
Stochastic Processes and their Applications 18 ( 1984) 33-45 
North-Holland 

A LIMITATION OF MARKOV REPRESENTATION FOR 
STATIONARY PROCESSES 

H.C.P. BERBEE 
Mathematica/ Centre, Kruis/aan 413, 1098 SJ, Amsterdam, The Netherlands 

R.C. BRADLEY* 
Department of Mathematics, Indiana University, Bloomington, JN 47405, USA 

Received 13 January 1983 
Revised 22 June 1983 

33 

The existence of a representation of a stationary process as an instantaneous function of a real, 
irreducible Markov chain (Harris chain) imposes important restrictions on the distribution of the 
process. We construct a countably-valued stationary process with a very strong mixing property 
for which such a representation does not exist. 

instantaneous function of irreducible Markov chain strictly stationary * \11*-mixing * entropy 

1. Introduction 

Suppose one is interested in a certain random stationary phenomenon. To study 
it, one makes a series of measurements and thus obtains a stationary sequence 
g:= (gn)na· Then one often models g as a functional on an underlying Markov 
chain (or perhaps as a Markov chain itself). This approach is of great value; it 
provides a nice probabilistic structure that can be used in the statistical analysis of 
the phenomenon. However we shall show below that there are quite reasonable 
situations where, in a certain sense, such an approach can never be entirely correct. 

Throughout this article we restrict our attention to strictly stationary processes. 
Let g:=(gn)nEZ be a stationary process and Y:=(Yn)ncZ a stationary Markov 

chain. The. process g is represented as an instantaneous function of Y if 

gn=f(Yn) fornE7l., ( 1.1) 

where f is a measurable function on the state space of Y. We want to consider quite 
general Markov chains, though we have to impose restrictions to avoid a trivial 
representation like 

( 1.2) 
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with f denoting projection onto the last coordinate. Of course Yin ( 1.2) is a Markov 
chain. Nevertheless ( 1.2) does not describe a useful representation because the 
random variables Y,, retain all information about the past, which is impractical. So 
we want to investigate here representations with Markov chains having 'loss of 
memory'. For this reason we impose a well-known irreducibility assumption on Y, 
to be formulated later. Our aim is to construct examples of stationary processes g 
having some nice properties (e.g. very strong mixing properties) that cannot be 
represented as in ( 1.1) with such Y. 

Let us now describe the probabilistic structure of our examples. First let .N be 
the class of stationary processes which can be represented as an instantaneous 
function of a stationary, finite-state, irreducible, aperiodic Markov chain. Such 
processes are well known to have very nice asymptotic properties, including very 
strong mixing properties. We shall construct a stationary process R := (R,,),,"z of 
the form 

R,, := (X;,1>, x;,2>, .. . ), n E 1., 

where for each k, xtkl := (X~kJ ),,Ez is a process in the class .N. We may see R" as 
describing 'reality' at time n, and the X-variables as giving the various aspects of 
'reality'. The processes Xtk> will be independent of each other. This simplifies the 
structure (but is perhaps unrealistic). The (infinite dirnensional) random vector R,, 
consists of countably many random variables. A statistician is interested in much 
less information. Say he observes only 

where g is some countably-valued function. The process g:= (g,,),,ez is stationary. 
We shall show that there need not exist an irreducible-Markov representation for 
g. In our examples g will have a simple form, such that g" depends only on finitely 
many components of Rn. Of course the number of components on which gn depends 
will not be bounded (for otherwise we would have g E .N). 

The examples are presented to show that (nontrivial) Markov representations 
are not always correct in circumstances that seem quite reasonable. The few examples 
that we present do not seem to enable one to get a general picture of when Markov 
representation can or cannot be used. Nevertheless results as presented here lead 
us to emphasize the importance of a theory of statistical inference for stationary 
processes (e.g. central limit theory) where no Markov assumptions are present. 

Already earlier studies were concerned with Markov representation. We can 
mention Johnson [ 4] who discussed representation from a very general and only 
slightly related point of view. Rosenblatt [7] surveys literature on representation 
in terms of finite-state Markov chains and mentions a necessary and sufficient 
condition for such a representation. 

Let us now formulate the assumption we impose on the Markov chains Y that 
we consider in relation to representation ( 1.1). We assume 
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(i) Y is a real, stationary Markov chain, and 

(ii) Y is irreducible (in the sense of [6]) with respect to the 
distribution 1T of ¥ 0 • 
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( 1.3) 

The assumption (l.3)(i) is not very restrictive. Because we are only interested in 
representation, if the state space of a Markov chain Y can be imbedded bimeasurably 
in the real line it is for our purpose real-valued. Note also that stationary, positive
recurrent Markov chains with a countable state space satisfy in essence our assump
tions. 

