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Mevrouw de Rector Magnificus, Mijnheer de Decaan,
Geachte leden van het curatorium van de leerstoel Numerieke Analyse en
Dynamische Systemen,
Geachte leden van het bestuur van de Stichting voor Hoger Onderwijs in de
Toegepaste Wiskunde,
Beste collega's van het Centrum Wiskunde & Informatica en het Korteweg-de
Vries Instituut voor de Wiskunde,
Zeer gewaardeerde toehoorders, Dear family and friends,

Introduction

‘The IPCC climate simulations are far from being predictions.’ That is the
quote from this inaugural lecture that appeared on the University of Amster-
dam web site along with the announcement of the lecture. I had been asked to
provide a provocative quote for the announcement. The idea, that the Intergo-
vernment Panel on Climate Change bases its findings on climate projections,
and not climate predictions, is not original, but one that has been expressed by
one of the world’s foremost climate scientists and lead writers of the IPCC
reports, to whom we will return later in the lecture.

The quote above suggests a tone of skepticism, and the sensitive nature of
this subject was immediately confirmed when, prompted by the quote on the
UvA website, a concerned citizen sent me an angry e-mail, accusing me of
having no conscience, and suggesting that the statements I was planning to
make could be used by policymakers as an excuse for inaction in the face of
impending climate change. (To be honest, I had, at that moment, written no
more of this speech than the first line, and hence found it ironic that my cor-
respondent seemed to know what statements I was planning to make.)

The IPCC has recently come under fire in the Netherlands, among other
sources in the book De staat van het klimaat: een koele blik in een verhit debat
written by science journalist Marcel Crok. At the end of his book, Crok argues
that the proximity of science and politics in the climate issue is a detriment to
objective science. Every scientific statement becomes politically loaded. My
correspondent was concerned that any discussion of uncertainty in science
would undermine science as a whole, increasing public mistrust of science. I





wholeheartedly disagree. Misleading the public into thinking that science is
free of uncertainty causes the public to mistrust science when its ‘predictions’
fail.

This lecture in no way calls into question the IPCC case on greenhouse gas
forcing of climate. The IPCC case is based on broad evidence from a variety of
sources, not just simulations. The simulations have a particular role, and the
IPCC clearly communicates what that role is. Instead my goal here is to at-
tempt to explain to you how mathematicians look at prediction, and to point
out where challenges lie for scientists for improving climate prediction. A
number of such challenges are already being taken up in the coming IPCC
report.

How predictable is nature? On the NASA Eclipse Website one can see a
table listing all solar eclipses that will occur until the year . For example,
according to the catalog, on New Years Eve , at ::pm a total eclipse
will occur at °S latitude and °E longitude, having a path width of km. I
expect it will be spectacular.

It may or may not surprise you that NASA is able to predict this eclipse so
accurately. In this lecture I will explain how predictions of natural systems are
made, and make some comments on the limitations of predictability. I will
explain the nature of prediction in the context of the solar system (which is
relatively simple), and then I will explain the prediction of nature in the con-
text of the climate.

The Nature of Prediction…

Historically, the attempt to understand the motion of planets and other hea-
venly bodies was one of the driving forces behind the development of formal
mathematics, along with commerce, surveying and architecture. Whereas the
latter three were practical necessities, astronomy was a pure science in the
sense that it was curiosity-driven and highly theoretical. It led to calculus and
the branch of mathematics known as analysis. Johannes Kepler published the
laws of planetary motion in . By peering at the meticulous astronomical
data of Brahe, Kepler had discovered that the planetary orbits were elliptical,
and his second law, interpreted graphically in Figure , states that the line bet-
ween a planet and the sun sweeps out an equal amount of area in equal periods
of time: this implies that the planet speeds up when nearer the sun and slows
down when farther away from it.

