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ABSTRACT
Adaptive indexing is characterized by the partial creation and re-
finement of the index as side effects of query execution. Dynamic
or shifting workloads may benefit from preliminary index struc-
tures focused on the columns and specific key ranges actually queried
— without incurring the cost of full index construction. The costs
and benefits of adaptive indexing techniques should therefore be
compared in terms of initialization costs, the overhead imposed
upon queries, and the rate at which the index converges to a state
that is fully-refined for a particular workload component.

Based on an examination of database cracking and adaptive merg-
ing, which are two techniques for adaptive indexing, we seek a
hybrid technique that has a low initialization cost and also con-
verges rapidly. We find the strengths and weaknesses of database
cracking and adaptive merging complementary. One has a rela-
tively high initialization cost but converges rapidly. The other has
a low initialization cost but converges relatively slowly. We ana-
lyze the sources of their respective strengths and explore the space
of hybrid techniques. We have designed and implemented a fam-
ily of hybrid algorithms in the context of a column-store database
system. Our experiments compare their behavior against database
cracking and adaptive merging, as well as against both traditional
full index lookup and scan of unordered data. We show that the
new hybrids significantly improve over past methods while at least
two of the hybrids come very close to the “ideal performance” in
terms of both overhead per query and convergence to a final state.

1. INTRODUCTION
Contemporary index selection tools rely on monitoring database

requests and their execution plans, occasionally invoking creation
or removal of indexes on tables and views. In the context of dy-
namic workloads, such tools tend to suffer from the following three
weaknesses. First, the interval between monitoring and index cre-
ation can exceed the duration of a specific request pattern, in which
case there is no benefit to those tools. Second, even if that is not
the case, there is no index support during this interval. Data access
during the monitoring interval neither benefits from nor aids index
creation efforts, and eventual index creation imposes an additional
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Figure 1: Adaptive Indexing Research Space.
load that interferes with query execution. Last, but not least, tradi-
tional indexes on tables cover all rows equally, even if some rows
are needed often and some never.

Our goal is to enable incremental, efficient adaptive indexing,
i.e., index creation and optimization as side effects of query exe-
cution, with the implicit benefit that only tables, columns, and key
ranges truly queried are optimized. As proposed in [5], we use two
measures to characterize how quickly and efficiently a technique
adapts index structures to a dynamic workload. These are: (1) the
initialization cost incurred by the first query and (2) the number of
queries that must be processed before a random query benefits from
the index structure without incurring any overhead. We focus par-
ticularly on the first query because it captures the worst-case costs
and benefits of adaptive indexing; if that portion of data is never
queried again, then any overhead above and beyond the cost of a
scan is wasted effort.

Recent work has proposed two distinct approaches: database
cracking [10, 11, 12] and adaptive merging [6, 7]. The more of-
ten a key range is queried, the more its representation is optimized.
Columns that are not queried are not indexed, and key ranges that
are not queried are not optimized. Overhead for incremental in-
dex creation is minimal, and disappears when a range has been
fully-optimized. In order to evaluate database cracking and adap-
tive merging, we have implemented both approaches in a modern
column-store database system, and find the strengths and weak-
nesses of the two approaches complementary.

As shown in Figure 1, adaptive merging has a relatively high
initialization cost but converges rapidly, while database cracking
enjoys a low initialization cost but converges relatively slowly. The
green box in Figure 1 thus defines the research space for adaptive
indexing with database cracking and adaptive merging occupying
the borders of this space. We recognize the opportunity for an ideal
hybrid adaptive indexing technique, marked with a star in the fig-
ure, that incurs a low initialization cost yet also converges quickly
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Figure 2: Database cracking.

to an optimized index structure. At the same time, we also recog-
nize the risk of developing sub-optimal techniques, such as the one
labeled “Bad Hybrid” in the figure.

This paper provides the first detailed comparison between these
two techniques through an in-memory implementation in MonetDB.
We study the various trends and tradeoffs that occur and we pro-
pose and compare a number of new hybrid adaptive indexing ap-
proaches. These hybrids are intended to meet both the database
cracking design goal of minimizing initial per query overhead and
also the adaptive merging design goal of exploiting the concept of
runs and merges to converge quickly. The net effect is that the new
algorithms offer a light-weight adaptation that converges efficiently
to a refined index. As even the first query incurs zero overhead over
a full scan approach, this work essentially opens the door to tuning-
free systems that adapt automatically to workload changes.

The rest of the paper is organized as follows. Section 2 gives
background and analyzes previous approaches to adaptive index-
ing. Section 3 then presents the various hybrid algorithms and Sec-
tion 4 provides a detailed experimental analysis. We have imple-
mented all algorithms in MonetDB (http://monetdb.cwi.nl/),
and our experiments compare the benefits of these hybrid tech-
niques. Finally, Section 5 concludes the paper.

2. BACKGROUND AND PRIOR WORK
Prior Approaches. Most previous approaches to runtime index

tuning [1, 2, 3, 8] are non-adaptive, meaning that index tuning and
query processing operations are distinct from each other. These ap-
proaches first monitor the running workload and then decide which
indexes to create or drop based on the observations. Both index tun-
ing and index creation costs impact the database workload. Once a
decision is made, it affects all key ranges in an index. The recogni-
tion that some data items are more heavily queried than others has
led to the concept of partial indexes [14, 15]. A generalization is
the concept of materialized views.

“Soft indexes” anticipates adaptive indexing [13]. Like monitor-
and-tune approaches, soft indexes continually collects statistics for
recommended indexes and then periodically and automatically solves
the index selection problem. Like adaptive indexing, recommended
indexes are generated (or dropped) as a part of query processing.
Unlike adaptive indexing, however, neither index recommendation
nor creation is incremental; explicit statistics are kept and each rec-
ommended index is created and optimized to completion, although
the command might be deferred.

In general, adaptive indexing and approaches that monitor queries
then build indexes are mutually compatible. Policies established by
the observe-and-tune techniques could provide information about
the benefit and importance of different indexes, and adaptive in-
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Figure 3: Adaptive merging.

dexing mechanisms could then create and refine the recommended
index structures while minimizing additional workload.

