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Chapter 1

Introduction

1.1 Rascal: Meta Programming Made Easy

Rascal is a programming language for source code analysis and transformation. This means
that typically the input of a Rascal program is a program in some programming language, and
the output is often yet another program. So Rascal is a meta programming language. Source code
is thus primary object of manipulation in Rascal.

Many of the use cases that Rascal is designed to address, follow the Extract-Analyze-
SYnthesize, or EASY paradigm (shown in Figure 1.1). Meta programs often start by extracting
information (facts) from the input program. This is the extraction phase. An example could
be the call-graph of a program. Then, this extracted information is often subject to analysis:
derived facts are computed, the information is enriched. For the call graph, a simple analy-
sis is determining the root or leaf routines in the a source program by analysing the extracted
call-graph. Another analysis could be concerned by identifying routines that are never called
(dead code). Finally, the meta program will synthesize some kind of result. This can be trans-
formed source code (e.g., removal of dead code from the input program), a report (e.g., statistics
on the number of root and leaf routines), or a visualization (e.g., a graphical depiction of the
call-graph). Of course, these phases are not strictly sequential: there may be feedback loops.
Some analysis leads to new extraction, synthesis of a result may lead to new analyses and so
on. Rascal has elaborated features to support each of the phases of the EASY paradigm fully
integrated in the language.

Naturally, the implementation of domain specific languages (DSLs), or more generally, model-
driven engineering (MDE) fits the EASY paradigm very well. When implementing a DSL com-
piler or interpreter the input is, of course, DSL source code. Extraction could, for instance,
include the derivation of an AST from the concrete syntax tree. Another extracted model could
be a graph-like structure representing the input in a more abstract way, or a performance model.
Such abstractions are input to analyses such as constraint checking or type checking, verification,
quality-of-service analysis etc. Finally, synthesis covers tasks such as graphical visualization,
code generation, and optimization. To conclude, in the context of Rascal, we see DSL imple-
mentation as an instance of source code analysis and transformation.

1.1.1 Highlights of the Rascal Language

Design Rationale

Rascal is new and extensive language. Below we discuss the principles that have guided its
design.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: The Extract-Analyze-SYnthesize (EASY) paradigm

Scaling up and down Rascal is designed to support large, complicated tasks that require
state-of-the-art techniques and algorithms. Analyzing and transforming millions of lines of
COBOL legacy code is such a task: it requires powerful parsing technology to handle the com-
plicated grammar(s) of (many dialects of) COBOL and the ability to handle enormous volumes
of source code. On other hand, however,—and this is a fact that is sometimes forgotten—it
should also be possible to do simple things in a simple way. For instance, source code analysis
tasks typically executed using grep should also be easy to express in Rascal. Another example
is string-based code generation: this does not give you syntax-safety, but for many cases it is
more than sufficient and does not require a grammar of the target language. Rascal thus tries
to strike a balance in features for making complicated things possible, while keeping simple
things simple.

Expressivity without magic Instead of doing a lot for you automatically, heuristically or be-
hind the scenes, Rascal provides you with powerful constructs to allow you to program what
you want. This is important in order to let users make precision/performance trade-offs. There’s
no straight-jacket. If you want you can program your analyses and transformations just using
while loops and if statements in order to get the best performance possible. In many cases,
however, performance requirements are not that strict, and for those situations Rascal pro-
vides numerous built-in facilities, for instance, to parse source text (context-free grammars), to
traverse tree structured data (the visit statement), to analyse relational data (comprehensions,
transitive closure) or to generate code (string templates). A related principle is: what you see is
what you get (WYSIWYG). For instance, the basic control flow of a Rascal meta program can
be followed from the source code itself; there is no magic. Another example of WYSIWYG is:
all data can printed, or written on and read from file, and deconstructed (pattern matching) in
a uniform fashion. This is true for all data, including syntax values (parsed source code). To
summarize, Rascal aims to put user in control of any magic she requires.

1.1.2 Rascal at a Glance

In the previous subsection we presented a high-level overview of the design principles of Ras-
cal. To make things a little more concrete, we give a quick overview of the most distinguishing
language features of Rascal.



1.1. RASCAL: META PROGRAMMING MADE EASY 7

Familiar syntax and control flow Although Rascal is a meta programming language, its
syntax will appear familiar to anyone who is acquainted with C, Java, JavaScript or C#. Most of
the usual suspects (while, if, block, assignment, declaration) obey the same syntactic (and often
semantic) rules of curly-based general purpose languages.

Immutable data Rascal can be considered an imperative language: it has side-effects in vari-
ables, while-loops, if-statements etc. There’s one big difference, however: all data is immutable.
As a result, a changing a value (e.g., adding an element to a set) will always produce a new
value. Even though you’ll sometimes see statements that seem to destructively update data,
new values are constructed internally. The only side-effects in Rascal happen in variables.

Built-in data types and pattern matching Rascal features a large collection of built-in data
types: integer, boolean, string, real, tuple, list, set, relation, map, parse trees, source locations (for
identifying fragments of source code), date-time. Additionally, Rascal supports user-defined
algebraic data types (ADTs). All data types have a syntactic, literal representation. Furthermore,
all data1 can be used in pattern matching, a concept well-known from functional programming.
Concrete syntax patterns can be used pattern matching parse trees. That is, you can use the syntax
of the object language (the source code you’re processing) in order to do pattern matching.

Domain specific constructs Although Rascal has most of the features of a general purpose
language, it also features a number of domain specific constructs. One example is the visit

statement for structure-shy traversal and transformation of arbitrary data, including parse trees.
For any task in the source code analysis and transformation space this feature is indispensable.
Other domain specific constructs include: comprehensions (for querying and creating sets, re-
lations, maps or lists), regular expressions (for string matching), transitive closure (on binary
relations), and a solve statement (for fix-point computations).