Kepler’s observation that the planetary orbits were elliptical inspired Isaac
Newton to devise the theory of gravitation. Newton proposed the laws of me-
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chanics, which have three important consequences for the prediction of plane-
tary motion: () a planet moves in a straight line unless acted upon by gravity,
() the gravitational force effects a change in the velocity vector of a planet, ()
the gravitational force between any two bodies acts along the line between
them and is inversely proportional to the square of their separation.

Differential equations and numerical integrators

In Figure  you see three computer simulations of the giant outer planets of
the solar system – Jupiter, Saturn, Uranus and Neptune – and Pluto, which
used to be a planet until astronomers demoted it in . The simulations
were computed using three different numerical methods, A, B, and C, which I
will describe in a moment. Just like the porridge in the English story of Goldi-
locks and the Three Bears, Method A is ‘too hot’, Method B is ‘too cold’, and
Method C is ‘just right’. For the hot Method A the planetary orbits gradually
grow in time, and the planets leave the solar system. If one looks closely one
will see that Jupiter and Saturn nearly collide at the beginning of this simula-
tion, which also throws the orbits off considerably. For the cold Method B the
planetary orbits gradually converge upon the sun. When they get too close,
they are slingshot off into space. Meanwhile, for the just-right Method C, the
orbits are nicely periodic, corresponding to what we might expect after centu-
ries of observations.

Figure  Kepler's second law of planetary motion – the line between the sun and an
orbiting planet sweeps out equal areas in equal time.
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Figure  Simulations of the outer solar system: (left) Euler’s method, (middle) ‘back-
ward’ Euler, (right) Newton’s method. The circles indicate the locations of the planets
at the end of the simulations.

The prediction problem for the solar system is the following: Given the mathe-
matical laws (in this case, Newton’s equations) describing the motion of the
planets, and sufficient information about their current state, determine their
state at some future time T. For a single planet, Newton’s equations amount
to six equations – three for the position in three-dimensional space, and three
to specify its velocity vector. For the solar system, including the sun, this cor-
responds to sixty equations. And depending on what we want to know about
the planets, we may have to throw in a moon or an asteroid or two, at a rate of
six equations each. The solution to such a problem would be sixty-plus func-
tions of time, that specify the positions and velocities of all bodies in the solar
system for all time. But we do not know how to solve that problem, nor does
anyone believe it is possible. Fortunately mathematics tells us that we can solve
the equations approximately if the time T is very small. Since T is generally not
small, we divide up the period of time between  and T into a large number N
of tiny time periods , t, t,…, tN = T, and we denote by Δt the length of these
tiny periods: Δt = t – t = t – t, etc. Remember Δt, because we will mention it
frequently in the discussion: Δt is the small amount of time for which we can
solve the complicated mathematical equations, at least approximately. Now, all
we have to do is solve Newton’s equations on the tiny time interval Δt… One
may think that this is not much easier than solving them on T, but the beauty
of mathematics is that it makes a big difference if we can assume that Δt is
small.

Let us examine how this may be done for a single planetary orbit – for
example that of the Earth. When we speak of the system, in this case, we mean
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the Sun, which we assume to be fixed in space, and the Earth, which is moving.
The goal is to determine the motion of the Earth over a small time step Δt. The
nature of prediction is that we need Newton’s equations, which tell how the
system changes from one time to the next, plus a precise description of the
state of the system at some initial time. This precise description is called the
initial condition. Remember this too. Even though it seems innocuous enough,
it plays an important role at the end of the lecture. For a planet, it turns out
that its state is fully described by: its location in space (relative to the sun in
this case) and its velocity vector. Recall that a velocity vector tells which direc-
tion something is moving, and how fast. For this lecture, all the mathematics
that is needed is that of vector arithmetic: A vector is illustrated graphically by
an arrow: the direction the arrow points represents its direction, and its length
represents its magnitude (how fast, in the case of a velocity vector). An impor-
tant property of a vector is that we are free to move it around in space, as long
as we don’t rotate it or magnify it. A second property is that to add two vec-
tors, we just attach the tail of one to the head of the other (the order doesn’t
matter), and then draw a new vector from the free tail to the free head.

