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INTRODUCTION

This tract deals with totally ordered compact topological spaces
(supplied with interval topology). A compact ordered space will be
called a "cor".

In chapter I some fundamental concepts are developed. For each
cor X the notion of a 6-sequence is introduced; this is, roughly
speaking, a transfinitely continued subdivision into closed left and
right intervals, where a subdivision into disjoint intervals is pre-
ferred to a subdivision into intervals with a common end point. If V
is a O6-sequence for a cor X, then 8(V) is the least ordinal u with
the property that all intervals of the subdivision of order u are one-
point intervals. For each cor X the "splitting degree" 0(X) will be
the least ordinal in the class of all 8(V). It is shown that 0(X) is
a topological invariant. For instance, if Za = {O,l}a denotes the
lexicographically ordered product of a factors {0,1}, where o is an
ordinal number, then O(Za) = a; this means that all Za are different
topological spaces.

Finally the relation between ©(X) and the occurrence of sequences
of certain type in X is investigated. In some of these results the
generalized continuum hypothesis is used. Theorems, which rest on this
hypothesis are marked by an asterisk ().

In chapter II it is shown that all Z o 2re homogeneous, where a
is a countable ordinal, whereas all othermZB (8 > w) are not homogeneous.
Also Z o minus isolated points is homogeneous if ¢ is a countable
ordinatf.+1

In chapter III the relation between the splitting degree, the
weight and the density of a cor X is investigated. It is shown that
the weight (the density) of a zero-dimensional or a connected cor
equals the cardinal number ¥ if and only if O(X) = wy, OEX) = wﬂ.or
= wﬂ:+ 1), where wi,denotes the least ordinal number of which the car-
dinal number is ».

In chapter 1V a survey of the literature is given.
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LIST OF SYMBOLS AND NOTATIONS

1.

a

Greek letters and sometimes also small latin letters denote
ordinal numbers;

gothic letters like 7, /7 etc. and X denote cardinal numbers

If X is a set, then IXI denotes the cardinal number of X;

if u is an ordinal number, then |u| denotes the cardinal number oi

M-

(i) In the class of ordinal numbers, wy denotes the initial number

0=u) N w1= Q

(ii) 1f X is a cardinal number, then wR‘ will denote the least

with ordinal index i; also w

ordinal number u, such that |u| =2X;

we write : R, = le ;
i i

also: Xo =
)&1 = £ (continuum hypothesis).

If a is an ordinal number, then

W o= W@ = {u|u < a)
lﬂa Ll
W, =Wo) = {ulu < a}
If o is an ordinal number, then u“ denotes the inverse order tvpe.
If p = (p.) is a sequence of type a , then
i"i<q
—_ s
PIB - ‘pi)i<8
if g < o
= = h
If p (pi)i<a and q (qi)i<3 , then
pq = (si)i<a+8’
where s, =

pi ifi<aqa

@
|

=q ifa=<_1<a+s.
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10.

11.

12.
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If X and Y are linearly ordered sets, then

X w»wyY
means that X and Y are similar (i.e. there is a one to one map f
of X onto Y which is monotone: X, < X, implies f(xl) < f(x2)).
If X is a linearly ordered set, and a,be¢X (a < b), then

(i) I=[a,b] = {x]a £x <b}

is a closed interval; 1(I) = a, r(1) = b.

(ii) J=(a,b) = {x]a<x<bl

is an open interval.

If X contains a least element a, (or a greatest element bo) then
also

ko,b) = {xlao <x<b, (a,bo] = {x|a < x f-bo} and

X = {x]ao <x 5_b0}

are called open intervals.

If K is both an open and a closed interval, then K is called a

clopen interval.

An ordered pair of elements a and b (first coordinate a, second
coordinate b) is also denoted by (a,b);
if confusion with an open interval is possible, we write a,b for

the ordered pair.

Theorems which are proved with the aid of the (generalized) con-

tinuum hypothesis are marked with an asterisk (3¢).

If A and B are sets, then AG B means that AcB and A ¥ B.



CHAPTER 1

Fundamental examples and fundamental properties of

compact ordered spaces

51,
1.1, A "linearly ordered set" is a pair (X,<) where X is a set, and <
is a subset of X xX, with the properties
(i) Vx eX: (x,x)¢ <
(ii) Vx,y,zeX: [(x,y)e < and (y,z)e <] + (x,2) € <
(iii) Vx,y e X: x=y or (x,y) € <or (y,x)e < .

< is called the "ordering” of (X,<).

In the following the linearly ordered set (X,<) will mostly be denoted
by X.

Instead of (x,y) € < we shall always write x<y.

For definitions and properties of the notions "order type", "well-
ordered set”, "ordinal number" etc. see for instance Hausdorff (1] or

Sierpinski [3] .

1.2, If X is a linearly ordered set, and Ac X, then by < an ordering <A

is induced in A,

For definitions and properties of the notions "supremum (infimum) of A",
"A is bounded", "X is complete" etc. see for instance Kelley [1], Chap -
ter O,

1.3. Suppose for each ordinal number g which is less than a given ordin-
al number u, we are given a linearly ordered set X = X ,< ).
a a a
Then the "lexicographically ordered product” U X, is defined as the
a<u
set of all sequences x = (x ) (x € X for all a<p ) with an order-
o a<y a a
ing < which is given by

x<y <+ (if B is the least ordinal <u such that xB £y then x ¢ yB).

g’ B 8
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In particuiar, if X is a linearly ordered set, then XY is the lexi-
cographically ordered product ;EE. Xa, where Xa = X for all a<y ; and
if both X and Y are linearly ordered sets, then X. Y is the lexicogra
phically ordered product TT. X , where X =X and X, =Y.

a<2 ¢ 0 1
It is clear, that

(xu )\) . xLI\)

™o x¥ e xUHY

1.4, In the following the sets {O,If will be denoted by Z . It is
a

easy to see that Zw is similar to the Cantorset.

§2,
2.1, A "linearly ordered topological space" is a pair (X,d(), where
X = (X,<) is a linearly ordered set, in which a topology 7( is defined

by the subbase consisting of all sets {x|x< a} and {x|x> b} (a,beX).

In the following the space (X,7<) will mostly be denoted by X.
It is known that a linearly. ordered space is completely normal; cf.

Bourbaki [1] .

A topological space (T,7) is said to be "orderable' if there exists an

ordering < of T, such that (T,7<) and (T,J) are homeomorphic.

2,2, If X is a2 linearly ordered space, and ACX, then the relative to-
pology which is induced in A by J_ will be denoted by 7:A).
In general it is not true that (A,ng)) is homeomorphic teo (A,7< );

A
even not if A is closed in X.

Example:
X = {x|x irrational; - /E;x; /2}

{x]|x irrational; - /§_<_x<0} uii/sa ;

A
A is closed in X, but (A,J: )) is not homeomorphic to (A,7; ) (the first
A
space has an isolated point; the second has not).

2.3. If A is a compact sukset of (X,7<) then A is closed in (X,7<) and
bounded in (X,<);
and if (X,l() itself is compact, then (X, <) has both a least and a

greatest element.
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If A is a compact subset of (X,J(), then (A,<A) is complete. On the

other hand it is possible that A is closed and bounded in X, and that
A

(A,<,) is complete,whereas (A,7§ )) is not compact;

Example!
X = {x|-1¢x g+1} N {0}

A = {x|-1<x <0} .

Theorem 1: The assertions "(X,<) is complete" and "Any bounded closed
subset of (X,7 ) is compact” are equivalent.

Proof: see Kelley [:1] , Chapter V, problem C.

Corollary: The assertions "(X,<) is complete and has both a least and

a greatest element' and "(X,7<) is compact” are equivalent.

If (X,7<) is connected, then clearly (X,<) is complete. Consequently
each connected linearly ordered space is locally compact.
Theorem 2: If A is a compact subset of X = (X,7 ), then 7 = 7(A).
M: < <A <
(1) It is clear, that J < 7<(A)
A
(ii) Now take 067(<A); then for each pe O there exists an inter-
val I = (r,s), Ie:7<, such that
peAnlIcO,

Since A is compact, b= inf{xlp <x, xe¢A} exists and be¢A;

if b=p, then choose azc A in such a way that p < a,< S;
if b > p, then let a, = b.

Choose 8, in an analogous way,

If now one puts I' = (al,az), it follows that

peEANnI'c O, I'€ 21< .

This means that O € 7< . A

A
2.4, Theorem 3: Za = {0,1}Ol is compact and zero-dimensional for all o.
Proot
(i) Let Ac Z.a; define b = (bi)i< « by transfinite induction in the
following way:
{b0=0ifao=0fora11a= CRIp

b0 1 else;
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if bi is defined for all i < v, then let

bv =0, if a = 0 for all a = (ai)i<u € A with the property that

a, = b, for i < v
i i

b
v

1 else.

It is clear that b = sup A.

This means that (Za,<) is complete, and so (Zu,7<) is compact.

(-4 = € = A.
(ii) Let A Za, a (ai)1<a A, b (bi)i<u €

If a<b and if iy is the least index i with the property a, # bi (so

that aio =0, b10= 1),

. — r - =
then define p = (pi)i<a by p;.=a; = bi if 1< i
p, =0
i
pi =1 if i> io
and q = (q1)1<u by q =8 =b, if 1< iy
q. =1
1o
q =0 if 1> 4.

Then a <p<qg¢b and {x|p<x <q} = 8.
This means that Za is totally disconnected and consequently is zero-

dimensional.

Remark: In the following the phrase 'compact linearly ordered topolo-

ical space” will always be abbreviated to "cor'.
g

§3.

3.1. Let X be a cor,

Two elements a,bé&X will be called "neighbours” (and a is a "left neigh-
bour (of b)", b is a'right neighbour (of a)"™)if a<b and {x]a<x<b}= 8.

Both a and b are also referred to as "jump points'.

If in X, for any increasing or decreasing sequence {x,} with the pro-

1° i<a
perty that xi and xi+1 are neighbours for all i< a, all elements of the

same sequence are identified, then the resulting space is denoted by X*.

It is obvious that X' is a connected cor.
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Theorem 4: (i) A clopen subset of a cor X is the union of a finite
number of disjoint clopen intervals

(ii) A cor X is not connected if and only 1f there are two neigh-
bours in X.

Proof: obvious.