Arbitrary context-free grammars Context-free grammars are important for any source code
analysis and transformation task, including the implementation of DSLs. Hence, they are an
integral part of Rascal. Context-free grammars define types of parse trees, similar to the way
ADTs may be used to type abstract syntax trees. Such values can be manipulated in the same
way as other values. Rascal automatically generates parsers for these grammars using state-of-
the-art scannerless, generalized parsing technology. Since Rascal supports arbitrary context-
free grammars, syntax definitions can be decomposed in separate modules and be extended at
will.

String templates Since code generation is such a common task in the domain of source code
analysis and transformation, Rascal has built-in support for string templates. String templates
are just like ordinary string values, except they may contain holes to interpolate data. Simple
interpolations consist of simply injecting the string representation of a value into a string. More
complex interpolations can be constructed using embedded if, while and for statements. Finally,
the evaluation of string templates maintains indentation with respect to user defined margins.
This facilitates the generation of well-indented code.

Integration with Java Sometimes a certain task requires a feature that is not provided by
Rascal or its standard library, or is better implemented in a general purpose language (for
instance for performance reasons, or the availability of third-party library). To cater for such
situation, it is possible to interface to the Java world simply by annotating a Rascal function

1At the time of writing, the only exception is maps.
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header with the qualified name of a Java method. All built in data types of Rascal are available
from within Java to serialize foreign data back into Rascal.

IDE integration with Eclipse Programming without IDE support is hard to imagine these
days. For this reason, Rascal can be installed as an Eclipse-based IDE, featuring syntax high-
lighting, outlining, interactive visualization, and a Read-Eval-Print-Loop (REPL). Additionally,
you can dynamically extend this IDE for your own languages. You may register parsers, out-
liners, hyperlinkers, type checkers etc.—all developed in Rascal—to get IDE support for your
own languages without having to recompile and/or restart Eclipse.

1.2 About this Document

This document has a dual purpose. First it gives a tutorial overview of how Rascal can be
used to implement DSLs. Second, it presents the documentation for the Rascal entry in the
Language Workbench Competition 2011 (LWC’11) . In this competition all contestants implement
the same DSL (either graphically or textually) in order to evaluate and compare the merits of
various language workbench approaches.

The document proceeds by discussing each of the tasks defined by the language workbench
challenge. All Rascal source code included in this document is hyper linked to the actual
sources in the public Subversion repository of Rascal.

To download and install Rascal, please visit the following website and follow the installa-
tion instructions:

• http://www.rascal-mpl.org/Rascal/EclipseUpdate

The complete Rascal solution to the LWC’11 challenge can be found at:

• http://svn.rascal-mpl.org/lwc/trunk/lwc11

The revision used to prepare this document is 35063 . After installing the Rascal plug-in you
may check out this URL as a new project in order to run and explore the submission. Click the
“Rascal” menu to start the interactive Rascal documentation system

With respect to the LWC’11 challenge this document is structured as follows:

• Phase 0 (Basics): Chapter 2: Basic Entity Modeling

– Task 0.1 Section 2.1: Syntax Definition

– Task 0.2 Section 2.2: Code Generation

– Task 0.3 Section 2.3: Constraint Checking

– Task 0.4 Section 2.5: Breaking Down Models

• Phase 1 (Advanced): Chapter 3: Extended Entity Modeling

– Task 1.1 Section 3.1: Instances

– Task 1.2 Section 3.2: Type Checking Instances

– Task 1.3 Section 3.3: Model-to-Model Transformation

– Task 1.4 Section 3.4: Name spaces

– Task 1.5 Section 3.5: Integrating Manually Written Code

– Task 1.6 Section 3.6: Multiple Generators

The full assignment of LWC’11 can be found at:

• http://www.languageworkbenches.net/LWCTask-1.0.pdf

http://www.languageworkbenches.net
http://www.rascal-mpl.org/Rascal/EclipseUpdate
http://www.rascal-mpl.org/Rascal/EclipseUpdate
http://svn.rascal-mpl.org/lwc/trunk/lwc11
http://svn.rascal-mpl.org/lwc/trunk/lwc11
http://www.languageworkbenches.net/LWCTask-1.0.pdf
http://www.languageworkbenches.net/LWCTask-1.0.pdf


Chapter 2

Basic Entity Modeling

2.1 Syntax Definition

2.1.1 Concrete Syntax: Context-Free Grammars

The first step in DSL implementation is defining its syntax. In this section we will define a tex-
tual syntax for the entities language. Syntax in Rascal is defined using context-free grammars.
Since Rascal is backed by generalized parsing technology, you can define arbitrary context-free
grammars, without having to restrict your grammar to classes such as LR(k) or LL(k). An im-
portant consequence is that grammars can be developed in a modular fashion. We will later see
that this is important for extending and combining languages.

Listing 1 shows the main part of the entities syntax definition. First, auxiliary (syntax)
modules are extended for defining Layout (white space and comments), Identifiers and Types.
Module extension differs from module importing, in the sense that all definitions (functions,
productions, data types etc.) are made local to the extending module. An entities file then
consists of a sequence of zero or more Entitys. An Entity starts with the keyword entity,
followed by a name and a sequence of zero or more Fields. Finally, a Field consists of a Type
(integer, string, boolean or Entity reference) and a name.

Note that the Entities non-terminal is defined using start syntax: this indicates that it is
the top-level syntactic element we will use for parsing files. Note further that productions and
symbols in a production are labeled with a name. Production labels are identifiers at the start
of a production followed by a colon. The symbols in productions are labeled by a post-fix
identifiers.