We denote the initial location of the planet by X and its initial velocity by
V. Together these constitute the initial condition for a planet. Stated another
way, given the location and velocity of the planet at time t, we want to deter-
mine its new location and new velocity at time t, Δt units later. These states
are like snapshots, or frames in a motion picture. In frame , the planet is
located at X and has velocity V. In frame , it is located at X and has velocity
V, and so forth. Our goal is to compute Frame  using the information in
Frame .

There are hundreds if not thousands of methods for doing this. We will
consider Methods A, B, and C above. Method A, the hot one, was first propo-
sed by Leonhard Euler, a great Swiss mathematician. It proceeds as follows
(Figure ):

. If there were no force acting on the planet, then it would move in a
straight line in the direction of V for a time Δt, and its new position
would be X = X + Δt V. Euler just uses this value for the new posi-
tion.

. If the planet were standing still, on the other hand, the force acting on
it would be constant, inversely proportional to the square of its dis-
tance from the sun, and acting along the line between the planet and
the sun. Denote the force by F, as it is shown in the figure. The velo-
city is modified according to Newton’s laws as follows: V = V + Δt
F. Recall how to add vectors: match head to tail and draw an arrow.
We take this as the new value of the velocity at time t.
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Figure  The method of Euler applied to the Earth orbit.

Method B is also attributed to Euler, but it is a bit more sophisticated (Figure
). It is referred to as the ‘backward’ Euler method, for reasons I do not wish to
go into. In this case we first pretend we know the position of the planet at time
X. Knowing it, we can compute the force F there, and given the force we can
compute the change in velocity variable using the formula V = V + Δt F. In
other words, the velocity vector is updated using the force at time t. Now,
knowing the velocity we compute the position using the final velocity instead
of the initial one to get X = X + Δt V. Of course, we didn’t know X to begin
with, so these two equations have to be solved together. With a little luck one
can proceed by guessing X, computing V, then computing a better estimate of
X, then a better estimate of V and so on, until one is satisfied that repeating
this won’t improve the solution any more. We say that X and V are defined
implicitly, and we also refer to method B as the implicit Euler method. It was
really popularized by people like John Butcher, a New Zealand mathematician
who just last February was awarded the Van Wijngaarden prize in this very
hall.

Figure  The ‘backward’ Euler method applied to the Earth orbit.
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The just-right Method C was first used by Newton (Figure ). In this case, the
position is updated assuming the Sun is absent, X = X + Δt V, and then the
velocity is updated assuming the planet is standing still at its new location: V

= V + Δt F. Curiously, it turns out that this method satisfies Kepler’s law that
equal areas are swept out in equal times! And this fact is related to its just-right
behavior. Newton’s graphical proof of this fact is included in the Principia.

Figure  The method of Newton applied to the Earth orbit.

Once we know how to solve Newton’s equations for a time step of size Δt, we
can compute the locations of the planets at time t. At this point we are back to
our original problem: the governing equations have not changed, and we have
a new initial condition. We then solve the equations again for another time Δt
to get the locations of the planets at time t, and so on, until we get to T. If the
number of steps is very large (and we will see that it must be), this process
could become rather tedious. Until the early s, we paid a room full of
people to do these computations; thereafter we developed the very first com-
puters that put the very first people out of their jobs. The first computer in the
Netherlands was built under the leadership of Adriaan van Wijngaarden who
was one of my predecessors in the Professorial Chair of the Stichting voor
Hoger Onderwijs in de Toegepaste Wiskunde. Van Wijngaarden was the ori-
ginal head of the computing department at the Mathematisch Centrum, cur-
rently Centrum Wiskunde & Informatica and my employer. Later he served as
director of the institute for many years.

