
ESTIMATING THE GLOBAL ERROR OF RUNGE-KUTTA 

APPROXIMATIONS FOR ORDINARY DIFFERENTIAL EQUATIONS 

K. Dekker and J.G. Verwer 

The user of a code for solving the initial value problem for ordinary 

differential systems is normally left with the difficult task of assessing 

the accuracy of the numerical result returned by the code. Even when the 
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code reports an estimate of the global error, the question may remain whether 

this estimate is correct, i.e. whether the user can rely on the estimate. 

This paper proposes a simple idea of measuring the reliability of the global 

error estimate with the aim of assisting the user in the validation of the 

numerical result. The idea is put into practice with the existing code 

GERK (ACM Algorithm 504) developed by Shampine and Watts. This code uses 

global Richardson extrapolation for the error estimation, which in many 

cases can also be applied to Runge-Kutta codes for delay equations. 

I. INTRODUCTION 

This paper deals with the problem of computing reliable estimates for 

the global error of numerical approximations to the exact solution y(x) of 

the initial value problem 

(I. I) f(x,y), a~ x ~ b, y(a) =Ya' 

where f is supposed to be a sufficiently smooth, real-valued vector function. 

We restrict ourselves to non-stiff systems and classical explicit Runge

Kutta approximations (see e.g. [4,7,11]. 

Let us first introduce some notations and definitions. The initial 
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value problem (I.I) is integrated on a grid 

( 1. 2) {xn € [a,b], n U(l)N, with x0 = a, xn-I < xn' ~ = b} 

to obtain the approximations y, where y0 = y and, for n 0,1, ... ,N-1, n a 

m 

Yn+I y + h l biki' hn = xn+I - xn' 
(I. 3) 

n ni=I 
i-1 

k. f(xn+cihn,yn + h l a .. k.). 
l. n j=I l.J J 

The scalar parameters a .. ,b. and c. define the Runge-Kutta scheme. The grid l.J l. l. 

GN needs not to be uniform and, as is comnon practice, may be determined 

during the integration process through some stepsize control mechanism. It 

will be assumed that for N sufficiently large the minimal and maximal step

lengths behave like O(N-1). More specifically, we assume the existence of 

a piecewise constant function 0:[a,b] + [0 . ,a ], 0 < 6 . s e , such min max min max 
that for N sufficiently large h = 6(x )R_ = 0(x )6 /N, n = O(l)N-1. If n n -~ n max 
this natural assumption is satisfied, we are assured of the existence of an 

asymptotic expansion in ~ for the global discretization errors 

(1.4) 

See STETTER[ll] for a detailed analysis. If we let f be M times differen

tiable (in some neighbourhood of y(x)), then functions ej' j = p, ••• ,M, 

exist independent of H = ~ such that 

(1. S) E: = n 

M • _MI l HJe.(x) + O(~-+ ). 
j=p J n 

Here p denotes the order of accuracy of the Runge-Kutta method. The exis

tence of these asymptotic expansions for E:n forms the basis for most of the 

error estimation techniques. 

The usual approach in the literature on global error estimation is to 

compute a first approximation for E:n' est~!) say, which satisfies a rela

tion of the form 

(I .6) 
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Here v(x) is some function different from e (x). The user of a code which 
d 1 . . 1. k (I) · 11 p+ I · · e ivers an estimate i e estn wi normally be interested in the global 

error. Anyhow, it is reasonable to assume that most users wish to rely on 
the estimate. Otherwise the extra effort spent is of no use. In this respect 

global error estimation has to be approached in an essentially different way 

than local error estimation. The importance of local error estimation lies 

in stepsize control, while the reliability of the local estimate is of less 

importance than its additional costs. When reporting global error estimates 

however, one should make higher demands on reliability than on efficiency 

for the reason just mentioned. In fact, from the user's point of view, the 

computation of a highly reliable global error estimate might be considered 

as important as an efficient computation of the approximation itself. 