One final note concerns the @Foldable annotation of the Entity production. This is used to
support folding in editors for this language.

Listing 1 Syntax definition of entities
extend lang::entities::syntax::Layout;

extend lang::entities::syntax::Ident;

extend lang::entities::syntax::Types;

start syntax Entities

= entities: Entity* entities;

syntax Entity

= @Foldable entity: "entity" Name name "{" Field* "}";

syntax Field

= field: Type Ident name;

Now that we have defined the syntax of our language, how do we use it? In Rascal, if you

9
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import the standard library ParseTree module in addition to all the relevant syntax modules,
you get a parse function for free. In the Rascal’s REPL1, we could use our language as follows:

> import lang::entities::syntax::Entities;

> import ParseTree;

> pt = parse(#Entities, "entity Person { string name integer age }");

ok

Entities: ‘entity Person { string name integer age }‘

//...

The function parse receives a reified2 type argument indicating how the second string argument
should be parsed. The result consists of a concrete parse tree, shown after the literal rendering
between ‘ (back-ticks). This parse tree value contains all information of the source, including
white space, comments, keywords, and source locations. Since most of this information is
irrelevant to further processing of entities, we will define abstract syntax in the next section.
Converting a parse tree to an abstract syntax tree (AST) discards irrelevant detail, leaving only
essential structure.

2.1.2 Abstract Syntax: Algebraic Data Types

Rascal is a functional programming language. Like many other functional languages (e.g.,
ML, Haskell etc.), Rascal supports algebraic data types (ADTs). ADTs are a perfect vehicle for
defining AST types. The complete ADT for defining entity ASTs is shown in Listing 2.

Listing 2 Abstract syntax of entities
data Entities = entities(list[Entity] entities);

data Entity = entity(Name name, list[Field] fields);

data Field = field(Type \type, str name);

data Type = primitive(PrimitiveType primitive)

| reference(Name name);

data Name = name(str name);

data PrimitiveType = string() | date() | integer() | boolean() | currency();

ADTs have a similar structure to grammars, except are introduced using the data keyword.
Each data type has one or more constructors for building values. In this case, for every syntax
production in the grammar for entities, there is a corresponding constructor in this ADT. Every
constructor has the same number of arguments as the number of symbols in the production
(modulo keywords). Lexical tokens correspond to Rascal primitive types. For instance, the
Ident symbol in the production for Field (cf. Listing 1) is a lexical token, and corresponds to
the str name argument of the field constructor.

Parse trees can be converted to ASTs using the standard library function implode. For in-
stance, taking the pt parse tree above as starting point:

> import lang::entities::ast::Entities;

> ast = implode(#lang::entities::ast::Entities, pt);

ok

Entities: entities([entity(name("Person"),

[field(primitive(string()), "name"), field(primitive(integer()), "age")])])

1Read-Eval-Print-Loop
2Reified types are value representation of Rascal types. This kind of type reflection makes it possible to make

type-safe (de-)serialization functions in Rascal.

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/ParseTree.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/ast/Entities.rsc
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/ParseTree
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Again, implode gets a reified type to determine what kind of value has be created. It expects
a correspondence of ADT type names to grammar non-terminals, and constructor names to
production labels 3. Based on that correspondence it produces an AST as shown4.

In most language processing tasks, the AST will be the primary data. In the sections below
we will assume that source text has been parsed and converted to an AST.

2.2 Code Generation

In the previous section we have defined a concrete and abstract syntax for entities. In this
section, our aim is to generate GPL Code from entity models. We will define a generator that
produces Java source code from entity ASTs. Listing 3 shows an excerpt of the code.

Listing 3 Functions to generate Java classes
public str entity2java(Entity e) {

return "public class <e.name.name> {

’<for (f <- e.fields) {>

’ <field2java(f)>

’<}>

’}";

}

public str field2java(field(typ, n)) {

<t, cn> = <type2java(typ), capitalize(n)>;

return "private <t> <n>;

’public <t> get<cn>() {

’ return this.<n>;

’}

’public void set<cn>(<t> <n>) {

’ this.<n> = <n>;

’}";

}

The code generator is defined using ordinary Rascal functions that produce string val-
ues. However, both functions use Rascal’s powerful string templates to produce Java code.
Although this code is relatively self-explanatory, let’s take a closer look at entity2java.

The string value returned by entity2java uses string interpolation in two ways. First, the
name of the Entity e is directly put into the string via the interpolated expression e.name.name

between < and >. Next the body of the class is produced using an interpolated for-loop. This
for loop evaluates its body (a string template again) and concatenates the result of each itera-
tion. For each field, the function field2java is called to generate a field, and getter and setter
declarations. The single quote (’) acts as margin: all white space to the left is discarded. Fur-
thermore, every interpolated value is indented automatically relative to this margin. As a result
the, output of each consecutive call to field2java is nicely indented in the class definition.

The function field2java shows a relative particular feature of the Rascal language: pattern-
based dispatch. The signatures of Rascal function do not have to consist of a list of typed
parameters (as in, e.g., C or Java), but may consist of arbitrary patterns. As a result, such
functions act like a certain multi-methods, which are dispatched on the basis of the constructor
type of the actual parameters to it. The field2java function thus matches its first parameter
against the pattern field(typ, n). Later on, we will show that pattern-based dispatch is a
powerful tool for modularly extending language implementations.

3This is the reason the AST type Entities has to be qualified: its name is the same as the Entities start non-terminal.
4The actual AST is annotated with source location values in order to be able to link back to the original source code

(e.g., for error marking).