Two limit cases: Numerical Analysis & Dynamical Systems

The astute listener may object, ‘but the force and velocity are changing conti-
nuously during the time step Δt, so your answer is wrong!’ This is true, we
have made an error, and error too is the nature of prediction. However, we
expect the error to be smaller if the time step is smaller. We can test this by
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computing one period of Earth’s orbit,  days. If we take  time steps of size
Δt equal to one month, the errors stack up and the orbit rapidly spirals away.
This is successively improved using  time steps of one week and  time
steps of one day. If we take time steps of size Δt equal to one hour, the orbit is
nearly closed, even using Euler’s method. However, the more steps we take, the
more work for the computer (or the people), and the longer we have to wait
for our answer. In practice Δt is chosen as a compromise between our desire
for accuracy and our patience in waiting for the answer.

Mathematical analysis is often concerned with limits: what happens when
some quantity becomes very large or very small? Two limits are of interest to
prediction methods. The first limit we have just illustrated: it is the limit in
which the length of the time interval T is kept fixed (one year), while taking
Δt smaller and smaller (at the same time taking more and more steps). I refer
to this as the approximation limit, because the prediction becomes ever more
precise, closer and closer to the exact solution. The approximation limit be-
longs to the realm of Numerical Analysis, the first half of the name of the Chair
of Numerical Analysis and Dynamical Systems. Numerical analysts try to
show how rapidly the error decreases as we take two times as many steps, half
as large. Convergence is important, but in practice computations are often
done with large time steps and on time intervals much too long for the ap-
proximation limit to apply. A meteorologist-colleague once said, ‘you can al-
ways recognize the mathematicians, because they explicitly state that Δt is a
positive constant’.

But there is a second limit of interest to mathematicians, and that is the
limit where Δt is kept fixed but the number of steps becomes large. For exam-
ple, we think of repeating our calculation with Euler’s method over and over to
create an infinite sequence of snapshots of our solar system. We are interested
in how the solution behaves in this limit, do the planets spiral away as with
method A, crash into the sun as with method B, or follow nice ellipses as with
Newton’s method C? Questions of this nature refer to the stability of the me-
thod and belong more generally to the realm of mathematics called Dynamical
Systems, the second half of the name of the Professorial Chair. For fixed Δt, the
iterated numerical process defines a so-called discrete dynamical system. Ques-
tions pertaining to the stability of numerical prediction methods were studied
in great detail by the previous two occupants of this Chair: Pieter van der
Houwen, and Jan Verwer. I had the very great pleasure of working with both
of them. In fact, at least two other occupants of the Chair also worked on
discrete dynamical systems: Hans Lauwerier, who wrote a popular book on
fractals, and Van Wijngaarden himself, who proposed a discrete computer
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calculus, which he suggested would be more appropriate for computational
modeling than the continuum calculus now used.

… (and the Prediction of Nature)

At this point we have demonstrated the mechanical process of prediction. In
most cases, however, there is a theoretical catch – and that is the question of
predictability. To quote pioneering quantum physicist Niels Bohr, ‘prediction
is very difficult, especially if it is about the future’.

It has been postulated that our fascination for weather stems from its un-
predictability: if one attempts to make use of the daily weather report, one may
occasionally be disappointed. If one follows the multiple day forecasts, it is
even more likely that the inaccuracy draws one’s attention. There seems to be
a problem with weather prediction. After our foregoing discussion, one may
ask, do meteorologists who compute the weather need to use a smaller time
step? Are the governing equations wrong? Or is the initial condition wrong? In
fact, all of these are sources of error: the models do not account for all physical
influences, the initial condition cannot be measured everywhere in the atmos-
phere, and undoubtedly the step size could be smaller. However, there is so-
mething else involved that causes the above effects to be grossly amplified: the
governing equations exhibit ‘chaos’, a subject of mathematics that has been
studied since the s and which gained widespread popular attention in the
late s with the publication of several popular books, such as Chaos: Ma-
king a New Science by James Gleick.