3.2. Let X be a cor.

By a B-sequence for X we mean a (transfinite) sequence V ={V} of

(y)

Y
of X, which by transfinite induction

6-decompositions V = {X
p Y { o }p «Z
is defined as follows: Y
0) 1))
(i)vo={x‘ },x( =X

(ii) I1f VY has been defined for y<§ , then V(S is defined in the fol-

lowing way:

a. if 8= e+l and |X;€)| =1

then X(6) - x(tS) _ X(E)
p0 pl p
b. if §= ¢+1 and X;e) is not connected
then x¢&) - {x]x<al n x )
pO = p
¢) _ ()
xpl = {xlx_>_b} n Xp ,
for two neighbours a and b (a< b)
. ) .
c. if 6= e+1 and Xp is connected
then x8) - {x]xg al n x €
po P
X(é) ={x|x>a} n X(E),
pl = P
(e) (€)

for an a such that inf Xp < a < sup Xp

d. if § is a limit number

X(d) - N X(y)
P ¥<§ “ply

then

(cf. Novak [2] , where for the case of a connected cor a "dyadic par-
tition" P is defined; such a "dyadic partition” can be considered as

the system of non-degenerate intervals which are the elements of the

members of a certain §-sequence Vp).
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It is clear that for every O-sequence:

(i) Va Vpe Zm : X;a) is a closed interval # ¢

Gi)Va: U x@

= X
Pezap

(iii) Vo Yx,y,p,q : [(p<q.xf—X;°), yex‘:")) + x<y] .

If X is a cor, then for every 6-sequence V and for every xe¢ X there

exists an ordinal number

u

- L x ()
= u (M) =inf {u]3pe z, + X0 = {x}}.

We put
6 =06(V) =supu_ .
X X

In the case of a connected cor the definition of the order of a
dyadic partition P as given by Novak coincides with S(Vp). For a con-

nected cor the following theorem is also contained in Novak [3] .

Theorem 5: If V is a 6-sequence for the cor X, and 6= 6 (V), then

lof <% s2!®!.

Proof:

(i) Take xeX.

Now consider a sequence {X(O;z)} (pfa) € Z ) such that
p a<y a
(a) (8)
xeX cX for
p) < “peg) T > B
and suppose that |X;?))| > 2 for alla < v so that
a L
(a+1) G x(Gl)

pa+1) pla) for a+lev

Consequently

(@) (@+1)
U {x ), x
o<y pla) pla+1)

is a subset of X, which is the union of Ivl disjoint, non~void sets;
this means that IVI 2 le .

So for every x € X there exists an ordinal vx, with the properties:
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lvl < 1x]
(vx)
{x} =X for some peZ .
P v
X
It is clear that
6= sup u_< sup v
% x x x '
and so
le] < x| x| =]x] .
(ii) From the definition of 8 it follows that
Vxex dp= p(x)e z, :{x = X;e).

Then
f : x + px)

is a 1-1-map of X into Z6 ;

this means that
| x|l 2] = 4ol

Theorem 6: If X is a cor and V is a 6 -~sequence for X, then

6=0(V) = inf{yIVpezy :le()y)l =1} .

Proof:
(i) It is clear that 6 :inf{y| VpGZY : IX;Y)| =1}

(ii) One can easily prove (by transfinite induction), that a dis-

connected X(Y) is disjoint with all X;Y) (q # p). Now, if | XI()Y)|;2
and X(Y) is disconnected, then it follows from the above that ux> Y

for all x ex(Y);

if, on the other hand, I X;Y)I: 2 and X(Y) is connected then for all x

. o . . (GO I )
such that inf Xp X < sup Xp HR'l x >

consequently in both cases 0 >y,

This means that 082 inf{y | Ype ZY : | XI()Y), =1}
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Definition: If X is a cor, then
0 = 0(X) = inf {6(V)|V is a 8-sequence for X}

is called the splitting degree of X.

It is clear that ©(X) is invariant under similarity maps of X = (X,<).
We shall show, however, introducing a topological invariant (ordinal
number) T(X) - which is proved to be equal to 9(X) - that 0(X) is

also a topological invariant; that is, if two cor's (X,7<,) and (Y,7<n)
are homeomorphic, then 9(X) = 0(Y); we can formulate this also in

the following way: if a compact Hausdorff space is orderable in more

than one way, then the splitting degree is the same in all cases.

3.3. Let T be a compact Hausdorff space.
By a T-sequence for T we mean a (transfinite) sequence U = {UY}Y

ZY

of T-decompositions UY = {T';Y)}pG of T, which by transfinite in-

duction is defined as follows:

(1) U, = {r¢®}, 2 _ 1,

(ii) If UY has been defined for y < §, then U, is defined in the

§
following way:

a. if 6 =¢ + 1 and |T;€)| =1
then (8 _ T(<S) - T(e)
p0 pl p
. _ €) .
b. if § =¢ +1 and T is not connected,
(8) Ps)
then let Tpo and Tpl be two disjoint, non-void subsets
€ €
of T; ), which are clopen in T; ) and the union of which
€
is T( )
P
. (e) (8)
c. if § = € + 1 and Tp is connected, then let Tpo and
§ €
T;l) be two non-void proper subsets of T; ), which are
€
closed in T( ), and which moreover have the properties

(

8) ) ) %)
that To" 0 T;" = T and that |T

pO r\T;f)l is minimal.

d. if § is a 1limit number

8 _ N o
P <6 ply

then
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[

It is clear that for every T-sequence:

(i) Vo Vp €z, : Tl:(’a) is closed and # @

Gi) Vo : U 1 —
peZa

If T is a compact Hausdorff space, then for every T-sequence U and

for every t eT there exists an ordinal number
: H
H, = u,(U) = inf {11|3pe.zu :T;)={t}}.

We put

T=T(U) =sup u,.

Theorem 7: If U is a 1-sequence for the compact Hausdorff space T

and T = 1(U), then

il <217,

||

[

Proof: analogous to the proof of theorem 5.

Theorem 8: If T is a cor and U is a T-sequence for T then
T = 1) = inf {v| ¥p ez, : |T;Y)| = 1}.
Proof: analogous to the proof of theorem 6.

Theorem 8 does not hold for arbitrary compact Hausdorff spaces. A

counterexample is obtained if one defines a T-sequence U for the unit
square T in Rz, which is most clearly suggested by the following se-
quence of pictures (observe that the sequence of subdivisions is in-
deed a T-sequence: if A and B are two non-void closed proper subsets

2
of a rectangle S in R, such that AVB = S, then lA/\Bl =£):

(1) (2)1]..(2)
. To Too |To1
Ta)
+(D Lo
&S
1 T [

It is clear that t(U) = w, whereas inf {Yl V’pe_zY : |Tp



Definition: If T is a compact Hausdorff space, then we define:
T=(T) = inf {WU)|U is a T -sequence for T} .
It is clear that T(T) is a topolcgical invarisant.

3.4. Lemma: Let X be a cor.

- —_ - €2 I - a for -
LetU-{Uy}Y uY _1,p %”Z e a i uch

that T(U) = T(X) = 1. Y
Suppose T2W and let T= u0+v0, where g is a limit ordinal and Vo is
an integer 2 O,
Then there exists a 0-sequence V = {VY}Y —V = {X;Y)}pez — for X,
with the property that for every limit number UZlug and fo¥ every
peZ, there is a q=q(p) € Zu such that

(1) q(p IV) = q(p)|]v if V is a limit number <u

(11) x;")c T;‘(‘;).
Proof:
1. Let U= w.

a, If X is connected, then
(1)

(1) ={x|x<a} and T,

o 1

— where (1o,i1) = (0,1) or = (1,00 — for some aeX.

={x|x2a}

Then take X(l) = T.(l), x(l) = T(l).
0 ig 1 i
1
(1) (L) .
b. If X is not connected, then both T0 and T1 are the union of

a finite number of disjoint clopen intervals:

1) _

T0 _Ilulzu...ulk
1) _ .
Tl = JIUJZU“‘UJI'

without loss of generality we may suppose

Il<J1<12<J2<...

(all elements of I1 are less than all elements of Jl etc.)
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Now define

Xél) =1 Xl(l) = JuI,ud,u

(xé(Z))’ éf)) is an arbitrary 6 -decomposition of X(l)

Xl(cz,) =J5s Xl(f) =Lud,u...

(x(()g())' xégi) (xéi()) éii) (X](.g()), {gi) are arbitrary 6-
decompositions of Xég),xéf),xfﬁ) respectively

X(s) =1 x(3) =JUuI_U...

110 2’ 7111 2 3

etc.

c. In both cases a and b one finds an integer y1,>‘1

(Yl =1 in case a and Y, = k+1-1 in case b) such that VY is defined

for Y ;Yl and moreover
o) .

(1) 1 (1)
€z o] X T [
Ve Yl[pCO or X, "e 1]
d. Now suppose that a non-decreasing sequence of integers Ym;m
(m=1,2,...,n) has been found and that VY has been defined for all
Y;Yn (n 2 Y, < w) in such a way that for all mgn

Vpez :3q=aq(pez g
® Py (AT ARES T a(p)

atp 1v) = a(p |k if peZ and k<m.

m
Now, if peZY , let
" (1) (Yn) (n+1) ) {rg) (n+1)
Y (p) = X n qu and Yl (p) = Xp N qu
(v) @)

(i) if x " = Y. 77(p) for i=0 or 1, then take §'(p) =

W LG
(ii) if Y.(I)G prn for i=0 and 1, then, according to ¢, there

exists an integer &' (p)> 1 such that a 6-sequence {V (p)} s
e<d'(p)
(Yn) (e) (y ) =
— v ={@ M) 1} — for X can be defined with the pro-
€ p u uez o}

perty that
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)
Vtezé, : [(xpn):ts )c y(l)c r(n+l) or

0 q0
v ) (8"
n (1) (n+1)]
c vy .
(xp )t Y, e 'rql ;
if Yr'Hl(p) =yt §' (p) this means that
VreZY, ) :[r IYn =p~ 356Zn+1 :[sln:q and
n+
' )
x_ n+l’ T;n+1)] ]

(iii) Put 6= max (@1,6'(p)), Yo, = mex (n+1,Y;‘+1(p));

pezZ pezZ
n n
then also Yn+1 = Yn+ §
(iv) Now we have defined the intervals
vy )
n+l
xpt (pczy, t(ZG,,ptGZ, ).

n Yn+1

If for some p€zZ, : 8'(p) =6 -1, then define

n
X(Yn+1) and x(yn+1)
pto ptl
(YA+1)
by an arbitrary 9 -decomposition of xpt
If for some p¢ZY : 8'(p) =8 -2, then define
n
(Yn+1) (Yn+1) (Yn+1) (Yn+1)
pto0 ' “ptOl * Tpti0 ' Tptll
(Yx'1+1)
by 2 arbitrary 6-decompositions of Xpt .

Etcetera.

Then it follows that V_ is defined for YEY,,

<
Y (n-¢-1‘<= Yne1 w) and

1
moreover

(v .) (n+1)
Vrez : 3s = s(r)ez cx Mc g
n+1 r s(r)
n+l

s(rly)) = s()|n.