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/compile/Entities2Java.rsc
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2.3 Constraint Checking

Constraint checking on the entity language consists of checking for duplicate entity definitions,
duplicate fields in an entity definition and undefined entity references in fields. Just like the Java
code generator of the previous section, these checks are implemented using ordinary Rascal

functions. This functions consume ASTs and produce a list of Messages,—a data type for error
messages provided by the Rascal standard library. The functions for checking entities are
shown in Listing 4.

Listing 4 Functions to check entities for errors
public list[Message] check(Entities es) {

defs = {};

errors = for (e <- es.entities) {

if (e.name in defs)

append error("Redeclared entity", e.name@location);

defs += {e.name};

}

return ( errors | it + checkEntity(e, defs) | e <- es.entities );

}

public list[Message] checkEntity(Entity e, set[Name] defs) {

fs = {};

return for (f <- e.fields) {

if (f.name in fs)

append error("Duplicate field", f@location);

if (reference(Name n) := f.\type, n notin defs)

append error("Undefined entity type", n@location);

fs += {f.name};

}

}

The first function, check, loops over all entities in the Entities AST es. During the loop a set
of names of defined entities is maintained in defs. If an entity is encountered the name of which
is already in defs and error is appended to the result of the for loop. The expression e@location

obtains the source location annotation from the name field of the entity. Source locations are
a built-in Rascal data type for identifying source fragments. Such location values consist of
the file name, character offset, length, begin and end line, and begin and end column of the
fragment. The implode described above, obtains these values from the concrete parse tree and
puts them as annotations on the AST nodes. By putting source locations in the error message,
an IDE, for instance, could link errors to offending source fragments.

After redeclared entity errors are collected, the list of errors is extended by checking each
entity individually using checkEntity. The returned expression is a kind of fold construct5, well-
known from functional programming. The part before the first | is the initial value for the fold.
The middle expression states what has to be computed in each iteration. In this expression the
variable it has a special meaning: it contains the accumulated result from all previous iterations.
The last part, after the second |, is a generator expression (like in the for loop) that produces
the subsequent values in es.entities. As result, a flat list of error messages is returned.

The second function, checkEntity, checks for duplicate fields and undefined references.
Again, the main part consists of a loop, now iterating over the list of fields in an entity. If a
field name has been encountered already, an error is appended. If the type of a field is a ref-
erence to an entity, it should be in the set of defined entities (defs). If not, it’s an error. This
last check uses pattern matching to obtain the referenced name of a field type. The type of the

5At the time of writing, this construct is still experimental.

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Message.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/check/Entities.rsc
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/ParseTree.rsc
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(f.\type6) is matched against the pattern reference(Name n); as a result n is bound to the refer-
enced name if the match is successful. The result of the for loop, i.c. a list of error messages, is
returned as the result of the function.

2.4 An IDE for Entities

Rascal integrates with Eclipse through the IMP framework7. From within Rascal, you dy-
namically register call-backs to extend the currently running Eclipse instance with IDE features
for your language. These call-backs include functions for:

• Parsing: used for syntax highlighting and folding.

• Error marking: used to highlight errors in the source code.

• Context-menus: to allow the invocation of arbitrary Rascal code on the contents of the
current editor. This is used, for instance, to trigger code generation, formatting, visualiza-
tion or refactoring.

• Outliners: used for producing source code outlines that are linked to the editor contents
using source locations.

• Annotators: used to provide hyper linking between elements of the DSL code. For in-
stance, to jump from a use of a variable to its declaration.

Listing 5 Function to register the entities language into the IDE
public str ENTITIES_EXTENSION = "entities";

public str ENTITIES_LANGUAGE = "Entities";

public void registerEntities() {

registerLanguage(ENTITIES_LANGUAGE, ENTITIES_EXTENSION, parseEntities);

registerAnnotator(ENTITIES_LANGUAGE, checkAndAnnotatePT);

registerOutliner(ENTITIES_LANGUAGE, outlineEntities);

contribs = {popup(menu(ENTITIES_LANGUAGE,[

action("Generate Java", generateJava),

action("Generate XML", generateXML),

action("Generate SQL", generateSQL)]))};

registerContributions(ENTITIES_LANGUAGE, contribs);

}

The essential function for obtaining an IDE for the entities language is shown in Listing 5.
The function registerEntities registers the necessary call-backs into IMP so that the IDE fea-
tures listed above become available. First the language is registered with a name, file extension,
and parse function (parseEntities). Second, we register an annotator. This can be any function
that annotates parse trees obtained using the parse function of the previous line. In this case, the
second argument is a function which checks entity parse trees and annotates them with errors.
Third, we register an outliner. This is a function which projects entity parse trees on to simpler
trees that can be rendered as outlines.

Finally, the local variable contribs is initialized to a value that represents a context-menu. It
contains references to ordinary Rascal functions (generateJava, generateXML and generateSQL)
which form the entry points for code generation. This value is then passed to the function
registerContributions to install the menu.

6The identifier type is escaped using \ because type is a reserved keyword in Rascal.
7http://www.eclipse.org/imp/

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/ide/Entities.rsc
http://www.eclipse.org/imp/
http://www.eclipse.org/imp/
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Figure 2.1: Screen-shot of the dynamically generated IDE for the Entities DSL

A screen-shot of the generated IDE for the Entities language is shown in Figure 2.1. The
generated IDE actually runs within the Rascal Eclipse IDE, so the package explorer on the left
actually show the source code of the implementation of the Entities DSL. In the middle you
see an editor containing a simple entity model. It has syntax highlighting and folding which
are both based on the context-free grammar. As you can see, there is an error: entity Person
references an undefined entity Car2.

On the right an outline is shown detailing the structure of this entity model. Clicking on
an outline element, highlights the corresponding source fragment. Finally, at the bottom of the
editor pane, (a fragment of) the context-menu is shown, including entries to invoke various code
generators.