The assumption (l.3)(ii) means that for every real number x and every Borel set 
B with 7r(B) > 0 one has 

pn(x, B) > 0 for some n;;;;;: l. 

Here r( ·, ·) denotes the nth iterate of a regular transition probability for Y. This 
assumption is certainly restrictive. For example in statistical mechanics Markov 
processes are used to describe time evolution of configurations and for these 
processes (1.3) is typically not satisfied. The assumptions in (1.3) are however quite 
natural in the following sense. The irreducibility in ( 1.3) generalizes the correspond
ing notion used for Markov chains with countable state space in such a way that 
the well-known limit theorems for transition probabilities carry over (see Orey [6]). 
These limit theorems correspond to a nice kind of 'loss of memory' and imply a 
mixing-type property for Y. Let us also note that ( 1.3 )(ii) could be replaced by the 
seemingly stronger assumption of Harris recurrence i.e. if x E !R and B is a Borel 
set with 7r(B) > 0 then P( Yn E B for infinitely many n ~ l I Y0 = x) = 1; this can be 
deduced (with a little work) from Orey [6, p. 38, Theorem 8.1) and our assumption 
of stationarity. 

Denote by .J,f, the class of processes g that have the same distribution as processes 
that can be represented as an instantaneous function of a Markov chain Y satisfying 
(1.3). 

Though .J,f, is a large class it certainly does not contain all stationary processes. 
By our requirements (1.3) the processes in .J,f, satisfy a mixing property, as is well 
known. Our aim is to show that also assumptions of a different nature are implicit 
in the restriction to .J,f,_ But let us first describe this mixing-type property. Assume 
for the moment that Y satisfies ( 1.3) and is aperiodic. Then using Orey [ 6, p. 30, 
Theorem 7.1] it is easily seen that Y is strongly mixing, and if ( 1.1) holds then also 
g is strongly mixing. This argument can be used to show that in fact Y and ~ are 
absolutely regular. Absolute regularity is a lesser known, stronger mixing property, 
discussed e.g. in Volkonskii and Rozanov [I O] and, under the name 'weak Bernoulli', 
in Shields [8]. We assumed Y is aperiodic; the argument above is however easily 
adapted to cover the periodic case too, and we leave the reader to formulate which 
restriction of a similar nature it implies for g E .J,f, in general. 

We use the notation Pz for the distribution of a random vector Z. If a term like 
a,. is a subscript or superscript, it is usually written a ( n). 



36 H.C.P. Berbee, R.C. Bradley/ Markov representation 

We want to develop necessary conditions for g crfrf~. Markov chain theory leads 
easily to an interesting condition for gE .M, as follows. Suppose Y satisfies (1.3). 
From irreducibility we have by Orey [6, p. 7, Theorem 2.1] that there exists a 
(positive) measure <f> r!' O (meaning <f>(IR) > O) and an integer k > 0 such that 

PY(O), Y(k) ~ </> x </>. (1.4) 

If ( 1.1) holds then we also have 

Pgco).l;(k) ~ ef> x ef> ( 1.5) 

where <$ := </> 0 r 1• Thus in order that g E .M there must exist a measure <$ ~ 0 such 
that (1.5) holds for some k > 0. In Section 3 we discuss a process that violates this 
condition. The reader may verify easily that such processes are necessarily uncount
ably-valued. To remedy for this we derive in Section 4 a more restrictive necessary 
condition for g E .M, to be used in our discussion of countably-valued processes. 

The examples that we construct are </>-mixing and have an even stronger mixing 
property. Define the if!*-dependence between two er-fields of a probability space by 

* _ P(AnB) 
if! (d, @)-sup P(A)P(B), A Ed, BE 03, P(A) > 0, P(B) > 0. (1.6) 

Obviously ifl*(.rd, 03) ~ 1 and equality holds if and only if d and 00 are independent 
er-fields. A stationary process g will be called ifl*-mixing if its past and future are 
asymptotically independent in the sense that 

ifl~ := i/1*(03(gk, k,,;; O), 03(gk ~ n))-d as n-" co. 

Here the notation 03(gk, k EK) means the Borel a-field of events generated by the 
family of r.v.'s (gb k EK), K being any set of integers. To avoid ambiguity when 
other stationary sequences are present, we sometimes write ifl ~ ( g) instead of ifl~. 

