the actor changes its reactive
behaviour to Suspended. The only argument of the new phase is the set of
locks that the actor waits on their release before it becomes Idle again, in this
case {lock};

2. The received message is RequestBA(rank), where rank is an integer repre-
senting the ranking of the proactive actor that initiated the request. In this
case the actor tries to collect the behavioural automaton of all of its con-
nected actors, contained in the variable children. When the actor is not con-
nected to any other actor, it immediately replies to the requester with its
own behavioural automaton, and becomes Committed. Otherwise it for-
wards the request to all of its children and changes its reactive behaviour
to the Committing phase, where it waits for the replies from its children.
sendRequests(rank, children) is a macro for a sequence of

send RequestBA(rank) to a

commands, for all a ∈ children. The arguments of the new Committing phase
are, respectively: the rank of the requester; the actor to whom to reply af-
ter collecting all behaviour; a set of invited neighbours to return their be-
havioural automaton, each associated with the rank used in the sending of
the request; and the behavioural automaton obtained from the replies of the
children (initially the behavioural automata ba of the actor). Note the redun-
dancy of adding the value rank both as an argument of Committing as well as
associating it with each invited actor. We will clarify this when we describe
the Committing phase, but the intuition is to allow the actor to update its
rank parameter without sending new requests for a behavioural automaton
with the new rank, or send new requests with a new rank to just some of the
invited actors.

3. The Upd(s) message can be received only by a split actor, and represents a
state update of the behavioural automaton by the step s of the receiver’s
split actor. We leave this command undefined for now, and will return to it
in §7.3.2.

4. The Admin(action) messages represent administration operations, and are
present for the sake of completeness with respect to the existing implemen-
tation. Possible actions include monitoring operations of the actor, such as

182 CHAPTER 7. IMPLEMENTING DREAMS

a request for the current phase, or even a request to force the termination of
the actor. We do not explain these actions, and we use the faded colour to
show that these actions are present but not interesting for the purpose of the
distributed algorithm.

Recall the diagram in Figure 7.2. The label Reply denotes a group of two possi-
ble messages, BA and Busy. The message BA is used in the definition of Idle(), and
contains the behavioural automaton requested by the sender. The message Busy

is used when the actor already received a previous request for its behavioural au-
tomaton, which we will see when describing the Committing phase.

Committing –

An idle actor with more than one neighbour that receives a request for its be-
haviour changes its reactive behaviour to Committing. We define the behaviour of
an actor in Dreams in a committing phase as follows:

def Committing(rank, root, invited, tempBA) {
RequestBA(newrank) ⇒ processRequest(newrank);
StrongerReq(newrank) ⇒ processRequest(newrank);
BA(b) ⇒ updCommitting(tempBA �� b);
Busy() ⇒ updCommitting(tempBA);
Admin(action) ⇒ execute(action);

become Committing(rank, root,
invited, tempBA);

}

The Committing phase is parameterised by four arguments. The variable rank
represents the rank of the proactive actor that initiated the request for a behaviour-
al automaton; root is the neighbour to whom the actor should reply a behavioural
automaton, invited is a mapping from neighbours to ranks, consisting of the neigh-
bours to whom a request for their behavioural automata was sent but from who
no reply has yet been received, and the rank used in that request; and tempBA
is a temporary behavioural automaton that combines all behavioural automaton
already received from the neighbours. Note that, in contrast to the definition of
the Idle phase, the list of patterns is not complete, because not all incoming mes-
sages can be unified with one of the patterns. This means that incoming messages
that cannot be unified will remain in the mailbox of the actor until the reactive
behaviour changes into a phase where they can be reacted to. Besides the ad-
ministrative messages, we have two kinds of messages to react to: requests for
behavioural automata or replies to these requests. We proceed by explaining each
of these cases.

7.3. DISTRIBUTED ALGORITHM 183

Requests The Dreams framework recognises two different messages for sending
requests, RequestBA and StrongerReq, which are not distinguished in the
definition of Committing. We will explain this distinction when describing
the reactive behaviour of the Committed phase. The processRequest macro
executes the following commands in sequence:

1. If newrank = rank then the actor starts by performing the command

updCommitting(tempBA).

Recall that invited(a) = i represents that a request to the actor a was
sent with rank i, but a reply has not yet been processed. Note also that
sender ∈ dom(invited), which we explain only informally. The mapping
invited contains all the neighbours except the root, who sent the request
responsible for the actor becoming Committing, and the neighbours that
already replied to the actor, who cannot have sent another request in
the current round. If invited(sender) < newrank, then the actor also
performs the following command before the updCommitting command:

send Busy to sender.

2. If invited(sender) ≤ newrank < rank then the actor sends a stronger
request with the command

send StrongerReq(rank) to sender.

3. If newrank < invited(sender) ≤ rank then the message is consumed and
discarded, because the actor has already sent a request with a rank
greater than newrank to sender.

4. If newrank > rank then the value of root of the Committing phase changes
to the sender. The root is the neighbour to who the actor has to reply
a behavioural automata. A naive approach is for the actor to send a
stronger request for their behavioural automata to all its neighbours.
Instead of sending new invitations we simply update the value of rank,
and postpone the sending of stronger invitations until a reply is re-
ceived from the invited actors, that may or may not trigger the send
of the stronger request. This behaviour is achieved by executing the
macro changeRoot, defined below.

changeRoot =
send RequestBA(newrank) to root;
invited� := (invited\ {sender}) ∪ {root �→ newrank} ;
become Committing(newrank, sender, invited�, tempBA).

184 CHAPTER 7. IMPLEMENTING DREAMS

Replies The possible replies for requests of behavioural automata consist of BA(b)
and Busy messages. The first message is received when a neighbour replies
with a behavioural automaton b, and the second when a neighbour decides
it does not need to return a behavioural automaton, since it will do so to an-
other root. The actor evolves by removing the sender from the invited list, ex-
ecuting the macro updCommitting(b�), where b� is the combined behavioural
automaton of the invited neighbours. In order to accomodate proative ac-
tors, a slightly more complex version of this macro (page 191) is necessary.
Ignoring this, for now we define updCommitting as follows.

updCommitting(b�) =
invited� := invited\ {sender} ;
if (invited� �= ∅)
then become Committing(rank, root, invited�, b�)
else send BA(b�) to sender;

become Committed()

Note that some of the received RequestBA messages are also interpreted as
replies, when the rank of the request is the same as the rank of the commit-
ting actor, as shown before.

Committed –

A Committed actor has already sent its own behavioural automaton in a reply,
together with the behavioural automaton of its other neighbours, and is waiting
for a step for the current round. The step can arrive from any of its neighbours,
and not only from the root of the Committing phase.

def Committed() {
StrongerReq(rank) ⇒ send Busy to sender;

become Committed();
AS(s) ⇒ processAS(s);
AS+Req(s) ⇒ processAS+req(s);
AS+Data(s, d) ⇒ processAS+data(s, d);
Data(d) ⇒ become Committed();
Admin(action) ⇒ execute(action);

become Committed();
}

We distinguish between the RequestBA and StrongerReq messages in the def-
inition of the Committed phase. Whenever a StrongerReq message is received, the
actor replies with a Busy message, and remains Committed. A Committed actor can-
not change its previously replied behavioural automaton. The roots of the current

7.3. DISTRIBUTED ALGORITHM 185

actor and the sender will also eventually intersect, because the StrongerReq mes-
sage is only sent when invitations from more than one neighbour have the same
rank, that is, the sender was previously in a Committing phase with rank value rank.

The incoming RequestBA messages do not match any of the patterns in this
phase, and are therefore kept in the mailbox of the actor until they can be pro-
cessed (in the Idle phase).

Apart from the StrongerReq messages and administrative messages, a Com-
mitted actor reacts only to messages with a step s, denoted in Figure 7.2 simply as
AS. We admit three different forms for the messages represented in this diagram
as AS: AS(s), AS+Req(s) and AS+Data(s, d). The message AS(s) is received when
there is no data communication between the sender and the Committed actor. The
message AS+Req(s) is received when the sender provides the step for the current
round, but it stays in the phase ‘waiting for data’, to whom the Committed actor
should provide a data value. Finally, the message AS+Data(s, d) is received when
there is a data value d sent from the sender to the Committed actor.

Steps as groups of labels As discussed in §3.5, the step s consists of a group
γs of labels of transitions from the global behavioural automata b, whose atomic
steps differ only in the data-values flowing through the ports. We recall below
the properties of γs. This approach allows a label to be chosen without deciding a
priori which data values will be transferred. Let b = �Q, L[P],→,O�. The group
γs is indexed by an assignment of data of the input ports, that is, the type of γs is

γs : (IP → D) → L[P].

The conditions over γs are specified as follows.

∀m : IP → D · α(γs(m)) = �P, F, IP, OP, datam� ,

for some fixed F, IP, OP, and where datam �m

Recall that m1 �m2 if the values of m1 and m2 coincide for the common domain
of both maps, and α is a global function that maps each label � ∈ L of transitions
of behavioural automata into an atomic step.

Let b = b1 �� · · · �� bn, where each bi is the behavioural automata of each
of the actors involved in the current round, and let bi = �Qi, L[Pi],→i, Oi�. As
mentioned in Chapter 3, the group γs can be projected into each behavioural au-
tomaton bi, denoted by γs[bi], whose labels have atomic steps restricted to the set
of ports Pi. In the rest of this chapter we write datas[m](x) = d if there exists a
data value d such that, for all data functions datas of the atomic steps associated
to labels in γs[bi], datas(x) = d. Furthermore, we refer to such groups of labels
simply as ‘steps’.

186 CHAPTER 7. IMPLEMENTING DREAMS

Processing of a step We now describe the processAS+data macro, and explain
how the macros processAS and processAS+req differ from it. The processAS+data

macro analyses the projection γs[b] and deduces the neighbours from which a
data value should be requested, the neighbours to which a data value should be
sent, and the neighbours which require only the step s. The details of this macro
follow below. The macro describes the sending of the appropriate messages to the
respective neighbours.

1. Define γs[b] to be the projection of s for the behavioural automata b, and
P, IP, and OP to be the sets of known, input, and output ports, respec-
tively, from the atomic steps of the labels in range(γs[b]). Also define rcvd :=
{sender �→ d}, which is a mapping of the data values received so far.

2. Send the step s to all the neighbours whose ports are neither in IP nor in
OP. Note that each neighbour is represented in the actor by the port that is
shared with the neighbour. For all x ∈ P \ (IP ∪ OP) perform the command:

send AS(s) to x.

3. Send the step s with a request for data to all ports in ip ∈ IP \ {sender}, by
performing the following command:

send AS+Req(s) to ip.

4. Send the step s to all output ports whose data value is already known. Recall
that datas[m](x) = d if there exists a data value d ∈ D such that datas(x) = d,
for all data functions datas ∈ range(γs[b]). Then, for all ports op ∈ OP such
that there exists a data value d ∈ D where datas[rcvd](op) = d, we perform
the command:

send AS+Data(s, d) to op.

5. Define R = IP \ dom(rcvd) to be the set of the remaining input ports whose
data values are unknown. If R = ∅, then IP ⊆ dom(rcvd) and γs[rcvd] =
{sb}, because of the properties of γs[b] described above, where sb is the
step that b will perform. Consequently, the actor updates the state of its
behavioural automaton and becomes idle. If R �= ∅, then the actor waits for
the replies from actors in IP. This is achieved by the command:

if (R = ∅)
then updBA(γ[rcvd])
else become WaitingData(R, ∅, rcvd, s)

The macro updBA(γ[rcvd]) updates the behavioural automaton b of the actor,
evolving b by the step sb. After updating the behaviour, updBA initialises the

7.3. DISTRIBUTED ALGORITHM 187

actor by performing the command INIT, described in the beginning of this
section, where the actor returns to the Idle phase. The new WaitingData phase
is parameterised on the neighbours that still need to send a data value, the
mapping rcvd of received data values, and the step s for the current round.
We will explain the arguments in more detail below.

The macros processAS and processAS+req are analogues to processAS+data. In the
first case the mapping rcvd is empty, and in the second case we use {sender} in-
stead of the empty set as the second argument of the behaviour definition Wait-
ingData.

Waiting for data –

An actor moves to the phase WaitingData when it receives the step s to be per-
formed in the current round, but it still needs data from some of its neighbours
to perform the required communication. The reactive behaviour is defined as fol-
lows.

def WaitingData(sendAS, sendData, rcvd, s) {
Data(d) ⇒ updData(d);
AS+Data(d) ⇒ updData(d);
AS() ⇒ become WaitingData(sendAS, sendData, rcvd, s);
AS+Req(s) ⇒ sendAS� := sendAS�\ {sender} ;

sendData� := sendData� ∪ {sender} ;
become WaitingData(sendAS�, sendData�, rcvd, s);

Admin(action)⇒ execute(action);
become WaitingData(sendAS, sendData, rcvd, s);

}

WaitingData is parameterised by four arguments. The variable sendAS is a set
with the neighbours that still need to send a data value, sendData is a set of neigh-
bours that already know the step s but still need a data value from this actor, rcvd is
a mapping from the neighbours that already sent a data value to their correspond-
ing data values, and s is the step for the current round. The macro updData(d) is
unfolded to the following command. Note that the variables sendAS, sendData,
and rcvd are in the scope of this macro, and used by tryToSend below.

updData(d) =
rcvd� := rcvd ∪ {sender �→ d} ;
tryToSend(d, rcvd�);
if (sendAS� = ∅ ∧ SendData� = ∅)
then updBA(s[b][rcvd�])
else become WaitingData(sendAS�, sendData�, rcvd�, s)

188 CHAPTER 7. IMPLEMENTING DREAMS

The macro updData(d) starts by storing the information about the data values
already received in the variable rcvd�, and the macro tryToSend(d, rcvd�) checks if
the data for any of the actors in sendAS or sendData is available after receiving d.
The macro tryToSend sends the message AS+Data(s,d’) to every actor a ∈ sendAS
such that there is a value d� ∈ D where datas[rcvd�](a) = d� with respect to the
projection γs[b], and similarly it sends the message Data(d�) for every actor in
sendData with an associated data value d�. The variables sendAS� and sendData�

are defined to be the updated variables of sendAS and sendData after removing the
actors that were replied to. The last if-then-else checks if there are still actors that
are waiting for data. If not, the actor evolves it’s behavioural automaton and ini-
tialises again by performing the macro updBA, described for the Committed phase.
Otherwise, the parameters of WaitingData are updated. Note that γs[b][rcvd�] will
always be a singleton set because sendAS� = ∅ and SendData� = ∅, which imply
that all the input ports in IP are completely defined by rcvd�.