Then clearly @ is also satisfied if m =n+l.
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(v) We can take together the foregoing in the following way:

There is a (beginning of) a 6-sequence (v }Y for X
— VY {X;Y) }peZ — and there is a non-decreasing sequence of
Y
integers Yn’)= n, with the property that for all n <w and for all
pe ZY there exists a q=q(p)e Zn‘ such that
n

a(p | Ym) = q(P)m if m<n
x(Yn) e )
p q(p)

e. Now take pe Zw and define q = q(p)e Zw by

QIn=Q(P|Yn) for n < u ;

then (v )
L@ _ o’ m (W

p n<w plv n<w q|n q

2. Let ¥ be a limit ordinal, and let VY be defined for all y with
the property that there exists a limit number v <y such thaty < v<y,

and let for all limit numbers Vv < p

. _ . (V) (v)
VpﬁZv : 3q-q(p)62v.xp c q(p)

alp|r) = a(p)|A  if X is a limit number <v .

®

a. Letuy= v+w.

Take p'e Z v
From 1. it follows that there exists a 6-sequence {V (p' )} <
(V) (Y) ( ) Y2
— Vy(p") = {(x b nez, for X ,° such that
(V) (w) W +w) v)
= . X
Vrezw Is = s(r)e z, (Xp, )r (] Tq(p,)sﬂ o'

and so (if p'r = p, q(p')s = q(p))
Vpez :[P|v= p'+ ﬂq(p)ez :La@) |v=a(p") and

x“ (u))]:l

a(p
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this holds for every p‘e Z ; consequently V is defined for all
v Y
y & u and clearly @ is also satisfied if v=1yu.

b.If u is not of the form v+w , then y is the limit of a transfi-
nite sequence of limit ordinals {\;+w}\)< '
In this case VY is defined already for all y <y.

Now take pe Z and define q = q(p)(aZu by
u
a|(+w) = q(p|w+w)) for v < u;
then Vu can be defined by

W) N x(v+w) c N T(v+m) T(u)

X = =
P vau p|Gw) v q|(utw) q

and it is clear that @ is also satisfied for v = u.
3. Now the lemma is proved by transfinite induction.

Theorem 9: If X is a cor then 0(X) = 1 (X).
Proof:
Without loss of generality we may suppose that both 9(X) and t(X) 2 w.
(i) Each §-sequence is a t-sequence; hence 0(X)> 1 (X);
(ii) Now take a t-sequence U = { U} — U =/ T(Y )} ., — such
Yy Y qQ qe2
that 1(U) =1 (X). Y
Let t=u +v , where u_ is a limit ordinal andv 1is an integer >O.
o o o o &) =
Then there exists a 6 ~sequence V = {V} — VvV ={x"9 — with
Y'Y Y P "pe ZY
th t
e property (”o) (”o)
Vpez :3Jqez : X cT
Uo Uo p q

For all qe 2 at most |vol T —decompositigns are needed for splitting

(uo) LS ° v |
up T into points. This means that T < 0! and consequent-
(uy) v
1y (for all pG.Zu ) [xp °l< 2 °!  so also at most |v°| 6 —decompo-

0o
sitions are needed for splitting up Tq %% into points,

That means 6 (V) < u ot VET, and so O (X); (X).

Corollary: 0(X) is a topological invariant.
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'I'heoreml_O: If both X and Y are cor's, and XcY, then
0(X) < o(yY)

if Y is zero-dimensional or if X is connected.

Proof: clear.

Remark: If X and Y are cor's and XY then it may happen that
0(X) > 0(Y);

example: Y = [0,2]
L 1
x= M {1- v [1,3]

0X) = w+w > w = O(Y)

3.5, For Z we define the 'regular 9-sequence” W = (W }

) Y'Yy
—w ={z""} — in the following way:
Y p 'peZ
Y
W) w ={z}
o] a
(ii) if y > 1 and peZY then
p — P —
2% _ {xl’poplpz... 0000.... < xg PyPPy--.. 1111....}

P
It is clear that W indeed is a #-sequence for Z .
a
If, when y <q, £ is determined in such a way thaty+ f =q, then for
all pez .29 is similar to A
This means that IZ:,Y)I > 1 for all pe ZY if y <a, whereas Izéa)l =1

for all pe Za .

had " " %
For Z we define the regular 9-sequence” W = {W*}

a Yy
— W = {z*(Y)} z ~~— in an analogous way:
Y . p pez,
. — >»*
(i) Wo = {Zu}
(ii) if y21 and peZ_ then
Y- Y
Y P
*(Y) — e ——ea, T W — -~ ~>
Zp {x| PoP Py -+ 0000.... < x< PoP Py - 1111....}

It is clear that W is indeed a g@-sequence for z* .
a

If, when y <a, £ is determined in such a way that y +§£ =a , then for

»( Y)

all pez ,% is similar to z° .
Yy P £
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This means - if one writes a= v+n where v is a limit ordinal (or 0)

and n is an integer >0 - that |Z;(Y)| > 1 for all peZY if y < v
whereas |Z;(Y)| =1 for all peZ if y > y.
Y -
Lemma: 1. If V= {V} —V = {X(Y)} — is an arbitrary g-
I Yy Y P ‘pez
sequence for Z , then Y
a

Vy<a dpez : zMe x M
- Y P P

2. If V= {Vy}y — VY = {X;Y)}pez — is an arbitrary 6-
sequence for A , then A
a
< a €7 Z c X .
Vy < Ire . *(Y) )
= P

p

Proof:
1. If y=0 the assertion is obvious.
Let the assertion be proved for y < & (8¢ a)

(i) If 5=5l+1 there exists a p'e ZG , such that
1
(s,) (6,)
Z '1 c X '1 H
P p

) ) . 6.) . .
Zp'o and zp'l are obtained from Zp, by splitting up this inter-
val into a left interval and a right interval; in the same way X:ﬁ())

)
and }(p,1

Then Z;‘?: < X:ﬁ: for at least one of the two possibilities i=1,2;

§
are obtained from Xp,l

for instance for i=1.

If one puts p'l = p, then Z;G)c XI()G).
(ii) If § is a limit number, there is a sequence {p(E)}e«S
(p(e) ¢ Ze) such that
p(ed|n = p(m ifnec<eg<3$

(e) (e)
Zoto) © ¥po)

now, if one defines p&.Z(S such that

ple = p(e) for all € < §,
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then

2. The proof is completely analogous to 1.

Corollaries: In case 1 : 6 (W) < o (V)
In case 2 : B(W*); a(v).

Theorem 11: 1. O(Za) = a
2. O(Z;) = v, if a=y+n, where y is a limit number (or 0)
and n is an integer 2 0.
1. 6(W) = q, so 0(Z)< a.
On the other hand ;} V is an arbitrary g-sequence for Z , then
a= 8(W)< 6(V). *
Consequently O(Za)= a.
2. Proof is analogous to 1.
Remark: In general it is not true that 0(X) =a — where a=v+n, v is a

limit number and n is an integer 2 0— implies O(X*) = v.
“ %

Example: X = W) » 0(X) =g, o(X ) = 0.

Thus we have the following theorem:

Theorem 12: 1. If g#p , then Za and Z,3 are different topological
- X

spaces.
2, If g=v+n, 8= py+m, where v,u are limit numbers (or 0)
o 2%
and n,m are integers 20, then Z.cl and ZB are different topological

spaces if v# u.

54,
4.1, The lexigrographically ordered product X*Y will in the follow-

ing sometimes be denoted by a figure
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where the pairs (x,y) are thought to be ordered as described in § 1.

4.2, If X and Y are cor's and Y is the image of X under a continuous

map, then it may happen that 6(X) < 0(Y).

Example:
£
! b, ¢ 4, ¢ 1
£
2y by S 939 T2
Zy 23 b3 ¢3 43¢ f3
3, b4 c4 94 e4 f4
al—c =e b1=d1=f
) 1)
3.2 L . b2
) 1]
23, S b3
) 1)
02 — — d2
fayeyn 4
| 1]
92 — | f2
1 t
e3 3 1 f3
| | - ' _ | R t
a4—c4-e4 e4—d4—f4
(= — Z
w

The map which is, for shortness sake, denoted by the following scheme,



31

aibi r aibi (i=1,2,3,4)

cidj > cidi (i=1,2,3,4)
+> tet s

ei!.‘1 eifi (i=1,2,3,4)

is obviously a continuous map of Z onto Z ; but 0(2 ) =
w w+3 w+

+2 2

= w2 < w3 = 0(Zm+3).

Theorem 13: If X is a connected cor and f is a continuous map of X
onto the cor Y, then 0(Y) ¢ 0(X).

Proof :

(i) The image of a closed interval is clearly a closed interval.
(ii) If y is a limit number, let {xi}i<u be a sequence of closed

+
intervals in X, such that Xic XJ, if i> j; and let X = iqu

i
+

Then f[X J = iou f[Xi] .
For suppose that

t[x']e iou £[x,];
then take

+

ue iQ e[xJ\e[x]

SO

Vi<y Ixex\x' :u-= f(x,);
1 1 1

in each neighbourhood of X+ there is an Xy this means that at least
one of the two points v = inf X+ , W = sup x* is an accumulation
point of the set {xi} i<y ,for instance v has this property; since
however f(xi) = u for all i and since f is a continuous map, it fol-

+
lows that f(v) = u; consequently ue f I:X :] .

&)
iii) Now let V={VvV} —v ={xT") — be a 6-sequence
(1i) Y'Y Y P ‘PeZ 1
for X, such that 6 (V) =0 (X). Y

We show that, by transfinite induction, a 6 -sequence W = (W }

Yy
— W = fY(Y)} — for Y can be defined such that for all y
Y P ‘pe ZY

Vpe z iq = q(p)ezY : Y;Y) c f[x;Y)]
a(ple) = qp) |e  for alle < vy.
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1.Yw)=y=f[x]=f[ﬂm].

1 1
Since £ [X(() )] and £ [X]f ):l are closed intervals in Y, with union =Y,

one of the following situations occurs (if necessary by changing the

letters)
Y = + 1 Y ‘ LY —"
f [xc()l)] £ [x{l)j f [xél)] f [x{l)] f [x(()l)]
f [xl(l)]
In a11 cases ¥ and Y can be defined in such a way that

0 1

Vi(i=1,2) 3j(=1,2) : Y;I)c f [xgl)]

2. Now suppose that W is defined for vy<§ such that for all those Yy
Y

&) &)
Z = Z
Vpe . Jdq = a(pe LY et [xq ]

®

a(pje ) = a(p)]e.

2.1, Letéd = 61+1. (5.) (5.)

1 .
VpeZ, :dqez 1Y c t[x ]j
8, & p q
Since f [X(G)] and f [X(G)J are closed intervals in f[x(él)] with
q0 ql q
. (5, . . . . . (8
union f [Xq ] it is clear that in all possible situations YpO and
Y;()f.) can be defined in such a way that
Vi (1=1,2) 35 (=1,2) : v ce[x¥)7 .
’ 9= pi L aj 1
And this can be done for all p € ZG
Consequently W(s can be defined in s:llich a way that @ is satisfied

for vy = § too.