Our main result is stated as follows: 

Theorem 1.1. There exists a stationary countably-valued process g such that 
(i) gf5. .M, so g cannot be represented as an instantaneous function of a Markov 

chain satisfying ( 1. 3) 
(ii) if!~ -1--'> 0 with exponential rate as n-'> co. 

We shall discuss three examples of stationary ifl*-mixing processes that do not 
belong to the class .M. The first and simplest one, which we shall call X, has the 
structure of the process R mentioned above. It has exponential mixing rate (as in 
Theorem l.l(ii)) but is uncountably-valued. Its purpose is to help clarify the second 
and third examples. The process X will be constructed at the end of this section 
and is discussed in Sections 2 and 3. 

The second example is the process g of Theorem 1.1. It will be constructed and 
studied in Seeton 5. Section 4 develops a criterion that will be used to show f E .M. 

The third example, discussed in Section 6, will also be countably-valued and will 
have finite entropy; its mixing rate will be slower than exponential. 
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Construction of the process X 

As 'building blocks' we shall use a class of simple finite-state Markov chains. For 
each m;;;. 3 let Y(m) denote the distribution of a stationary Markov chain W:= 
( Wn)nez with state space {l, 2, ... , m}, with invariant marginal distribution 
(1/ m, ... , 1/ m), and with one-step transition probabilities given by 

P;i=O if i= j, 

1 . = --1 otherwise. 
m-

(1.7) 

Such a process has small and rapidly decreasing !/!*-mixing coefficients, especially 
if m is large (Lemma 2.1). Also note that W0 ;C W1 a.s. 

Let us specify the integers 

(1.8) 

For each k;;;. 1 let x<kl := (X~kl) nez be a process such that the subsequence (X~tl )nez 

has the distribution Y(mk) and is independent of the family of r.v.'s (X~k>: n ~ 
0 mod k) outside of this subsequence; we also require that Xtk> be stationary, and 
thus its distribution is completely determined. Also we assume that x 0 l, x<2>, ... 
are independent processes. 

The process X:= (Xn)nez is defined by 

(1.9) 

Clearly X is not countably-valued. The random variable X 0 is of course dependent 
on the 'past', ( ... , X_2, X_ 1). Note however that the kth component x&k> depends 
on the past only via X0~ and in particular x&k> ;C X~11 a.s. One might say that the 
process is built such that it 'learns' not to attain certain values in certain situations. 
This viewpoint suggests a formulation of the process as a learning model as discussed 
in [3). 

In Sections 2 and 3 we show that X is exponentially lfr*-mixing. A quite simple 
argument based on the fact (noted above) that 

X \k) ..... x\k) a s 
J r- J+k •• (l.10) 

will be used to disprove ( 1.5) and thus show that X >!!. ,;(,{; this is done in Lemma 3.2. 
The countably-valued process g of Section 5 (our second example) will be obtained 

from X as follows: 

Here A:= (An)nEZ is a certain i.i.d. sequence, independent of X and with values in 
the positive integers. With a little work the reader will be able to show that this 
process has the form 
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where (Rn) is a process having precisely the structure described earlier and gn = 

g(Rn) depends only on a finite (random) number of components of Rn. The third 
example, given in Section 6, will have a quite similar .structure. 

2. lf!*-Mixing 

First we study the mixing rates of the finite-state Markov chains with the distribu
tions 9'(m), m;a.3, for which the transition probabilities are given in (1.7). 

Lemma 2.1. If m ~ 3 then a Markov chain W:= ( Wn)nez with the distribution 9'(m) 
is exponentially l/I* -mixing, such that 

log if!~ ( W) ~ (2/ m 112 )n "In;;;. t. 

This inequality is crude but simple; in fact we shall use it only for m:;;.: 9 (the 
smallest mk in (1.8)). 

Proof. The transition probability matrix IP':= ( Pii) in ( 1. 7) can be written as 

lfl> =[m/(m- l)]Im -[1/(m- l)]Im 

where Im is the m x m identity matrix and Im is the m x m matrix with all entries 
equal to 1/ m. Using induction and the fact that I;,, =Im, we have that 

For each n the diagonal elements of IP'" are equal to some common value dn and 
the off-diagonal elements are equal to some value Cn. For each n one can show that 

= m max(c"' dn). 

The first equality here follows from the Markov property, the second can be proved 
with an elementary argument, and the third is trivial. 