Database Cracking. Database cracking combines features of
automatic index selection and partial indexes. It reorganizes data
within the query operators, integrating the re-organization effort
into query execution. When a column is queried by a predicate for
the first time, a new cracker index is initialized. As the column
is used in the predicates of further queries, the cracker index is
refined by range partitioning until sequentially searching a partition
is faster than binary searching in the AVL tree guiding a search to
the appropriate partition.

Keys in a cracker index are partitioned into disjoint key ranges,
but left unsorted within each partition. Each range query analyzes
the cracker index, scans key ranges that fall entirely within the
query range, and uses the two end points of the query range to fur-
ther partition the appropriate two key ranges. Thus, in most cases,
each partitioning step creates two new sub-partitions using logic
similar to partitioning in quicksort [9]. A range is partitioned into 3
sub-partitions if both end points fall into the same key range. This
happens in the first partitioning step in a cracker index (because
there is only one key range encompassing all key values) but is
unlikely thereafter [10].

The example in Figure 2 shows data being loaded directly, with-
out sorting, into an unsorted array. As a side-effect of answering a
first query on the range “d – i”, the array is split into three parti-
tions: (1) keys before ‘d’; (2) keys that fall between ‘d’ and ‘i’; and
(3) keys after ‘i’. Then a new query for range “f – m” is processed.
The values in partition (1) can be ignored, but partitions (2) and (3)
are further cracked on keys ‘f’ and ‘m’, respectively. Subsequent
queries continue to partition these key ranges until the structures
have been optimized for the current workload.

Updates and their efficient integration into the data structure are
covered in [11]. Multi-column indexes to support selections, tuple
reconstructions and general complex queries are covered in [12].
In addition, [12] supports partial materialization and adaptive space
management via partial cracking. Finally, recent work [7] has sug-
gested several optimizations for database cracking.

Adaptive Merging. While database cracking functions as an in-
cremental quicksort, with each query resulting in at most one or
two partitioning steps, adaptive merging functions as an incremen-
tal merge sort, with one merge step applied to all key ranges in
a query’s result. Under adaptive merging, the first query to use a
given column in a predicate produces sorted runs and each subse-
quent query upon that same column applies to at most one addi-
tional merge step. Each merge step only affects those key ranges
that are relevant to actual queries, leaving records in all other key
ranges in their initial places. This merge logic takes place as a side
effect of query execution.



In Figure 3, for instance, the first query (with range boundaries
‘d’ and ‘i’) triggers the creation of four sorted runs, loading the
data into equally-sized partitions and sorting each in memory, then
retrieves relevant values (via index lookup because the runs are
sorted) and merges them out of the runs and into a “final” partition.
Similarly, results from a second query on range “f – m” are merged
out of the runs and into the final partition. Subsequent queries con-
tinue to merge results from the runs until the “final” partition has
been fully optimized for the current workload.

3. HYBRID ALGORITHMS
One concern about database cracking is that at most two new

partition boundaries per query means that the technique requires
thousands of queries to converge on an index for the focus range.
One concern about adaptive merging is that the technique requires
the first query to pay a significant cost for generating initial runs.
The difference in reorganization performance, i.e., the number of
queries required to have a key range fully optimized, is due to (1)
merging with a high fan-in rather than partitioning with a low fan-
out of two or three and to (2) merging a query’s entire key range
rather than only dividing the two partitions with the query’s bound-
ary keys. The difference in the cost of the first query is primarily
due to the cost of sorting the initial runs.

Our goal in creating hybrid algorithms is to “merge” the best
qualities of adaptive merging and database cracking. In partic-
ular, we strive to maintain the lightweight footprint of cracking,
which imposes a minimal overhead on queries, and at the same
time quickly achieve query performance comparable to fully sorted
arrays or indexes as adaptive merging manages to achieve.

Data Structures. Before presenting our hybrid algorithms, we
describe the underlying data structures used in the implementation.
Each logical column in our model is represented by multiple pairs
of arrays containing row identifiers and key values (as opposed to
a single array of pairs). Two data structures organize these pairs of
arrays. All tuples are initially assigned to arbitrary unsorted “initial
partitions”. As a side-effect of query processing, tuples are then
moved into “final partitions” representing merged ranges of key
values. Once all data is consumed from an initial partition P, then
P is dropped. These are like adaptive merging’s run and merge
partitions except that we do not necessarily sort the key values,
plus the whole architecture has been redesigned for column-stores.

Each initial partition uses a table of contents to keep track of the
key ranges it contains. Finally, a single master table of contents —
the adaptive index itself — keeps track of the content of both the
initial and final partitions. Both tables of contents are updated as
key value ranges are moved from the initial to the final partitions.
The data structures and physical organization used is that of partial
sideways cracking [12]. The final partitions respect the architecture
of [12] such as we can reuse the techniques of partial sideways
cracking for complex queries, updates and partial materialization.

Select Operator. As with original database cracking, the hy-
brids presented here result in a new select operator each. In our
MonetDB setting, the input for a select operator is a single column
and a filtering predicate while the output is a set of rowIDs. In
the case of adaptive indexing, all techniques collect all qualifying
tuples for a given predicate in a contiguous area via data reorgani-
zation. Thus, we can return a view of the result of a select operator
over the adaptive index, as opposed to materializing the complete
result as in plain MonetDB.

Complex Queries. The qualifying rowIDs can be used by sub-
sequent operators in a query plan for further processing. Our hy-
brids maintain the same interfaces and architecture as with side-
ways cracking [12] that enable complex queries for adaptive index-

ing in a column-store. The main idea is that the query plans use
a new set of operators that include steps for adaptive tuple recon-
struction to avoid random access caused by the reorganization steps
of adaptive indexing. Thus, we focus on the underlying improve-
ments and data structures of the select operators in this paper while
all techniques, query plans and optimizations for other operators
can be found in [12].

Adapting Adaptive Merging. For the sake of an apples-to-
apples comparison we have also adapted adaptive merging’s de-
sign in the column-store environment, i.e., using fixed-width dense
arrays. This resulted in several optimizations inspired by our ex-
perience in MonetDB and DB cracking but at the same time we
also had to leave out several design choices originally described
for adaptive merging as they would be inefficient in a column-store
setting. In a separate line of work we are studying our techniques
in a disk based setting using b-tree structures and slotted pages.