When the message AS is received the actor consumes and discards message
with the step, because the step for the current round is already known. Finally,
when a message AS+Req is received the actor updates the values of sendAS and
sendData, since the sender does not need the step anymore, but only its data value.

Suspended –

Every actor is created in the Suspended phase, with a message Release() in the
mailbox to release this suspension. Therefore the definition of Suspended(locks)
presented below plays two roles: (1) initialise the reactive behaviour, and (2) al-
low the reconfiguration of the actor without interfering with the coordination be-
haviour. The initialisation is achieved by executing INIT, introduced in the begin-
ning of §7.3.1. We incorporate these two roles into the same reactive behaviour
because every time an actor stops being suspended it has to be considered to be a
new actor, since it could have been reconfigured.

An idle actor becomes suspended by receiving the Suspend(lock) message. Its
reactive behaviour is described by Suspended(lock), defined below. The variable
lock identifies who requested the suspension, to permit the suspension of an actor
from independent entities. We do not explore the reconfiguration aspect in this
thesis, and simply use a general Reconfigure message parameterised on an in-
struction inst. Reconfiguration plays an orthogonal role to the communication of
data, and can be dealt with independently.

7.3. DISTRIBUTED ALGORITHM 189

def Suspended(locks) {
Suspend(lock) ⇒ become Suspended(locks ∪ {lock});
Reconfigure(inst)⇒ reconfigure(inst);
Release(lock) ⇒ locks� := locks\lock;

if (locks� = ∅)
then INIT

else become Suspended(locks�)
Admin(action) ⇒ execute(action);

become Suspended(locks�);
}

The code is self-explanatory. The phase parameters are always updated to
store which locks were sent, and which locks were released. reconfigure is an op-
eration that cannot be captured by our reactive behaviour definition. A reconfig-
uration typically requires creation of actors or sending and receiving of actors, in
order to change how an actor is connected to its neighbours.

7.3.2 Split actors –

Upd

Suspend,
Request

Request,
BA

Figure 7.3: Messages used by split actors in the Idle phase.

Recall from §6.4 that split actors communicate the state changes of their be-
havioural automata between themselves at the level of the reactive behaviour. We
make this concrete by defining the reactive behaviour of split actors. The diagram
in Figure 7.3 illustrates the possible communication from and to a split actor in
the Idle phase. A split actor in the Committed phase sends an Upd(s) message to
its connected split actor when it updates the state of its behavioural automaton.
This message is received only during the Idle phase of the target split actor. Each
split actor can also exchange other types of messages with its connected actors, as
described before. We define the behaviour of split actors by redefining the macro
updBA(s), and explaining the command associated to the Upd message in the Idle
phase.

190 CHAPTER 7. IMPLEMENTING DREAMS

1. Let a2 be the connected split actor of the current split actor. The macro
updBA(s) described in §7.3.1 for the Committed case evolves the state of the
behavioural automaton by performing the step s, and becomes Idle. We rede-
fine this macro to perform the same state update, followed by the command:

updBA(s) =
· · ·

if (changedBA)
then send Upd(s) to a2; INIT
else INIT

assuming that the macro changedBA yields true if the step s produced a state
change.

2. An actor in the Idle phase can receive an Upd(s) message from the twin split
actor. We left the details of the handling of this message undefined during
the presentation of the Idle phase in §7.3.1. The definition of Idle becomes
complete by associating the following command to the pattern Upd(s).

def Idle() {
· · ·

Upd(s) ⇒ processUpd(s); become Idle();
· · ·

}

The macro processUpd(s) performs the state update appropriate for a step
s performed by the connected split actor a2. Note that this state update is
deterministic because of the soundness and completeness criteria defined in
§6.4.2.

7.3.3 Proactive actors –

We now define how the algorithm starts. The distributed algorithm starts when a
proactive actor has a proactive step, and consequently it sends a Request(rank)
message, where rank is its own rank. This was briefly described in §6.3.1, and is
now made precise by defining its corresponding reactive behaviour. We assume
each proactive actor has a rank variable defined, and a macro hasActiveStep that
returns true if and only if there is a proactive step from the current state of the
actor’s behavioural automaton.

The initialisation of a proactive actor differs from the initialisation of
non-proactive actors. Therefore, we redefine the INIT command as follows.

7.3. DISTRIBUTED ALGORITHM 191

INIT =
if (hasActiveStep)
then sendRequests(rank, neighbours);

invited := {a �→ rank | a ∈ neighbours} ;
become Committing(rank, ∗, invited, 0BA)

else become Idle()

Note the absence of the root in the committing phase, denoted by the asterisk
∗, and the use of the identity element 0BA for the composition of behavioural
automata. We redefine the macro updCommitting(ba) (page 184) to accommo-
date the absence of a root. The only difference with the original definition of
updCommitting(b�) is the underlined part.

updCommitting(b�, rank) =
invited� := invited\ {sender} ;
if (invited� �= ∅)
then become Committing(rank, root, invited�, b�)
else processAS(selectAS(ba))

The last line expresses that when a proactive actor receives all replies for the
requests of behavioural automata, it choses the step to be performed in the current
round, and sends it to its neighbours. The macro processAS is described in the
explanation of the Committed phase (page 186), and manages which actors still
need to receive data and/or the step of the current round. We assume that the
selection of a step from a behavioural automaton b is performed by the macro
selectAS(b).

We parameterise the updCommitting macro on the rank that the actor will have.
We introduce this parameter because we need to use it when redefining the macro
changeRoot, defined in the explanation of the Committing phase (page 183). Since
there is no root, changing the root is equivalent to updating the Committing phase,
as shown below.

changeRoot =
updCommitting(ba, newrank)

The redefined changeRoot macro performs the command updCommitting in-
stead of forwarding the value of newrank to the previous root, which does not
exist. In the original definition of changeRoot the actor remained in a Commit-
ting phase, but because of the absence of a root there might be no more invited
neighbours left. This case is considered by the macro updCommitting. After the ex-
ecution of the command updCommitting the actor will either become Committing
with the newrank, become WaitingData, or initialise again via the command INIT.

192 CHAPTER 7. IMPLEMENTING DREAMS

7.4 Distributed Reo

We exemplify the distributed algorithm using the coordination behaviour speci-
fied by the Reo coordination language. We show two different connectors, each
attached to exactly one writer and one reader. The first connector has only syn-
chronous and stateless channels, and the topology of the connector forms a loop.
The second connector consists of a FIFO1 channel, which is split into two different
actors.

7.4.1 Example: a reliable LossySync

We start by presenting a simple example where a writer is connected to a reader
by a LossySync channel. We also attach a SyncDrain channel to the two ends of
the LossySync, so that the coordination behaviour of the connector coincides with
the coordination behaviour of the Sync channel. We call this connector a reliable
LossySync, which is depicted in Figure 7.4. The goal of this example is to show
how messages are communicated across a small Dreams configuration that has
loops.

x y
wr[“a”, “b”] rd[1]

lossy

sdrain

Figure 7.4: Reliable LossySync connector attached to a writer wr ready to send
two elements, and a reader rd ready to consume one element.

We define the writer as a proactive actor with rank 1 and with two data values
ready to be sent: a string “a” and a string “b”. The reader is a proactive actor with
rank 2 ready to consume at most one data value. The rank value is used when
requests from the two actors ‘collide’, which is resolved by giving preference to the
higher rank value. Upon creation, all actors are in the Suspended phase with their
corresponding release messages in their mailboxes. In the diagram in Figure 7.5
we depict a possible execution of the reliable LossySync connector. Note that the
behaviour of the connector is deterministic: initially the data value “a” has to
be sent from the writer to the reader, and after that no other transition can be
taken. However, the speed of sending and receiving messages is not deterministic,
therefore the evolution of the global system is not deterministic.

In the diagram we use the following conventions. The vertical dotted lines
represent the life line of each actor, i.e., the passage of time for each actor. The
rectangles under the actor names and overlapping the dotted lines reflect the exis-
tence of messages in the mailboxes of the actors that have not yet been consumed.

7.4. DISTRIBUTED REO 193

Arrows between life lines of actors represent the sending of a messages to the
mailboxes of other actors, but not their consumption, i.e., not the matching of the
message to a pattern. The clouds at the ends of the life lines represent the phases
of the reactive behaviours at the end of the trace. In this case, all actors are com-
mitting with the exception of the reader who is idle. Furthermore, only the actor
y has messages in its mailbox at the end of the trace, depicted by drawing the
rectangle until the cloud on the bottom.

Some comments about the trace of the execution of the reliable LossySync
in Figure 7.5 are now in order. Initially all actors are suspended with a Release
message in each of their mailboxes, and they are initialised via the INIT command
once the message is received. The trace depicted in the diagram starts after the
Release message is consumed. In the beginning, only the writer and the reader
send a request each, as a result of being released from their suspension, become
Committing, and all of the other actors become Idle. Consider now the top rectangle
on the life line of actor x. Observe that three requests for a behavioural automaton
arrive in the mailbox of actor x before it sends a message. The messages are pro-
cessed in the order they were sent, and as a consequence x starts to propagate the
first (weaker) request to all of its neighbours. Because of the delay in sending the
request, we assume x sends a request for a behavioural automaton to lossy even
after lossy sent a (stronger) request, and the same happens between x and sdrain.
Once x receives the request from lossy it sends a new request to the writer, but it
does not send any request to sdrain since it is still waiting for the reply to its initial
(weaker) request. Also when the Req(2) message from lossy is received x replies by
sending a Busy message to lossy. When wr receives Req(2) it becomes committed
and replies by sending its behavioural automaton to x. Reacting to this message, x
replies with its behavioural automaton together with wr’s behavioural automaton
to lossy, and lossy replies with the received behavioural automaton and its own
behavioural automaton to y. Meanwhile, sdrain also replies with its behavioural
automaton to y, and y sends the composition of the received behavioural automata
and its own behavioural automaton to rd. Finally, rd receives the reply to its ini-
tial request with the behavioural automaton of the rest of the connector. At this
point the reader, rd, composes the received behavioural automaton with its own
behavioural automaton, selects a step s1 from this automaton, sends the step to-
gether with a request for data, and changes its phase to WaitingData. Note that
once the writer receives the step s1 it sends the data value, followed by a request
for a behavioural automaton for the next round. Therefore, the writer is already
committing, while the sdrain is still committed and waiting for the step of the pre-
vious round. This is not problematic because the step will always be sent to sdrain
before the request for the new behavioural automaton.

194 CHAPTER 7. IMPLEMENTING DREAMS

wr[“a”, “b”] x lossy sdrain y rd[1]

Req(1)

BA(b1)

Data(“a”)

Req(1)

Req(1)

Req(1)

Req(2)

Busy

BA(b3)

AS+Req(s1)

Data(“a”)

AS+Data(s1, “a”)

Req(1)

Req(1)

Req(2)

BA(b4)

AS+Req(s1)

Data(“a”)

Req(1)

Req(2)

BA(b2)

Req(1)

Req(2)

Req(2)

BA(b5)

AS+Req(s1)

Data(“a”)

AS+Data(s1, “a”)

Req(2)

AS+Req(s1)

Figure 7.5: Trace of the execution of a reliable LossySync connector in Dreams,
attached to a writer of rank 1 and a reader of rank 2.

7.4. DISTRIBUTED REO 195

7.4.2 Example: a split FIFO1

In our second example we connect a writer wr, a FIFO1 fifo, and a reader rd, as de-
picted in Figure 7.6. When encoding the connector in Dreams, we split the FIFO1
channel into two actors. The split was described in §6.5.1, and we name the actor
attached to x fifo-in, and the actor attached to y fifo-out. The split increases the
concurrency and avoids the requests for behavioural automata to propagate be-
tween these two actors, which restricts the number of behavioural automata that
are composed in each round.

x y
wr[“a”, “b”] rd[1]

fifo

Figure 7.6: Empty FIFO1 channel fifo attached to a writer wr ready to send two
elements, and a reader rd ready to consume one element.