2.2, Let § be a 1limit number.

Take p€ Z, and define q = q(p) by

8
ale = q(p|le) for all e < §.
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Then 1t foilows that

@) _ (e) (e) _ (s
Yp - eO«S Yp ¢ © eodf [xq(pls)] B f[Xq )J ’

Consequently W(S can be defined in such a way that @ is satisfied

for y=¢.

(1ii) If u= 0(X), then for the 6-sequence W which was defined above
() (U)J
€Z ezZ :Y c f |X .
Vrez daez, N C q

As |X;U)| =1 and so {f[ X;U):H: 1 for all qe Zu , it foliows that

|Y;“)|= 1 for all pez .
This means that 0(W) <u= 0(X).
Consequently 0(Y)< 0(X).

Theorem 14: If a<B then Z is a continuous image of 2

&3
Proof :

The natural map f . p »~ p|la of Zﬂ onto Za is obviously continuous,

Theorem 15: If X is a cor there exists a least a, say age such that

X is a continuous image of Za .Moreover GO;O(X) .

Proof:
IfV=(V} —vVv = xl()Y)}pe —— is a O-sequence for X, and

)

) ={x(u ; for all
p p

u= 8(V), then le:()u) |=1 for all pe Zu Say X

peZ .
Y u)

Then ¢ : p + xp is a continuous map of Zu onto X.

Remark: It may happen that a < 0 (X)
Example: ao(zm+3) S wi2<w+3 = O(Zw+3)'

4.3. Let X be a cor,

)
Let V = {vV v =1{x —_— 8- .
Y}Y Y { p }pe 7 be a sequence for X

Let Y
A A
D, =D (V) = {1(x](J )), r(x; ))I pez} .

It is clear that
o
(i) peg ,0<u =» 1(x( )

)2 1(x(u))<=r(x("))§_ r(x c))
plo P P o

(
|
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(i3) v>v =»D_>D
(iii) v =D, N AKX
(iv) IDTI; 2IT .

(1)

y, rx') =0
p p

Theorem 16: a. DT is closed in X

b. If 1 is a limit number, then D_ = Uob
v<T
Proof:
a. Without loss of generality we may suppose that D & X.

If ye€X\D there exists a peZ_, such that ye XET); since

T T
y # 1(X;T)), r(X;T)), it follows that
yeax™), ra»ecx\p_.
P P T

Consequently X\.DT is open and DT is closed.

b. Since U D c DT , it follows that also
v
v<T

now take, if possible,

xedD \ U b ;
T v<T v

ma1mrsmepea

X = 1(X(T)) or x=r(x(T)).
p D
Since
x(r) - XO)) ,
p u<T va
one has
l(X(T)) = sup 1(X(v)), r(X(T)) = inf r(X(V));
P wer By P vt T plv
hence
X € L) D .

v<T Vv
If 8= 8(V) there does not necessarily exist an xe X with the proper-
ty that b = 0.
Example:

Let f be a 1-1-map of a subset A of Zm onto W().
Let H be the set of all pairs
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{ (a,xa) 1t aeA, x € Zf.(a)
(a,0) if anw\ A
ordered by

{ (a,u) <(b,v) if a<b in 2
- w

(a,u) <(a,v) if u=0, v#0 or if u<v in Zf(a)'

It is clear that H is a cor

(i) Since Zuc H for all 4y < Q@ , it follows that G(H)i O(Zu) =y
for all u <Q, and so O(H) > Q.
On the other hand there is a 6-sequence V for H with the property
8(V) = Q (namely "the regular 6-sequence for Zm , for each a€ A con-

n).

tinued by the regular 6-sequence for Zf(a)

Consequently O(H) = Q.
(ii) If V is the 6-sequence for H which is mentioned in (i), there
does not exist an x € H such that ux(v) = .

(iii) H satisfies the first axiom of countability.

Theorem 17: Let V be a g -sequence for the cor X; let ux = ux(V),
6= 8 (V).
If for some x€X it is true that

o> w

X = X

(and this is certainly the case, if 8 >wN)’ then there exists a (de-

creasing or increasing) sequence of 'type w_ in X.

xR
Proof:
In all cases there exists a peZw such that
N
(
® X “® =N xM
P v< wx p'\)
) (r) :
(<
@ Koo Xpl,  AfT vy
If one puts
@) () (t) () .
a = 1(xp,T), b = r(xplT) if 1< Wy
(w5 (W)
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then it follows from (:) that all elements of the sequence of ordered
pairs

{a(T),b(T)}

T<w#.

are different; thus

a$P (P} . | =n

T<W
»

t)
Now define the sequence {a H }u by transfinite induction in the

following way

()
a 0 _ a(o),
)
if a has been defined for all v < %Ta d if A is
A

the least index such that a) #alla * (v <),
()

then let a Woa a(x);

(t,)

()
If both the type of {a H }u and the type of {b v }v are less than

w then it follows that

define the sequence {b }v in an analogous w?¥.)

xv
(Tu) (T\))
o W11 =X, <X, |{p V| =%, <%
so
(u) _ ) -
a0 ) =% 10V, | =%,
and so
) v .
I{E. ib }1‘<“’t"’<“’,‘r| —Yl Yz < N
and a fortiori
(1) (1) .
{27t} S
this is a contradiction. (x)

T (1
Consequently at least one of the sequenfgs){a u } o {p v }v has the
type mx; for instance this holds for {a H } . Then a is the limit
u

of a sequence of type Wore

Theorem 18: If |X| > 2 1andvisa 8~sequence for X, then (V) 2 9Ly

If (V) = w 1 then moreover there exists an x € X such that

i+
W (V) = 0y,
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Proof:

IfT< w,+1 then

' E
ol <2 <2 %,
X, ®
1 1
IS WL

@ i+l

U D C X,

<
i
>
o(VvV) > IR
6 = i =
If 6(V) = w, . then it follows from (D) that M, =W, for every
xex\ U .
T<w,
i+l

Theorem 19: If IXI > 2 1 there is a point x €éX that is the limit of a
sequence of type wi+1, or there is a point y €X that is the limit of
»=
a sequence of type wi+1'
Proof: Follows from theorem 17 and theorem 18.
0 . .
Corollary: If |X| > K =2 then X does not satisfy the first axiom

of countability.

Assertions in which the (generalized) continuum hypothesis is used
will in the following be denoted by an asterisk. This will be the

case among others if one of the following assumptions is used:

(i) 2'm is the least cardinal number >M ;
m
also: M< M ~» 2 =n
(ii) if 7N is a limit cardinal and 7<7 then also 2’m< n

(iii) 2’mis not a limit cardinal and Imis regular,
2

>
Theorem 20: If |X] > and V is a 6-sequence for X, then 6 (V) > mf

If 8(V) = w_, then moreover there exists an x € X such that

®
ux(V) =(ﬂx.
Proof:
If'r<w?tthen ||*
Io | <2'"! < #,
=?C°X=?(’

-
£y
=]
A

etc. (cf. the proof of theorem 18).
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*

Theorem 21: If |X| > X there is a point x € X that is the limit of a
sequence of type W or there is a point ye€ X that is the limit of
a sequence of type w;;.

Proof: Theorem 17 and theorem 20.

Theorem 22: If in X there exists a sequence of type w)t or a sequence

of type m‘;% , then

for every 6-sequence V for X.l)
Proof:
Let {xi}i < up be an increasing sequence of type way in X and let
y = sup x, .
i
ic w»
1. Let wn be regular,
149
Let V = {V — VvV ={X — be a 0-sequence for X.
v} y = e a

(i) Now consider the set D of all y< 9(V) with the property that
there exists a q(y)e ZY such that

)

aty ))< y<r(X(Y) );

1 q(y)

it is clear that D = {y|y < &} for some §> O.

1f X(é) is the intersection of all X(Y()) (so ply = q{y) for all

Y < 6), then one has l(X(G)) =y.

Since y = ]<1m X, is not a left neighbour if follows that § is a limit

number; moreover since |Xr()|Y | 2 2 if y<6 , it follows that 0(V)>§.
(ii) If now x, is the least X, such that x, > 1(X(Y)), then

{xi }Y<6

is a noﬁ—decreamng sequence and llrg X, = y. Because of
theYregular1ty of W one concludes that 6>u»

Consequently 8(V) ;m)é' .
2. Let W be singular.

Then w.k is the 1limit of a sequence of regular ordinals wt!r+1 <w-x:
Hm w5 e
a< A

Since for alla< A there exists an increasing sequence { xi} i<w in

a+1

1) In the case of a connected cor this theorem is also contained in Novak [3]
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X it follows from 1. that 6(V)2 w,41 for all a<i. This means that
(V) 2w,

Finally it should be observed, that there exist cor's with the pro-
perty that two 6-sequences V and V' can be constructed such that
o] £ [evl.

Essentially following Novak [3] » P.383 an example can be obtained as
follows,

For every countable ¢ there exists a 6-sequence V(a) for Z' such
that 8(V(a))2a . Now let f be a 1-1-map of W(R) into Z: . Then define
a 6-sequence V for X = xl-xz (X1
8-sequence for X, "for each a e f[W(Q)] continued by the 8-sequence
vie 1)) for Xj. Clearly 6 (V) = Q.

L o
= X2 = Z('n) such that V is the regular

On the other hand it is easy to construct a 8-sequence V' for X, such

that 8 (V') = w+ w.

§5.
Let .A.n be the set of positive integers < n in natural ordering.
Let I be the unit interval [0,1] .
Define X by X =I.A .
n n n

Theorem 24: Xn and Xm are different topological spaces if n#m.
Proof :
Suppose n> m.
If n22, m=1 then Xn is totally disconnected and Xm is connected.
If n2>3, m=2 then Xn has continuously many isolated points and xm has
two isolated points.
Now suppose n>m> 2.
A set {(a,2),(a,3),...,(a,n-1)} (2(1 e)I) of n—l)successive isolated
n (m

points in Xn will be denoted by Ba ; and Ba (c Xm) is defined in

an analogous way.

(i) If S and T are two disjoint sets of isolated points in Xn

with the property that for all ael

snB™ LgemTnE™ £4g

a a

then it is clear that



(ii) Now suppose there is a topological map f of Xn onto Xm.

If p and q (p< q) are points in Xm such that the set {x|p< x <q}

isinfinite, then there exists a Bén) such that p<r<gq for all
(n)

ref[B 7] .