These considerations lead us to the conclusion that it might be desir-
bl d d . (2) . f . a e to compute a secon an more accurate estimate estn satis y1ng 

(I. 7) est(2) 
n 

and to compare this result with the first estimate est(!). 
n 

One way to do this is to check whether 

( l. 8) : c __ est( 2); est(!) c · · r = means componentwise operation, est n n ' 

is sufficiently close to one. The quantity r is a first order approxima-est 
tion to the true error ratio rtrue' i.e. rest= rtrue + O(H), where 

(I. 9) r true 
.'.: est (2) /E . 

n n 

. ( 2) . f bl . d h If r is close to one and est is o an accepta e magn1tu e, one as a 
est. . . (2) _n . strong indication that estn is an accurate estimate. We believe that the 

reliability of automatic codes for our initial value problem (I.I) is 
greatly enhanced if the asymptotic quality of the global error estimation 

can be verified. 

The objective of this paper is to put this idea into practice and to 

show that it is useful. Our starting point is the existing Runge-Kutta code 

GERK developed by SHAMPINE & WATTS[IO]. This code is based on a Fehlberg 
(I) (4.5)-pair [3] and computes a first estimate estn by means of global 

Richardson extrapolation. The decision to concentrate on GERK is based on 

57 



58 Dekker and Verwer 

the fact that this code is very suitable for the task we have set ourselves. 

When combined with interpolation formulas, Runge-Kutta methods have also 

been shown to be applicable to delay equations, such as 

(I. 10) y f(x,y,y(x-T)), x ~ 0, y(x) 1P(x), x ~ 0, 

where T = T(x,y(x)) (see e.g. ARNDT [1], OPPELSTRUP [9]). If the order of the 

interpolation is high enough, and if the problem is sufficiently smooth, the 

global error satisfies a relation like (1.5) where Mis at least equal top 

[9]. This means that global Richardson extrapolation can be used. Normally, 

however, it seems difficult to prove that M ~ p+k, k ~ I. 

2. GERK AND GLOBAL RICHARDSON EXTRAPOLATION 

Global Richardson extrapolation involves parallel integration with the 

same method on different grids. The use of Richardson extrapolation for 

estimating the global discretization error of one-step integration methods 

is well-known (see HENRICI [4], p.81, LETHER [8] and STETTER[I I], p. 157). 

When using non-equidistant grids, which we assume, it is only allowed to 

change the stepsize at grid points where the various approximations are 

combined in the extrapolation process. 

SHAMPINE & WATTS [ 10] have implemented global Richardson extrapolation 

on top of the Runge-Kutta code RKF45 which is based on a Fehlberg (4.5)

pair. They called the resulting code GERK. This code computes two parallel 

·olutions and estimates the global error at the finest grid (grid G2N of 

ig. 1). By computing a third parallel solution, on a grid G3N as shown in 

ig. I, the same idea can be used for obtaining two estimates est(!) and 
(2) n 

estn of the global error at the grid G3N. Having two estimates of the 

global error available we then can measure the accuracy of these estimates 

as outlined in the introduction. 

RKF45 

GERK 

RGERK 

x 
n 

h 
n 

Figure 1. 

xn+l 

GN Yn,1 

G2N Yn,2 

G3N Yn,3 
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Let us give some details. Consider three coherent grids as shown in 

Figure 1. Apply on these grids some Runge-Kutta method of order p to obtain 

at the points x = xn the approximations y 1 , y 2 and y 3 . Let 
n, n, n, 

( 2. I) e: • 
n, J. 

M 

I 
j=p 

i 1 , 2, 3. 

We now define our estimates by 

(2.2) 

est ( 1) := 
n 

est( 2) := (l+n)est(I) - n(y 1 - y )/(3P-I) 
n n n, n,3 ' 
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where n = (1-(l.5p+l_l)/(l.5P-1))/((J.5p+l_l)/(l.5P-1) - (3p+l_l)/(3P-I)). 