2.5 Breaking Down Models

The objective of this section is to show how one could modularize entity definitions, by dis-
tributing different entity definitions across different files. It should still be possible for an entity
defined in one file, to refer to entities to define in another file. In Rascal this can be simply
achieved by parsing the different files individually, and then merging the resulting ASTs into
one AST. This composite AST can then be considered as if it is a single Entities definition. As
a result, the code generator and consistency checker can be reused as is. The relevant Rascal

code is shown in Listing 6.
The function merge takes a variable number of source location (loc) arguments. Each file is

parsed, the result of which is put in a set using a set comprehension. Using a folding com-
prehension, each list of entities in an Entities AST is flattened into a single list, which is then
wrapped in an entities constructor. The result can be input to further processing. References
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Listing 6 Utility functions to merge multiple entity files into a single set of entities
public Entities merge(loc files...) {

ess = { parse(f) | f <- files };

return entities(( [] | it + es.entities | es <- ess ));

}

will be automatically resolved since references are name-based anyhow.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/utils/Merge.rsc
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Chapter 3

Extended Entity Modeling

3.1 A Language for Instances

To define the syntax of the instances language, we introduce a new Rascal grammar. The
relevant productions are shown in Listing 7. This grammar reuses the identifier and layout
syntax of the entities language (not shown).

Listing 7 Syntax definition for the instances language (excerpt)
start syntax Instances = instances: Instance* instances;

syntax Instance = @Foldable instance: Name entity Name name "=" "{" Assign* "}";

syntax Assign = assign: Ident name "=" Expression;

syntax Expression = const: Value value | reference: Name name;

The start non-terminal (Instances) is defined as consisting of zero or more Instance defini-
tions. An instance is a (foldable) construct, consisting of an entity type, followed by a name
and a list of assignments. An assignment just consists of a name and an assigned Expression.
Expressions include (constant) values and references to other instances. The Value non-terminal
(not shown) captures dates, strings, integers and floats.

We also have to define an abstract syntax for instances. This code, however, follows the same
scheme as the AST types for entities, so we do not show it here.

3.2 Type Checking Instances

Type checking instances is slightly more involved than consistency checking of entities: we
now have to combine instances to be checked together with entity definitions to check against.
For the rest of this section, we assume that the relevant entity definitions needed for checking
instances are somehow provided beforehand. In the actual implementation, instance definitions
include simple include directive to indicate the entity context in which the instances are defined.
The primary functions of the type checker are shown in Listing 8 and 9.

The first function, check (Listing 8), receives two arguments: an Instances model and an
Entities model. In the first line the set of defined entities is put in a map from names to
entities. This is done using a map comprehension. Then a map of defined instances, idefs is
initialized to be the empty map. For each of the instances in is, we first check whether the
type of the instance corresponds to one of the defined entities. If not it’s an error. Second, if the
name of the instance is in idefs we have duplicate instance definition. At the end of the loop, the
instance of the current iteration is recorded in the map idefs, together with its type. Finally, the

17

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/syntax/Instances.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/ast/Instances
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/syntax/Instances
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Listing 8 Type checking of instance definitions against entity definitions
public list[Message] check(Instances is, Entities es) {

edefs = ( e.name: e | e <- es.entities );

idefs = ();

errors = for (i <- is.instances) {

if (i.\type notin edefs)

append error("Undefined type", i@location);

if (i.name in idefs)

append error("Duplicate instance", i@location);

idefs[i.name] = i.\type;

}

return ( errors | it + check(i, idefs, edefs[idefs[i.name]])

| i <- is.instances, i.\type in edefs );

}

list of errors is extends with all errors that result from checking instances individually against
its defining entity (if it exists).

Listing 9 Type checking of individual instances against an entity type
public list[Message] check(Instance i, map[Name, Name] idefs, Entity e) {

fdefs = ( f.name: f.\type | f <- e.fields );

list[Message] errors =

[ error("Undefined field", a@location)

| a <- i.assigns, a.name notin fdefs ]

+ [ error("Undefined instance", a@location)

| a <- i.assigns, reference(Name n) := a.\value, n notin idefs ]

+ [ error("Missing field <n>", i@location)

| n <- domain(fdefs) - { a.name | a <- i.assigns } ];

return ( errors | it + checkTypes(a, fdefs[a.name], a.\value, idefs)

| a <- i.assigns, a.name in fdefs );

}

Individual instance are checked in the second check function (Listing 9). It receives an
instance, a map of defined instances and the entity type. Again, a map is used to store the
the defined fields within the entity e. The variable errors is then filled with three subsequent
comprehensions. Each comprehension produces zero or more error messages. Undefined furls
are found when assigned names are not in the (domain of the) field definitions map fdefs.
Undefined instances are found if a name referenced in an assigned value is not in the map of
defined instances. Missing fields are found by checking if there are field definitions that are not
assigned by instance i. Finally, each of the assignments that have corresponding field definitions
are checked for type compatibility using the function checkTypes (not shown).

An IDE for Instances Just like for the entities, we can use the call-backs into the IDE to
dynamically generate IDE support for the instances language. A screen-shot of the IDE is
shown in Figure 3.1. Note that this IDE happily coexists with the IDE for entities and the IDE
for Rascal in the same Eclipse instance.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/check/Instances.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/check/Instances.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/instances/ide/Instances.rsc
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Figure 3.1: Screen-shot of the generated IDE for the instances languages

3.3 Model-to-Model Transformation

In Rascal, models are values and meta-models are data types. Model-to-model transformation
in Rascal, thus entails transforming the value of one type to a value of another type. In this
section we describe a model-to-model transformation from entity models to a relational database
model. In order to do so, I have to define the meta-model, i.e. abstract syntax, for relational
database. This is shown in Listing 10.