We can show this in the following way: Take an infinite sequence

{yi}i<m of points in Xm between p and q; now, if the assertion is

not true, for every yi there exists a z, such that zi; p or zi; q
-1 -

whereas f (yi) and f 1(zi) belong to the same B;n); then the sets

{yi}i<w and {zi}i<w have different accumulation points, whereas

-1 -1
the sets {f (yi)}i< " and (f (zi)}i<w have the same accumula
tion points.
(n)

Take a Ba ; since n> m there are two points Py and 9, (p1< ql) in

1
£ [B;n)] such that {x|p1< X <q1} is an infinite set. Now choose

B(n) in such a way that p1< r< q1 for all ref [B:H)J . There

ex%st two points p2 and q2 (p2< qz) in f [B;n)] sugh that
. e 2
{x|p2< x < q2} is an infinite set.
Etcetera.
t t .}, and . in X which
We thus obtain two sequences {p1}1<w {ql}i<m _tm c|
have different accumulation points, whereas the sets{ f (pi)}i<

w
and {f 1(qi)}i< have the same accumulation points.
w



CHAPTER II

On_the homogeneity of a compact ordered space

51,
A topological space T is called homogeneous, if for every p,q€ T

there exists an autohomeomorphism f of T with the property f(p)=q.

Theorem 1: A homogeneous cor X satisfies the first axiom of count-
ability.

Proof :

Since X is compact, every countable infinite set {xi}i<m has an ac-
cumulation point, say y. Then y is the limit of a countable sequence,
and so, since X is homogeneous, also a=inf X is the limit of a count-
able sequence. Consequently in a there is a countable local base.
Because of the homogeneity of X this means that X satisfies the first

axiom of countability.

Theorem 2: If X is a cor, and |X|>A£ , then X is not homogeneous.

Proof: Chapter I, theorem 19, corollary and theorem 1.

Theorem 3: A homogeneous cor X is zero-dimensional.

Let Y be a component of X, If |Y| >1, let a=inf Y, b=sup Y and take c
such that a <c<b, If now Cx denotes the component of X to which x
belongs, then obviously Ca\\{a} = Y \ {a} is a connected subspace of
X, whereas C_\ {e} = ¥ \ {c} is a disconnected subspace of X. This
means that X is not homogeneous. Consequently |Y| =1 and X is zero-

dimensional.

§2,

The following lemma presumably will be known.

)
Lemma: If acand B=w are countable limit ordinals, and a<g, then
there exists an increasing sequence (ui)i<u of type a, such that

i =8
}1m ui .
i<a
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Proof:
1. We first observe that for every countable limit ordinal T there

exists a sequence (Oi) of type w , such that 1lim ui =T : if

i<w .
i<
the set W(1) is well ordered like a sequence of type ww,

w(t) = (vi)i<w ]
then for the sequence (oi)i«n one can take an increasing subsequence
of (V)i -
2. Now we show that it is sufficient to prove the lemma for ordinal
numbers a of the form a =w’ (L gy <8).

Let Y3 Yy Y

§
Now, if (vi) Y is an increasing sequence with limit w , we de-
: K
1<y

fine
U, =1 if i < af
H = a'+ vy ifa'<ic<a ;

)
then also (ui) is an increasing sequence with limit w |

i<a

3. We now prove the lemma by transfinite induction with respect to §,
(i) if 6&=1 the assertion is obvious
(ii) suppose the lemma is proved for §< ¢

(ii,1) Let e = &+1.

e 61+1 61
Then B8 = w =w = w .w=Bl.w.
Since a=w' <8 we have °=<=81‘
Now Bl is the 1limit both of an increasing sequence (\)i)i <a and of
an increasing sequence (XJ.)J. <w ; if we define
BTy for all i such that vi< AO

= Blj+ v, for all i such that A, _< \;i< Aj’

¥ i -1
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then (ui)i<a is an increasing sequence with limit B,

(ii,2) Let € be a limit number.

Then € is the limit of an increasing sequence (en)n<w’ and
. €
n
B=w =1imw .
<
n<w €
n
Since B > o there exists an integer N < ® such that w >0 if

N < n < w; without loss of generality we may suppose that N = 0,

€ € €
Now, if V, = [v]v < w °} ana v = Plo ™t <y <w? m=1,2,3,...),
then each w n is the limit of a sequence (vin))i<a of elements
(n) . -

. A .
v; "eV . And o itself is the limit of a sequence ( j)j<w
Now, putting

H, = Vfo) if i <A

i i 4]

(n) - .
= A < < A = ..

ui \)i if n-1 21 n (n=1,2,3,...),

we find a sequence (ui)i<a with the limit B.

In the following, we denote by Z'a the cor which is obtained from

w +1
A o by removing the isolated points. Clearly Z'a is similar to
£_+1 w +1
Z a-{O,l} minus the (two) isolated points.
w
Theorem 4: Let X = Zwa, |a| i’)(‘o; or let X = zu'ua+1, |u| iro'

1. If p is not a jump point, or if p is a left neighbour, then
{x|x ip} wX.

2. If p is not a jump point, or if p is a right neighbour, then
{xlp < x} ~x.

3. If p < q and p is not a left neighbour and q is not a right neigh-

bour, then {xlp <x iq} nX.

Proof: (For the case X = Z a The case X = Z'a can be treated similar-
. . W +1
ly or else can be derived eery easily from the order-homogeneity of

Z“&; see theorem 9).

w _ . a,
a. Let L = {p|310 <wpy
R={pl3i, <™ p, =0if1 >4}

1if i > g}

In both cases we suppose that io is the least index with the required
property.

It is clear that a left neighbour (right neighbour) belongs to L (to

R), and moreover, that a point of L (of R) is a left neighbour (right

neighbour) if and only if io is a non-limit number.
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b. The following notation is used: if
ab...c...d...e...

denotes a well-ordered sequence (ti)i< u of type uy , then

& Y .
ab...c...d...eeee...

means that c is the element with index B in the given sequence (thus

c = tB) and that ti =eif i vy.

(i) Let p € L, and let (m)\)A be the well-ordered sequence of in-

dices for which P, = 1; then (mA)A is a sequence of type'mu .
Now define A m
v = {x|xz 3‘01111 :
o = IXIxZpeP; ... } _
m—
v, = ilooo ; *o}uu ;
\ = {x|p0p1p2... .e- $X <PoP Py - ceee}

if A is a non-limit number
n m

e E——
{x|p0plp2... 000... <X <pyP;Py--- O 1111.... }

*

if A is a limit number and nA= lim m, .

i<)
Also
W, = {x|xgo T111..% }
A=l ___ A___
W, = {x|111...7T 000.. g x g1111... 0 1111... }

if A is a non-limit number
A_____ o
.0

A___
{x|111...0 0000... ¢ x g1111... O 1111... }

if A is a 1limit number,

It is clear that all sets V)\,W)‘ (0;)‘ <wa) are similar to Z a
w
Then also the ordered unions
Uwv and U w
o a

A<w A A<w A

are similar, and consequently

{x| x<p} v 2
| = wu

(ii) In the same way it can be proved, that
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{xlp < x} wz |
if p€ R. ®

(iii) Now it follows from (i) and (ii) that

{xlp <x <qlwz |
if peR, q €L, p < q. v
[+ ]

c. (i) If g is a countable limit ordinal, and 8 £ w , then Z _ may be
w

<
= a
considered as the ordered union of type B of sets Ai (0 <i £ B), which

are such that A, «»Z if 0 <i < B and |A|=1.
i w® = B

a
For, there exists an increasing sequence (ui) with the limit @,

i<B
and we may take

¥
Ay = fxx <111...0 1111....} "

i-1 i,
A = fx|111...1 000... <x <11i... 0 111L...}

v if i is a non-limitunumber
i

3= N

= {xJ111... 0 000... <x <111... 0 1111....}
if i is a limit number and Vv, = lim 1
17y

(ii) In the same way we may show: If B is a countable limit ordinal,
L
and B < wa, then Z , may be considered as the ordered union of type B
of sets Ai (0£i gB), which are such that Ai enz , if 0 £ 1i <8 and
IABI =1,

w
d. (i) Let p be a non-jump point and let (m)\)MB be the well-ordered

sequence of indices, for which p, = 1; then B is a limit number.
A
Now take
m
9
B, = {x|x <pp, ...0 1111....}
(o} =70 1m n

= {x|p.p 1\1;1 000... < x < p.p,... O 1111....}
X oP1e < x < PPy

o]
I

if i is a non-limit number
n m

¥ ¢!

)
= {x|]p.p,... O 000.., < x<pp ... 0 1111....
071 ="="0"1

if i is a limit number and n, = lim m_.
j<d
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It now easily follows from b that

U B U a,

i<p i<g
and so

X w .

{x|x < p}erz |
w

(ii) In the same way it is shown that

{xlp £ x} vz o
w
Theorem 5: If Ial §=}? , then 2 o and Z'a are homogeneous spaces.
w w +1
Proof: (For Z o+ The proof for Z'u is similar).
w w 41
(i) If I is a clopen interval which is properly contained in Z ,

w
and which is such that I «*Z , then also @ 4 \NI) » 2 ar

w w w
For, if p = inf I, q = sup I, then at most one of the sets

1 {xlx < p}, Iq = {xlx > q} is void; if Ip £ @ (and/or Iq # @), then

Ip wnZ a (and/or Iq wnZ a); and in all three possible cases we have
W w
I VI v»»w7 .
P q w“
(ii) Now take p,qeZ ol P < a.
.

w
Then p (respectively q) is the intersection of a decreasing sequence
of clopen intervals In (respectively Jn)' Without loss of generality

we may suppose that I,NJ, = d.

1
Let fo be an order-preserving map of Z o \I1 onto Z a\ J1' and let

< w -
fn be an order-preserving map of In\ In+1 onto Jn‘\yn+1 (n=1,2,3,...).

Then the function f, defined by

f(x)

fn(x) if x eln \In+1

£(p)

q

is an autohomeomorphism of Z ot
w
Consequently Z « is homogeneous.
w

Theorem 6: If y = B + wa, and B ;zwa, then ZY is not homogeneous.

Proof:

Without loss of generality we may suppose B = § + we, € > a-



47

(i) Choose p = (pi)i<Y in such a way that

Vi < B Ji,k : (i < j, k < B and pj =0, P = 1)
Vi > B : pi = 0.

Then it is clear, that each neighbourhood 0p of p contains a subset

which is similar to Z e ol and so for every closed neighbourhood 0p

of p we have w e

0(0) 3_m€ + w®
b’ =
(cf. Ch. I, theorem 10).

(ii) Now choose q = (qi)i<Y in such a way that

Vi 35,k : (1 < j,k and p;, = o, P = 1).

Then there exist neighbourhoods 0q of q, which are similar to Z o’
and for which consequently w

00 ) = w*.
q

(iii) This means that Z a is not homogeneous.
B+w

§3.

If X is a connected cor, then X is said to be order-homogeneous, if

all closed intervals consisting of more than one point, are similar

(and so are similar to X).