3.1 Strategies for organizing partitions
Our hybrid algorithms follow the same general strategy as our

implementation of adaptive merging while trying to mimic cracking-
like physical reorganization steps that result in crack columns in
the sideways cracking form. The first query of each column splits
the column’s data into initial partitions that each fit in memory (or
even in the CPU cache).1 As queries are processed, qualifying
key values are then moved into the final partitions. Tables of con-
tents and the adaptive index are updated to reflect which key ranges
have been moved into the final partitions so that subsequent queries
know which parts of the requested key ranges to retrieve from final
partitions and which from initial partitions.

Our hybrid algorithms differ from original adaptive indexing and
from each other in how and when they incrementally sort the tuples
in the initial and final partitions. We consider three different ways
of physically reordering tuples in a partition; (a) sorting, (b) crack-
ing and (c) radix clustering.

Sorting. Fully sorting initial partitions upon creation comes at
a high up-front investment. The first query has to pay a significant
cost for sorting all initial partitions (runs). Fully sorting a final
partition is typically less expensive, as the amount of data to be
sorted at a single time is limited to the query’s result. The gain of
exploiting sort is fast convergence to the optimal state. Adaptive
merging uses sorting for both the initial and the final partitions.

Cracking. Database cracking comes at a minimal investment,
performing only at most two partitioning steps in order to isolate
the requested key range for a given query. Subsequent queries ex-
ploit past partitioning and need to “crack” progressively smaller
and smaller pieces to refine the ordering. Contrary to sorting, the
overhead is slow convergence to optimal performance. Unless we
get an exact hit, some amount of reorganization effort has to be in-
curred. In our hybrids, if the query’s result is contained in the final
partitions, then the overhead is small as only a single or at most two
partitions need to be cracked. If the query requires new values from
the initial partitions though, then potentially every initial partition
needs to be cracked causing a significant overhead.

For our hybrids we have redesigned the cracking algorithms such
that the first query in a hybrid that cracks the initial partitions is able
to perform the cracking and the creation of the initial partitions in
a single monolithic step as opposed to a copy step first and then a
crack step in original cracking.

Radix-clustering. As a third alternative, we consider a light-
weight single-pass “best effort” (in the sense that we do not require
equally sized clusters) radix-like range-clustering into 2k clusters as
1In our design for in-memory column-store processing we found
that using partitions of size L1/2 was optimal.
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follows. Given the smallest (v) and largest (v) value in the partition,
we assume an order-preserving injective function f : [v,v]→ N0,
with f (v) = 0, that assigns each value v ∈ [v,v] a numeric code
c ∈ N0. For instance, we use f (v) = v− v for [v,v] ⊆ Z, and
f (v) = A(v)−A(v) for characters v,v,v∈ {‘A’, . . . , ‘Z’, ‘a’, . . . , ‘z’},
where A() yields the character’s ASCII code. Examples are given
in Figure 15 in Appendix D.

With this, we perform a single radix-sort step on c = f (v), using
the k most significant bits of c = f (v), i.e., the result cluster of value
v is determined by those k bits of its code c that match the positions
of the k most significant bits of largest code c. Investing in an extra
initial scan over the partition to count the actual bucket sizes, we
are able to create in one single pass a continuous range-clustered
partition. With a table of contents that keeps track of the cluster
boundaries, the result is identical to that of a sequence of cracking
operations that cover all 2k−1 cluster boundaries.

3.2 Hybrid algorithm design
We can apply each of the above techniques on both the initial and

the final partitions, and combine them arbitrarily. In this way, we
can create 3∗3 = 9 potential hybrid algorithms. We refer to them as
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We note that HSS, i.e., us-
ing sorting for both partition types, represents the column-store im-
plementation of the original adaptive merging algorithm (see exam-
ple in Figure 3). Given that we aim at avoiding the high investment
of sorting all initial partitions, we do not consider the HS* variants
any further, focusing on the remaining 6 variants HR* and HC*.

Figure 4 depicts an example for Hybrid Crack Crack (HCC).
With the first query, the data is loaded into four initial partitions
that hold disjoint row ID ranges. (For ease of presentation, we omit
the row IDs in Figures 2 – 5.) Then, each initial partition is cracked
on the given key range “d – i”, and the qualifying key values are
moved into the gray-shaded final partition that also forms the re-
sult of the first query. The second query’s key range “f – m” partly
overlaps with the first query’s key range. Hence, the final partition
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holding keys from “d – i” is cracked on ‘f’ to isolate the overlap-
ping range “f – i”. Then, all initial partitions are cracked on ‘m’ to
isolate keys from “j – m” and move them into a new value parti-
tion. The result of the second query is then available as ranges “f –
i” and “j – m” in the respective final partitions. Subsequent queries
are processed analogously to the second query.

Likewise, Figure 5 depicts an example for Hybrid Radix Radix
(HRR). With the first query, the data is loaded into four initial par-
titions, and radix-clustered on the k = 1 most significant bits of the
codes given in Figure 15 (a) in Appendix D. Then, the clusters that
hold the requested key range boundaries (‘d’ & ‘i’) are cracked on
these, and the qualifying key values are moved into the gray-shaded
final partition. To support future look-ups, the newly created final
partition is radix-clustered on the k = 1 most significant bits of the
codes given in Figure 15 (b). The second query’s range “f – m”
completely covers the “1..” cluster (“h – i”) and partly overlaps
with the “0..” cluster (“d – g”) of the final partition. Hence, the
former is completely included in the result, and the latter is cracked
on ‘f’ to isolate range “f – g”. Then, all initial partitions are cracked
on ‘m’ to isolate keys from “j – m” and move them into a new final
partition. The latter is radix-clustered on the k = 1 most significant
bits of the codes given in Figure 15 (c). The result of the second
query is then available as ranges “f – g”, “h – i”, “j – k”, and “l –
m” in the respective final partitions. Subsequent queries are again
processed analogously to the second query.

Compared to HCC and HRR, variations Hybrid Crack Radix
(HCR) and Hybrid Radix Crack (HRC) swap the treatment of final
partitions during the merge step, i.e., HCR uses cracking for ini-
tial partitions, but radix-cluster for final partitions, while HRC use
radix-cluster for initial partitions, but cracking for final partitions.

Variations Hybrid Crack Sort (HCS) and Hybrid Radix Sort (HRS)
invest in sorting each final partition on creation, just as original
adaptive merging (respectively Hybrid Sort Sort) does; cf. Figure 3.