The essential idea of chaotic behavior is that while the motion of the system
remains bounded, two different solutions, no matter how close originally,
grow apart at an exponential rate. This means also that errors made in compu-
ting the solution will grow exponentially. The property holds generically for
most natural systems. It was studied in meteorology by the mathematician
Edward Lorenz. Among the general public, the popular example of the ‘butter-
fly effect’ is familiar, whereby it is suggested that a butterfly flapping its wings
in Brazil can trigger a series of growing instabilities that eventually result in a
tornado in Texas. Now, while this is probably rather exaggerated, the salient
idea is that small perturbations may lead to huge discrepancies. Lorenz first
studied this phenomenon for the example of a system of equations describing
circulating water in a heated box. The warmed fluid rises, forcing the cooled
fluid to descend, and a circular, overturning motion ensues. The state of the
system is given by three variables – call them X, Y, and Z – where X represents
the intensity of the overturning, Y represents the temperature difference bet-
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ween the ascending and descending fluids and Z represents the nonlinearity of
the temperature profile.

Euler’s method for the Lorenz system looks like this:

The numbers r, b and s are parameters: constant numbers chosen by Lorenz to
be r = , b = /, and s = . The variables X, Y and Z change in time. We can
think of them as the coordinates of a point in three-dimensional space. In that
case, our prediction for X, Y and Z is a sequence of such points, tracing out a
curve, just like one of the planets but with a much more complex orbit. If we
just examine how the variable Z varies in time, it seems unpredictable. Let us
compare ten solutions of Lorenz’s equations, each with a tiny error in the ini-
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tial condition, say, less than one pro mille. In Figure  (bottom) we initially
observe no difference in the ten solutions; they look like a single solution. Sud-
denly, after a certain time has passed, they all diverge completely. The predic-
tability is lost. This divergence occurs at an exponential rate, just like the
growth of bacteria populations, bank savings, or radioactive decay. We can
speak of the half-life of a prediction. How long the half-life is, actually depends
on the current conditions – a large high-pressure weather pattern has a much
longer half-life than a low-pressure pattern. The implication of chaos is that
there is a limit or horizon to prediction – errors are always present and may
grow at an exponential rate.

Earlier we looked at the solar system; it is easy to think of the solar system as
being periodic. The orbits of the planets seem to be stationary. One might
think we can predict the state of the solar system forever. After all, eclipses
can be predicted down to the second for thousands of years. In fact, the mo-
tion of a single planet around the Sun would be highly predictable. However,
even the planetary system is chaotic, as soon as there are three bodies involved.
This was noted by Henri Poincaré in . In a more recent paper appearing
in the journal Nature, simulations of the solar system on a time interval of five
billion years were carried out. Small errors in the solar system grow by a fac-
tor of ten every ten million years. This means that the horizon for solar system
simulations is around  million years. As a result, these five billion year
simulations were not predictions in the sense we have been talking about. On
such long time scales, the orbits of the planets look anything but periodic, the
orbital ellipses rock back and forth, the orbital radii grow and decay, someti-
mes the order of the planets as we know them changes. For example, the orbit
of Venus becomes larger than that of Earth. This will, among other things, be
devastating for mnemonics (in Dutch, ezelsbruggetjes) for remembering the
order of the planets, like ‘My Very Educated Mother Just Served Us Nine Piz-
zas’ (already obsolete since the demotion of Pluto). Children five billion years
from now will have to think of new ones.