Relations (1.5) - (1.7) are satisfied if His replaced by H/3 and En by e:n, 3 • 

Hence we estimate the error of the most accurate solution y 3 . 
n, 

The code GERK computes the solutions y 1,y 2 on the grids G ,G2 and 
n, n, ~ N 

delivers at the points x the global error estimate (y 1-y 2)/(2 -1), where 
n n, n, 

p = 5. Thus it also reports the more accurate solution y 2• The stepsize 
n, 

selection of GERK is based on a mixed relative-absolute local error control 

on the coarsest grid GN by using the imbedded 4-th order scheme (see [10], 

section 4 for details). Control on the coarsest grid protects the parallel 

integration, where no control is performed, against instability. It shall 

be clear now that it is possible to place our estimation procedure on top of 

GERK without drastic changes. Only minor modifications are required. These 

are the implementation of the third parallel integration on G3N and the 

implementation of the estimates (2.2). Further, the modified code, which we 

have named RGERK, should report the numerical solution y 3 , the estimates 

est(Z) and r n, 
n est 

We wish to emphasize that we did not modify the stepsize and local 

error control. This implies that for a given value of the local tolerance 

input parameters RGERK computes exactly the same solutions Yn,l and Yn, 2 as 

GERK does. GERK, in turn, computes the same solution y 1 as RKF45. 
n, 

It should be noted that in normal situations the global error of y 3 shall 
n, 

be somewhat smaller than the prescribed local tolerance values. This is be-

cause we report the solution computed on the finest grid G3N' whereas the 

local error and stepsize control is performed on the coarsest grid GN. It 
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is perhaps clarifying to observe that the grids GN, G2N and G3N are deter

mined in the course of the integration, viz. by the stepsize control. 

Finally, a few remarks on the cost ratios of RKF45, GERK and RGERK. 

When we consider the coarsest grid GN' RKF45 uses six f-evaluations per 

step, GERK eightteen, and RGERK thirty-six. However, they report the solu

tion at G , G and G3N, respectively. Hence one has to take the accuracy 
N 2N 

at the three grids into consideration. On the asymptotic basis we thus 

arrive at the ratios 6 : 9 : 12. In practice the cost ratios, in terms of 

the numbers of f-evaluations, will slightly differ from the asymptotic 

ratios. Normally they will be somewhat larger. For further practical in

formation we would like to refer to SHAMPINE & WATTS [10]. 

3. MEASURING THE RELIABILITY OF THE GLOBAL ERROR ESTIMATES 

A code like GERK computes a numerical solution of (I.I) and reports 

at the same time an estimate est(!) of the global discretization error. 
n 

Experiments reported by Shampine and Watts show that their estimate est(!) 
n 

will be reliable in many cases. Nevertheless, in real life computation the 

user of GERK is left with the difficult task of assessing the accuracy of 

the estimate himself. If it is in doubt, which already may be very diffi

cult to establish, one could apply the code a second time with a more 

stringent local error tolerance and then by comparison try to get more 

insight in the accuracy of the reported quantities. The theoretical support 

of the technique of reintegration is difficult to give, however, when using 

a stepsize determined by local error control. To assist the user in his 

validation of the numerical result we prefer to compute the quantity 
c (2) / ( 1) ' d d . . (I 8) (2 2) rest = estn estn intro uce in equations • , • . From a theoret-

ical point of view, the use of r t is fully justified. In this section we es 
will consider r t in some more detail. es 

For convenience of presentation we now restrict ourselves to a single 

differential equation. First we introduce the quantity 

(3.1) r := (1.sP-1)(y 1-y 3)/(y 2-y 3)(3P-1), 
n, n, n, n, 

and observe that rest can be written as a function of r, viz. 

(3.2) rest(r) = I + n - nr. 
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In fact r has a similar meaning as r being the quotient of two different est 
estimates of en= cn, 3 • Equation (3.2) shows the range of rest' The equal-
ity rest(!) = I follows irrnnediately from the observation that both rand 
rest tend to I if H + 0. For p = 5 we have 

(3. 3) r (r) = (422 - 121r)/301. est 

Note that r (0) ~ 1.4, which 
est (I) 

means that if r is close to 1.4 at least 
(2) . est 

one of the estimates est 
n 

or estn is very inaccurate. Generally, too 
small or too large r t-values mean that at least one of these estimates 

es (2) 
is wrong. One should observe, however, that est is a more accurate 

(I) n 
estimate than estn (cf. (1.6),(1.7)). In other words, rest normally will 
be a conservative approximation for r = est(2)/c. true n n 

The main question is of course, which range of r -values is still est 
meaningful!. We have tried to answer this question in two ways, viz. 

theoretically and experimentally. The experiments are discussed in the 

next section. Here we discuss our theoretical answer. 