Listing 10 Abstract syntax for relational databases
data Database = database(list[Table] tables);

data Table = table(str name, list[Column] columns);

data Column

= column(str name, ColumnType \type, list[Constraint] constraints);

data ColumnType = integer() | boolean() | varchar() | date() | text();

data Constraint

= unique() | key() | notNull() | references(str table, str column);

The Database ADT is pretty straight-forward and simplified meta-model for relational databases.
Note however that there are only primitive types now and that references between tables are
encoded using foreign key constraints.

The resulting database model could be easily transformed to textual SQL code using Ras-
cal’s string templates (cf. the Java code generation above).

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/database/ast/Database.rsc
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Listing 11 Transforming entity models to a database model
private str KEY = "_id";

public Database entities2database(Entities es) {

return database([ entity2table(e) | e <- es.entities ]);

}

public Table entity2table(Entity e) {

cols = [column(KEY, integer(), [key()])]

+ [ field2column(f) | f <- e.fields ];

return table(e.name.name, cols);

}

public Column field2column(Field f) {

t = type2columnType(f.\type);

cs = [];

if (reference(name(e)) := f.\type)

cs = [references(e, KEY)];

return column(f.name, t, cs);

}

3.4 Name spaces

Listing 12 Extension of the entities language to support name spaces (packages)
extend lang::entities::syntax::Entities;

start syntax Package

= package: "package" Ident name "{"

Import* imports

Entities entities

"}";

syntax Import = imp: "import" Ident name;

syntax Name = qualified: Ident "." Ident;

As models become larger, the need for scoping the use of names becomes more pressing.
In this section we will address this problem by adding a name space facility to the existing
Entity language. Since Rascal supports modular development of grammars, we can completely
reuse the Entity grammar and extend it to support name spaces. The source code for the new
grammar is shown in Listing 12. We have defined a new top-level element, Package, which has
a name, and contains import directives and Entitys. In order to allow the use of fully qualified
names in entities, the Name non-terminal is extended with an alternative for qualified names.

3.4.1 Name Resolution

With the syntax for Packages in place, we now have to find a way to resolve imports1. This
process proceeds as follows: first a WorkingSet is computed; this data structure is a relation
between package names and LoadResults. A LoadResult either indicates success—in which case
the AST of the found package is included—, or failure (notFound()); see Listing 13. The working
set is the starting point for further processing.

Listing 13 Helper data structures for loading packages
data LoadResult = notFound() | success(loc file, Package package);

alias WorkingSet = rel[str pkgName, LoadResult result];

1For packages we make the following assumptions: packages are not nested, imports are non-transitive but may be
cyclic, entities are declared out of order and may have cyclic dependencies.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/transform/Entities2Database.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/syntax/Packages.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/utils/Load.rsc
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Further processing, in this case, consists of checking for errors such as:

• Package could not be found (in import or qualified name)

• Qualified name in an Entity declaration does not correspond to the name of the package
it is contained in.

• Name collision when two imported packages export the same name.

These checks are implemented in a way similar to the earlier checkers in this document (cf.
Listing 4, 8 and 9) so we omit them here.

If a working set is checked to be without errors, all names used in each package can be re-
solved to fully qualified names. In Rascal, this is typically performed using a source-to-source
transformation. This function is shown in Listing 14. The for loop iterates over all packages that
have been successfully loaded. Then the imported packages (including the name of the current
package) are put in imps (using the helper function imports which is not shown). The current
package is then traversed using the Rascal built-in visit construct. The visit construct traverses
any value, and matches the patterns in each of its cases, to the elements visited. If a pattern
matches, the corresponding code is executed. In this case, when visit encounters an unqualified
name, it is replaced (using ⇒) with the fully qualified name. This new name is constructed
in the when clause based on the name of the imported package p2 that exports it. The new
qualified name gets the same source location as the original name, so that type errors may be
related to the source code.

Listing 14 Name resolution
public WorkingSet resolve(WorkingSet pkgs) {

for (k <- pkgs, success(l, pkg) := pkgs[k]) {

imps = imports(pkg) + {pkg.name};

pkg = visit (pkg) {

case Name n:name(str x) => qualified(p2.name, x)[@location=n@location]

when i <- imps, success(_, p2) := pkgs[i], x in exports(p2)

}

pkgs[k] = success(l, pkg);

}

return pkgs;

}

Now that all packages in the working set have been resolved, the original type checker for
entities can be reused. This is a consequence of the fact that the type checker is oblivious to the
structure of names. The passing of the location of the old name to the new qualified name in
Listing 14 will ensure that errors are correctly highlighted in the source code.

3.4.2 Java Code Generation

In order to generate code for a Package, we assume that packages are fully resolved and have no
errors. The Java code generator for packages is an extension of the original Java code generator.
It is simply the function shown in Listing 15. It maps entity packages to Java packages. For
each of the imports, a corresponding Java import directive is generated, importing all elements
in the package. Finally, the function entity2java from the original code generator (cf. Listing 3)
is called in a comprehension to generate code for each entity in the package2.

In order to deal with qualified names, we have to extend the function that type2java in
order to deal with the new AST constructor. It simply returns a Java qualified name (bottom of
Listing 15).