Parameters Affecting Performance. An adaptive indexing tech-
nique is characterized (a) by how lightweight adaptation it achieves,
i.e., the cost of the first few queries representing a workload change
[5] and (b) by how fast in terms of time and queries needed it con-
verges to the performance of a perfect index [5]. Several parameters
may affect performance for adaptive indexing, i.e., query selectiv-
ity, data skew, updates, concurrent queries, disk based processing
etc. For example, a hybrid variation that uses sorting will have
the edge in an environment with concurrent queries or with limited
memory as less queries will require physical reorganization. On the



other hand, such a hybrid will suffer in an environment with excess
updates. In the rest of the paper, we will study our algorithms with
a focus on workload related parameters leaving further analysis to
future work. In the appendix section there is more discussion on
issues related to updates and concurrency control.

4. EXPERIMENTAL ANALYSIS
In this section, we continue with a detailed experimental evalu-

ation. We implemented adaptive merging and all hybrids in Mon-
etDB, fully integrating the implementation within the cracking mod-
ule of MonetDB. All algorithms share code and data structures as
much as possible, ensuring that all common steps are executed with
identical code. As with original database cracking, adaptive merg-
ing and the hybrids resulted in new select operators that perform,
register and maintain any necessary physical reorganization actions
over the data on-the-fly.2

Experimental set-up. We use a 2.4 GHz Intel Core2 Quad CPU
equipped with 32 KB L1 cache per core, two 4 MB L2 caches (each
shared by 2 cores), and 8 GB RAM. The machine runs Fedora 12.

Each experiment measures the time needed to process a sequence
of queries following a specific workload pattern over a given data
set. Queries are of the following form.

select A from R where A> low and A< high
We purposely keep queries simple so we can isolate adaptive be-

havior using metrics such as (a) the response time for each individ-
ual query, (b) the cumulative time to answer the complete query se-
quence and (c) how fast performance reaches the optimal level, i.e.,
retrieval performance similar to a fully optimized index. Behavior
for more complex queries follows the same patterns as shown for
original cracking in [12]. Thus here, these simple queries trans-
late to simple plans that essentially contain a single select operator
which allows us to fully compare the various alternative adaptive
indexing select operators without any other “noise”.

In addition to comparing the adaptive indexing methods against
each other, we also compare them to two classic approaches: the
simple scan of a table without indexes, and a lookup using a full
index. The first is typical of a system that has not invested in index
optimization for a given workload. There is neither overhead nor
performance improvement. The second embodies the case where
a full investment is made. In our implementation over a column-
store, we use a fully sorted array as an index. The very first query
on a column A will first create a copy, As, and then perform a com-
plete sort of As. All subsequent queries can employ fast binary
search on As to locate A values.

Analysis. In our first set of experiments we use a column of
3×108 tuples with randomly distributed integer values in [0,108).
We fire 103 queries, where each query asks for a randomly located
range with 10% selectivity. This widely spread access pattern nec-
essarily requires many queries to build-up index information. In
Appendix A, we show how more focused workloads result in much
faster optimization of the relevant key ranges in adaptive indexing.

Figure 7 shows, for all algorithms, the elapsed times of individ-
ual queries within the execution sequence. All axes are logarithmic
so that the costs of initial queries can be easily compared.

In principle, all strategies other than scans eventually result in
fully sorted storage. They differ in how and when the required
n logn comparisons are performed. For a detailed discussion of
adaptation phases, we refer readers to [5]. Here we focus upon the
trade-off between two measures: overhead over a simple scan for
the first queries vs. fast convergence to a complete index.

2The complete code base is part of the latest release of MonetDB
available via http://monetdb.cwi.nl/.

Scan and Sort. Figure 7(a) shows how the scan and full sort
approach behave. Scan has a stable performance as it always needs
to do the same job, i.e., scan the entire column. Only the first query
is slightly slower as it brings all data from disk. With sort on the
other hand, we invest in fully sorting the column during the first
query which allows us to exploit binary search for each subsequent
query. This represents a major burden for the first query, which
happens to trigger the sort, but all queries after that are very fast.

Original Cracking. Database cracking in its original form has
a much more smooth and adaptive behavior as seen in Figure 7(a).
The first query is less than two times slower than a scan while pro-
gressively with each incoming query performance becomes better
and better. Already with the second query, cracking matches the
scan performance and after the third it exceeds it. By the time the
10th query in the query sequence arrives, cracking is one order of
magnitude faster than a scan and keeps improving. The major ben-
efit of cracking is that it can adapt online without disrupting perfor-
mance. With full index creation like in the sort approach, the index
preparation investment is such a big cost that it is only viable if it
happens a priori. In turn, this can only happen if we assume enough
idle time and sufficient workload knowledge.

Adaptive Merging. As shown in Figure 7(a), cracking achieves
a smoother adaptation behavior than adaptive merging, but adap-
tive merging converges much more quickly. The first 6 queries of
adaptive merging are all more expensive than scans, with the first
query nearly 5 times slower than a scan. For cracking, only the first
query is more expensive than a scan, and even that is only twice
as slow. On the other hand, cracking still has not reached optimal
performance by the end of the workload, whereas adaptive merg-
ing answers the 7th query using only the final partition, matching
the performance of a full index. Appendix A gives further insights
for this behavior using cumulative metrics. In addition, observe
that the optimal performance of adaptive merging is slightly bet-
ter than that of a full index. This is due to better access patterns
caused by the underlying data organization; as mentioned in Sec-
tion 3 adaptive merging and the hybrids store data as collections of
small columns as opposed to a single column in plain MonetDB.

Motivation for Hybrids. We view cracking and adaptive merg-
ing as the extremes of a spectrum of adaptive indexing, in that
cracking is a very lazy adaptive indexing approach while adaptive
merging a very eager one. With the hybrids proposed in this pa-
per, we investigate the space in between. The ideal hybrid would
achieve the smooth adaptation and low overhead of database crack-
ing with the fast convergence of adaptive merging. Figure 6 breaks
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down the first query costs of adap-
tive merging to help motivate our hy-
brid choices. It is clear that sort-
ing the initial runs accounts for the
major part of the cost while merg-
ing and initial partition construction
(copy, rowID materialization, etc.)
are much more lightweight. It takes
40 seconds to do the sorting step
alone, whereas cracking completes
processing of the first query includ-
ing both data copying and reorgani-
zation in only 15 seconds (Fig. 7(a)).