Assume that in equation (2.1) the errors£ . can be represented by n,i 
infinite series. Let e (x ) f 0 and introduce p n 

(3.4) a .• - Hj-pe.(x )/e (x ), 
J J n p n 

j ~ p. 

Substitution into (3.1) yields 

(3. 5) r = 

By imposing bounds for a., j ~ p+I, one can obtain bounds for r, rest and 
J 

r . The idea is to compare these bounds. We will consider a.-values true J 
satisfying 

(3.6) la. I ,,; 
J 

j-p 
c ' ~ p+l and 0 < c < I. 

The smaller c, the more dominance of the error term Hpe (x ) is supposed P n 
by this condition. The following results were obtained. 

LEMMA I. Let p = 5 and denote a= (a6 ,a7, ... ), a-= (-c,-c2 , ... ) and 
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a+= (c,c2, ••. ). Suppose that 0 < c s 2/7. ForoaU sequenaes a the elements 

of which satisfy aondition (3.6), it then holds that 

(3. 7) 
1-~ 

+ 2 s r (a) s r (a ) = -1 --c 

PROOF. Substitute p = 5 into (3.5) and write r(a) = N(a)/D(a). Differentia

ting r(a) to ak, k ~ 6, yields 

D2(a) ar(a) = 243( 1_3-k) _ 32 243 (2-k_3-k) + 
aak 242 211 

32 243 243 l { (1-3-k) (2-j_3-j) - (2-k-3-k) (1-3-j) }a. ~ 
242 211 j=6 J 

243 -2..Q_ - 243 243 (~ + 25-k~) 
242 211 242 211 2-c 1-c ~ 

243 c 1 c 
242*211 <9o - 243 <2-c + 2 1-c)) 

for all k ~ 6 and 0 < c <I. The last expression is positive for all c be

tween 0 and 2/7. Further, 

D(a) 

if 0 < c $ 2/7. Hence for all k ~ 6, ar(a)/aak > 0 if O < c s 2/7, which 

implies that for these values of c, r(a) takes its minimum and maximum at 

a= a- and a= a+, respectively. 0 
Substitution of (3.4) into rt given by (J.9) yields rue 

and, for p = 5 

(3.9) r = true 
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LEMMA 2. Let p = 5 and denote a= (a.6 ,a7 , ... ), a-= (-c,-c 2, ... ), a.* 
2 3 

= (-c,c ,c , ... ). Suppose that 0 < c s 602/845. For all sequences o: ~he 

elements of which satisfy condition (3.6), it then holds that 

(3. I O) 
81 c2 

I - 602 ----------- s rtrue(a) s 
c 2c 2c2 

(l-c)(I-2)(!-3+-9-) 

81 c 2 
s I + 602 -------~

( l-c) (I -~)(l-2c) 
2 3 

PROOF. We write rtrue(o:) = P(o:)/Q(o:) and note that Q(o:) is positive, because 

Q (o:) I + 243 l 
j=6 

I - l (c/3)j-5 

j=6 
> 0, 

if 0 < c < 3/2. Similarly, we have 

64 \' -j -j l I -j 
P(a.) I + 243 3QT .l (2 -3 -ill+ ill 3 )o:J. <! 

J=6 

<! I - 243 l cj-5 > 0 
602 j=6 

. s 602 if 0 < c 845 . Differentiating rtrue(o:) to o:k, k <! 7, yields 

64 -k -k I I -k 243 
= 243 3QT (2 -3 -ill+ ill 3 )Q(o:) -31< P(a.) s O, 

-k -k I I -k 
as 2 -3 - 128 + 1283 < 0 fork<! 7 and both Q(o:) and P(o:) are positive. 

Finally, 

art (o:) 
Q2(N) rue ]( ~ 30:6 = 3 Q(a.) -P(o:)). 