As another example of chaos, let us look at the climate simulations, such as
those shown in Figure , which were carried out by the Dutch weather service
KNMI in  as part of the Dutch Challenge Project. In this study, the global
climate was simulated over  years from –. In total,  simulations
are shown, each with a miniscule disturbance of the temperature in the initial
condition – less than one pro mille. Shown here are the results from the first
month, January , indicating the predicted temperatures in de Bilt. There is
a °C temperature spread by the end of the month!
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Figure  Ensemble climate simulation for the Dutch Challenge Project. (courtesy of
KNMI)

Seeing this, one may wonder why anyone even bothers doing climate simula-
tions in the presence of chaos. If we cannot trust the weather forecast two
weeks ahead of time, what hope is there of predicting the whole climate 
years in advance? The answer is, of course, that climate scientists are not in-
terested in predicting the weather. That is, they are not interested in precisely
predicting the temperature in Amsterdam on a Thursday in , but in other
quantities, such as for example the mean yearly temperature in Amsterdam in
the period from –, or the relative increase or decrease in rainfall for
the summer months in the Netherlands between  and . Our premise
is that such quantities are predictable, even if the precise state of the atmos-
phere on a given date cannot be specified.

Let us see how that might be. We return to the Lorenz system, and instead
of showing the solution Z, let us just keep track of which values of Z are most
likely to occur. We divide the interval from  to  up into  equal boxes,
and with each time step of our Euler method we determine in which box the
solution finds itself and count how many time steps fall within each of the 
boxes. In this way we obtain a statistical distribution over all the values of Z,
such as the one shown in Figure . The key point is that even though two
solutions of Lorenz diverge exponentially, on a long interval and from a dis-
tance they all look more or less the same. In particular, for any initial condition
this same statistical distribution will result. And now suppose the thing we
want to know about the ‘climate’ of the Lorenz system depends only on the
distribution of Z. For example, suppose we want to know the mean value and
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standard deviation of Z. Then even though the system is chaotic, this quantity
is predictable. In this case, and for the Lorenz problem, it doesn’t even depend
on the initial condition!

Figure  Despite the fact that the trajectories of the Lorenz equations (or the time series
of Z) are unpredictable, the statistical distribution of Z over a long time simulation is
independent of the initial condition.

Climate prediction of the First and Second Kinds

So we see that there exist quantities that can and those that cannot be predic-
ted, even for the simple Lorenz system. In between are quantities that can be
predicted somewhat accurately for longer times than the weather. What about
something as complex as the climate? In other work, Lorenz proposes two
concepts of predictability in climate, which he refers to as climate prediction
of the first and second kinds.

Climate prediction of the first kind is similar to what we have already seen
for the planets, except that one must determine which quantities are predicta-
ble on the time frame of interest, and then start from an initial condition that
is consistent with the current climate. Probably multiple scenarios must be
run, because the ‘current climate’ may correspond to many very different ini-
tial conditions.

Prediction of the second kind can be understood using the Lorenz example
again. Suppose that instead of r =  we double this parameter and take r = 
(for example, let us pretend that r represents the amount of CO in the atmos-
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phere – it doesn’t, but just pretend), and we are interested in how a doubling
of CO will change the climate. Then we can repeat the simulation, using r =
 this time, and compare the distributions of the variable Z. As shown in
Figure , the distribution is changed. In this way we can study how the climate
adapts to a change in some parameter such as CO level. This is Lorenz’s pre-
diction of the second kind. With this approach we can predict how the statistics
of climate – defined as the typical weather patterns – will change due to a
change in parameters.

Figure  Comparison of the statistical distributions of the variable Z in the Lorenz
equations, for r =  (blue) and r =  (red). This illustrates climate prediction of the
second kind, specifically, how the ‘climate’ of the Lorenz attractor changes as the para-
meter r is doubled.

Climate sampling vs climate prediction

The Intergovernment Panel on Climate Change (the IPCC) has included in its
reports climate simulations analogous to those just described in the simple
situation of second kind prediction of Lorenz’s equation. Roughly speaking,
the IPCC fixes a value of CO consistent with currently observed values and
performs a long simulation, just as we did with the Lorenz model, to reach
statistics that are stationary (i.e. unchanging with longer simulation). Subse-
quently they double the value of CO, and repeat the simulation to convergen-
ce of the statistics. Then these statistics are compared to make a prediction
about the effects of CO emissions. The differences between these statistical
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data are then used to extrapolate the present climate to a future one where
CO levels are doubled.