Theorem 7: An order-homogeneous connected cor X satisfies the first
axiom of countability.

Proof:

Since X is connected, there is an increasing sequence (xi)i< in X;
w
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and since X is compact y = }im xi exists. Because of the order-homo-
geneity it follows that cve%§mze.x, z # inf X, may be considered as
the 1limit of an increasing sequence of type w. In the same way it is
shown that every ze€X, z # sup X, may be considered as the limit of a
decreasing sequence of type w .

This means that X satisfies the first axiom of countability.

Theorem 8: If X is a connected cor, and |X|> £ , then X is not order-
homogeneous.
Proof:

Theorem 7 and chapter I, theorem 19,

The following result has been obtained before by Terasaka [i] (cf.
also Arens [1] ).

Theorem 9: If |a|;)eo, then Z“‘,l is an order-homogeneous topological
space. :

Proof:

Following the method used in the proof of theorem 4, we can easily
show that {x|x=< pl v Zwu for all p > inf z* K and that {x|x> pl v z" K
for all p < sup Z:a . From this it 1mmed1ate1y {ollows that Z o is

order-homogeneous.

.

If X is a connected cor, we denote by X the topological space which

is obtained from X by identification of inf X and sup X.

Theorem 10: If o= v+n, P= u+m, wherc v and : are limit numbers (or 0)
-t >t
and n,m are integers > 0, then Za and Z, are different topological
- [}
spaces if Vv#u .

L *F
Proof: Clearly i(Z_ ') = v, T(ZF ) =u

Theorem 11: If X is an order-homogeneous connected cor, then X1 is a
homogeneous topological space.

Let a = inf X, b = sup X; in X+ we write c=a=b (for sake of simplici-
ty, in the other cases we denote the points of X and those of XT

by the same letters).

Now take p,leTL
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(i) If p and q # c, then let f be a map of X onto X, such that
f| [a, ] is a similarity map of [a,p] onto [a,q:_] and f| [p,b] is a
similarity map of [p,b] onto [q,b] .

.f.
This induces an autohomeomorphism f of X such that fT(p) =q.

(ii) If p = ¢, q # ¢, then choose (in X) r such that a < r < b,
And let f be a map of X onto X, such that f|[a,r] is a similarity
map of [a,r] onto [q,b:l and such that f| [r,b] is a similarity map

of [r,b] onto [a,q].

This again induces an autohomeomorphism f+ of X* such that ff(p) =q.

et
Corollary: If || ;'}(0, then Z  is a homogeneous topological space.
w

§4,

Beside the spaces Z a and Z'a s |a| ;?{o, there are other homogeneous
w w +1
compact ordered spaces; see Maurice [1] .



CHAPTER 111

On the connection between splitting degree, density

and weight of a compact ordered space

§1.

By the density of a topological space X we mean

d = d® = inf {(X|3INcx : ¥ =x,|N = X).

By the weight of a topological space X we mean

w(x) = inf{ R|3 base B for X:|ﬁ| R

w

The following theorem is well-known
Theorem 1: If X is a Tl-space, then
|X|_<=2w, W< 2le .
Proof:
(i) If 8 is a base of X with the property that |f/3| = w and
I1(x) is the family of all O € 93 such that x e O, then

N 0= ({x3} .

0 e I(x)

So x » I(x) is a one to one map of X into ?@), and consequently

53
IXI.<.2| Lo

(ii) Obvious (every base is a subset of ?(X)).

Theorem 2 (see Arhangelskii [1] ): If X is a compact Hausdorff space,
then w

we x| g2,
Proof:

If p,q€X, then let the open sets opq and qu be such that



€0 €0 0O nO0 =60,
P=%a’ 1€ ap* “ap” “pa

Let § be *he family of all finite intersections of sets Opq. Then 9
is a base for X. For, if O is an open set in X and if peO then

{o 1} is an open cover of the compact set X ). (. which has a
cp qeX\ O :
finite subccver {0 } ; but then
ap q=q11q22---1qn

No e@B
i=1 P9y
and n
P € n c O
i=1 P9y
Since |$|= |%| , it follows that w(X) < |X]| .

Theorem 3 (see PospiSil [1:] ): If X is a Hausdorff spzce, then
aglx| g2” .
Proof:

Let N he a subset of X such that
N =X, |N| = d.

Let I(x) be the fzmily oi all 2 é?(N) with thz property tnat x € A,
Because ci the Hausderff property, we havz I(») # I(y) if x £ vy, Con-
sequently x » I(x) is a one to one map of X into '.'P(?(N))~ This

means thnat |X|_<22 .

Theorem 4 (see de Groot [1] ): If X is a regular T, -space, then

1
dew :Zd.
Proof :
(i) A ==t O ir a tcpological space is said to be regular, if it

is equal %> the interior of its closure, that is if

Now it wil. be proved that a regular Tl-‘Space has a regular upen base

(i.e. a bace of regular sets),

For, let ﬁ be the family of all regular szts.
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Let U be an open set and let xé¢ U, Then there exists a closed neigh-

bourhood V of x, with the property that V < U, and such that

xeWe V=Vel
for some open W. Then also
-0-0
xewWwc W cVeclU,

Putting B = W _  we see that B = B _ (cf. Kelley [I] , p.45 above

and p.57, exc.E), so that BeR,

Hence ;‘13 is a base.
(ii) Let Nc X be such that

N=2x, |N = d.

Because of the regularity we may conclude that,Oln N # 02n N if

01,026 ﬁ, 01 # 02. Consequently O + ONN is a one to one map of ﬁ

into B (N). This means that wg 1B :2".

52,

Lemma: If X is a cor and {xi}i < woy 15 @D increasing (decreasing)
sequence of type m.?t in X, then d(X) =7¢ .

Proof:

{(xi+2n’xi+2n+2)}i< < w is a disjoint family of non-void open
intervals with cardinal number N .

»* .

Theorem 5: If X is a cor, then

dews<|X]| < Zd: 2¥,
Proof:
(i) if w = |X| , then it follows from dgw ézd that d< x| <29
(ii) if w< |X| , there is a (decreasing or increasing) sequence of
type w, in X (Chap.I, th.21); this means d>w and consequently d=w.

Then it follows from w§'|X| ;Zw that d:IXI :Zd.

Theorem 6: Let X be a cor, and let N be dense in X, If V is a 6 -
sequence for X, then

8(V) <« sup p (V) + 1,
= xeN ¥
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Proof:
Let n = n(V) = sup u_(V).
x
XeN
() :
Now suppose that pr | 2 3 for some peZ . Then there exists a
point ¢ such that 1(X;n))< c <r(x(:)). This means that cf.Dn . Since,
however, NcD = D and N = X, this is a contradiction.

n n
Consequently we have Ix;n)li 2 for all pe Zn , and so 08(V) ¢ n+l,

Remark: It may happen that 6{V) = n(V) + 1,

Example: let Z;+ be the cor, which is obtained from Zm by identi-

1 +1
fication of (a,0) and (a,l) for all rational a; if now V is the regu-

lar 6-sequence for Z;+1, then 6(V) = w+l, n(V) =w,

In the case of a connected cor (an ordered continuum), the following
theorem has been obtained before by Novak Eﬂ .
Theorem 7: If X is a cor, and V is a 0O-sequence for X, then
lean| < a
Proof:
if |ux| 2 X, and thus INELTPRY for some x € X, then it follows from
Chap.I, theorem 17, that there exists a sequence of type in X,
Then from lemma 1 we may conclude that dlz7f. Consequently |L&| <d
for all xe X. If now N is dense in X, and INI =d, it follows from
lemma 2, that
2
| o] :|xs:pN u il [N|.d = d” = a.
*Theorem 8: If X is a cor with density d and weight w, and if V is a

0--sequence for X, then

lo] < a w:IXI<2le| 12352,

<
=

Moreover, in

at least two of the equality signs hold,

Proof :

The first part of the assertion is an immediate consequence of the
foregoing theorems,

Moreover, if in
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o] < agwslx|

at least two of the inequality signs hold, we have

| o]
x| 222,

and this is a contradiction, since |X| :2'”

Corollary: For every cor X we have in particular
w
jof sagws|x| g2l® g2% g2

and in
lel < axwx x|

at least two of the equality signs hold.

Z,,o then |o] <a

<
Zm+1 then d<w

Examples: (i) if X

(i1) if X
(1ii) if X =2 then w< |X|
(iv) if X = H (see p.34) then |0|]=d = w = |X| .

Theorem 9: Let X be a cor, with density d, weight w and splitting

1. If O=m-)t or @ = w7¢+1 then d = 7%

2. If O= w. then w = X.
»

Proof:
1. Let V be a 3-sequence for X, such that 6(V) = 0O,

it is clear that

TL(J“N D-[ = DN-N= Dwk+1 =X
since Vi < m?é. IDTl < leli'R ,
it follows that
U b |sNX. X=X

Sodg M. TR

On the other hand it follows from |0 < d that N g

A
[=%

Consequently d = N

2. Let V be a f-sequence for X, such that 6(V) © , and let
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N =

D .
T<WR T
Then the familiy % of all sets

{x|a< x <b} (a,veN)

is a base fur the topology in X.
Far. let O be an open set; without loss of generality we may suppose
that
0=0_ = {x|r<x<s} .

Now take y € (.

) if y has both & left neighbour 'y and & right neighbour y'
then 'y and v’ belong to 2 certain DT (r< ub»), and so belong to N;
hence

yeo, co
yy

0, ,e®B

Yy

(iiy if y has a left neighbour 'y, but no right neighbour, then
'y €N and moreover, since W = X, there is a z€N such that y<z <Ss;

her.ce

Etcetera.
Now we hzve
B = v =N - R

and so w< -}C

On the other hand it fcliows from |0| _<‘d that k:d and so }t: w,

Consequeuntly w = k‘

§3.
Let X be a cor.

Let P be the set of jump points in X, and let Q be the set of pairs

{a,b} in which a and b are neighbours. Clearly |p| = |qQ|.
3
Theorem 10: 1, If |P| = |X| , then w = |X|

2, if |P| < |x| , then w = d,

Proof:

1. Let % be a base for the topology in X.
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Since every set {x|x< dq, q a right neighbour} is open, it follows
that for every left neighbour p there exists a member of % of which

p is the greatest element. Hence |53|: IPI = iXI , and so w = |X| .
2. Let N be a subset of X such that

N=2x, |N - d.
Then clearly the familyﬁ of all sets

{x]a <x <b} (a,be PUN)

is a base for the topology in X.

Since |P| < |X| - and so |P| < d - it follows that |PUN| = d and

<
=

consequently |43|: d. Hence

d.