The Hybrids. Figures 7(b) and (c) show that each hybrid oc-
cupies a different spot in the space between adaptive merging and
cracking depending on how eager its adaptation steps are. Figures
7(b) and (c) use exactly the same x-axis and y-axis as Figure 7(a)
so one can compare any hybrid directly with the basic adaptive in-
dexing approaches as well as with scan and full sort.
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Cracking Initial Partitions. The first set of hybrids use crack-
ing on the initial partitions, followed by, depending on the algo-
rithm, either cracking, radix clustering or sorting of the final parti-
tion. Figure 7(b) shows their performance.

Lowest Investment. The Crack Crack variation improves heav-
ily over plain cracking by significantly reducing the first query cost
to a level equivalent to the cost of a scan; the overhead of adaptive
indexing vanishes! The main source of this improvement is that
contrary to original cracking, the hybrid operates on batches of the
column at a time and it uses the new cracking algorithm that creates
and cracks initial partitions in one go. In addition, compared to a
scan an adaptive indexing select operator does not need to material-
ize the resulting rowIDs; it simply returns a view over the adaptive
index where after the data reorganization, qualifying tuples appear
in a contiguous area. After the first query, the Crack Crack hybrid
maintains the smooth behavior of cracking, but it does not achieve
the fast convergence of adaptive merging.

Faster Adaptation. The Crack Sort hybrid tries to overcome this
issue and uses sorting of the final partitions to speed up adaptation,
i.e., it mimics how adaptive merging handles merged values in an
eager way. The result shown in Figure 7(b) is that the Crack Sort
achieves similar convergence as adaptive merging. Compared with
adaptive merging it heavily improves in respect to the initialization
costs. For Crack Sort the first query is only marginally slower than
a scan while for adaptive merging the first query is 5 times slower
than a scan. In other words, Crack Sort achieves the same minimal
cost for the first query as with original cracking combined with the
fast adaptation of adaptive merging.

Balancing Gains and Investments. Crack Sort sacrifices slightly
the ultra fast first query achieved by the Crack Crack and in addi-
tion it still is slower than the scan for the first 10 queries while
Crack Crack is never slower than a scan. The reason for that is
the investment in sorting the final partitions which of course brings
the fast adaptation as well. Our next hybrid, the Crack Radix also
shown in Figure 7(b) achieves a nice balance between the previous
two hybrids. This new hybrid invests in clustering as opposed to
sorting the final partitions. Using radix clustering we can achieve
range-clustering at a minimal cost. In Figure 7(b) Crack Radix uses
k = 9, i.e., creates 512 clusters at a time, which we found to be a
good balance regarding the investment in clustering and the gain
we get. As shown in Figure 7(b), Crack Radix achieves similar
performance as Crack Crack towards the beginning of the work-

load, i.e., a very lightweight first query while the next few queries
are all faster than a scan and keep improving. Then similarly to
adaptive merging and Crack Sort it achieves a significant boost in
performance by Query 10 which is maintained as more queries ar-
rive. Even though the ultimate performance of Crack Radix does
not match the performance achieved by adaptive merging or Crack
Sort, the behavior is the same and the actual performance is several
orders of magnitude faster than original cracking and of course that
of a plain scan. And all these improvements come at zero cost since
it does not impose any overhead for the first part of the workload
sequence. Clustering partitions is more eager than simply cracking
but more lazy than fully sorting and thus we achieve a nice balance
in performance gains and investments.

Clustering Initial Partitions. The second set of hybrids uses
Radix clustering for the initial partitions as opposed to cracking that
we used for the first set described above. The net result as shown in
Figure 7(c) is that all hybrid variations in this set become a bit more
eager during the first query which has to perform the clustering of
the partitions. We again use k = 9, creating 512 clusters at a time.
Thus, the first query of all hybrids in Figure 7(c) is slightly more
expensive than that of the hybrids in Figure 7(b) that use cracking
for initial partitions. The gain though is that in Figure 7(c) we see a
significant improvement for the queries that follow the first, i.e., the
first 10 queries that typically have to perform a significant amount
of merging and thus in the case of the Radix-* hybrid variations,
they can exploit the extra information gains by clustering to more
quickly locate qualifying values.

Effect of Selectivity. In our next experiment we demonstrate
the effect of selectivity. For ease of presentation we show only
the HCC and HCS hybrids against the always scan and full index
approach. Scan and full index are naturally immune to selectivity.
Figure 8 depicts the results. It uses the same data set and the same y
and x axes as in Figure 7. The first observation is that with smaller
selectivity it takes more queries to reach optimal performance. This
is because the chances of requiring merging actions are higher with
smaller selectivity as less data is merged with any given query.

In addition, we observe that with smaller selectivity the differ-
ence in convergence is less significant between the “lazy” HCC
and the more “active” HCS. At the same time, the lazy algorithms
maintain their lightweight initiation advantage. Original cracking
and adaptive merging show similar behavior, i.e., cracking resem-
bles HCC behavior and adaptive merging resembles HCS behavior.
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One optimization to increase convergence speed is to make the
algorithms even more active by artificially forcing more active merg-
ing steps as we have discussed in [7]. We refrain from exploring
this option here as it requires optimization steps beyond the scope
of this paper regarding how much extra merging to do and when.

Summary. Figure 9 shows where the new hybrids lie in the re-
search space defined by adaptive indexing. It uses the same layout
as Figure 1 in Section 1. For simplicity, we draw only the HC*
hybrids. The net result is that we have come very close to the ideal
hybrid and heavily improved over both original cracking and adap-
tive merging. We did so from two angles. HCR has the lightweight
footprint of a scan query, and it can still reach optimal performance
very quickly while HCS is only two times slower than a scan for the
first query but reaches optimal performance as quickly as adaptive
merging. In fact, HCS has both the lightweight first query of orig-
inal cracking and the quick adaptation of adaptive merging. The
benefit of HCR is that it provides a more smooth adaptation, never
being slower than a scan, as depicted in Figure 7.

Thus, at this point HCS and HCR are both valid choices. HCR
is to be used when we want the most lightweight adaptation, while
HCS is to be used when we want the fastest adaptation.