Kevin Trenberth is head of the climate analysis section of the National Cen-
ter for Atmospheric Research in the USA and a lead author of the IPCC re-
ports in ,  and . Trenberth submitted a letter to the weblog of the
scientific journal Nature in , which is very interesting in our context.

Just to make Trenberth’s opinion on CO emissions clear, I start with the
conclusion of his letter. He writes,

A consensus has emerged that ‘warming of the climate system is unequivo-
cal’ and the science is convincing that humans are the cause. Hence mitiga-
tion of the problem: stopping or slowing greenhouse gas emissions into the
atmosphere is essential. The science is clear in this respect.

and further,

We will adapt to climate change. The question is whether it will be planned
or not? How disruptive and how much loss of life will there be because we
did not adequately plan for the climate changes that are already occurring?

Nonetheless, Trenberth’s letter states

In fact there are no predictions by IPCC at all. And there never have been.
The IPCC instead proffers ‘what if’ projections of future climate that cor-
respond to certain emissions scenarios… They are intended to cover a
range of possible self consistent ‘story lines’ that then provide decision ma-
kers with information about which paths might be more desirable.
Even if there were, the projections are based on model results that provide
differences of the future climate relative to that today. None of the models
used by IPCC are initialized to the observed state and none of the climate
states in the models correspond even remotely to the current observed cli-
mate. In particular, the state of the oceans, sea ice, and soil moisture has no
relationship to the observed state at any recent time in any of the IPCC
models. There is neither an El Niño sequence nor any Pacific Decadal
Oscillation that replicates the recent past; yet these are critical modes of
variability that affect Pacific rim countries and beyond… I postulate that
regional climate change is impossible to deal with properly unless the mo-
dels are initialized.
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The current projection method works to the extent it does because it utili-
zes differences from one time to another and the main model bias and
systematic errors are thereby subtracted out. This assumes linearity …

Hence, climate simulations, as employed by the IPCC, should not be confused
with climate predictions – certainly not those of the first kind as defined by
Lorenz. But in fact, there is also an important tacit assumption that goes into
the second kind climate prediction, which almost certainly does not hold for
the real climate: that is, that the results of a long simulation do not depend on
the initial condition chosen. Let us demonstrate this, again using the Lorenz
system.

Figure  The statistics of trajectories of the Lorenz equations with r = . depends on
the initial condition: (top) time series for Z, showing chaotic and asymptotically stable
solutions; (under, left) the same trajectories in phase space; (under, right) probability
distributions of Z.

We have seen the statistical distribution for the variable Z for the original
choice r =  of Lorenz. This distribution is absolutely independent of the
initial condition – mathematically speaking the system has a global attractor.
Now let us choose r = ., about % smaller. In this case, the character of the
solution changes considerably. Two solutions are shown in Figure . For most
initial conditions the chaotic behavior persists, yet for another class of initial
conditions (such as the green one shown in the figure), the behavior is highly
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predictable. For this value of r, the statistical distributions also depend on the
initial condition!

The IPCC takes care not to refer to its climate simulations as predictions.
They speak of projections or scenarios, ‘consistent and plausible’ realizations
of future climates. Nonetheless the simulation results are frequently misused
by others to justify decisions in the face of the current warming; for example,
to determine the need for higher dikes in the Netherlands. Trenberth warns
that the IPCC simulations should not be used to predict regional change. In
other words he says that whereas the simulations may give a plausible indica-
tion of the degree of global annual mean temperature increase, whether, say,
the Netherlands regionally will be warmer or cooler, wetter or dryer, can not
be deduced from the IPCC simulations. Trenberth continues:

However, the science is not done because we do not have reliable or regio-
nal predictions of climate. But we need them. Indeed it is an imperative! So
the science is just beginning. Beginning, that is, to face up to the challenge
of building a climate information system that tracks the current climate
and the agents of change, that initializes models and makes predictions,
and that provides useful climate information on many time scales regional-
ly and tailored to many sectoral needs.
Of course one can initialize a climate model, but a biased model will im-
mediately drift back to the model climate and the predicted trends will then
be wrong. Therefore the problem of overcoming this shortcoming, and fa-
cing up to initializing climate models means not only obtaining sufficient
reliable observations of all aspects of the climate system, but also overco-
ming model biases.