At the maximum we have P(o:)/Q(o:) >I, so that the derivative with respect 
. . . . b . d f d k-6 to 0:6 is negative; thus the maximum is o taine or 0:6 = -c an o:k = -c , 

k <! 7. At the minimum P(o:)/Q(a.) < I, so the derivative with respect to 0:6 
k-6 is positive and the minimum is obtained for a6 = -c, °k = c , k <! 7. D 

Using (3.3) Lemma I yields bound for rest under condition (3.6), where 

O < c s 2/7. Under the same condition Lemma 2 yields bounds for rtrue' but 
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now for 0 < c $ 602/845. Table 2 shows these bounds for a number of values 

for c $ 602/845. 

r est r true 

c lower upper lower upper 

I .998 I .002 I. OOO I .OOO TOO 
I .993 1.007 I. OOO I .OOO 36 
I .978 1.023 .998 1.002 10 
I 

. 951 1.060 .991 1.009 5 
I .936 I. 087 .985 1.015 4 
2 .923 1.110 .978 1.022 7 

2 .876 I. 135 

7 .474 1.634 10 

Table 2. Bounds for r and r est true 

4. PERFORMANCE OF THE MODIFIED GERK CODE 

The purpose of this section is to give practical evidence to our view 

that the use of a second estimate est( 2) greatly enhances the reliability of 
n 

the global error estimation procedure. Further we want to give an answer 

to the question of section 3 how to interpret a reported r -value. est 
We have subjected the code RGERK to various experiments. In sections 

4.1 - 4.3 we present results, in some detail, for three different example 

problems. In section 4.4 we have collected some statistics on the well-known 

test set of Hull et al. [5]. All computations have been carried out on a CDC 

Cyber 750. The arithmetic precision of this computer is about 14 decimal 

digits (48 bits). We refer to [2] for a more detailed discussion. 

4. I. A problem with a peaked solution. 

Consider the initial value problem 
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(4. 1) y -32xy ln 2, -I $ x s I, y(-1) 
-10 

2 ' 

2 
with the peaked solution y(x) = 26- 16x We have taken this problem from 

LETHER [8]. For x < 0 the problem is unstable. Hence for x < 0 we will find 

global errors which increase with x due to unstable growth. On the other 

hand, for x > 0 the problem becomes highly stable for increasing x · Hence 

for x > 0 the errors should decrease again, as x increases. 

We have solved this problem using pure relative local error control. 

For the tolerance I0-4 we have tabulated e: r r and ND = number of 
n' est' true 

f-evaluations,forseveral values of x "[-1,+l] (see Table 3, which for the 
n 

sake of comparison also contains results of GERK). For the remaining grid 

points similar r and r -values were found. Hence it can be concluded 
true est 
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that the estimation procedure delivers a true copy of the global error behav-

iour over the complete integration interval. 

RGERK GERK 
x E: r r ND E: r ND 

n n true est n true 

-.884 -7.6(-9) .99 1.08 155 -5.3(-8) .78 83 

-.604 -2.0(-6) .99 1.08 443 -1.4(-5) .79 227 

-.409 -2.2(-5) .99 1.08 587 -1.5(-4) .79 299 

.078 -1.5(-4) .98 1.04 767 -1.1(-3) .90 389 

.307 -5.1(-5) 1.00 I. 11 844 -3.6(-4) .70 430 

.617 -2.7(-6) J.00 1.07 1080 -2.0(-5) .82 558 

.817 -1.4(-7) J.00 1.04 1296 -I. 0 (-6) .90 666 

I .OOO -4.0(-9) .99 1.02 1584 -3. 0 (-8) .95 810 

Tab le 3. Results for problem (4. I) 

4.2. The restricted 3-body problem 

Our second example is the restricted 3-body problem 

* 3 * 3 ul 2u2 + ul - µ (ul+µ)/rl - µ(ul-µ )/r2 ' 

(4. 2) 
2· * I 3 I 3 u2 - ul + u2 - µ u2 rl - µu2 r2 ' 

2 2! *2 2! * r 1 [(u 1+µ) +u2 J ,r2 = [(u 1-µ ) +u2 ] , µ = _1/82.45, µ = J - µ, 

u 1 (O) = 1.2, u1 (O) = 0, u2 (0) = 0, u2 (0) = -1.04935750983032, 
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which has also been used by Shampine and Watts. Using absolute local error con

trol we have integrated this difficult problem over the first period P = 

= 6.19216933131964. Table 4 contains results for the endpoint x = P. These re

sults belong to that component for which the error of FGERK, in absolute value, 

is maximal. We observe again good results, except for the tolerance values 
-I -3 -I -2 · · · h h · 