Since m ;;=. 3 (by assumption) we have that, for odd n;;;. 1, 

1 
dn < Cn =-(1 +[l/(m-1)]") 

m 
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and, for even n ~2, 

1 
Cn < dn =-(1 + (m-1)[1/(m - l)f) 

m 

1 1 
~-(1 + m[2/ mn ,,;;-(1+[2/m 112]"). 

m m 
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Hence if;~ ( W)-1-7 0 at the general rate [l/( m - lff, and we also have !/J~ ( W) ~ 
( 1 -+- [2/ m 112]") 'V n ~ 1, which implies log l/J~ ( W),,;; (2/ m 112r. D 

The next step is to use Lemma 2.1 to get bounds on the mixing rate for each of 
t:he processes x<kl, k~ 1 (see (1.9)); this will be done in Section 3. Because these 
processes x<k), k ~ 1, are independent we have 

i/l~ (X) = IT if;~ (X<k» Vn (2.1) 
k ;:i.: I 

by Lemma 2.2 below, and (2.1) will be used in Section 3 to get an exponential 
bound on the mixing rate for the process X. 

Lemma 2.2. Suppose dn and @m n = 1, 2, ... are u-fields. If the u-fields dn v 9Jm 
n = 1, 2, ... are independent then 

The proof is elementary and is sketched in Bradley [2, Lemma 1]. 

.3. The properties of the example X 

Two properties of the (uncountably-valued) process X defined by (1.9) are given 
here. 

Len:ama 3.1. l/J~ (X)-1-7 0 exponentially as n-? oo. 

Proof. For each fixed k ~ 1 the process x<kJ can be split up into subsequences 
( .X ]f:l;) ieZ for i = 1, 2, ... , k. These subsequences are independent and have the 
dist:ribution Y(mk). Let W be any process with the distribution .'l(md. If n is any 
posi t:ive integer, then it can be written as n = jk + i where 1 ~ i,,;; k and j ~ 0, and 
vve have 

log l/J~ (X<k>J ~log l/lfk+1 (X(k)) = k log l/Jj+1 ( W) ~ k[2/ m112 Ji+ 1 

= k(2/3k )i+l ~ (2/ 3)max(n,k). (3.1) 
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Here the first inequality is trivial. The first equality follows from Lemma 2.2 and 

the structure of X(kl. The second inequality holds by Lemma 2.1 (see also (1.8)). 

The last inequality holds by the definition of j in terms of n. 

By (2.1) we may conclude 

log.p~(X)~ I: (2/3)max(n,k)=(n+2)(2/3r=o((3/4t) asn..,.oo 
k;,J 

and Lemma 3.1 follows. 0 

Lemma 3.2. X ~ .M. 

Proof. The process X has its values in a space r of sequences of integers. As we 

mentioned in the first section, it suffices to show that there cannot exist a positive 

integer k and measure <f; ¥- 0 on I' such that ( 1.5) holds for X. 
Suppose such a k and j, exist. Partition I' as I'= U; F; where I'; consists of all 

sequences in I' with i as their kth coordinate. Then if, (I';) > 0 for some i, and so 

by (1.5), 

P(X6k) = x~k) = i) = P(X0 EI';, xk EI';)~ if, x cf;(I'; x I~)> o. 

This contradicts the fact Xbkl 7" x</i a.s. which holds by (1.10). Hence Lemma 3.2 

holds. D 

We have verified that X satisfies (i) and (ii) of Theorem 1.1. To prove g i2' .M, 
where g is the countably-valued process to be constructed in Section 5 (for Theorem 

1.1), the argument in Lemma 3.2 cannot be used, as we noted earlier, because the 

existence of such a k and cf; is automatic in the countable-state case. So in the next 

section we give another criterion which is similar to but stronger than ( 1.5). 

4. Markov chains 

Suppose Y satisfies ( 1.3 ). Because of ( l.3(ii) there exists by Orey [ 6, p. 7, Theorem 

2.1] a C-set, i.e. a Borel set C with 7T( C) > 0, an integer m > 0 and a number c > 0 
such that 

( 4.1) 

Here Pm(·,·) denotes the m-step transition probability of Y as before, and it is 

understood that A is restricted to the class of Borel sets. Obviously ( 4.1) implies 

( 1.4 ). The existence of a C-set has strong consequences for the distribution of a 