2The function intercalate joins a list of elements into a string with the first argument as separator.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/check/Packages.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/resolve/Packages.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/compile/Entities2Java.rsc


22 CHAPTER 3. EXTENDED ENTITY MODELING

Listing 15 Extension of the entities code generator to support packages
import lang::packages::ast::Packages;

extend lang::entities::compile::Entities2Java;

public str package2java(Package pkg) {

return "package <pkg.name>;

’<for (i <- pkg.imports) {>

’import <i.name>.*;

’<}>

’<intercalate("\n", [ entity2java(e) | e <- pkg.entities ])>";

}

public str type2java(qualified(str pkg, str name)) = "<pkg>.<name>";

3.5 Integrating Manually Written Code

Listing 16 Extending the entities language to support computed attributes
import lang::entities::syntax::Layout;

import lang::entities::syntax::Ident;

import lang::entities::syntax::Types;

import lang::entities::syntax::Entities;

syntax Field

= derived: Type Ident "=" Expression

| annotated: Annotation Type Ident ;

syntax Annotation = annotation: "@" Ident "(" String ")";

syntax Expression

= nat: Natural value

| field: Ident var

| bracket Bracket: "(" Expression exp ")"

| neg: "-" Expression arg

> left (

mul: Expression lhs "*" Expression rhs

| div: Expression lhs "/" Expression rhs

)

> left (

add: Expression lhs "+" Expression rhs

| sub: Expression lhs "-" Expression rhs

);

The entities languages as described up till now just assume all attributes are actual data
attributes. In this sub section, we will extend the entities language with computed attributes.
We will cater for computed attributes in two ways:

• An attribute can be given an expression which computes a value in terms of constants and
other attributes. For instance, to compute the VAT based on a price field of an entity, one
could use the following notation:

double vat = 0.19 * price

A code generator will translate the expression on the right of the equals sign will be
directly to host language expressions.

• The other form of computed attributes uses a Java like annotation mechanism to integrate
with manually written code. In this, we will use an annotation @host("...") where ...

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/compile/Package2Java.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/derived/syntax/Derived.rsc


3.5. INTEGRATING MANUALLY WRITTEN CODE 23

should point to a fully qualified static Java method which accepts a single parameter of
the type this attribute is defined in. For instance:

@host("tax.utils.VAT.computeVat")

double vat

In this case the code generator assumes that such static methods will be available when
the resulting Java code is compiled.

In order to support such computed attributes, we will first extend the syntax of the core lan-
guage for entities; this is shown in Listing 16. Again, we omit the extension of the abstract
syntax since it straightforwardly derives from the grammar extension. The grammar adds two
new alternatives for the Field non-terminal: derived fields and annotated fields. For the derived
attributes we need an expression language, which is captured by the Expression non-terminal.

The syntax definition of the expression language shows two new production attributes
(bracket and left), and a new production combinator (> vs. |). These are used to disambiguate
(infix) expressions. The bracket keyword indicates that the production should not be included
in ASTs derived from these parse trees. Hence, in the ADT defining the abstract syntax of these
expressions there will be no constructor corresponding to this production. Bracket productions
are used for disambiguation during parsing; abstract syntax is non-ambiguous by definition.

Listing 17 Extending the Java generator to support computed attributes
extend lang::entities::compile::Entities2Java;

import lang::derived::ast::Derived;

public str field2java(derived(t, n, exp)) {

return getter(t, n, exp2java(ex));

}

public str field2java(annotated(a, t, n)) {

method = substring(a.string, 1, size(a.string) - 1);

return getter(t, n, "<method>(this)");

}

private str getter(Type t, str n, value exp) {

<tn, cn> = <type2java(t), capitalize(n)>;

return "public <tn> get<cn>() {

’ return <exp>;

’}";

}

The left keyword and the > production combinator deal with associativity and precedence
of (unary/binary) (prefix/postfix/infix) operators. The left keyword, applied to a group of pro-
ductions, indicates that these productions are left associative; there are similar keywords for right
associativity (right) and non-associativity (non-assoc). If two (groups of) productions P and P′

are combined using the greater-than sign (>) it means that the productions in P have higher
precedence than the productions in P′. In our example, it means that the expression language
follows traditional rules for associativity and precedence: unary minus binds stronger that infix
operators, multiplication and division are left associative and bind stronger than addition and
subtraction, which in turn are both left associative.

Now that we have a language for computed attributes, we have to extend the Java code
generator to deal with the new kinds of attributes. The actual extension point is the code
for converting fields to Java code: field2java in Listing 3. This function was defined using
pattern-based dispatch: it matches on the standard field constructors. We can now extend the
code generator by adding extra implementations of field2java that match the additional field
constructors. This is shown in Listing 17.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/derived/compile/Derived2Java.rsc
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Figure 3.2: Screen-shot of the generated IDE for the entities languages with support for com-
puted attributes

The first extension is concerned with attributes which are accompanied with an expression.
The resulting Java code is generated by calling an auxiliary function getter which produces a
getter-method for a type, field name and Java expression. The Java expression is produced from
the Entity expression using exp2java (not shown) which converts additions, multiplications
field references etc. to their Java equivalents.

For annotated attributes, we extract the string of the host annotation and construct a getter
which returns the result of calling the static method.

Obviously, for computed attributes, it does not make sense to generate setter methods, so
this concludes the code generation for entities with derived attributes.

As an example, consider the code of the screen-shot of Figure 3.2. The IDE is generated
in the same style as the IDE for entities (cf. Listing 5). The entity in the editor on the left
defines a product entity which, for the sake of this example, has two VAT attributes. Both
these attributes are computed on the basis of the price of the product. The first (vat) uses the
expression language, and the second (vat2) is annotated with a qualified name of a Java method.
The editor on the right shows the relevant part of the generated Java code. The getter of the vat

attribute consists of an Java expression equivalent to the expression in the entity definition. The
getter of vat2, on the other hand, consists of a call to the method referenced in the annotation.