As he notes here, one challenge is to overcome model biases. This brings us
back to the examples of the Goldilocks Methods A, B and C for the solar sys-
tem at the beginning of the lecture, and the relation of all this with the research
of my group at CWI. There we saw that different methods behaved differently
in the dynamical systems limit of fixed Δt and T tending to infinity. Overco-
ming model bias means that the methods have to be designed such that their
statistics agree with those of the real solar system.

In the same way that the just-right Method C retained the equal areas pro-
perty of Kepler, for an atmospheric model one can construct numerical me-
thods that respect other natural laws like energy or something exotic like en-
strophy – the mean variance of the rotational component of the wind. With
PhD student Svetlana Dubinkina we compared three methods that were iden-
tical besides conserving energy, enstrophy or both. Using these we computed
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the average wind field from long simulations, in other words, the ‘prevailing
winds’. We found that the methods gave completely different results, as illu-
strated in Figure . The method that conserved energy predicted no prevailing
wind at all – all fluctuations were equally likely. The method that obeyed only
the enstrophy conservation law predicted a weaker prevailing wind with no
mean rotational component, and the method that conserved both gave stron-
ger winds that were presumably more realistic.

Figure  Mean stream functions and corresponding scatter plots of potential vorticity
(inset) for long time simulations with discretizations due to Arakawa that conserve
(left) energy and enstrophy, (middle) energy only, and (right) enstrophy only. The ‘pre-
vailing winds’, which blow along the contours of the stream function surfaces, strongly
depend on the method used.

Closing

From the first part of the lecture, there are three key elements to the nature of
prediction: () given a mathematical rule that tells how the state of a system
changes from one time to the next, and an initial condition describing the
original state, we attempt to compute the state at a later time T; () the predic-
tion is an approximation, by definition it is in error; () chaotic growth of error
effectively places a horizon on predictability.

Nonetheless, certain statistical quantities that are insensitive to this error
growth are predictable on long times, but only using numerical methods that
accurately reproduce the climate statistical distribution. To conclude, I would
like to outline where it appears to me, based on the discussion presented here,
that progress can be made in climate prediction.

For effective second kind climate prediction, two ingredients are necessary:
. For the reference simulation, the parameters must be consistent with

the current climate, and the model able to reproduce the current cli-
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mate, at least for some consistent class of initial conditions. This re-
moves the assumption of linearity. In the words of Trenberth, the
models must be initialized.

. We must establish that the climate attractor is a global one such that
initial conditions are irrelevant, or else explore and categorize the bas-
ins of attraction. Otherwise, the projected (future) climate cannot be
initialized.

Alternatively, to predict climate in the first kind sense, which seems to me
vastly preferable, a whole program of research must be carried out, including
development of measures of accuracy of statistical quantities such as averages
and time correlations, an analysis of which such quantities may be computed
accurately on what time frames, an understanding of how that accuracy de-
pends on the numerical discretization parameters, and the development of
new computational techniques for statistically consistent parameterization of
unresolved effects or other means of correction of statistical bias introduced by
the numerics. There is much work to be done.

Ladies and gentlemen, the nature of prediction is uncertainty, but the predic-
tion of nature may well succumb to the efforts of science. Lao Tzu’s proverb
‘Those who have knowledge, don’t predict. Those who predict, don’t have
knowledge’, holds only as a truism.
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