We depict a possible trace of the execution of the FIFO1 connector in Figure 7.7.
We omit the nodes x and y because these actors mainly forward messages and
do not play a relevant role in the trace, leaving the actors wr, fifo-in, fifo-out, and
rd. All these actors are proactive actors, because their behavioural automata con-
tain proactive steps in their transition relations. Recall that proactive steps have
dataflow on ports that do not depend on any other port. Initially all actors have
proactive ports for the current state of their behavioural automata with the ex-
ception of fifo-out, since an empty FIFO1 cannot output data. Until the sending of
the Upd(s1) message two independent lines of communication can be observed.
The actors wr and fifo-in exchange messages until they succeed in sending a data
value “a” from wr to fifo-in. At the same time, the reader sends a request but there
is no data available, so the actors fifo-out and rd become idle. After the sending
of the message Upd(s1) the situation is inverted. The fifo-in replies to a request for
its behavioural automaton, but the state of its behavioural automaton is full and
it cannot receive data. The fifo-out sends a request and manages to send the data
value “a” to the reader. The actors for fifo-out and rd become idle, because neither
one is ready to send or receive data, and therefore no proactive steps are available.
An Upd(s4) is then sent to the fifo-in actor, which ends up receiving the data value
“b”. In the end of the trace, the fifo-out actor still has an active step (the buffer is
full), but the step s5 does not have any dataflow, therefore fifo-out refrains from
sending a new request, because there was no state change.

7.4.3 Dreams vs. d2pc

We explored the most relevant work related to the Dreams framework in §6.6, in-
cluding the distributed two phase commit (d2pc) protocol, introduced and stud-

196 CHAPTER 7. IMPLEMENTING DREAMS

wr[“a”, “b”] fifo-in fifo-out rd[1]

Request(3)

AS+Data(s1, a)

Request(3)

AS

BA(ba3)

DataReply(‘b�)

Request(2)

BA(b1)

Upd(s1)

BA(b2)

Request(2)

AS+Request(s2)

Upd(s2)

BA(b4)

Request(2)

AS+Data(s4, “a”)

Upd(s4)

Request(2)

AS(s5)

Request(1)

AS(s3)

BA(ba5)

BA(ba6)

Figure 7.7: Trace of the execution of a system with a producer, a buffer, and a
consumer.

7.4. DISTRIBUTED REO 197

ied by Bruni et al. [32]. The d2pc protocol was an important source of inspiration
for the committing stage of our distributed algorithm, and therefore we pay some
more attention to it.

Before After Comments

�

-

-

-

❀ �

�

�

�

Only topology matters. Initially each
actor knows some neighbours. In
the end each actor knows every
other actor, and whether or not ev-
eryone agrees on some request (de-
noted by �).

b1

b2

b3

b4

❀ b1

b2

b3

b4

a a

a

Mainly the behaviour matters. At
each round the actors agree on how
data should flow, and perform the
data transfer. In this case the data
token a is sent between actors.

Table 7.3: Main difference between the application of the d2pc protocol (top) and
the application of our distributed algorithm (bottom).

The main difference between the approaches taken by the Dreams framework
and the d2pc protocol is their primary purposes. We use the diagram in Table 7.3
to illustrate this difference. The d2pc protocol starts with a set of actors with a
limited set of connections, and after executing the protocol all actors become con-
nected and know if anyone aborts the consensus. The Dreams framework does not
change the topology of the connector (i.e., the connected actors) after each round.
The focus is shifted from the topology of the connector to how and where data flow
within the connector. Instead of agreeing on a yes or no answer, the Dreams frame-
work agrees on a behaviour to send data though the connector. The evaluation of
synchronous and data constraints required to reach a consensus in Dreams require
a more complex mechanism than Bruni et al. ’s approach.

Assuming only one of the actors initiates the d2pc protocol, the number of
messages exchanged is exactly 2 for each possible pair of actors. In the Dreams

framework, if only one proactive actor has an active port, the number of mes-
sages until a final behavioural automaton is known is exactly 2 for each pair of
connected actors. In general, this is much less than the number of messages ex-
changed in the d2pc protocol, although the d2pc protocol can terminate faster,
assuming that the cost of sending simultaneous messages is the same as sending
a single message. Furthermore, the d2pc protocol has been fully formalised in
the Join Calculus [50], whereas we leave the full formalisation of the distributed

198 CHAPTER 7. IMPLEMENTING DREAMS

algorithm as future work.

7.4.4 Discussion

In the reliable LossySync example we saw that it is possible for actors in different
states and rounds to coexist in the same snapshot of the connector. We claim that
this is not problematic because the order of messages sent will always guarantee a
correct behaviour. This scenario reveals that the distributed algorithm introduces
a level of concurrency not permitted before by previous implementations of Reo,
which makes it a non-trivial problem to guarantee that the system always evolves
according to the global behaviour of all actors. We support this claim based on
the runs of the Dreams framework only, and not by formal verification, which we
leave as future work.

Together with Jaghoori, we have modelled in Rebeca [64, 65] a simplified case
of a sequence of two and of three split FIFO1 buffers. The behavioural automata
of the current round were reduced to simple booleans stating whether the FIFO1
buffers were empty or full, and we used a data domain with a single element.
Furthermore, we assumed an infinite producer of data on the source port of the
connector, and a reader that can always accept data on its sink port. As a result,
we managed to fix a few mistakes in the then-current version of the algorithm,
and we verified that the following properties hold for the simplified Rebeca im-
plementation:

1. the actors never deadlock, i.e., can always send and receive messages;

2. each actor never has more than five messages in its mailbox; and

3. each FIFO1 buffer changes its state infinitely often.

The first and second properties are specified as part of the model to be verified.
The third property is specified as a separate LTL (linear temporal logic) formula.
The generated model used to verify the first two properties has 254 states for two
FIFO1 channels, and it has 1820 states for three FIFO1 channels. The generated
model used to verify the third property, using three FIFO1 channels, already has
5013 states. For this small example the size of the generated models are man-
ageable. However, the fast growth of the number of states clearly shows that
only small examples can be model checked. The analysis of traces and the formal
verification of a simple connector lead us to believe that the algorithm is correct,
although to claim correctness we expect to extend the formal verification to the
full algorithm described in this chapter in the future.

We now stress the practical relevance of the actor splitting, and the resulting
synchronous regions. The conditions for splitting an actor reflect the indepen-
dence of each of the split actors from the other. It also pinpoints the parts of the

7.5. BENCHMARKS 199

connector that always communicate in an asynchronous manner. This is also sup-
ported by our example of the split FIFO1, and a trace of its execution in Figure 7.7.
Between the two split actors there is no agreement before communication, and the
transition labels are sent after being performed. Therefore, we say splitting yields
local autonomy. The result of a splitting is a pair of split actors, each of which
belongs to an independent synchronous region. The actors in a synchronous re-
gion do not have to interact with the actors in any other synchronous region to
decide how to evolve. Specifically, a split actor does not need to consult with its
connected split actor before deciding how to evolve. It only need to report its
committed choices to its twin split actor.

In our distributed implementation we do not capture the notion of failure,
which is a dominant concern in distributed systems. Instead, we rely on the
actor model and assume that all communication is reliable. Note that existing
distributed programming techniques typically treat reliable communication as an
orthogonal problem, as suggested, for example, by Guerraoui and Rodrigues [55].
However, there are still open questions about how the system should react when
some actors become disconnected during the run of the distributed algorithm.
Some of such failures may also require changes in the coordination behaviour. We
leave such questions out of the scope of this thesis.

7.5 Benchmarks

We evaluate the performance of our implementation of the Dreams framework by
considering the time to create a Reo connector and to perform the communication
to pass a sequence of data values from some writers to some readers. For compar-
ison we use the constraint automata-based implementation of Reo, described in
Chapter 5, which we call the CA engine. However, our main concern in our com-
parison in this chapter is different than the benchmarks performed in §5.6. For the
analysis of the constraint-based approach for Reo we compared the performance
of composing the possible behavioural automaton for a single round. Now we
compare the performance of a connector that evolves in time, acknowledging the
time to deploy a connector and the time to send data through the connector. We
present examples of stateful connectors, with one exception for comparison. More
details about the two engines used in our benchmark follow below.

CA engine The CA engine is a code generator and interpreter of Reo connectors
included in the suite of Eclipse3 plug-ins for Reo [16].4 It uses the context
independent semantics of Reo, following the ideas of port automata [70]

3
http://www.eclipse.org

4Available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/ea-codegen

http://www.eclipse.org
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/ea-codegen

200 CHAPTER 7. IMPLEMENTING DREAMS

extended with memory and data transfer functions, similar to how we ex-
tended the connector colouring semantics with data information in §4.4.4.

Dreams engine The Dreams engine implements the Dreams framework as de-
scribed in this chapter, using the behavioural automata of Reo primitives
and nodes. We use the constraint-based approach with context dependency,
as described in Chapter 5. In this benchmark we consider the extreme (and
thus inefficient) case where every node, channel, and component is deployed
as an independent actor that performs the distributed algorithm explained
in §7.3.

By associating each node, channel, and component to an independent actor we
emphasise the differences between these the CA and the Dreams engines. More op-
timal scenarios for the Dreams engine would deploy one actor for a group of con-
nected Reo primitives, using the combined behavioural automaton, as explained
in §6.5.4.

7.5.1 Test cases

We present four test cases of Reo connectors deployed and executed in the CA

and Dreams engines. For each test case we replicate a part of the connector n
times, following the same approach as in the previous benchmarks performed in
§5.6.

x0 x1 xn−1 xn
wr[a, b, c, d] rd[4]. . .

x0 x1 xn−1 xn
wr[a, b, c, d] rd[4]. . .

Figure 7.8: Sequences of n Sync channels (above) and FIFO1 channels (below).

The first two test cases consist of a sequence of Sync channels (Syncs) and a
sequence of FIFO1 channels (Fifos), as depicted in Figure 7.8. These test cases are
more academic, and allow us to explore the best and the worse case scenarios of
each of the two engines. In both cases we defined the writer component to have
four data values ready to send, and the reader component to be able to receive
at most four values. The sequence of Sync channels provides an ideal scenario
for the CA engine, since after hiding its intermediate ports (implemented by the
CA engine) the automaton of the global system is the same as the automaton of a
single Sync channel. Thus, it is better to precompute the behaviour of this connec-
tor. On the other hand, the sequence of FIFO1 channels is optimal for the Dreams

7.5. BENCHMARKS 201

engine, since it consists of only small synchronous regions that can run indepen-
dently. For the CA engine the number of possible states doubles with every new
FIFO1 channel, making the construction of the automaton for the whole connector
infeasible for large n.

x1

xn−1

xn

...

yn

yn−1

y1

...

wr1[a1]

wrn−1[an−1]

wrn[an]

rd1[1]

rdn−1[1]

rdn[1]

. . .•

Figure 7.9: Sequencer restricting the flow of n synchronous channels.

...

wr1[a1]

wrn[an]

...
rd[1]

Figure 7.10: Discriminator connector attached to n writers.

The last two test cases represent more useful patterns of coordination. The
sequencer connector (Seq), depicted in Figure 7.9, has been presented before in
§6.5.3 to illustrate the existence of synchronous regions. In our test case we assume
that each writer component can produce only one data value, and each reader
component can receive one value. The last test case is the discriminator connector
(Disc), depicted in Figure 7.10, which receives data from n sources and sends the
first data value received to a single port. The discriminator is one of the workflow
patterns proposed by van der Aalst [99]. In our example we have connected the
discriminator connector to a reader component and n writer components, each
ready to exchange one data value.

7.5.2 Results

All benchmarks were executed on a PC with an Intel R� CoreTM2 Quad CPU Q9550
processor at 2.83GHz and with 7.8GB of RAM, running Fedora release 10. For

202 CHAPTER 7. IMPLEMENTING DREAMS

each value of n, we performed 10 different executions and used the averages of
the measured values. Furthermore, for each test case we evaluate two different
aspects, the time to build a connector and the time to exchange data.

Build time The creation of the connector is performed once, after which the con-
nector can be executed multiple times. In the CA engine creating a connec-
tor corresponds to calculating the product of the automata representation
of each channel and node, deploying a centralised engine and the compo-
nents, and connecting the engine to the components. In the Dreams engine,
the creation of the connector consists of the deployment of each actor, and
the creation of the connections between the actors. Note that the CA engine
performs the creation sequentially, therefore the evaluation of the build time
is performed simply by measuring the time before and after the creation
process. On the other hand, the Dreams engine performs the connections
between actors in parallel. Consequently, the Dreams engine uses a shared
variable v to know when all actors are connected, using the traditional Java
approach to lock v every time v is updated by one of the actors—an unnec-
essary and unfair handicap necessitated only by our need for measurement.

Exchange time After a connector is deployed and connected, the exchange time
consists of the time required to exchange a sequence of messages between
the components until no more data can be exchanged. The exchange time is
calculated in both engines by measuring the time when the first message is
sent, and the time when the last message is processed.

Actors in sequence

The build and exchange times for the sequence of n synchronous channels and n
FIFO1 channels are presented in Figure 7.11. On top we present the measurements
for the sequence of synchronous channels, and on the bottom graphics we present
the measurements for the sequence of FIFO1 channels. The left graphics represent
the results of the CA engine, while the right graphics represent the results of the
Dreams engine. Each bar of the graphics is split into two parts, the bottom part
represents the build time, while the top part represents the send time.

Start by observing the top graphics of Figure 7.11 with the measurements of
the CA engine. The sequence of Sync channels have the most impressive results,
with a linear growth of the build time, taking less than 3 seconds to compose 3000
channels, and with constant send time. The constant time is easily explained by
the fact that the composition of the automata of two Sync channels is again the
automaton of a Sync channel. The main problem is shown in the compilation
times of the FIFO1 channels. The automaton for a sequence with more than 5
FIFO1 channels already takes more than 36 seconds to generate. An automaton
resulting from the composition of 6 FIFO1’s has already 26 = 64 states and an

7.5. BENCHMARKS 203

CA engine Dreams engine
S
y
n
c
s

1
300

600
900

1200
1500

1800
2100

2400
2700

3000

0

500

1000

1500

2000

2500

3000

3500

size

tim
e

(m
ilis

ec
)

1
80

160
240

320
400

480
560

640
720

800

0

500

1000

1500

2000

2500

3000

size

tim
e

(m
ilis

ec
)

F
if
o
s

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

size

tim
e

(m
ilis

ec
)

37000

36500

36000

1
220

440
660

880
1100

1320
1540

1760
1980

2200

0

500

1000

1500

2000

2500

3000

size

tim
e

(m
ilis

ec
)

buildTime CA exchTime CA buildTime Dreams exchTime Dreams

Figure 7.11: Results of the evaluation of the build and send times for the Syncs

(top) and Fifos (bottom) connectors, using the CA (left) and the Dreams (right) en-
gines. Each bar in the graphics is divided into two parts. The top part represents
the exchange time, and the bottom part represents the build time.

even larger number of transitions, increasing the time to compose the automata
exponentially.