Towards the Ideal Hybrid. The next challenge in future work
is to approach the ideal hybrid even more by optimizing the current
hybrids. The main idea we see as a promising research path is to
provide the functionality to dynamically combine steps from differ-
ent hybrids into a single algorithm. A simple example is a hybrid
that for the first part of the workload performs like HCR so that it
has a lightweight footprint, but as soon as performance improves
over a threshold, such that we can afford some pro-active steps, it
switches into HCS-like processing or increases the degree of clus-
tering, in order to more quickly and eagerly optimize the index.

In addition, there are several design choices we can further adopt
and adapt from original adaptive merging. For example, initial
partitions may shrink in size as we merge more and more values.
Furthermore, we can exploit multi-level merging to further reduce
costs for reorganization actions in initial partitions. We plan to fur-
ther investigate such opportunities (see Appendix).

5. CONCLUSIONS
In summary, traditional query processing has relied on index-to-

index navigation with index creation as separate workload guided
by database administrators or automatic tools. An alternative is
query processing based on non-indexed scans, perhaps improved
by columnar storage, shared scans, zone filters, etc. Recent work
has proposed adaptive indexing, which offers intermediate options:
database cracking, which adds little cost to scan-based query pro-
cessing yet finalizes a cracker index only after thousands of queries,

and adaptive merging, which burdens scans with the logic and costs
of the phases in external merge sort but quickly transforms a parti-
tioned B-tree with many initial runs into one equivalent to a tradi-
tional B-tree index.

Our initial experiments yielded an insight about adaptive merg-
ing. Data moves out of initial partitions and into final partitions.
Thus, the more times an initial partition has already been searched,
the less likely it is to be searched again. A final partition, on the
other hand, is searched by every query, either because it contains
the results or else because results are moved into it. Therefore, ef-
fort expended on refining an initial partition is much less likely to
“pay off” than the same effort invested in refining a final partition.

Our new hybrid algorithms exploit this distinction and apply dif-
ferent refinement strategies to initial versus final partitions. They
thus combine the advantages of adaptive merging and database crack-
ing, while avoiding their disadvantages: fast convergence, but hardly
any burden is added to a scan. This appears to enable an entirely
new approach to physical database design. The initial database con-
tains no indexes (or only indexes for primary keys and uniqueness
constraints). Query processing initially relies on large scans, yet
all scans contribute to index optimization in the key ranges of ac-
tual interest. Due to the fast index optimization demonstrated in
our implementation and our experiments, query processing quickly
transitions from relying on scans to exploiting indexes.

Due to the low burden to create and optimize indexes, physi-
cal database design using this approach offers the best of both tra-
ditional scan-based query processing and traditional index-based
query processing, without the need for explicit tuning or for a work-
load for index creation. Modern semiconductor storage with its
very short access latency encourages index-to-index navigation as
the principal paradigm of query execution; adaptive indexing with
fast convergence and low overhead for index optimization might
turn out an excellent complement to modern database hardware.
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APPENDIX
Here, we provide more discussion on several topics to complement
the discussion in the main paper. We provide additional experimen-
tal analysis, e.g., on focused workloads. We provide discussion on
more complex query scenarios, e.g., updates and multi-column in-
dexes, as well as a more extensive future work discussion.

A. ADDITIONAL EXPERIMENTS

A.1 Cumulative Average Costs
In the main paper, we demonstrated our results in terms of the

performance achieved by each single query independently. Another
interesting factor is what happens if we consider the workload as
a whole, i.e., the cumulative costs to run a sequence of queries.
Here we choose the cumulative average metric to demonstrate these
effects as the workload develops for a sequence of 104 queries, i.e.,
T̄ (i) = ∑

i
j=1 t(q j)/i for i ∈ {1, . . . ,104}.

Figure 10 depicts the cumulative average response time for orig-
inal adaptive indexing against traditional approaches. Part c) shows
the whole range of 104 queries, while parts b) and a) magnify the
results for the first 200 and first 10 queries, respectively.

The very first query for each algorithm represents the main dif-
ference in terms of investments needed with a new workload or a
workload shift. Then we see that as the workload develops each
algorithm behaves differently. For example, the new information
compared to the main paper, is that cracking needs 7-8 queries
to improve over total scan costs, while adaptive merging needs
30 queries and sorting needs 60 queries. On the other hand, we
also see the faster pace with which adaptive merging improves over
cracking while sorting improves even faster. As we have discussed
in the main paper as well, this is due to the more complete index
structures that adaptive merging can enjoy over cracking. The more
complete data structures though come with an initialization cost for
both adaptive merging and sorting.

This graph helps to motivate the hybrids. It is evident that the
initial investment of adaptive merging and full sorting needs a good
amount of effort until it can be amortized by future gains. In other
words, even if we ignore the disruption for the first query, we still
need in this example 104 queries until we can amortize the costs

and start benefiting over plain cracking. On the other hand, we have
demonstrated clearly that adaptive merging reaches the ultimate per
query performance very fast while cracking needs a few thousands
of queries and when adaptive merging is at the absolute optimal
performance cracking is still several orders of magnitude away.

The hybrid algorithms presented in this paper significantly im-
proved over both algorithms by balancing the design choices. Fig-
ure 11 shows how the hybrids behave under the same metric (cu-
mulative average) for the first part of the workload. This helps us
see past the first query and see how the behavior evolves especially
for the initial queries as it is evident that these are the queries that
incur the major disruption in performance if indexes are to be built
online due to lack of workload knowledge and idle time.

Figure 11(a) shows how Hybrid Crack Crack achieves perfor-
mance similar to a scan for the first query and then it follows the
behavior of plain cracking, representing a zero overhead adaptive
indexing approach. Hybrid Crack Sort improves over plain crack-
ing for the first query and then it follows a behavior which lies
between plain cracking and adaptive merging. It improves with a
similar pace as adaptive merging but due to the sorting steps it poses
an overhead for the first couple of queries compared to cracking.

Similar discussions and observations apply for the rest of the hy-
brids in Figures 11(b) and (c). As we observed in the main paper,
Hybrid Crack Radix provides a quite balanced behavior and as we
see here (Figure 11(c)), this behavior is evident with the cumula-
tive average metric as well. Crack Radix achieved both a low over-
head for the first query and also a low overhead for the first batch
of queries. This is because, contrary to Crack Sort and Adaptive
Merging, the Crack Radix uses lightweight clustering operations
after the first query to reorganize final partitions.