Corollary: If X is connected, then w = d (cf. Marde$ic and Papié [1],

p.176),
Theorem 11: I. If X is a connected cor, then
(C] S wy
IX1, If X is a zero-dimensional cor, then
(1) 0_<lmd + 1,

ay* 0w, if [P| < |x|
(i1)° 0gu, -

w

Remark: Part I cf the theorem has been obtained before by Novotny Eﬂ.

We give the proof of the theorem for case II.
1. We first observe the following: if Y is a zero-dimensional cor,
and p,q,r €Y, then there exist two successive 0O-decompositions of Y

such that no two of the points p,q and r belong to the same Y;z).

2, If a is an ordinal number, then we write a= va +m , where y is
i1 a

a limit number (or 0) and mu is an integer 2 0. Then let
a =v +m *2
a a

(so for a limit number we have o = a).



3. We first prove that 0% wy * 1,

Let N be such, that NcX, N = X, |N| = a.

Let S be the set of those points s in X, which have both a left neigh-
bour ‘s and a right neighbour s'; then S<N,

Let A be the set of all pairs {'s,s} and {s,s'} , and let R = NUA,
Then |R| = d.

Finally suppose that {ri}i < is a well-ordering of R.
w

2. We show that by transfinite induction, a 8-sequence V = {VY}Y
— VvV = {X(Y)} — for X can be defined such that for all Y w
Y P ‘peZ d
we have Y ) U
) VpGZY_:IXp n Yol
where t, = {r,} if r,e Nand ¢, = r. if r.e A.
i i i i i i
(i) Let VY be defined for Y5§1 and suppose the assertion @
holds for all those Y,
Put 6= & +1; then 5 = §1+2.
@)
Since IX n U t,l <1 and since It |< 2, two successive §-decom-
p i< 61 it o= 61 -
G)
positions of Xp can be defined in such a way that
%) Uit !
Vaez, |qu n Ytz

(ii) Let § = § be a limit number and let VY be defined for y<§ ,
such that @ is satisfied.

Then 38

Vpez<S : xp n t| <1,

i<é il =

For, if |x(6)n U ¢ | >2 for some peZ ., then there exist points
P i<d i = §

a and b, a # b, such that

a,pex®n U t ;
p icg 1

this means that a,bf.i y t;i for some y <& and so

Y

€2
- N
a’beprY i<LJY t:i ’



20 U ¢ |2,
PIY 2 <y | =
This is a contradiction.
b, In particular we have
(wd)
® VYpez ’x o, Ul
“4 P d
(wd)
Since ngm ti is dense in X, it follows from (:) that ’Xp < 3;
(ud) (wyd
however, if Xp l: 3, then obviously Xp = {'s,s,s'} for some
s €S; this means that {s,s'} = ti for some i < wyr SO that
(md)
X n . t.| > 2,
P 1<w, 1| =

d
This is a contradiction,

(wy)
Consequently ’Xpwd <2 for all peZm and so 0<¢ wd + 1.

d
4. We now show that O cu  if |P| = |Q| < |X].

Let N be such that NcX, N = X, |N| = d.

Let R = N U Q; since |Q| < |X| - and so |Q| < d - we have |R| = d.

Let {r_}, be a well-ordering of R.
1 1<w

d
In a manner analogous to that used in 3, we can show the existence of
a b-sequence V={v} —vVv = {X(Y)} -— for X such that
Yy Y P peZ
)
: (2]
Vp6Z7 ’Xp i<y ;1,
for all Yéwd’
where t, = {r,} if r e Nand t, = r, if r. € Q.
i i i i i i
In particular we have ©)
® Vpez :lx %n YA ES!
wy P i gl
(w))

d

since | Yt is dense in X, it follows from (3) that ,xp

i<w
(w)) (w,) (w)

d
d d d
Xp = 2 or 3, then Xp = {a,b} or Xp = {a,b,c} for some pair

of neighbours {a,b} and -in the second case - {b,c}; but then
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(wd)
{a,b}= t, for some i<uw,, so that |X n U t. |l > 2,
i d P i< wg 1 =
(wy)
From this we conclude that |Xp | =1 for all pe Zm .
d
So G;wd.

5. Next we prove that e;w,x, .

Let {x,} be a well-ordering of X,
i i< m,x,

As in 3. it is shown that there exists a 8-sequence

V={(v)}) —V = {X(Y)} — for X, such that
Yy Y

P pel
. )
\7’pez7 sxpn iyY{xi} 1.
So in particular (‘"[xl) U
Vpezw : ,x N i {xi} 1,
x| e sy
(“’l )
: x|°] _
VP£Zw|x| : pr , =1,
Consequently O;wlxl .
6, Finally we show that O SW,e
If |P| = |X| , we have w = x| ; so O:mlxl = .
1f |P| < |X| , we have w=d; so 0_<_wd = w .
= w
Corollary: If X is a zero-dimensional cor or a ccnnectec¢ cor, then
a, 0 > w%+ 2 implies d > »
b. ©> w_+ 1 implies w > n.
)
Example: d(2) = |a| ifa = wy| ©Fifa = Wla| * 1
> Ia| if a 2 m,a|+ 2
w(Za) = |al if a = w'“l
> la| if a > Wt 1

ip fact, if L and R are subsets of Zm?& defined by
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(11<m_»|:]1 <wagt X;=L 3f i)
R={x= (x |310 ux:x=01f1>1}

11<m

then
L] =&l = R

e
1t

{x

(for 1nstax|1jcfe|L = ioUw L(10), where L(i ) = {x|xi=1 if 1> 10} ; and
|L(io)| <2 Y :‘k by the continuum hypothesis).
Moreover

L:R:me

From this it also follows that

X N

Remark: Theorem 11 does not hold for an arbitrary cor,

Example: X=w@u [0,1] (ordered union)
X)) = 2+u
> ud + 1 ( =0 + 1)

> (.ulxl (= Q).



CHAPTER 1V

Literature and additional remarks
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(i) Sierpinski ﬁJ and Cuesta Dutari Bﬂ proved that every ordered

set of cardinal number ;)t is similar to a subset of 2 . See also
Sierpinski [3] , p.460. v

This result was already obtained in Haugdorff Eﬂ , P.182 (where in-~
stead of Zm a set of the form {0,1,2} Vs used). In fact, even the
following agsertion holds: If Hu is the subset of Zw which consists

of all sequences (xi)i with the property that the%e is some io < w
a

<
such that x. =1 and x, =0 zor i> io, then every ordered set of cardinal
number ;Nu gs similar to a subset of Ha (in this case H is said to
be)%-universal). This was proved by Sierpinski Eﬂ for ordinal numbers
a of the first kind and by Gillman [1] for ordinal numbers a of the
second kind. (The result of Sierpinski is also a consequence of his
theorem, that H8+1 is an n8+1—set and a theorem proved in Hausdorff

Eﬂ , p.181, that a n8+1-set is )%B+1-universa1.) However, both these
facts are proved, in a very short way, by Mendelson DJ .

If one uses the generalized continuum hypothesis, it is easy to see

that |[H | = N .
a a

In this connection it should be observed that in general it is not
true that a cor X, such that |X] :.)& » can be imbedded topologically
. * v
in 2 or in Z
w, Wy

For instance, X = Zm cannot be imbedded topologically into Zm or

into Z¥ (in 2 and in z: there are no points which are the limit
w.

1 . 1 .
both of an increasing sequence of type u and of a decreasing sequence
of type u).
(ii) It was observed in Ch.I, theorem 14 that each %u is a continuous

_mage of ZB if @<B . It can also easily be proved that each closed

subset of Za is a retract, i.=. a continuous image of Za'
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On the other hand it is by no means true that every compact Hausdorff
space is a continuous image of some cor (although every compact metric
space is the continuous image of Zw; cf, for instance Kelley [x] , P.
166). This can easily be seen by the following argument (de Groot

[3] ), which might be useful also in other cases;

1. In a cor every sequence has a convergent subsequence.

2. The property 'every sequence has a convergent subsequence' is
invariant under continuous mappings.

3, In the Stone-Cech compactification BN of the natural numbers N
the closure of each infinite subset of N is homeomorphic to BN,
and consequently N has no convergent subsequence.

This means that BN is not the continuous image of any cor. The same

is true for each space which contains BN as a subset. Thus for in-
stance the topological product X of continuous many spaces X, (lxil; 2)
is not the continuous image of any cor. Taking all Xi = {0,1} or all
X5 = [b,i] (the unit-interval of real numbers) we obtain a zero-dimen-
sional compact space and a connected, locally connected compact space

respectively, which are not the continuous image of any cor.

(iii) The well~-known theorem of Hahn-Mazurkiewicz states, that for a
space P to be compact, connected, locally connected, and metric, it is
necessary and sufficient that P be the image of the unit interval of
the real numbers under a continuous mapping into a Hausdorff space
(cf. for instance Hocking-Young [ﬁ] , p.-129). This includes the re-
sult that, for locally connected metric compacta, connectedness and
pathwise connectedness coincide. According to Marde3ié [I] a general-
ization of these results to non-metric spaces is not possible; i.e.

1 If a space X is said to be "connected by ordered continua' pro-
vided, for each pair of points xo,xle X there is a connected
cor C and a continuous map ¢ : C + X which maps the end-points
of C into %0 and X respectively, then there exists a locally
connected compact Hausdorff space which is connected but is not
"connected by ordered continua''.

2. There exist connected and locally connected compact Hausdorff

spaces which are not the continuous image of any connected cor,
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An example has been given in (ii). Other examples of such spaces

are given in Marde$ié Eﬂ .

(iv) Marde3ié [ﬁ] proves the following theorem: Let X be a continuum
(i.e. a connected compact Hausdorff space) and C zn ordered continuum
(i.e. a connected cor) and let I denote the real line segment; now,if
there exists a continuous mapping of C onto X x I, then X has the Sus-~
lin property. (A topological space X is said to have the Suslin pro-
perty if each family of disjoint open sets of X is at most countable.)
From this it follows among other things that I is the only non-degener-
ate ordered continuum C which admits a continuous mapping C + CxC on-
to its square.

Marde3ié and Papié DJ consider the class K of spaces which are con-
tinuous images of ordered continua. A characterization is given of
those product spaces ;Ij; Xa (of non-degenerate continua Xa) which
belong to K. In fact, in order that such a product space acA Xa
(lAl >1) be the continuous image of an ordered continuum it is neces-
sary and sufficient that all Xa be metric Peano continua and that
IAI;J» ; in this case the product space is itself a Peano continuum
and thus a continuous image of 1I.

Treybig EJ generalizes part of this result to the case in which the
factors need not be connected; theorem: if each A and B is a compact
Hausdorff space which contains infinitely many points and A xB is the
continuous image of a compact ordered space, then both A and B have a

countable base (and so are metrizable).