The Dreams engine has an extremely small build time when compared with
its execution time, which grows linearly for the sequence of FIFO1 channels, due
to the splitting of actors. Furthermore, the time taken to deploy the FIFO1’s and
send four data values is less than three seconds for 2200 channels, overcoming
successfully the small number of FIFO1 channels supported by the CA engine.
The sequence of Sync channels exhibits an exponential growth in Dreams, due to
the constraint solving process performed once for each sending of data, although
the growth is still relatively slow when compared to the exponential blowup of
the sequence of FIFO1 channels with the CA engine.

204 CHAPTER 7. IMPLEMENTING DREAMS

Sequencer and Discriminator

The build and exchange times for the sequencer and the discriminator connec-
tors are presented in Figure 7.12. On top we present the measurements for the
sequencer connector (Seq), which favours the Dreams engine because of the big
number of synchronous regions. The bottom graphics present the measurements
for the discriminator connector (Disc), which has a fixed number of synchronous
regions, making the time to reach a consensus in Dreams grow exponentially with
the size of the connector. As before, the left graphics represent the results of the
CA engine, and the right graphics represent the results of the Dreams engine.

CA engine Dreams engine

S
e
q

2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

size

tim
e

(m
ilis

ec
)

12000

11000

10000

2
260

520
780

1040
1300

1560
1820

2080
2340

2600

0

500

1000

1500

2000

2500

3000

size

tim
e

(m
ilis

ec
)

D
is
c

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

size

tim
e

(m
ilis

ec
)

12000

11000

10000

1
36

72
108

144
180

216
252

288
324

360

0

500

1000

1500

2000

2500

3000

size

tim
e

(m
ili

se
c)

buildTime CA exchTime CA buildTime Dreams exchTime Dreams

Figure 7.12: Results from the evaluation of the build and exchange time for the
Seq (top) and Disc (bottom) connectors, using the CA (left) and the Dreams (right)
engines. Each bar of the graphics is divided in two parts. The top part represents
the exchange time, and the lower part represents the build time.

Start by observing the evaluation of the CA engine. A curious fact is that the
sequencer connector can reach almost double the size of the sequence of FIFO1
channels before a big blow-up (6 vs. 12). Note that the number of possible states
of the automaton of the sequencer connector is n, because only one of the FIFO1
channels in the loop can have a data token, while in the sequence of FIFO1 chan-

7.5. BENCHMARKS 205

nels any combination of empty and full FIFO1’s is possible. However, intuition
says that the sequencer connector of size n would still need to calculate the be-
haviour of a sequence of n − 1 FIFO1 channels before the loop can be closed,
reducing the number of possible states. So, why is it that the CA engine can
handle more FIFO1’s in the sequencer connector than in the case of a series of
FIFO1’s? This is explained by the order in which the CA engine composes its
automata. Instead of composing the automata in sequence (a1 �� a2) . . . �� an,
it builds a balanced tree to with the automata to be composed and calculates
(a1 . . . �� . . . an/2) �� (an/2+1 . . . �� . . . an). The goal of this heuristic is to com-
pose automata with similar sizes, assuming that in general the composition of
two automata yields a larger automaton than any of the initial automata. Hence
when calculating the sequencer with twelve FIFO1’s, the CA engine calculates two
automata with six FIFO1’s each, which should take around 2 × 3700, and only
than calculates its composition, which will yield a much smaller automaton. The
build time of the discriminator also explodes for relatively small connectors, as
expected.

The Dreams execution of Disc reveals an unexpected observation. The build
time appears to grows exponentially, as opposed to the previous examples where
it grows linearly. This is explained by a choice in the current implementation of
the nodes in the Dreams engine. When a new port is added to a node, the Dreams

engine builds the new constraint for the coordination behaviour of the node from
scratch, disregarding its previous constraint. Therefore, to build a node with n
ports the engine finds the constraints for 1 port, then for 2 ports, until n ports. A
simple optimisation is to postpone the calculation of the coordination behaviour
until the suspension is released.

Discussion

These four examples show that the Dreams engine is specially relevant in two main
situations: (1) when the connector needs to be re-compiled (or reconfigured) fre-
quently, and (2) when the pre-computation is infeasible because of the excessive
time required to compile it. These benchmarks also support the discussion in
§6.5.4, where we claim that an ideal scenario needs to have a good balance of pre-
computation (as implemented in the CA engine) and on-the-fly computation (as
implemented in the Dreams engine).

The key insight obtained from these benchmarks is how automata-based im-
plementations fail to execute more complex connectors, where the number of
possible states explodes exponentially. It highlights the tradeoff between pre-
computation and on-the-fly computation, suggesting different scenarios require
different approaches. Note, however, that the true power of the automata models
is in the verification of systems, which is not addressed by the Dreams framework.
In fact, the Dreams framework exploits the fact that discovering only one possible

206 CHAPTER 7. IMPLEMENTING DREAMS

step at each round is enough for the execution of a connector, and the fact that
not all actors require synchronous communication. Furthermore, Dreams does
not require any further knowledge beyond the next step, which may not even be
available or known for some primitives.

7.6 Scala implementation

The Dreams framework is implemented in Scala,5 a language that integrates fea-
tures of object-oriented and functional languages, and that is fully interoperable
with Java. More specifically, Dreams uses the actor library of Scala [57]. Scala
programs are compiled into Java binary classes.

The most recent version of the source code of our implementation is available
in our Reo repository.6 The source code is grouped into packages. The most
relevant packages are presented below. Later in this section we describe other
packages, also available in our repository.

• cwi.reo.engine.common – defines behavioural automata and atomic steps;

• cwi.reo.engine.redrum
7 – defines Reo primitives;

• cwi.reo.engine.colouring – defines the CC semantics as behavioural au-
tomata;

• cwi.reo.engine.SAT – defines the constraint-based semantics as behaviour-
al automata.

The definitions of Reo primitives follow directly the definitions of the reactive
behaviour presented in §7.3. We define proactive actors as an extension of normal
primitives, which we call initiators in the source code. The behaviour of each Reo

primitive, such as a Reo channel or a Reo node, is defined inside the colouring

and the SAT packages. We implemented the context sensitive semantics for both
the CC (using three colours) and for the constraint-based approach (using context
variables, as described in §5.5.2).

We also performed an optimisation with respect to the data function. The be-
havioural automata of the primitives encoded using the CC and constraint-based
semantics do not depend on the data to agree on the final behavioural automa-
ton. Furthermore, by knowing which step to perform without the data function,
each primitive can deduce how data should be transferred. This step corresponds
to the notion of group of labels with the same sets of ports with dataflow, as de-
scribed in §3.5. Therefore, we store the data functions within each primitive, and
we do not include it in the behavioural automaton.

5
http://www.scala-lang.org

6
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/reo-engine

7The name ‘redrum’ stands for Reo distributed machine.

http://www.scala-lang.org

7.6. SCALA IMPLEMENTATION 207

Note on heterogenety The Scala implementation of Dreams includes primitives
whose coordination behaviour is given by colouring tables (as described in Chap-
ter 4) or by constraints (as described in Chapter 5). However, the execution de-
pends only on the definitions of behavioural automata and atomic steps, available
in the package cwi.reo.engine.common. Therefore, the same implementation can
be used for different coordination models, including the Linda [54] and Orc [68]
coordination models, or even other semantic models for Reo. Note that all con-
nected actors must use the same coordination model, since the composition oper-
ator is defined at the level of the concrete model, and must be closed. In principle,
it is also possible to intermix different coordination models (e.g., Reo, Orc, Linda,
etc.), the main challenge being to define a common underlying model for them
that can be encoded as behavioural automata.

7.6.1 Deployment

The Dreams framework is capable of executing relatively complex Reo connectors.
This section shows how the current implementation of Dreams can be used to de-
fine and execute a connector. For the benchmarks performed in §7.5 we simply de-
fined a Scala program that creates a fixed connector, which after its creation, sends
a Release message to all actors to start the execution of the connector. The source
code of the benchmarks is available in the package cwi.reo.engine.sandbox.

To make the Dreams framework more usable, we recognise the need for the
deployment phase, introducing two new classes: an Engine and an Engine Manager,
available in the package cwi.reo.engine.redrum.distributed. In this section
we give only an overview of the architecture of the implementation of Dreams,
and do not go into details of deployment.

Engine Manager

(command line or graphical)
Engine

(where actors run)

deployment requests

status info.

Figure 7.13: Relation between the Dreams engine and the engine manager.

We use an extension of Scala actors called RemoteActors, which differ from
normal Scala actors because they can be accessed from outside of their executing
Java Virtual Machines via TCP/IP. The engine and the engine manager are in-
stances of remote actors that communicate with each other via the TCP/IP socket
mechanism, as depicted in Figure 7.13. An instance of Engine receives messages
with deployment requests to create, delete, and update actors from an Engine Man-

ager, and sends information about its current phase and relevant changes to all
observing Engine Managers. The Engine Manager provides methods to communi-
cate with instances of Engine. More than one instance of an Engine Manager can be

208 CHAPTER 7. IMPLEMENTING DREAMS

Figure 7.14: Screenshot of the proposed interface for the user.

connected to one engine, and each instance of Engine Manager can be connected to
multiple Engines.

We developed two packages in Java that use the Engine and Engine Manager

classes. The first package is cwi.reo.engine.standalone, and contains Java ap-
plications that receive command line arguments with the parameters required to
create and manage engines. It is currently the most complete way to access all the
functionality provided by the engines. The second package is cwi.reo.engine.ui
which is a graphical plug-in for Eclipse integrated in the Eclipse Coordination
Tools (ECT) [16] framework. The ECT framework incorporates a set of Reo-
related tools, including a Reo editor, an animation generator, model checkers, QoS
modelling and analysis tools, and the code generator used in our benchmarks in
§7.5.

7.6.2 Proposed graphical plug-in

We have developed a graphical plug-in for Eclipse, which we describe in §7.6.4,
that acts as an interface for the users. It sits between the editor of Reo connectors
and the distributed engines where Reo connectors can be deployed. The existing
implementation is not yet as user-friendly as planned. We first present here the
graphical interface that we envision in a near future, before presenting the existing
user interface for deployment.

In Figure 7.14 we present a screenshot of the two views of Eclipse that we
propose, used for the deployment process. On top we see the Reo editor enhanced
with the following features, whose numbering corresponds to the numbers in the
figure.

1. Representation of the status of the deployed connector or component: green

7.6. SCALA IMPLEMENTATION 209

circle () denotes that the actors are running, red circle () denotes that the
actors are suspended, and grey circle () denotes the connector or compo-
nent is not deployed.

2. Representation of where the connector or component is deployed.

3. Unification of nodes from different engines, which we explain in §7.6.3.

4. New actions in the context menu of the connectors (i) to deploy the connec-
tor by creating the required actors in a given engine, (ii) to remove (unde-
ploy) all the actors associated with the connector, (iii) to release the asso-
ciated actors from suspension and start the algorithm, and (iv) to stop the
algorithm and suspend the associated actors, e.g., to allow reconfiguration.

On the bottom part of Figure 7.14 we show the Eclipse view that manages the
set of engines connected to the graphical interface. Running engines can be added
by pressing the “Connect” button, and removed or disconnected by pressing the
“Remove” or “Disconnect” button, respectively. Furthermore, new local engines
can also be created, using the “Create” button.

A developer of connectors can draw new connectors, and later perform the
action “Deploy...” to create the required actors in a given engine. Once deployed,
the actors associated with the connector will be suspended, and any change to the
connector will automatically result in a reconfiguration. Only after a connector C
and its connected connectors or components are deployed can C be executed, us-
ing the action “Run” in the context menu. When connecting to a new engine using
the “Connect” button, all existing connectors and components will automatically
be imported into the graphical editor, and deleting the connectors in the editor
will result in the deletion of the corresponding actors from the running engine.

Note that it is not possible to perform actions on individual actors, such as the
actor of a Reo node. Only the full set of actors associated with a connector can
be manipulated by these operations. This will give the freedom for each of the
engines to optimise the number of actors it creates to achieve the behaviour of a
deployed connector. Recall the discussion in §6.5.4 where we refer to a hybrid de-
ployment. Associating actions to connectors instead of Reo primitives allows the
implementation of a hybrid deployment by the engines, without the user being
aware of it.

7.6.3 Distributed engines

We use RemoteActors to define Engine and Engine Manager, to allow multiple en-
gines and managers to execute in different JVMs (Java Virtual Machines), which
can be running in different computers on a network. We now extend this con-
cept to implement the coordination of a connector that is deployed in multiple
cooperating engines.

210 CHAPTER 7. IMPLEMENTING DREAMS

...

x1

xn

...

y1

ym

=⇒ ...

x1

xn

...

y1

ym

Figure 7.15: Unification of remote nodes.