Thus, similarly to our summary in the experiments of the main
part of the paper, the Crack Radix hybrid represents our most light-
weight hybrid that can still adapt very fast while the Crack Sort
represents a reasonably lightweight hybrid that can adapt extremely
fast. Both hybrids are significantly better than their ancestors, data-
base cracking and adaptive merging.

A.2 Focused Workloads
In the main paper, we studied simple focused workloads where

the pattern was that we simply restricted our interest to a specific
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part of the domain, i.e., to x% of the possible ranges we could
query. Here, we study more complex and general patterns where
the focus gradually shifts into target areas based on a specific pat-
tern. These kind of scenarios represent more realistic workloads
where the user explores and analyzes the data based on on-the-fly
observations.

Jump. In this experiment, we analyze a workload with a jump-
ing focus, i.e., the focus is initially on 20% of the data set, then
after 1000 queries it jumps to a different 20%, then to a different
20% and so on. This represent a behavior where the user will even-
tually study the whole data set but we do not need the complete
data set optimized in one go or at all times. Figure 12 shows such a
workload; as the query sequence evolves the workload focuses on
a small area of the domain and then the focus jumps to a different
area.

Zoom. The zoom workload pattern reflects a zooming behav-
ior where progressive understanding during query processing leads
to the actual point of interest, i.e., the workload stepwise zooms
into shrinking areas of interest. Figure 12 shows such an example.
Here, the first 2000 queries are randomly spread over the whole key
range, the next 2000 queries focus on only the center 80% of the
key range, the next 2000 queries focus on the center 60% and so
on, until in the 5th step the target area has shrunk to the center 20%
of the key range.

Discussion. Figure 13 shows the results. It is meant to pro-
vide a high level visualization to provide insights of how adaptive
indexing works in a variety of scenarios. For simplicity of presen-
tation, we include results for the Crack Crack hybrid only. We use
columns of 4∗108 tuples and a query selectivity of 10%.

Sort and scan are insensitive to the workload and thus they pro-
vide the same performance across the range of workloads tested.

For example, scan will always scan the same amount of data while
sort will always do a complete sort to exploit binary search from
there on. Thus, scan has always the same high cost, while sort will
always pay a heavy initial cost. Adaptive indexing though provides
a very different behavior trying to always exploit the workload pat-
terns in order to improve. This is true for all adaptive indexing tech-
niques with the hybrid having the edge due to the more lightweight
adaptation as we discussed in the main paper. We do not provide
figures that focus on the initial part of the sequence, comparing ini-
tial costs, as this is the same behavior seen before. The goal here
is to present an overview of how the adaptive indexing algorithms
adapt to the changing workload patterns. For example, notice how
for the Zoom workload all adaptive indexing techniques improve
faster (in terms of queries processed) to the optimal performance
levels compared to a random workload as well as improving even
further. The fastest query in the Zoom workload is one order of
magnitude faster than the fastest in the Random one. By focusing
the workload on specific key ranges, adaptive indexing can improve
its knowledge over these key ranges more quickly. Similar observa-
tions stand for the Jump workload pattern as well. In this case, the
shift from one key range to another is visible by a few high peaks
each time representing a workload change. Once the workload fo-
cuses again, performance improves very fast and in most cases per-
formance stays way faster than the plain scan approach. Without
any external knowledge and completely in an automatic and self-
tuning way, performance improves purely based on the workload.

B. UPDATES & MULTI-COLUMN INDEXES
Updates and multi-column queries are two important milestones

towards supporting more complex workloads with adaptive index-
ing. Updates bring an extra complexity because data we actively
reorganize needs to also consider any update changes at the same
time. Multi-column queries impose challenges regarding the align-
ment of values across different columns as we keep physically re-
organizing those columns.

Both topics have been extensively studied under the cracking
paradigm in [11] and [12]. All hybrid algorithms in this paper
use final partitions that are crack columns in the format proposed
for sideways database cracking in [12] using sets of multiple small
arrays to represent a single logical column. We use exactly the



 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  2  4  6  8  10

R
A

N
D

O
M

 
 T

im
e 

(m
ill

is
ec

s)

Adaptive Merging (AM)

Scan
AM

Sort

 0  2  4  6  8  10

Database Cracking

Scan
Crack

Sort

 0  2  4  6  8  10

Hybrid

Scan
Hybrid

Sort

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  2  4  6  8  10

Z
O

O
M

 
T

im
e 

(m
ill

is
ec

s)

 0  2  4  6  8  10  0  2  4  6  8  10

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  0.5  1  1.5  2  2.5  3

JU
M

P
 

T
im

e 
(m

ill
is

ec
s)

Query sequence (x1000)

 0  0.5  1  1.5  2  2.5  3

Query sequence (x1000)

 0  0.5  1  1.5  2  2.5  3

Query sequence (x1000)
Figure 13: Improving Response for Various Workload Patterns.

same design, data structures and the same code base. This way, all
techniques of [11] and [12] transfer directly to our hybrids as well.

Updates. The main idea is that updates are modeled as pend-
ing insertions and pending deletions. Conceptually, they can be
thought of as yet another partition needing to be merged. When an
operator processes a given area of the crack array, it also checks
whether there are any pending updates for this area. If there are, it
directly applies the updates on-the-fly. The trick is to do this in a
lightweight fashion while at the same time maintaining knowledge
about how values are organized, i.e., without invalidating index in-
formation. The algorithms of [11] exploit the fact that a crack array
is not fully sorted and swap/move/insert values only at the edges of
the affected areas in an array. Similarly, deletes leave empty spaces
at the edges of cracked areas, which are then filled in with future
updates on this or neighboring areas.

For the hybrids with sorted partitions, the costs of merging up-
dates are naturally higher. There are a number of ways to tackle

this by further exploiting the ideas in [11], i.e., to adaptively “for-
get” some structure and allow for temporarily non sorted partitions
which can be sorted again with future queries. In fact, similar ideas
also apply to the hybrids with cracked partitions; once there are too
many partitions in a given value range then the maintenance costs
become higher and merging part of those partitions becomes the
way out. We leave such optimizations for future analysis.