10 - 10 • For 10 and 10 r fails to indicate t at t e error estimate 
(2 ) est 

est is inaccurate. In both cases, however, one can deduce from the magnitude 

of ~st ( 2 ) and est (l) that the results are unreliable. It remains necessary to 
n n (2) (I) -3 

consider the magnitude of estn and estn Further we see that for 10 the 

. (Z) . d h · 1 h 1 th 1 . h estimate es tn is very goo , w i e rest as near y e same va ue as in t e 

first two cases. We have already predicted this situation in section 3 where 

we established that r -values close to 1.4 may be meaningless. 
est 

- log of 
tolerance 

2 

3 

4 

5 

6 

7 

E: 
n 

-2.l(+l) 

-1.3(+1) 

1.6 (-2) 

2.1(-5) 

1. 9 (-6) 

1.4(-7) 

7 .8 (-9) 

RGERK 

rtrue 

-.44 

-. 18 

.95 

1.05 

1.04 

1.02 

1.03 

r ND E: 
est n 

1.40 355 2.3 (+1) 

]. 39 1494 -1.9(+0) 

1.40 2009 8.7(-2) 

1. 27 2856 1. 3 (-4) 

1.14 4171 1.3(-5) 

1.06 6257 1. 0 (-6) 

1.04 9445 5.9(-8) 

Table 4. Restricted 3-body problem (4.2) 

4.3. Mildly stiff problems 

GERK 
r true ND 

-.03 193 

-.03 810 

-.03 1055 

.30 1506 

.64 2191 

.83 3269 

.89 4873 

Though explicit Runge-Kutta codes cannot effectively be used for stiff 

problems, they may be of value for problems exhibiting a mild stiffness. How

ever, when integrating a mathematically stable problem and numerical stability 

limits the stepsize, global Richardson extrapolation will always perform bad

ly (see also SHAMPINE & WATTS [ 10]) . More precisely, any estimate which makes 

use of results from the coarsest grid will be conservative. The reason is 

that the solutions on the finer grids are not troubled by numerical stability 

because the local error control, which now prevents the computation from 

becoming unstable, is performed on the coarsest grid. Often this implies that 
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due to the stability of the problem and of the computation, the true global 

error at the finer grids is smooth and small when compared with the global 

error at the coarsest grid. This causes, fortunately enough, conservative 

estimates, but also large oscillations in r , as well as in r 
est true 

To see how our estimation procedure performs on a mildly stiff problem, 

we have shown in Table 5 some results for the simple problem 

(4. 3) y = -IOO(y-2-1) + - 1--2 , x <: 0, 
x+ (x+I) 

y(O) 0. 

The general solution is given by y(x) = e-lOOxy(O) + x/(x+I). Since we take 

y(O) = 0, only the rather smooth solution x/(x+l) has to be computed. Table 

6 contains results of the n-th step, where n = 10, 19, 30, 39, 50, from the 

integration under absolute local error control with the tolerance J0-3 • Re-

call that E 1 denotes the error at the coarsest grid. n, 

E: 
n 

We observe that E 1 oscillates and slightly increases with n, whereas n, 
smoothly decreases with n. This results in increasing and oscillating 

r -values. Note that r detects this behaviour in a satisfactory way. 
t:ue. est (I) (I) . 

This is because r = r * e: /est and est is based on results 
est true n n n ( ) 

from the second and third grid. Hence for mildly stiff problems est 1 is 
n 

to be preferred above est(2), provided of course that the local error con
n 

trol has to prevent the numerical instability. If the code is applied with 

a maximal stepsize, chosen in such a way that absolute stability is taken 

care of, the estimation procedure will perform in a normal way. 

n x E: E est (I) Is r r 
n n,1 n n n true est 

10 .347 -1. 4 (-4) 2.6 (-7) 1.19 2.56 2.15 

19 .679 2.6(-4) 1.4(-7) 1.20 -1.40 -I .17 

30 1 .084 -2.0(-4) 5.9 (-8) I. 19 7.45 6.25 

39 1.418 3.6(-4) 4.5(-8) I. 19 -11.37 -9.57 

50 1.823 -3.4(-4) 3.0(-8) I. 19 20.57 17.33 

Table 5. Results of RGERK for problem (4.3) 
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4.4 Performance of RGERK on the test set of Hull et al. 