(v) Marde3ié Ei] proves that the inverse limit of a monotone inverse
system of ordered continua is itself an ordered continuum. Moreover
each ordered continuum is the inverse limit of a monotone inverse
system, consisting only of arcs.

1f T is a continuum, then a finite sequence (Ul""’Un) of open
sets U, in T is called a "chain", if u.n UJ. # @ if and only if
li-j] £1. T is said to be a "chainable continuum” if every open cover-
ing of T admits a chain-refinement (U ,...,Un); and if every open

covering of T admits a chain-refinement with connected Ui’ then T is
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called "strongly chainable". It is proved that the following three
classes of spaces coincide:

(a) ordered continua

(b) strongly chainable continua

(c) locally connected chainable continua.

52,

(i) Eilenberg El] says a topological Hausdorff space (X,J) to be an
"ordered topological space', if X is an ordered set with ordering < ,
such that :7c 7<. He shows that a connected topological space T=(T,J)
is "orderable" (i.e. there is an ordering < for T, such that7c7<) if
and only if T *xT \{(t,t)|t€eT)} is not connected.

Moreover two orderings of a connected topological space are equal or

inverse to each other.

(ii) Banaschewski [1] considers ordered spaces (X,7<) and their com-
pact extensions 5(x,7<) which are obtainable by means of Dedekind
cuts. (Remark: Mac Neille [1] ,5 11 proved that every partially order-
ed set S can be completed by means of "Dedekind cuts’; cf. also Birk-
hoff [1] , P.58. Addition of a least and a greatest element, if neces-
sary, then leads to a compactification of S.) 6(x,.’7<) is connected if
and oniy if (X,<) is dense, i.e. Vx,ye€X (x <y) Jzex: x<z <y. If
(X,<,) and (X,<2) are dense and 6(X,<1) and 5(X,<2) are homeomorphic,
then <1 and <2 are either identical or inverse to each other. (It
should be observed that (X,<1) and (X,<2) may be homeomorphic if
(X,<1) is dense and (X,<,) is not; example: (X,<1) = [0,1]\{%} ,
X,<,) = 4,1j ufo,3).

(iii) A "cut point" in a connected space X is a point r such that
X \{r} = AUB where A and B are separated, i.e. ANB = ANB = @,
Following Hocking and Young EI.] we denote by E(p,q) the subset of X
consisting of the points p en q together with all cut points r of X
that separate p and q, i.e. X \{r} = AUB, ANnB = ANB = @, peA,
qeB, If a relation < is defined in E(p,q) such that, for all
x,y € E(p,q), x <y if and only if x=p or x separates p and y in X,

then it is easily proved that < is a simple order in E(p,q). The fol-
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lowing theorem is known (cf. for instance Hocking and Young Eq ,P.53):
If X is a compact connected Hausdorff space with just twoe non-cut
points a and b, then X = E(a,b) and the order topology in E(a,b) coin-

cides with the topology in X. In other words: X is orderable.

(iv) Any compact zero-dimensional metric space is homecmorphic te a
subset of the Cantor set (cf. for instance Hocking and Young Eﬂ, p.
100), and so is orderable.

This in particular holds for countable compact Hausdorff spaces,since
these spaces have a countable base (and so are metrizable) and are
zero-dimensional; in this connection, it may be remarked that, accord-
ing to Mazurkiewicz and Sierpinski DJ , every countable compact Haus-
dorff space is homeomorphic to a weil-ordered space of a type which
has the form wu.n+1, where a is a countable ordinal number and n is an
integer > O,

Lynn [}] observes that even a zerc-dimensional separable metrizable

space is orderable.

(v) In Herrlich [{] several conditions are found that a topologicai
space be orderable. A space is called end-finite if no connected sub-
set has more than two non-cut points. From the results obtained by the
author the following will be mentioned.

1. A connected Tl—Space is orderabls if and only if it is end-finite
and locally connected.

2. A totally disconnected metric Lindeldf space is orderable if and
only if it is zero~dimensional.

3. A countable space is orderable if and only if it is metrizable.
Also conditions are found that a space is locally orderable, which

means that every point has an orderable neighbourhood.

§3.

(i) It is known that a linearly ordered topological space is complete-
1y normal; ci. Bourbaki [1] .
Ball ﬁJ shows that every open covering U of a linearly ordered space

X, which is such that each poin: of X is an element of at most count-
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ably many sets of U, has a locally finite refinement. In particular,

X is countably paracompact.

(ii) Ball [i] gives three sets of conditions, each of which implies

that a connected linearly ordered space is separable.

(iii) A space X is said to have the fixed point property, if every
continuous map of X into X leaves a point fixed. It is known that a
connected cor has the fixed point property. Cohen [i] shows that the

direct product of two connected cor's has the fixed point property.

§54.
»

(i) Novak Eﬂ constructs six ordered continua of power 2 ° containing
a dense subset of power 7‘1 but no one of power )%O' In these six ex-
amples the sets of occurring point characters are {COO'COI}'{COO'clo}’

00°%01°%10°%11} + {%0:%017¢11} + (S00:C10°€11) + (SposC11} -

(1f u& and m:j are regular initial ordinal numbers, then a point is

said to have the character cij if it is the limit of an increasing se-

{c

quence and of a decreasing sequence of type w, and mj respectively.)

i
Misik [1] constructs such a continuum with a set of point characters

(00701710}
Novotny [I] shows that one of the examples of Novak is similar to
the "ultra continuum" constructed by Bernsteip [1] . He also gives

0
seven examples of ordered continua of power 2 and density 2 .

(ii) Novak Dﬂ considers an ordered continuum (that is, a2 connected
cor) C,
a. He calls a system P of closed (non-degenerate) intervals a "dyadic

partition" of C, if

1. VX,YEP : XNY =Y or XNnY =X or |[XnY|/<1

2, CeP

3. VXeP Elxl,xzep : X, UX, = X, lenle =1

4, If {Xi}ie 1 is a decreasing (transfinite) sequence of inter-

vals X, €P, then )X . ePor | QX | =1.
i i i i

In each dyadic partition the decomposition {xl,xz} of an interval
X € P according to 3.is clearly unique. If one puts le\XZ = {p} ,
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then p is called a d-point.
Now, it is easily shown that P is a dyadic partition of C if and only
if P is the system of non-degenerate intervals which are elements of

the members of a 8-sequence V (cf. theorem 5 of the paper of Novak).

b, If A is an interval in C or a point, which is no d-point, then

the subsystem P(A) of P consisting of all Xe P with the property that
ACP, is clearly well-ordered; the ordinal number of this system is
called the order of A,If Ais a d-point then there are two well-ordered
subsystems P1 (A) and Pr(A) of P consisting of intervals which contain
A; the greater of the two ordinal numbers of Pl(A) and Pr(A) is called
the order of A. The supremum of the orders of all P(X), Xe P, is call-
ed the ovrder of the dyadic partition P.

Now, it can easily be proved that the order of a dyadic partition P
is equal to e(vp), (see Ch.1,p.18),if VP is the 6-sequence, which cor-
responds to V,

c. Several other theorems, based on these ideas, are proved. Finally,
it is shown that every ordered continuum of power }% contains at

least one point with character c if and only if No <271,

00
d. Novak does not consider the infimum of all orders of dyadic par-

titions (which would be the splitting degree 0, as defined in Ch.I1).

Novotny [2] proves for an ordered continuum C the existence of a par-

tition of order at most wy where R\“) is the density of C.

(iii) J. Novak [3] defines the following sets of cardinal numbers for

an ordered continuum C.

P={ &I]aeC: a has point character cDU and R& = min(}(\p, X‘U)}

Q={ 7¢u|3a60: a has point character cpo and X(‘! = max(}(‘p, Na)}

s =({ X [Amonotone sequence of type w_ in C}

I = { X [Jisolated subset D of C, such that [D| = X}

I'=s { R |3disjoint system of non-degenerate intervals in C, with
cardinal number N'}

= { X|Jsubset D of C, such that B = c, |p| =R}
R = { X |[Jdyadic partition of C with cardinal number N} .
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if now p,q,s,i,i' and r, are the respective suprema of the sets P,Q,

2

$,I,1' and R, and if m and r, are the respective minima of the sets

1
M and R, then it is proved that

1

pgags<i= i'<m g |C| < min(mp,2 )

and
SEr STrpim = max(i,rl) = max(i,rz)
and
+
r, s,

where st is the least cardinal number, such that N« s+ for every
MNes.
It is shown that R = {s} or R= {s'} or R = {s,s’} . M. Novotny [3]

proves several other relations of this kind; for instance |CI _<‘2q.

(iv) Erdos and Rado [1] prove, using the generalized continuum hypo-
thesis, the following theorem:
A cardinal number)é has the property that for every ordered set
S of power N
1. there is a subset in S of type W
or 2. there is a subset in S of type w;t
or 3. for all a < w?t there exist subsets in S, both of type a and of
type a*,

if and only if }Q-= sup Nm is regular.
<R

§5.

(i) Arens 1] discusses order-homogeneous connected cor's, For in-
stance, it is proved that the lexicographically ordered product Lw

is an order-homogeneous connected cor, if the same is true for L.

Terasaka [1] proves that all Z*u are order~homogeneous.
w

(ii) According to Hausdorff [1] , p.179-181 there exist ordered sets
of arbitrary high power with the property that all open intervals are
similar.

Vazquez Garcia and Zubieta Russi [3] show that such a set has at

most the cardinal number of the continuum if it is complete.
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(iii) It is a well-known fact (cf. for instance Kamke [i] ) that an
ordered set X is similar to the set of the real numbers if it has the
following properties.

1. there exists neither a least, nor a greatest element

2. X is complete

3. X has a countable dense subset.

From this it easily follows that an ordered space X is homeomorphic
to the space of real numbers if

1. X is homogeneous

2. X is connected

3. X has a countable base.

(iv) It is easily seen that every cor X(]Xl;)%o) which has a count-
able base admits continuous many autohomeomorphisms, For, if there
are countable many isolated points, the assertion is obvious. In the
other case the assertion follows from the fact that there is either

a separable connected subspace, which is consequently homeomorphic to
an interval of the real numbers, or the space is zero-dimensional

and so is homeomorphic to the Cantor set,

Jénsson DJ and Rieger DJ both give an example of an infinite com-
pact ordered zero-dimensional space such that the only homeomorphism
of S onto S is the identity mapping.

In this connection it may be observed that de Groot [1] proved the
following theorem: There exists a family {Fy} of 2 zero-dimensional
subsets of the real line, such that no FY can be mapped locally topo-
logically into or continuously onto itself or any other FY,; if FY

is mapped into itself, we must exclude trivial maps. However, here
the occurring sets F are not compact. In de Groot and Maurice BJ
the existence will bz proved of a cor of continuous power and with
continuous weight which is rigid, i.e. which has no autohomeomorphisms

except the identity mapping.
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