A naive approach is to assume that all actors are remote actors, accessible from
the outside of their JVMs. We avoid the overhead of making all actors accessible
from the outside, and restrict the remote actors to only a new Reo primitive that
we call remote node. Consequently, all remote communication is embodied in a
single type of actor. Note that we do not forbid the creation of other remote actors,
although in most scenarios this is not required. An interesting direction would
be to define remote split actors for efficiency reasons, since this requires fewer
messages to be exchanged. However, as we will see shortly, remote split actors
are not as general as remote nodes.

A remote node is an actor with the same behavioural automaton as that of a
traditional Reo node. However, a remote node is also accessible from other JVMs,
and can be unified with other remote nodes, as depicted in Figure 7.15. When two
remote nodes are unified they exhibit the same behavioural automaton as that of
a single Reo node with the union of all their ports. More than two remote nodes
can be unified in a pairwise fashion. A pair of unified remote nodes share the
information regarding which ports they have, and follow the same distributed
algorithm described in this chapter. We have adapted the algorithm presented
earlier in §7.3 to accommodate the communication between unified nodes because
in this case communication can occur in both directions depending on the step of
the current round, but we omit these details here.

We extend the idea of connected engines via remote nodes to allow general
components to be connected to already running Reo connectors. We define a new
class ComponentPort that wraps a variation of a data writer or reader connected
together with a remote node. The component ports are made available to any Java
developer, providing methods to send data to or receive data from the compo-
nent port, as well as to unify other remote nodes. The source code of the remote
nodes and the source code of the component ports are available in the package
cwi.reo.engine.redrum.distributed. Furthermore, small examples of the use
of the component ports can be found in the package cwi.reo.engine.standalone.

7.6.4 Existing graphical plug-in

The existing graphical deployment plug-in for Eclipse is depicted in Figure 7.16.
It uses the Reo editor included in the ECT framework to extract information from

7.6. SCALA IMPLEMENTATION 211

the connectors being developed. The user, the developer of a Reo application,
can then deploy and run actors associated with primitives in the editor using a
graphical interface. It is possible to select a running engine by introducing its IP
address and port number, or even to create a local engine. A wizard will guide
this process by clicking on the “Add” button.

Figure 7.16: Deployment plug-in for the Dreams framework for Reo (left) and
ECT’s editor (right).

To use the plug-in the user has to select a connector in the editor (by clicking
on the blue rectangle), and a list of primitives become available on the deploy-
ment view (on the left of Figure 7.16). The next step is to select an engine on the
top combo box. If necessary, new connections to existing engines can be added
by pressing the “Add” button. By selecting the list of primitives that we want
to deploy, and pressing the “Deploy” button, a request to the selected engine is
sent to create and deploy the engines. A node is automatically created when two
connected primitives are deployed.

Upon deployment, primitives are in the Suspended phase, where they can be
reconfigured. Deploying a new channel attached to a previously deployed node
triggers a reconfiguration of this node, changing its behavioural automaton to re-
flect its new behaviour after adding new ports. The button “Unify” allows the
unification of nodes executing in different engines, as explained in §7.6.3. To exe-
cute a connector, the user has to release the suspension of all involved primitives,
by selecting them and pressing the “Release” button.

Several optimisations and user-friendly additions can still be incorporated, but
these issues have not been a priority concern compared with the correct behaviour
of the system. We provide an interface between a visual editor and a running
engine as a proof-of-concept binding, which we expect to improve in the future.

212 CHAPTER 7. IMPLEMENTING DREAMS

7.6.5 A guided example

The goal of this subsection is to illustrate how the tools can be used to deploy and
execute a Reo connector running in multiple engines, and to execute components
in the JVMs in the same network as the engines which they are attached to. Note
that the deployment aspect of the Dreams implementation is not yet very user
friendly.

•

Figure 7.17: Example of four services connected by two engines.

We exemplify the application of the Dreams framework using the command
line and the graphical plug-ins included in the ECT framework, for the connector
depicted in the diagram in Figure 7.17. The connector on the left consists of a se-
quencer alternating the flow from the two source ports, and a merger that offers
the values from the two source ports through the same sink port. The connector
on the right is an exclusive router that sends data to one of its sink ports on the
right, non-deterministically. The notation used in the diagram is the following.
The four images on the corners represent Java implementations of services. An
online service and a phone service on the left try to send reservation requests to
one of the hotel services on the right. As an example, we define four toy Java
applications, one for each service. Each of the small squares next to each service
represents a ComponentPort (see §7.6.3) used by the Java application, wrapping
a distributed node. The dotted lines represent the unification of two distributed
nodes (see §7.6.2). Finally, the two big rectangles surrounding Reo connectors rep-
resent two engines executing in two different JVMs running on the same network.
The possible steps to set up this system are described below.

1. Start the engines. We create the left engine on a machine foo and the right
engine on a machine bar by opening a terminal window on each machine,
changing directory to where the package cwi.reo.standalone is compiled,
and executing each of the following commands on its respective machine:

bash:foo# java engine.Run fooEngine 192.168.1.1 9011

bash:bar# java engine.Run barEngine 192.168.1.2 9012

The first command creates an engine entitled fooEngine on the machine
where this command is executed (foo), using the TCP port 9011, where

7.6. SCALA IMPLEMENTATION 213

192.168.1.1 is the IP address used to access this machine. Similarly, the
second command creates an engine called barEngine on the machine where
this command is executed (bar), using the TCP port 9012, with IP address
192.168.1.2.

2. Deploy the connectors. The connectors will be created using the graphical de-
ployment plug-in, depicted in Figure 7.16. For that we open Eclipse on a
machine in the same network as foo and bar with the editor and deploy-
ment views. In the deployment view we click the “Add” button in the en-
gines area, and insert the information regarding the fooEngine, and repeat
the same for the barEngine. We create two connectors in the editor, one for
each part (the two central boxes) of the connector in Figure 7.17. We click
on the left connector, and the list of primitives in the deployment view is
updated. We select the fooEngine, then all primitives in the list, and press
the Deploy button. We repeat this process for the barEngine with the right
connector.

3. Connect the engines. We unify the sink node of the left connector with the
source node of the right connector using the Eclipse plug-in. We select the
two nodes that we want to unify in the Reo editor, and press the “Unify”
button in the deployment view. We make the boundary nodes that will
be attached to components accessible via TCP/IP using the manager in the
command-line tools. We read the identifier prim of the channel attached to
each boundary node from the list of primitives in the graphical deployment
plug-in, and use the manager in the package cwi.reo.engine.standalone

as follows.

bash:foo# java engine.Manager fooEngine 192.168.1.1 9011 \

Awake prim 9013

The command-line instruction above assumes the correct classpath is de-
fined and prim is the identifier of a boundary node deployed in fooEngine.

4. Create the components. The components are developed in plain Java, import-
ing the relevant Java binaries resulting from the compilation of the Scala
implementation of Dreams. In Listing 7.1 we present a Java program On-

lineBooking that can be used to implement the online service in Figure 7.17.
We abstract from certain technicalities such as error handling. The program
uses an extension of ComponentPort called SinkPort, imported in line 1 and
instantiated as port in line 17. The method addDatum used in line 32 adds the
string stored in variable line (obtained earlier on line 25 from the standard in-
put) to the queue of available messages to be sent by the remote node in the
component port. How the component port is connected is not of concern in-
side the OnlineBooking program: it is the responsibility of the coordination

214 CHAPTER 7. IMPLEMENTING DREAMS

engine. The other components can be created in a similar way, using the
extension SourcePort of ComponentPort instead of SinkPort for the hotel
services. The source code of these extensions of component ports is avail-
able in the package cwi.reo.engine.redrum.distributed, and examples
of simple Java programs that send and receive text to component ports are
available in the package cwi.reo.engine.standalone. components.

5. Running the system. The execution of the OnlineBooking Java program con-
nects to the distributed node identified in its command line arguments upon
creation of the SinkPort. The port is initially suspended with a default lock,
and is released when its release method is invoked in line 17. After its re-
lease it becomes idle because no data is available for it to send. We repeat
the same process for the other components. The OnlineBooking program
can try to send a booking request already, but its message will not be con-
sumed by the connector because the other actors are still suspended. We
release the connector using the deployment view in the Eclipse plug-in, by
selecting all channels and pressing the Release button. The components
can now request data to be sent or received, changing the states of their be-
havioural automata when they become idle, and engage in the distributed
algorithm described in this chapter.

7.7 Conclusions

This chapter takes a more practical view of the Dreams framework, and presents
how the distributed algorithm for committing to a behavioural automaton and
sending data operates in detail. It also shows how a developer of Reo connectors
can use the current implementation of Dreams in the context of ECT.

The interplay between synchrony and asynchrony, reactive behaviour and co-
ordination behaviour, open new possibilities for scalability and reconfiguration
of synchronous languages such as Reo. We showed based on benchmarks that
precompiling the full behaviour is not always possible or advantageous. The sep-
aration of a single connector into independently executing sub-connectors also
allows for a more flexible framework for development and concurrent reconfigu-
ration of larger coordination specifications.

For future work we aim to compare the execution of connectors on multiple
computers. At the moment the process of deploying a connector over a network
is not yet fully automatised, leaving new research questions. These questions
include: how to optimise the number of actors and behavioural automata for a
given connector; how to automatically chose in which machine should each actor
be deployed, and how to dynamically adapt a running connector based properties
of the network and demand for communication.

7.7. CONCLUSIONS 215

1 import cwi.reo.engine.redrum.distributed.SinkPort;
2 (...)
3

4 public final class OnlineBooking {
5 /∗∗
6 ∗ @param args <thisip> <rank> <otherremotenode>
7 ∗ <otherip> <otherport>
8 ∗/
9 public static void main(String[] args) {

10 (...)
11

12 // Create a component port and connect it to a distributed node using the
13 // array args (rank, remote node’s ID, IP and TCP port, and local IP).
14 SinkPort port = new SinkPort((...),
15 args [1], args [2], args [3], args [4], args [0]);
16

17 port . release ();
18

19 while(true) {
20 // Prompt user for a message and read answer from standard input.
21 BufferedReader br = (...)
22 String line = null;
23 System.out.print("Enter reservation request: ");
24 try {
25 line = br.readLine();
26 }
27 catch (Exception e) {
28 (...)
29 }
30 (...)
31 System.out.println("Sending reservation request.");
32 port .addDatum(line);
33 (...)
34 }
35 }
36 }

Listing 7.1: Example code for the online booking component, where some details
are hidden by using the symbol “(...)”.

Chapter 8

Conclusions

This thesis is an exploration in the field of coordination, with special focus on
models with synchronisation constructs. Most of the work was developed to sup-
port the coordination language Reo, although the results extend beyond and are
applicable outside the scope of Reo.

The main question addressed in this thesis is how to manage the complex-
ity of synchronous models. Hitherto existing implementations of Reo represent
a connector by a monolithic state-based system that controls all communication.
However, this approach does not scale up to larger connectors, due to the expo-
nential growth of connectors obtained when composing the building blocks of an
elaborate coordination layer.

Our key contribution is the development of new implementation techniques
for Reo-like languages, which exploits concurrency and shifts part of the calcula-
tion of the coordination behaviour into runtime. We successfully deal with larger
connectors than previous Reo engines, and we can execute such synchronous con-
nectors in a distributed network.

Main contributions

In Chapters 2, 3, and 4 of this thesis, we gave a formal presentation of existing co-
ordination models and introduced the stepwise coordination model. We explored
how to use the connector colouring semantics in a distributed implementation.
The stepwise model focuses on the same key concerns as the connector colour-
ing semantics: the compositional development of synchronous coordination sys-
tems. We encoded connector colouring in the stepwise model, extending it with
state changes, with data constraints, and with the notion of local colourings. We
also presented an animation framework to exemplify the challenges of using the
connector colouring semantics as the basis of an implementation that sends data
across a Reo connector. The animation framework provided the starting point for
developing the Dreams distributed engine, introduced in this thesis.

217

218 CHAPTER 8. CONCLUSIONS

In Chapters 5, 6, and 7, we improved existing techniques to execute synchro-
nous coordination models such as Reo in three ways:

• by increasing performance using constraint satisfaction techniques;

• by improving scalability by identifying synchronous regions; and

• by supporting decoupled execution and lightweight reconfiguration.

We briefly review each of these contributions below.

Constraint satisfaction This work alleviates some of the performance and scal-
ability limitations of existing implementation of Reo by shifting part of the com-
putation of the composition of behaviour from compile time to runtime. As ex-
plained in Chapter 5, we used existing constraint satisfaction techniques to calcu-
late the coordination behaviour of each atomic step, reducing the complexity of
the composition operation.

Synchronous regions In Chapter 6 we introduced Dreams, a framework that pro-
vides a distributed implementation based on the stepwise coordination model,
using the actor model to describe the primitive communication between concur-
rent elements. Equipped with the notion of locality from the stepwise model and
the asynchronous properties of the actor model, we statically find parts of the co-
ordination system that can perform local atomic steps. We refer to these regions
as synchronous regions. Synchronous regions communicate with each other using
only asynchronous requests for state updates, without changing the behaviour of
the overall system. Hence, adding new synchronous regions to a connector does
not affect the behaviour of each of the synchronous regions, allowing scalable im-
plementations.

Decoupled execution The Dreams framework is structured as an Actor Mod-
el [1]. Its implementation, described in Chapter 7, uses the actor library of Scala.
Actors are primitives that communicate with each other using a reliable and order-
preserving message passing mechanism. Our main contribution is to assign to
each actor a description of the coordination behaviour, given by the stepwise
model, and to send data through the connector according the composed behaviour
of all actors. We developed a distributed algorithm where actors associated with
the same synchronous region reach a consensus regarding the atomic step to be
performed before sending the data through the connector. The computation of
this atomic step is performed by one of the actors of the synchronous region, and
not by a centralised entity.