3.6 Multiple Generators

To show that it is rather easy to add multiple code generators, I could have easily shown a code
generator targeting C# or Ruby, or any similar object-oriented language. However, such code
generators will be very similar to the Java code generator(s) shown so far. So, in this sub section
we will define a really simple code generator converting entity definitions to XML. The source
code for this generator is shown in Listing 18.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/derived/ide/Derived.rsc
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Listing 18 Generate XML for entities
import XMLDOM;

public Node entities2xml(Entities es) {

return document(element(none(), "entities",

[ entity2element(e) | e <- es.entities ]));

}

public Node entity2element(Entity e) {

a = attribute(none(), "name", e.name.name);

return element(none(), "entity",

[a, [ field2element(f) | f <- e.fields ]]);

}

public Node field2element(Field f) {

attrs = [attribute(none(), "name", f.name)];

if (primitive(t) := f.\type) {

attrs += [attribute(none(), "type", getName(t))];

}

else {

attrs += [attribute(none(), "type", "ref"),

attribute(none(), "references", f.\type.name.name)];

}

return element(none(), "field", attrs);

}

Rascal includes basic XML support in its standard library through the XMLDOM module. This
module contains a simple ADT for XML Document Object Model (DOM) trees. If you convert
entities to values over this ADT, they can be automatically serialized as XML documents.

The top level function (entities2xml) in Listing 18 creates a document node for the com-
plete set of entities: it contains a single root element (tag “entities”) which contains each entity
converted to XML as a child. Every entity is converted to XML using the entity2xml function.
This function, in turn, creates a element node for an entity, with a name (XML) attribute. The
XML content for each field is appended to the list of children of this element. Note how the
list comprehension containing the field2element invocations is spliced in to its surrounding list,
next to the name attribute node. This is a feature of Rascal that may be surprising at first sight:
list splicing is the default,—if you want to create a list of lists (resp. set of sets, for that matter)
you have to use an extra pair of brackets (resp. curly braces). Finally, the field2element function
creates an XML element node for a field which has a name attribute, a type attribute, and, if
the field has a reference type, a “references” attribute. For all created elements, we have used
the default XML name space which is indicated by none() as the first argument to attribute and
element constructors.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/entities/compile/Derived2XML.rsc
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Chapter 4

Conclusion

In this article we have introduced the Rascal language workbench by using the LWC’11 chal-
lenge as a case study. Let’s summarize what we’ve seen so far.

First, in Chapter 2 we have defined a small DSL for defining Entities. We have defined the
concrete syntax using Rascal’s context-free grammars, and the abstract syntax using ADTs. We
then used Rascal’s string templates to implement a code generator, targeting Java. Next, we
have shown how a number of simple constraints can be checked by traversing and querying
Entity ASTs. All three aspects of DSL implementation have been integrated in a specialized
IDE for the DSL, which features syntax highlighting, folding, error marking, context menus
and outlines (Section 2.4). Finally, we have indicated how entity definition can be distributed
over multiple files by individually parsing each files and merging the resulting set of ASTs into
a single composite entities specification. After the merge, the code generator and constraint
checker can be reused as is.

In Chapter 3, we extended the basic entities DSL in a number of ways. First, we have defined
a language for entity instances. Again this included the definition of concrete and abstract
syntax. More importantly, we have shown how instances can be type checked against entity
definitions.

The second extension of the entities DSL consists of a Model-to-Model transformation (Sec-
tion 3.3. We have described how entity models (ASTs) can be transformed to relational database
models. These relational database models are again defined using ADTs. Model-to-Model trans-
formation in Rascal thus entails transformation of ASTs.

In order to illustrate modularity and composition of language definitions in Rascal, we
have extended the entities DSL to support name spaces (Section 3.4. An additional aspect of
this language is name resolution: finding the right entity definition for each name occurrence.
The syntax of the new language is again defined as a modular extension of the base language.
Because we have implemented name resolution as a transformation that transforms names to
qualified names, we have been able to reuse the code generator and constraint checker of the
base language to a very large extent.

Finally, in Section 3.5, the base entities language is extended to support computed attributes.
First, the syntax of the entities language is extended with an expression language, to directly
compute the value of an attribute. And second, we have added field annotations that indicate
that an attribute is to be computed using a Java method. For both extensions the Java code
generator had to be extended. Again, we were able to do this in a modular and incremental
fashion.

For the sake of exposition, the source listings in this document have often been excerpts.
It is therefore instructive to have a look at the actual size of the complete solution. Table 4.1
shows an overview of the number of non-comment, non-blank lines of code. The figures are
shown per language (Entities, Instances, Packages and Derived), and per aspect (Syntax,

27



28 CHAPTER 4. CONCLUSION

Syntax AST Checker Generator IDE Total
Entities 45 23 27 32 72 199
Instances 40 25 58 − 56 179
Packages +11 +11 114 +28 62 226
Derived +28 +19 − +32 +36 115
Total 124 78 199 92 226 719

Table 4.1: Non-comment lines-of-code per language, per aspect

AST, Checker, Generator and IDE). A +-sign indicates that the number describes an extension
of the base entities language. For the language with name spaces (Packages) loading of files
and name resolution is included in the numbers of the Checker aspect. Currently there is no
checker for entities with derived attributes, except the one of the base language. Excluded
from these numbers are: the model-to-model transformation (Section 3.3), SQL code generation,
and the XML generator for entities (Section 3.6), packages, and utility modules for parsing,
imploding and merging. The total number of lines of code, including the components omitted
from Table 4.1, is 953.

http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/database/compile/Database2SQL.rsc
http://svn.rascal-mpl.org/lwc/trunk/lwc11/src/lang/packages/compile/Package2XML.rsc
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