Markov process. In Orey [6] and also Nummelin [5] such sets play a central role 
in the study of the limit behavior of Y. We shall use another consequence of the 
existence of a C -set. 
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Lemma 4.1. Suppose Y is a Markov chain satisfying ( 1. 3), and let p denote its period. 
Then there exists a number y > 0 and integers m > 0 and n0 > 0 such that p I m and 
for all n;;;;, n0 with p In there exists a measure <Pn on ~n+J with <Pn (!Rn+I) = y such that 

PY(-n), Y(-n+I ), ... , Y(O), Y(m), Y(m+I), ... , Y(m+n);;;;, </:in X <f>n· (4.2) 

Of course the restriction p I n is superfluous for a periodic Markov chains. The 
existence of a period p (=1 if Y is aperiodic) is a well-known property of stationary 
irreducible Markov chains; see Orey [6, p. 13, Theorem 3.1]. 

Proof. Let C be a C-set, and let m and c be as in (4.1). Also define the measure 
7Tc( ·) := 7T( · n C).We have PI m because p is the period of Y. If n > 2m and if A 
and B are Borel sets then 

;;;;, L L L C7Tc(B)P"-2m(y, dz)c7T(dy)7Tc(dx) 

= C27Tc X 7Tc(A X B)P( Ym EC, Yn-m EC). 

Orey [6, p. 30, Theorem 7.1] implies that P( Y m EC, Yn-m EC)~ p[ 7T( C)]2 as n-'> oo 
under the restriction p I n. Hence there exists c' > 0 and n0 > 0 such that if n ;;;;.: n0 

and p In then PY<oi, Y(nl;;;;, c' 1Tc x 1Tc. Using this fact twice (with stationarity) a similar 
argument will show that there exists c" > 0 such that if n ;;;;, n0 and p I n then 

p Y(-n), Y(O), Y(m), Y(m+n) ;;;;, C" 7Tc X 7Tc X 7Tc X 7Tc. (4.3) 

For each n define the measure <Pn on !Rn+l by 

<f>n(B) := (c") 112 L
2 
P(( Yo, ... , Yn) E BI Yo= X, Yn = y) d7Tc X 1Tc(X, y) 

for Borel sets B c IR"+ 1 . Then for y := ( c") 112[ 7r( C) ]2 we have that <Pn (IR"+ 1) = y '<In, 
and using the Markov property and (4.3) one proves (4.2). 0 

Remark 4.2. Suppose g is a stationary process satisfying (1.1). We noted earlier 
that (1.4) for Y implies (1.5) for f Similarly the property of Y in Lemma 4.1 
transfers to g, with the measures <Pn replaced by the obvious related measures J;n. 
(Thus a process g which fails to have this property cannot be in .Ai.) 

Remark 4.3. !/I-Mixing is a property stronger than l/f*-mixing. A stationary !/I-mixing 
process has the properties referred to in the above remark, and it is an open question 
whether there are such processes outside .JU. Even for I-dependent processes this 
question is open. (For the definition of !/I-mixing see Bradley [2]. The first sentence 
in [2] contains a minor error; the '*-mixing' condition defined by Blum, Hanson, 
and Koopmans [1] is closely related to !/I-mixing but it is not quite the same.) 
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5. Proof of Theorem 1.1 

To construct the process g for Theorem 1.1 we consider again the process X 
defined by (l.9). Suppose A:= (A 11 ) 11 El' is an i.i.d. sequence which takes its values 

on the set of positive integers and which is independent of X and so independent 

of the processes Xw, xm, .... The stationary process g := ( g")" El'. defined by 

(5.1) 

is countably-valued. By (1.10) we have 

(5.2) 

Below we shall specify the distribution of A0. Property (5.2) will then be used along 

with Lemma 4.1 and Remark 4.2 in order to show that g cannot belong to JU. 
But first let us quickly show that Theorem 1.1 (ii) holds (regardless of the distribu

tion of A0). Defining the process Z:= (ZnlnEi: by Zn :=(A,., X 11 ) Vn E 7L, we have 

i/J~(f)~rf;~(Z)=i/J~(A) · i/J~(X). (5.3) 

The first inequality holds because g11 is Z11 -measurable (for each fixed n), and the 

latter equality holds by Lemma 2.2. Because A is i.i.d., i/J~ (A.) = 1 and using Lemma 

3.1 we obtain Theorem 1.1 (ii). 
To prove Theorem l.l(i) we impose the following restrictions on the r.v. A0 and 

on a set K: 

(i) P(A0 =k)=pk 'VkEK, P(A. 0 ~ K) = 0. ( I Pk= i.) 
keK 

(ii) kpk ~ oo as k ~ oo along K. (5.4) 

(iii) K is a set of positive integers such that for each integer p > O the set K 
contains arbitrarily large multiples of p. 