As an orthogonal contribution, this thesis addressed Reo’s semantics, giving
an exhaustive comparison of existing models and implementations, with special
emphasis on to three particular models. We explained what is salient in Reo and

219

what aspects of coordination are left uncovered. We argue that, common to all ex-
isting models, are synchronous constraints over ports in a compositional framework.
We use these notions in our implementation, and include dataflow information
and locality aspects.

Future work

The stepwise coordination model described in Chapter 3 presents only the re-
quired aspects of coordination for our distributed framework. As future work, we
leave a more complete formal treatment of this model, that is, we leave open the
question of how to reuse formal proofs over the stepwise coordination model that
can be directly applied in more concrete models. Furthermore, we provide an in-
formal description of the correctness of the instantiation of concrete coordination
models into the stepwise model, leaving as future work a complete formalisation
of these proofs.

The animation framework, presented in Chapter 4, creates visual animations of
Reo representing differently different data elements flowing in the network, and
including state information. A possible way to improve the current animation
engine is to include local steps, and to show the behaviour of only a subset of
a connector. Furthermore, the animations can be extended with new information
regarding, for example, properties of the underlying network, amount of expected
traffic, or security level of the data channels.

In Chapter 5 we use constraint satisfaction techniques to calculate the coor-
dination behaviour of each step. Regarding this a number of questions remain
unaddressed in this thesis.

• What other relevant notions, besides synchronisation, data, and context de-
pendency, are useful to model existing coordination systems?

• How can a constraint solver be guided more efficiently to find coordination
solutions?

• How can the existing constraints be extended, e.g., with special symbols that
are initially unknown, but are replaced by their interpretations only when
needed?

• How to perform constraint solving using these special symbols?

• How to find a solution σ for a subset of a conjunctive collection of con-
straints, such that σ is also a solution for the global collection? This would
allow, for example, to represent constraints that grow in a per-need basis,
without size restrictions.

220 CHAPTER 8. CONCLUSIONS

We gave several suggestions how to guide the constraint solver in §5.7, without
going into detail. The last two questions are partially addressed in existing work
regarding constraint-based coordination [38, 40]. Furthermore, we presented in
this thesis an alternative approach to search for solutions for only a subset of con-
straints based on synchronous regions, described below. We statically identify a
collection of constraints whose solutions will always be solutions of a more global
set of constraints. However, how to allow these sets to be discovered dynamically
during constraint satisfaction is ongoing work.

The Dreams framework is introduced in Chapter 6, where we describe how and
why different regions, dubbed synchronous regions, can evolve in parallel with-
out requiring a global consensus at each step. We identify two possible directions
of future work regarding the use of synchronous regions.

• Partition a connector into its synchronous regions by an automatic splitting
mechanism. Currently we analyse manually each building block of the co-
ordination model and try to find ports that communicate asynchronously,
without any tool support. Ideally, this process would be automated, or al-
ternatively, the discovery of synchronous regions can happen at runtime, as
suggested in the discussion above regarding constraint satisfaction.

• Find a balance between pre-compilation and runtime computation of the
coordination behaviour, as discussed in §6.5.4. We utilise the extreme case
where the behaviour of every building block is composed only at runtime,
to better evaluate the pros and cons of our approach compared to static ap-
proaches. In practice, it makes sense to precompile the behaviour of some
parts of the connector, in particular when these do not change over time and
always require synchronous communication.

In Chapter 7, the last one of this thesis, we describe the communication be-
tween actors in more detail, and provide more technical details regarding the
implementation of the Dreams framework. This implementation can still be im-
proved in several ways. We list some possible directions.

• Integrate Dreams with existing web-service protocols, using, for example,
SOAP messages.1

• Automate of the deployment process as suggested in §7.6.2.

• Benchmark the execution of connectors in a distributed network. That is,
consider the time to send messages between different machines and not only
between threads.

1
http://www.w3.org/TR/#tr_SOAP

http://www.w3.org/TR/#tr_SOAP

221

• Optimise the number of actors for a given connector, by composing simpler
actors into more complex actors at compile time.

• Find automatically on which machine each actor should be deployed.

• Dynamically adapt a running connector based on properties of the network
and demand for communication.

• Model failure, that is, describe how the system should behave if, at any time,
the connection between two actors is broken.

In conclusion, the Dreams framework answers questions raised concerning
the applicability of synchronous coordination models: are they too complex to
be practically useful? The techniques proposed in this thesis provide increased
performance of synchronous coordination systems by diminishing the computa-
tional complexity of their execution. We believe our contributions of exploiting
constraint-solving and introducing independent asynchrony indeed make syn-
chronous coordination practically useful.

Bibliography

[1] Gul Agha. Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, USA, 1986. 1, 6.1, 6.2, 8

[2] Gul Agha and Prasanna Thati. An algebraic theory of actors and its ap-
plication to a simple object-based language. In Olaf Owe, Stein Krogdahl,
and Tom Lyche, editors, Essays in Memory of Ole-Johan Dahl, volume 2635 of
Lecture Notes in Computer Science, pages 26–57. Springer, 2004. 6.1, 6.2, 7.2

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986. 3.7

[4] Jean-Marc Andreoli, Steve Freeman, and Remo Pareschi. The coordination
language facility: coordination of distributed objects. Theory and Practice of
Object Systems, 2(2):77–94, 1996. 5.10

[5] Jean-Marc Andreoli and Remo Pareschi. Linear objects: logical processes
with built-in inheritance. New Generation Computing, pages 495–510, 1990.
5.10

[6] Krzysztof Apt. Principles of Constraint Programming. Cambridge University
Press, 2003. 5.7

[7] Farhad Arbab. Coordination of mobile components. Electronic Notes in The-
oretical Computer Science, 54, 2001. 1

[8] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–366,
2004. 1, 2.1, 2.2, 2.2.3, 3, 3.7, 4.1, 4.2, 5.1, 5.2, 5.5, 5.9, 5.9.1, 6.5.2

[9] Farhad Arbab. Abstract behavior types: a foundation model for compo-
nents and their composition. Science of Computer Programming, 55:3–52, 2005.
2.1, 2.2, 4.2, 4.7, 5.2, 5.9.1, 6.5.2

223

224 Bibliography

[10] Farhad Arbab. Composition of Interacting Computations, chapter 12, pages
277–321. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 2.1, 3.7,
5.10, 6.6

[11] Farhad Arbab. Elements of interaction. In Marc Aiguier, Francis Bre-
taudeau, and Daniel Krob, editors, Complex Systems Design and Management,
pages 1–28. Springer Berlin Heidelberg, October 2010. 5.1

[12] Farhad Arbab, Lacramioara Astefanoaei, Frank S. de Boer, Mehdi Dastani,
John-Jules Ch. Meyer, and Nick A. M. Tinnemeier. Reo connectors as co-
ordination artifacts in 2apl systems. In The Duy Bui, Tuong Vinh Ho, and
Quang-Thuy Ha, editors, PRIMA, volume 5357 of Lecture Notes in Computer
Science, pages 42–53. Springer, 2008. 1

[13] Farhad Arbab, Christel Baier, Frank S. de Boer, and Jan J. M. M. Rutten.
Models and temporal logical specifications for timed component connec-
tors. Software and System Modeling, 6(1):59–82, 2007. 1, 3.8, 5.9.1

[14] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, and Ugo Monta-
nari. Tiles for Reo. In Andrea Corradini and Ugo Montanari, editors, Recent
Trends in Algebraic Development Techniques, volume 5486 of Lecture Notes in
Computer Science, pages 37–55. Springer Berlin/Heidelberg, 2009. 3.1, 4.1,
4.7, 4.8, 5.9.1, 6.5.4

[15] Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon. Component
connectors with QoS guarantees. In Amy L. Murphy and Jan Vitek, editors,
COORDINATION, volume 4467 of Lecture Notes in Computer Science, pages
286–304. Springer, 2007. 1, 3.8, 4.7, 5.9.1

[16] Farhad Arbab, Christian Koehler, Ziyan Maraikar, Young-Joo Moon, and
José Proença. Modeling, testing and executing Reo connectors with the
Eclipse Coordination Tools. In Proceedings of FACS, SCP, 2008. Tools
available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/

Tools. 1, 1, 2.2, 3.6.1, 4.1, 4.6.5, 5.8, 5.9, 5.9.2, 7.5, 7.6.1

[17] Farhad Arbab, Natallia Kokash, and Sun Meng. Towards using Reo for
compliance-aware business process modeling. In Tiziana Margaria and
Bernhard Steffen, editors, ISoLA, volume 17 of Communications in Computer
and Information Science, pages 108–123. Springer, 2008. 1

[18] Farhad Arbab and Eric Monfroy. Coordination of heterogeneous distributed
cooperative constraint solving. SIGAPP Applied Computing Review, 6(2):4–17,
1998. 5.10

[19] Farhad Arbab and Jan J. M. M. Rutten. A coinductive calculus of compo-
nent connectors. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker,

Bibliography 225

editors, WADT, volume 2755 of Lecture Notes in Computer Science, pages 34–
55. Springer, 2002. 2.2.3

[20] Farhad Arbab, Meng Sun, and Christel Baier. Synthesis of Reo circuits from
scenario-based specifications. Electronic Notes in Theoretical Computer Science,
229(2):21–41, 2009. 1

[21] Christel Baier. Probabilistic models for Reo connector circuits. Journal of
Universal Computer Science, 11(10):1718–1748, 2005. 1, 3.8, 5.9.1

[22] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten. Mod-
eling component connectors in Reo by constraint automata. Science of Com-
puter Programming, 61(2):75–113, 2006. 2, 2.2.1, 2.2.2, 2.2.3, 2.2.6, 3.4.1, 3.6.1,
4.7, 5.3.2, 5.4.1, 5.4.3, 5.4.3, 3, 5.9.1, 6.5.2

[23] Christel Baier and Verena Wolf. Stochastic reasoning about channel-based
component connectors. In Paolo Ciancarini and Herbert Wiklicky, editors,
COORDINATION, volume 4038 of Lecture Notes in Computer Science, pages
1–15. Springer, 2006. 1, 3.8, 5.9.1

[24] David E. Bakken and Richard D. Schlichting. Supporting fault-tolerant par-
allel programming in Linda. IEEE Transactions on Parallel and Distributed
Systems, 6, 1995. 6.6

[25] Alberto Baragatti, Roberto Bruni, Hernán Melgratti, Ugo Montanari, and
Giorgio Spagnolo. Prototype platforms for distributed agreements. Elec-
tronic Notes in Theoretical Computer Science, 180(2):21–40, 2007. 6.6

[26] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gianluigi Ferrari, Daniele
Gorla, Michele Loreti, Eugenio Moggi, Rosario Pugliese, Emilio Tuosto, and
Betti Venneri. The Klaim project: Theory and practice. In Global Comput-
ing: Programming Environments, Languages, Security and Analysis of Systems,
volume 2874 of Lecture Notes in Computer Science, pages 88–150. Springer-
Verlag, 2003. 2.3, 5.10

[27] Robert D. Bjornson. Linda on distributed memory multiprocessors. PhD thesis,
Yale University, New Haven, CT, USA, 1993. 6.6

[28] Marcello M. Bonsangue, Farhad Arbab, Jaco de Bakker, Jan J. M. M. Rutten,
Adriano Scutellà, and Gianluigi Zavattaro. A transition system semantics
for the control-driven coordination language Manifold. Theoretical Computer
Science, 240(1):3–47, 2000. 2.1, 5.10

[29] Marcello M. Bonsangue, Dave Clarke, and Alexandra Silva. Automata for
context-dependent connectors. In John Field and Vasco Thudichum Vascon-
celos, editors, COORDINATION, volume 5521 of Lecture Notes in Computer

226 Bibliography

Science, pages 184–203. Springer, 2009. 2.2.3, 2.2.8, 2.2.3, 2.2.3, 3.4.1, 4.7, 4.8,
5.5, 5.9.1

[30] BPEL4WS. Business Process Execution Language for Web Services, May 2003.
6.6

[31] Jarvis Dean Brock and William Ackerman. Scenarios: A model of non-
determinate computation. In J. Dı́az and I. Ramos, editors, Formalization
of Programming Concepts, volume 107 of Lecture Notes in Computer Science,
pages 252–259. Springer Berlin / Heidelberg, 1981. 10.1007/3-540-10699-5-
102. 3.7

[32] Roberto Bruni, Cosimo Laneve, and Ugo Montanari. Orchestrating trans-
actions in Join calculus. In Lubos Brim, Petr Jancar, Mojmı́r Kretı́nský, and
Antonı́n Kucera, editors, CONCUR, volume 2421 of Lecture Notes in Com-
puter Science, pages 321–337. Springer, 2002. 6.6, 7.4.3

[33] Paolo Ciancarini, Keld K. Jensen, and Daniel Yankelevich. On the oper-
ational semantics of a coordination language. In Paolo Ciancarini, Oscar
Nierstrasz, and Akinori Yonezawa, editors, Object-Based Models and Lan-
guages for Concurrent Systems, volume 924 of Lecture Notes in Computer Sci-
ence, pages 77–106. Springer-Verlag, 1995. 2.3, 2.3

[34] Dave Clarke. Coordination: Reo, nets, and logic. In Frank S. de Boer, Mar-
cello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO,
volume 5382 of Lecture Notes in Computer Science, pages 226–256. Springer,
2007. 4.7, 5.3.2, 5.9.1, 5.10

[35] Dave Clarke. A basic logic for reasoning about connector reconfiguration.
Fundamenta Informaticae, 82(4):361–390, 2008. 1, 5.9.1, 5.9.1