Multi-column Indexes. The main idea in [12] is that the knowl-
edge gained for one column over a sequence of queries is adaptively
passed to other columns when the workload demands it, i.e., when
multi-column queries appear. The whole design is geared towards
improving access to one column given a filtering action in another
one, leading to efficient tuple reconstruction in a column-store set-
ting. The net result is that the multi-column index is essentially
built and augmented incrementally and adaptively with new pieces
from columns and value ranges as queries arrive.
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C. FUTURE WORK
Concurrency control, logging, & recovery. We are currently

exploring how to best implement concurrency control, logging, and
recovery in an adaptive indexing system.

As we have already shown in [4], distinguishing between database
contents and representation has significant implications for concur-
rency control. Insofar as read queries performing scans or index
lookups can invoke side-effect operations that incrementally refine
the physical design, “read” queries may seem to introduce signifi-
cant concurrency control overhead as they refine index structures.
However, we observe that the adaptive indexing operations impact
only index structures, and never database contents. Furthermore,
index refinement is optional and can be done opportunistically or
even skipped altogether. These distinctions relax constraints and re-
quirements with regard to concurrency control of adaptive indexing
compared to those of traditional explicit index updates and enable
new techniques for reducing the performance overhead of concur-
rency control during structural updates.

Here we give an example of the performance of adaptive index-
ing under concurrent queries. For this example we use database
cracking. We made sure that all critical structures are protected
via mutexes, using a very basic approach with per-column granu-
larity. We use a table of 100 million tuples with unique randomly
distributed integers and simple range queries of the form select
count(*) from R where v1 < A < v2 .

We repeatedly run a sequence of 200 random range queries (10%
selectivity), each time increasing the number of concurrent streams.
In more detail, we run the serial case where one client runs all 200
queries, one after the other. Then, we use 2 clients that start at the
same time and each one fires 100 queries. Then, we repeat the ex-
periment by starting 4 clients at the same time and each one fires 50
queries and so on. The last run uses 200 clients that simultaneously
fire 1 query each. To ensure that our results are not dominated by
management overhead for handling up to 200 concurrent clients,
we first run our query over an empty table, i.e., with pure query
execution time being virtually zero.

Figure 14 depicts the results. Database cracking maintains a
rather stable performance similar to the scan based approach. Note
that with scan, there is no concurrency control mechanisms in-
volved as this is purely a read only workload. Performance im-
proves initially due to temporal locality of accessing data across
queries and then as we reach the limits of the hardware with more
concurrent clients it increases again. The main point here is that
there is no significant degradation in adaptive indexing. If we mea-
sure the pure locking cost of the adaptive index, i.e., the cost spent
in acquiring and releasing locks it is less than one second. Thus,
by using short latching periods and quickly releasing latches as
soon as possible, database cracking manages to exploit concurrent
queries as opposed to suffering from them. In addition, it is in-
teresting to notice that since cracking gains continuously more and

more knowledge about the data, these latching periods become ever
shorter which improves performance even more.

Here we demonstrated that even with a very simple locking strat-
egy, database cracking can achieve very good performance in terms
of concurrency control. Future work in this area includes the study
of techniques that allow locking of only parts of the adaptive index
where we expect a greater flexibility in terms of how many queries
we can run in parallel. In addition, note that due to its more lazy
nature plain cracking creates the most concurrency conflicts from
all adaptive indexing techniques we presented in this paper. This
way, we expect that our more active techniques will have even bet-
ter performance in this respect.

Traditional disk-based storage. Although in this paper we fo-
cus upon an in-memory column-store database, we ultimately strive
for efficient operation with any storage media, such as RAM, NV-
RAM, flash, and disks. Focusing on a disk-based system would
significantly change design trade-offs and we expect the balance
between lazy and eager hybrids to be different. For example, effort
spent organizing the initial partitions would have a much higher
pay-off if I/O costs were incurred when accessing initial partitions.

Page-based Vs. Columnar Storage. Similarly, we plan to
study in more detail the side-effects of using a page-based stor-
age scheme. The design and experiments in this paper are based on
a column-store system which allows us to have an apples-to-apples
comparison of all techniques with a complete implementation in-
side the original cracking module of MonetDB. However, a num-
ber of design issues are expected to be handled more efficiently in a
page-based system as opposed to an array-based one. For example,
for adaptive merging and the hybrid algorithms, we can probably
make the initial part of the query sequence a bit more lightweight
by more easily removing data from the initial partitions once they
are merged. On the other hand, in our current design, we have ex-
ploited the columnar structure to provide better locality and access
patterns by adopting several implementation tactics from original
cracking. It will be an interesting and useful study to investigate
how the various tradeoffs balance also depending on the workload.

Adaptive Indexing in Auto-tuning Tools. Finally, we antici-
pate that adaptive indexing ability to make incremental investments
could find a place in auto-tuning tools that currently analyze work-
loads a-priori and then create indexes wholesale. Auto-tuning tools
could decide which indexes and materialized views to create im-
mediately, which to prohibit (e.g., in order to avoid all space or
update costs), and which to create incrementally using adaptive in-
dexing techniques. In addition, the auto-tuning tool could decide
for each incremental index how much of an initial investment to
make, based both on the objectives of the current workload and on
the anticipated relevance of this index to the expected workload.

D. RADIX-CLUSTERING TOOLS

a) [‘a’, ‘z’]:
v A(v) f (v) radix-bits

‘a’ 97 0 000 0 0000
‘b’ 98 1 000 0 0001...

...
...

...
‘o’ 111 14 000 0 1110
‘p’ 112 15 000 0 1111
‘q’ 113 16 000 1 0000
‘r’ 114 17 000 1 0001...

...
...

...
‘y’ 121 24 000 1 1000
‘z’ 122 25 000 1 1001

b) [‘d’, ‘i’]: v A(v) f (v) radix-bits
‘d’ 100 0 00000 0 00...

...
...

...
‘g’ 103 3 00000 0 11
‘h’ 104 4 00000 1 00
‘i’ 105 5 00000 1 01

c) [‘j’, ‘m’]: v A(v) f (v) radix-bits
‘j’ 106 0 000000 0 0
‘k’ 107 1 000000 0 1
‘l’ 108 2 000000 1 0
‘m’ 109 3 000000 1 1

Figure 15: Encoding and radix-bits as used by algorithm HRR in Fig. 5.