For example one could take 

With g defined by (5.1) and A. such that (5.4) holds we have: 

Lemma 5.1. g~ .Al 

Proof. The sequence g has its values in 7!. 2• Suppose g has the form ( 1.1) with Y 
a Markov chain satisfying (1.3) with period p. By Lemma 4.1 and Remark 4.2, 

there ex~st Y > 0 and in~egers m, n0 > 0 such that p Im and for all n ~ n0 with p In 
there exists a measure </i 11 on (Z2t+ 1 with total mass y such that 

P4(-11),. .. ,flOl./;(m), .. .,§(m+11);,,, i>n X ~n· (5.5) 
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Let k = n + m where n ;;;:, n0 , k EK, k and n are both multiples of p, and k is 
sufficiently large, such that 

P(Ai = k for some -n ~ j~ O) = 1-(1-P(A0 = k)r+ 1 >1- ·y2. (5.6) 

This is possible because by (5.4), 

(n + l)P(A 0 = k) = (k- m + l)pk "'oo 

as k "' oo along k E K. 
With k and n fixed as above, let A be a subset of (Z2)"+ 1 such that the following 

equality of events holds: 

{Ai= k for some -n ~j~ O} = {(g_"' ... , go) EA}. (5.7) 

Because by (5.6) and (5.5) 

·y2 > P((g_,,, . .. , fo) e A)~ <f>n x <f>n(A c x (Z 2)"+ 1 ) = 'Y<f>n(A c) 

we have Jn (Ac)< y, and so Jn has positive mass on the (countable) set A. Take 
yEA with <f>n({y})>O. By (5.5) the event 

{(g_,,, •··,go)= y, (gm,·•·' gm+n) = y} 

has probability at least [ <f>n ( {y}) ]2 > 0. On this event gi = gi+k for all - n ~ j "-"' 0 and 
moreover because yE A there is by (5.7) such a j with k =Ai (=Ai+k)· Hence for 
this j with positive probability 

gi = gi+k and Ai= Ai+k = k 

which contradicts (5.2). So ge Ad. D 

Thus we have proved Theorem 1.1. 

6. A finite entropy example 

The entropy H(Z) of a countably-valued random variable Z is defined as 

H(Z) :=I q; log2(1/ q;) 

where q; = P(Z = i) and i runs over the values in the range of Z with q; > 0. 
We construct a 1/1*-mixing stationary process g with H(fo) < oo that does not 

belong to .;f,{,, This process has the form (5.1) except that we choose integers mk, 

k ~ l, different from (1.8). The distribution of Ao satisfying (5.4) will also be chosen 
more carefully. 

Because Ao is g0 -measurable we have by a familiar rule for entropy (see 
Smorodinsky [9, Theorem 4. l 2a]) that 

H(go)=H(Ao)+ I H(golAo=k)P(Ao=k) 
keK 
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where H(g0 [A0 = k) denotes the entropy of g0 under the conditional probability 
P(·[A 0 =k). By (5.1) and because XSkl is independent of the event {A 0 =k} and 
attains mk values, each with the same probability, we have H(g0 I A0 = k) = log2 mk 

and so 

(6.1) 

Obviously an exponential choice for mk (as in (1.8)) would make H(g0 ) =oo by 
(5.4)(ii). But let us choose 

for some normalizing constant c > 0. Then we have (5.4) and we can take mk quite 
large such that as k--? oo along K, 

log2 mk = n n-3 for n n = k E K 

and then one concludes easily that H(fo) < oo using (6.1). By Lemma 5.1 (whose 
proof holds verbatim in this new context) we have ge ..44,. Using (5.3) and an argument 
like Lemma 3.1 one can prove that g is i/!*-mixing, i.e. !/!~ ( g) - 1--? 0, but with a 
rate that is slightly slower than exponential. 

Remark 6.1. It seems clear that one can construct a two-state stationary process 
ge .;f;f. that still satisfies the absolute regularity condition. A binary coding of an 
example like the one above, of course with entropy less than l, might achieve this. 
Because of the technical complications this will not be investigated here. A stronger 
mixing property like <P-mixing or !/!*-mixing might be attainable. However this is 
complicated by the fact that the coding of a single g-value may affect a Jong stretch 
of time extending far into both the negative and positive indices. 
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