[36] Dave Clarke, David Costa, and Farhad Arbab. Modelling coordination in bi-
ological systems. In Tiziana Margaria and Bernhard Steffen, editors, Leverag-
ing Applications of Formal Methods, volume 4313 of Lecture Notes in Computer
Science, pages 9–25. Springer Berlin, 2006. 1

[37] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Syn-
chronisation and context dependency. Science of Computer Programming,
66(3):205–225, May 2007. 1, 2, 2.2.1, 2.2.3, 3.4.1, 4.1, 4.2, 2, 4.3, 4.4.4, 4.7,
5.1, 5.5, 5.5.1, 5.5.2, 5.5.3, 5.6, 5.8, 5.9.1, 5.9.2, 6.5, 6.5.4

[38] Dave Clarke and José Proença. Coordination via interaction constraints i:
Local logic. CoRR, abs/0911.5445, 2009. 5.11, 8

[39] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. Decon-
structing Reo. In Proceedings of the International Workshop on the Foundations of

Bibliography 227

Coordination Languages and Software Architecture (FOCLASA). Elsevier, 2008.
4.7, 5.11

[40] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab.
Channel-based coordination via constraint satisfaction. Science of Computer
Programming, In Press, Accepted Manuscript, 2010. 4.7, 6.5.4, 8

[41] David Costa. Formal Methods for Component Connectors. PhD thesis, Vrije
Universiteit Amsterdam, 2010. 1, 2.2.3, 4.1, 4.1, 4.6, 4.8, 5.9.1

[42] Pierre J. Courtois, F. Heymans, and David L. Parnas. Concurrent control
with “readers” and “writers”. Commun. ACM, 14(10):667–668, 1971. 3.7

[43] Régis Cridlig and Eric Goubault. Semantics and analysis of linda-based
languages. In Patrick Cousot, Moreno Falaschi, Gilberto Filé, and Antoine
Rauzy, editors, WSA, volume 724 of Lecture Notes in Computer Science, pages
72–86. Springer, 1993. 2.3, 2.3

[44] Allen B. Downey. The Little Book of Semaphores. Green Tea Press, second
edition, 2007. 3.7

[45] Sol Efroni, David Harel, and Irun R. Cohen. Reactive Animation: Realistic
modelling of complex dynamics systems. Computer, 38(1):38–47, 2005. 4.7

[46] Kees Everaars, David Costa, Nikolay Diakov, and Farhad Arbab. A dis-
tributed computational model for Reo. Technical Report SEN-E0601, CWI,
Amsterdam, The Netherlands, February 2006. 5.9

[47] Ming-Dong Feng, Weng-Fai Wong, and Chung-Kwong Yuen. Balinda lisp:
Design and implementation. Computer Languages, 22(4):205–214, 1996. 2.3

[48] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A formal approach to
service component architecture. In Mario Bravetti, Manuel Núñez, and Gi-
anluigi Zavattaro, editors, WS-FM, volume 4184 of Lecture Notes in Computer
Science, pages 193–213. Springer, 2006. 5.10

[49] Nate Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C.
Pierce, and Alan Schmitt. Exploiting schemas in data synchronization. In
Gavin M. Bierman and Christoph Koch, editors, DBPL, volume 3774 of Lec-
ture Notes in Computer Science, pages 42–57. Springer, 2005. 3.7

[50] Cédric Fournet and Georges Gonthier. The join calculus: A language for
distributed mobile programming. In Gilles Barthe, Peter Dybjer, Luis Pinto,
and João Saraiva, editors, APPSEM, volume 2395 of Lecture Notes in Com-
puter Science, pages 268–332. Springer, 2000. 6.6, 7.4.3

228 Bibliography

[51] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles, Pat-
terns, and Practice. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999. 2.3,
5.10, 6.1

[52] Svend Frølund. Coordinating Distributed Objects. The MIT Press, Cambridge,
Massachusetts, USA, 1996. 5.10

[53] Fabio Gadducci and Ugo Montanari. The tile model, pages 133–166. MIT
Press, Cambridge, MA, USA, 2000. 3.1, 5.9.1, 6.5.4

[54] David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985. 2.1, 2.3, 2.3, 3.6.3,
5.10, 6.6, 7.6

[55] Rachid Guerraoui and Luı́s Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 6.1,
7.4.4

[56] Juan Visente Guillen Scholten. Mobile channels for exogenous coordination of
distributed systems : semantics, implementation and composition. PhD thesis,
LIACS, Faculty of Mathematics and Natural Sciences, Leiden University,
January 2007. 5.9

[57] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 410(2-3):202–
220, 2009. 1, 7.2, 7.6

[58] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987. 4.7

[59] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–
530, 1988. 4.7

[60] David Harel, Sol Efroni, and Irun R. Cohen. Reactive Animation. In
FMCO 2002, volume 2852 of Lecture Notes In Computer Science, pages 13–153.
Springer Verlag, 2003. 4.7

[61] David Harel and Hillel Kugler. The Rhapsody Semantics of Statecharts (or,
on the executable core of the UML). Lecture notes in computer science, 2004.
4.7

[62] David Harel and P. S. Thiagarajan. Message sequence charts, pages 77–105.
Kluwer Academic Publishers, Norwell, MA, USA, 2003. 4.7

[63] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In IJCAI, pages 235–245, 1973. 6.2

Bibliography 229

[64] Mohammad Mahdi Jaghoori, Ali Movaghar, and Marjan Sirjani. Modere:
the model-checking engine of Rebeca. In Hisham Haddad, editor, SAC,
pages 1810–1815. ACM, 2006. 7.4.4

[65] Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi,
Ehsan Khamespanah, and Ali Movaghar. Symmetry and partial order re-
duction techniques in model checking rebeca. Acta Informatica, 47(1):33–66,
2010. 7.4.4

[66] Gilles Kahn. The semantics of simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974. 3.7

[67] Ramtin Khosravi, Marjan Sirjani, Nesa Asoudeh, Shaghayegh Sahebi, and
Hamed Iravanchi. Modeling and analysis of Reo connectors using Alloy. In
Doug Lea and Gianluigi Zavattaro, editors, COORDINATION, volume 5052
of Lecture Notes in Computer Science, pages 169–183. Springer, 2008. 4.7, 5.9.1,
5.9.2, 6.5.4

[68] David Kitchin, William R. Cook, and Jayadev Misra. A language for task
orchestration and its semantic properties. In Christel Baier and Holger Her-
manns, editors, CONCUR, volume 4137 of Lecture Notes in Computer Science,
pages 477–491. Springer, 2006. 5.10, 7.6

[69] Sascha Klüppelholz and Christel Baier. Symbolic model checking for
channel-based component connectors. Electronic Notes in Theoretical Com-
puter Science, 175(2):19–37, 2007. 5.4.1, 5.10

[70] Christian Koehler and Dave Clarke. Decomposing port automata. In SAC
’09: Proceedings of the 2009 ACM symposium on Applied Computing, pages
1369–1373, New York, NY, USA, 2009. ACM. 4.7, 5.9.1, 7.5

[71] Christian Koehler, David Costa, José Proenca, and Farhad Arbab. Recon-
figuration of Reo connectors triggered by dataflow. In GT-VMT’08: Proc.
7th International Workshop on Graph Transformation and Visual Modeling Tech-
niques, volume 10 of Electronic Communications of the EASST, 2008. 1, 5.9.1

[72] Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connector
rewriting with high-level replacement systems. Electronic Notes in Theoretical
Computer Science, 194(4):77–92, 2008. 1

[73] Joost N. Kok. Denotational semantics of nets with nondeterminism. In
Bernard Robinet and Reinhard Wilhelm, editors, ESOP, volume 213 of Lec-
ture Notes in Computer Science, pages 237–249. Springer, 1986. 3.7

230 Bibliography

[74] Joost N. Kok. A fully abstract semantics for data flow nets. In J. W.
de Bakker, A. J. Nijman, and Philip C. Treleaven, editors, PARLE (2), vol-
ume 259 of Lecture Notes in Computer Science, pages 351–368. Springer, 1987.
3.7

[75] Natallia Kokash, Christian Krause, and Erik P. de Vink. Data-aware design
and verification of service compositions with Reo and mCRL2. In SAC’10:
Proc. of the 2010 ACM Symposium on Applied Computing, pages 2406–2413,
New York, NY, USA, 2010. ACM. 1

[76] Christian Krause. Reconfigurable component connectors. PhD thesis, LIACS,
Faculty of Mathematics and Natural Sciences, Leiden University, 2011. 1,
5.9.1

[77] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab.
Modeling dynamic reconfigurations in Reo using high-level replacement
systems. Science of Computer Programming, 76(1):23–36, 2011. 1, 5.9.1

[78] Alexander Lazovik, Marco Aiello, and Rosella Gennari. Choreographies:
Using constraints to satisfy service requests. In AICT-ICIW ’06: Proceedings of
the Advanced International Conference on Telecommunications and International
Conference on Internet and Web Applications and Services, page 150, Washing-
ton, DC, USA, 2006. IEEE Computer Society. 5.10

[79] Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Building mashups
for the enterprise with SABRE. In Athman Bouguettaya, Ingolf Krüger, and
Tiziana Margaria, editors, ICSOC, volume 5364 of Lecture Notes in Computer
Science, pages 70–83, 2008. 1, 5.9.2, 5.10, 6.5.4, 6.6

[80] Antoni Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. Aarhus Universitet. Department of Computer Science; DAIMI-PB 78.
Aarhus, 1977. 2

[81] Sun Meng and Farhad Arbab. On resource-sensitive timed component
connectors. In Marcello M. Bonsangue and Einar Broch Johnsen, editors,
FMOODS, volume 4468 of Lecture Notes in Computer Science, pages 301–316.
Springer, 2007. 1, 3.8, 5.9.1

[82] Sun Meng and Farhad Arbab. Web services choreography and orchestration
in Reo and constraint automata. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pages 346–353, New York, NY, USA, 2007.
ACM. 1

[83] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982. 1

Bibliography 231

[84] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267–310, 1983. 4.7

[85] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999. 1, 5.10

[86] Naftaly H. Minsky and Victoria Ungureanu. Law-governed interaction:
a coordination and control mechanism for heterogeneous distributed sys-
tems. ACM Transactions on Software Engineering and Methodology, 9(3):273–
305, 2000. 5.10, 6.6

[87] Ugo Montanari and Francesca Rossi. Modeling process coordination via
tiles, graphs, and constraints. In 3rd Biennial World Conference on Integrated
Design and Process Technology, volume 4, pages 1–8, 1998. 5.10

[88] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab. A
compositional semantics for stochastic Reo connectors. In Mohammad Reza
Mousavi and Gwen Salaün, editors, FOCLASA, volume 30 of EPTCS, pages
93–107, 2010. 1, 3.8, 5.9.1

[89] MohammadReza Mousavi, Marjan Sirjani, and Farhad Arbab. Formal se-
mantics and analysis of component connectors in Reo. Electronic Notes in
Theoretical Computer Science, 154(1):83–99, 2006. 4.7, 5.9.1, 5.9.1, 5.9.2, 6.5.4

[90] George A. Papadopoulos and Farhad Arbab. Coordination models and lan-
guages. In M. Zelkowitz (Ed.), The Engineering of Large Systems, volume 46
of Advances in Computers, pages 329–400. Academic Press, 1998. 1, 2.1, 2.3,
5.10, 6.6

[91] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477,
2008. 1, 4.7

[92] José Proença and Dave Clarke. Coordination Models Orc And Reo Com-
pared. In Proceedings of the International Workshop on the Foundations of Coor-
dination Languages and Software Architecture (FOCLASA). Elsevier, 2007. 5.10

[93] Vijay A. Saraswat. Concurrent constraint programming. MIT Press, Cam-
bridge, MA, USA, 1993. 5.10

[94] Vijay A. Saraswat, Radhakrishnan Jagadeesan, and Vineet Gupta. Timed
default concurrent constraint programming. Journal of Symbolic Computation,
22(5–6):475–520, November–December 1996. Extended abstract appeared
in the Proceedings of the 22nd ACM Symposium on Principles of Programming
Languages, San Francisco, January 1995. 5.10

232 Bibliography

[95] Edward Joseph Segall. Tuple space operations: multiple-key search, on-line
matching and wait-free synchronization. PhD thesis, Department of Electrical
and Computer Engineering, Rutgers University, New Brunswick, NJ, USA,
1993. 2.3

[96] Hossein M. Sheini and Karem A. Sakallah. From propositional satisfiabil-
ity to satisfiability modulo theories. In Armin Biere and Carla P. Gomes,
editors, SAT, volume 4121 of Lecture Notes in Computer Science, pages 1–9.
Springer, 2006. 5.3.2

[97] Geoff Sutcliffe. Prolog-d-linda v2: A new embedding of linda in SICStus
prolog. In Proc. Workshop on Blackboard-based Logic Programming, pages 105–
117, 1993. 2.3

[98] Hung Tran Van, Axel van Lamsweerde, Philippe Massonet, and Christophe
Ponsard. Goal-oriented requirements animation. In RE, pages 218–228. IEEE
Computer Society, 2004. 4.7

[99] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. Workflow patterns. Distributed Parallel Databases,
14(1):5–51, 2003. 2.2.1, 4.7, 7.5.1

[100] K. N. Venkataraman. Decidability of the purely existential fragment of the
theory of term algebras. J. ACM, 34(2):492–510, 1987. 5.3.1

[101] Peter Wegner. Coordination as constrained interaction (extended abstract).
In Coordination Languages and Models, volume 1061 of Lecture Notes in Com-
puter Science, pages 28–33, 1996. 5.1, 5.10

[102] Michael Westergaard and Kristian Bisgaard Lassen. The BRITNeY Suite An-
imation Tool. In Susanna Donatelli and P. S. Thiagarajan, editors, ICATPN,
volume 4024 of Lecture Notes in Computer Science, pages 431–440. Springer,
2006. 4.7

[103] Min Xie. Specification Of E-Business Process Model For PayPal Online Pay-
ment Process Using Reo. Master’s thesis, Leiden University, the Nether-
lands, 2005. 1

[104] Makoto Yokoo. Distributed constraint satisfaction: foundations of cooperation in
multi-agent systems. Springer-Verlag, London, UK, 2001. 6.4, 6.6

Index

actor, 146, 174
behaviour, 146, 175
configuration, 146
mail queue, 147, 174
non-proactive, 149
phase, 180
proactive, 149, 190
rank, 178
restricted (b(X)), 157
split, 189
splitting, see splitting

animation specification, 88
animation table, 90
atomicity, 39, 67

behavioural automaton, 48

colouring (c ∈ C), 75
colouring table (T ⊆ C), 75
local, 78

compatibility (�)
of colourings, 76
of colours, 76
of functions, 42
of guards, 33
of mappings, 42, 46, 120
of variable sets, 119

composability, 39, 68
composition of

atomic steps (⊗), 45
behavioural automata (��), 49
colouring tables (��), 75, 114
constraint automata (��), 28
context constraints (�), 119
Reo automata (��), 33

concurrency predicate (C ∈ CP), 46
connector

alternating, 51, 84, 87
chain of FIFO1 channels, 124
chain of Sync channels, 124
discriminator, 92
exclusive router, 23, 99
lossy-FIFO, 51, 76, 78, 81, 115
n-exclusive router, 124
n-inclusive router, 124
priority exclusive router, 82
sequencer, 165
synchronising merge, 24, 166

connector animation, 85
connector colouring, 73, 113
constraint automaton (CA), 26

q-run, 108
q-step, 108

constraints
data constraints (DCX), 26
data constraints (DCP), 107
dataflow constraints, 101
engine, 106

233

234 Index

ground term, 105
satisfaction (�), 100, 104
solution, 100
synchronisation constraints, 101

context variables (xsnk, xsrc ∈ Psnk, Psrc),
115

coordination behaviour, 146

d2pc protocol, 170, 195
data domain (D), 26, 41, 105
data-token, 86
dataflow, 68
dataflow variable (�x ∈ �P), 100
decoupling, 15, 144, 171
deployment, 207
Dreams, 143, 173

ECT, 20, 91, 208
encoding into behavioural automata

of Reo automata, 58
of constraint automata, 55
of Linda, 60

end, see port
exogenous coordination, 14, 40

FIFO1, 23, 27, 31, 149
firing, 101
frame, 90
frontier, 49

grouping of atomic steps, 54
guard

of constraint automata, 26
of Reo automata, 30

identity
of atomic steps (idAS), 46
of behavioural automata (0BA),

50

label (� ∈ L), 43
labelled transition system (LTS), 42
Linda, 35

-Calculus, 36
action (a ∈ Act), 36, 62
dual action (a ∈ Act), 62
interleaved transition system, 37
multistep transition system, 37
process, 36
store, 36

locality, 52
location (� ∈ Loc), 86

occupied, 86
vacant, 86

LossySync, 23, 31
context-dependent, 113

merger, 23
multi-set, 62

construction of (⊕), 62
membership (∈), 62
union of (⊕), 62

node, 22, 73, 98
boundary, 22, 73
mixed, 22, 73
sink, 98
source, 98

port, 21, 41
global set of (P), 41, 100
port names (N), 26
proactive, 149
sink, 21
source, 21
value-independent (x �q y), 148

primitive, 20, 98
priority merger, 113
product, see composition

reconfigurability, 145
reconfiguration, 172
Reo, 20, 98
Reo automaton (RA), 29
Reo engine, 136
replicator, 23

Index 235

restriction
of actors, see actor, restricted
of atomic steps (�X), 157
of behavioural automata (b�q), 49
of functions (f �X), 49, 112, 157
of labels (�X), 157

round, 22, 39, 151

scalability, 16, 144, 171
splitting, 158

completeness, 159
into synchronous regions, 165
of the AsyncDrain, 163
of the FIFO1, 161
soundness, 159

step
atomic (AS), 43
local, 52
of constraint automata (CAS), 26
of Reo automata (RAS), 31
proactive, 149

stepwise coordination model, 39
SyncDrain, 23
synchronisation variable (x ∈ P), 100
synchronous region, 150, 155

tuple (t ∈ Tuple), 36
match of, 36
tuple-space term (M), 37

variable set, 118

Summary

Coordination is a relatively recent field, considerably inspired by concurrency the-
ory. Coordination languages and models are based on the philosophy that an ap-
plication or a system should be divided into the parts that perform computations,
typically components or services, and the parts that coordinate the results and re-
sources required to perform the computations. The coordination aspect focuses on
the latter, describing how the components or services are connected. We study a
specific class of coordination models, namely synchronous, exogenous, and com-
posable models, and we exploit implementation techniques for such models in
distributed environments. Our work concentrates on the Reo coordination model
as the main representative of this class of coordination models.

Current engines that execute Reo allow the coordination layer to run only in a
single thread of execution, although the components can execute in parallel or on
a distributed platform. Furthermore, due to the synchrony aspect these engines
only support small systems, and do not scale. To address these limitations, our
approach to implement Reo-like models makes a tradeoff between pre-compiling
the possible behaviour and calculating it at runtime.

Our work contributes to the field of coordination, in particular to Reo, by
improving existing approaches to execute synchronisation models in three major
ways. First, this work supports decoupled execution and lightweight reconfiguration.
We introduce a distributed protocol that allows actors to reach consensus about
data exchange, and performs the actual communication of data. We developed a
prototype Dreams engine to test this protocol, using an actor library for the Scala
language. Reconfiguration of a small part of the system is independent of the ex-
ecution or behaviour of unrelated parts of the same system. Second, Dreams out-
performs previous Reo engines by using constraint satisfaction techniques. In each
round of the execution of the Dreams framework, descriptions of the behaviour of
all building blocks are combined and a coordination pattern for the current round
is chosen. This choice is made using constraint satisfaction techniques, requiring
less time than previous approaches that collect all patterns before selecting one.

237

238 Summary

Third, our work improves scalability by identifying synchronous regions. We stat-
ically discover regions of the coordination layer that can execute independently,
thus achieving a truly decoupled execution of connectors. Consequently, the con-
straint problem representing the behaviour at each round is smaller and more
easily solved.

Samenvatting

Coördinatie is een relatief jong onderzoeksgebied dat aanzienlijk geı̈nspireerd
is door concurrency theory. Coördinatietalen en -modellen zijn gebaseerd op de
filosofie dat een toepassing of een systeem moet worden opgesplitst, enerzijds
in de onderdelen die berekeningen uitvoeren, meestal componenten of diensten
genoemd, en anderzijds onderdelen die de berekeningen en de middelen die hi-
ervoor nodig coördineren. Het coördinatiegedeelte richt zich op het laatste en
beschrijft hoe de componenten of diensten verbonden zijn. We bestuderen een
specifieke klasse van coördinatiemodellen, namelijk synchrone, exogene en sa-
mengestelde modellen, en we verkennen de implementatietechnieken voor dergeli-
jke modellen in gedistribueerde omgevingen. Ons werk concentreert zich op het
Reo-coördinatiemodel als de belangrijkste vertegenwoordiger van deze klasse
van de coördinatiemodellen. De huidige engines die Reo uitvoeren laten de co-
ördinatielaag slechts toe om in n enkele thread te draaien hoewel componenten
parallel of op een gedistribueerd platform uitgevoerd kunnen worden. Boven-
dien ondersteunen deze engines, vanwege synchronisatie, alleen kleine systemen
en zijn ze slecht schaalbaar. Om deze beperkingen te verzachten maakt onze aan-
pak om Reo en vergelijkbare modellen te implementeren een afweging tussen het
voorcompileren van het mogelijke gedrag enerzijds en het te berekenen tijdens de
uitvoeringsfase anderzijds.

Ons werk draagt bij aan het onderzoek naar coördinatie, en in het bijzonder
betreffende Reo, door bestaande aanpakken om synchronisatiemodellen te ex-
ecuteren te verbeteren op drie belangrijke vlakken. Ten eerste ondersteunt het
werk ontkoppelde uitvoering en lichtgewicht herconfiguratie. We introduceren
een gedistribueerd protocol waarmee actoren consensus kunnen bereiken over de
uitwisseling van gegevens, en dat de eigenlijke communicatie van de gegevens
uitvoert. We ontwikkelden een prototype, de Dreams engine, om dit protocol te
testen met behulp van een bibliotheek voor de Scala-taal. Herconfiguratie van een
klein deel van het systeem is onafhankelijk van de uitvoering of het gedrag van
niet-verbonden delen van hetzelfde systeem. Ten tweede, is Dreams een verbe-

239

240 Samenvatting

tering ten opzichte van eerdere Reo engines door het gebruik van constraint sat-
isfaction-technieken. In elke uitvoeringsronde van het Dreams-raamwerk worden
beschrijvingen van het gedrag van alle bouwstenen gecombineerd en wordt een
coördinatiepatroon voor de huidige ronde gekozen. Deze keuze wordt gemaakt
met behulp van constraint solving dat tijdsefficienter is in vergelijking met andere
aanpakken, waarbij alle patronen verzameld worden alvorens een te selecteren.
Ten derde verbetert ons werk de schaalbaarheid door het identificeren van syn-
chrone regio’s. Er wordt statisch naar regio’s gezocht die zelfstandig uitgevo-
erd kunnen worden en een ontkoppelde uitvoering van connectoren mogelijk is.
Daardoor is het constraint satisfaction-probleem dat het gedrag bij elke ronde rep-
resenteert kleiner en eenvoudig op te lossen.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedi-
cal Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite
Populations in Dynamic Environments.
Faculty of Biomedical Engineering,
TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Rela-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewrit-
ing. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA.
2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-
22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composi-
tionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML programs.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecu-
lar Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods
and protocol standardization. Faculty of
Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed
Systems. Faculty of Mathematics and
Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-06

M.W.A. Streppel. Multifunctional Ge-
ometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition Sys-
tems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information
in Software Development Processes. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2007-
11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in

Time. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty of
Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science,UvA.
2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty of
Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech
Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-
05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and
Assimilation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty of
Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of

Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer
Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of Math-
ematics and Computer Science, TU/e.
2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-

tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready for
Prime Time. Faculty of Science, UU.
2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Ex-
change. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and Their
Applications to Medical Image Analysis.
Faculty of Mathematics and Natural
Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation for
Crime Analysis and Genomics. Faculty
of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Proto-
col Dynamics. Faculty of Science, UvA.
2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathe-
matics and Natural Sciences, UL. 2010-
11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty

of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Gener-
ation with Templates. Faculty of Math-
ematics and Computer Science, TU/e.
2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2011-
03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous Coordination
of Distributed Components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

	Acknowledgments
	Introduction
	Dataflow-oriented coordination models
	Introduction
	Reo
	General description
	Constraint automata
	Normalised Reo automata

	Linda

	A stepwise coordination model
	Introduction
	Preliminaries
	Atomic steps and concurrency predicates
	Labels and atomic steps
	Concurrency predicates

	Behavioural automata
	Product of behavioural automata
	Example: lossy alternator

	Locality and grouping of atomic steps
	Concrete behavioural automata
	Constraint automata as behavioural automata
	Reo automata as behavioural automata
	Linda as behavioural automata

	Related concepts
	Conclusions

	Connector colouring & animation
	Introduction
	Connector colouring overview
	Colourings
	Encoding into behavioural automata
	Labels as colourings
	Local colourings
	Colouring tables as states
	Data transfer

	Examples
	Lossy-FIFO1 connector
	Priority exclusive-router connector
	Alternating coordinator

	Connector animation
	Preliminaries
	Graphical notation
	Animation specifications – Syntax
	Animation specifications – Semantics
	Producing visual animations

	Related work
	Discussion and conclusions

	Constraint-based models for Reo
	Introduction
	Reo overview
	Coordination via constraint satisfaction
	Mathematical preliminaries
	Encoding primitives as constraints
	Combining connectors

	Adding state
	Encoding state machines
	A constraint satisfaction-based engine for Reo
	Correctness via constraint automata

	Adding context dependency
	Connector colouring: an overview
	Context constraints
	Correctness of context constraints

	Benchmarks
	Test cases
	Results

	Guiding the constraint solver
	Implementing interaction
	Comparison of Reo models
	Reo models
	Reo engines
	Constraints in Dreams

	Related work
	Conclusion and future work

	The Dreams framework
	Introduction
	Actors – overview
	The big picture
	Coordination via a system of actors
	Synchronous regions
	Evolution in Dreams

	Decoupled execution
	Restricted actors
	Splitting actors

	Decoupled execution of Reo
	Splitting the FIFO1 channel
	The asynchronous drain cannot be split
	Splitting into synchronous regions
	Discussion

	Related work
	Conclusions

	Implementing Dreams
	Introduction
	Actor definition
	Distributed algorithm
	Actor phases
	Split actors
	Proactive actors

	Distributed Reo
	Example: a reliable LossySync
	Example: a split FIFO1
	Dreams vs. d2pc
	Discussion

	Benchmarks
	Test cases
	Results

	Scala implementation
	Deployment
	Proposed graphical plug-in
	Distributed engines
	Existing graphical plug-in
	A guided example

	Conclusions

	Conclusions
	Bibliography
	Index
	Summary
	Samenvatting