To gain further insight in the use of computing a second and more accurate 

estimate est~Z), we have applied RGERK to the five problem classes of [5]. For 

all 25 problems we used, componentwise, the local error criterion 

-14 
!estimated local errorl s tolerance *)solution) + 10 

-3 5 -7 For the tolerances 10 , 10- and 10 . Hence, in normal cases, a relative con-

trol. Results, in percentages shown in Table 6, have been collected for five 

regions in (rtrue'rest)-space. 
. (2) . Region I u II shows the number of times that estn approximates En rather 

accurately. Region II shows the number of times that rest should be considered 

as too conservative. Region III u IV u V shows the number of times that the 

accuracy of est(2) is not so good. Fortunately, in most of the cases this has 
n 

been detected by rest' according to the percentages of region III. Regions IV 

and V show the most interesting information, viz. the percentages of the number 

of times that rest fails to indicate an inaccurate global error estimation. By 

way of illustration we show these percentages for two different ranges for 

r true When considering the failure percentages the reader should realize that 

we deal with a collection of 25 initial value problems which are divided into 

5 different classes, each class having its own degree of difficulty. 

Since the results are easily contaminated by round-off when the estimates 

are very small [2,JO], we have distinguished between two intervals for est( 2) 
viz. !est(2)1 > 10-JO and Jest(2)1 s JO-JO. n ' 

n n 

I 

II 

III 

IV 

v 

Regions 

1//2$rt $/2,.6s;r Sl.3 rue est 
1//2.sr s/2,r s.6,r ?:1.3 true est est 
rtr s1//2,rt ?:/2,r s.6,r ?:1.3 ue rue est est 
l/4srt s1//2,/2sr s4,.6sr sl.3 rue true est 
rtruesl/4,rtrue?:4,.6srestsl.3 
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Regions 

I 

II 

III 

IV 

v 

46.4 84.2 

22.2 

27 .1 

3.7 

.6 

totals 75.0 

6.5 

8.7 

.6 

70.1 

96.9 

2.5 

.6 

52.8 

lest( 2) I ::;; 10-IO 
n 

10-3 10-5 

57.3 

3.1 

30.5 

2.2 

6.9 

25.0 

68.3 

3.8 

19.2 

2.7 

6.0 

29.9 

75.6 

2.3 

10.8 

5.2 

6.1 

47.2 

Table 6. Percentages for two intervals for est( 2). 
n 
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Further, the percentages were first determined per problem, while counting over 

all components and all gridpoints, and then averaged over the whole problem 

collection. Tii.ese averaged percentages are given in the table. 

5. CONCLUSIONS 

The percentages of Table 6 show that in case of extremely small est

imates the reliability is insufficient. This cannot be avoided since the 

failures are due to roundoff effects. Fortunately, one is usually not in

terested in a very accurate estimate of extremely small errors, so these 

results are not as bad as they look. 

The reliability is much larger if est(2) itself is not very small. In 
-7 n 

fact, for 10 the score for region V is exactly zero, while for region IV 

only a few failures out of approximately 20.000 data points were found. The 

score for region II is still too large, however. This is caused by inaccur-
. . (!) - 3 d 0-5 l" b"l" . 1 d I acies in est • For 10 an I the re ia i ity is ess, as expecte • n 

n -3 
particular for 10 , a current 

score for region I (est(!) and 
n 

the score for II, IV, Vis too 

tolerance value for a 5-th order code, the 

est(2) both accurate) is too low, whereas 
n 

high. Part of the failures for the larger 

tolerances is of course due to a failure of the asymptotics. However, num

erical instability at the coarsest grid GN (cf. section 4.3) also influences 

the results in a negative way. 

Therefore we intend to continue our investigations with an estimation 

procedure which performs local error-stepsize control on the coarsest grid 

GN and which performs global error estimation only on the finer grids 
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G G p e: 3. Herewith we avoid non-smoothness effects which might 
2N'.".' PN' 

interfere with the estimation procedure. Such a procedure delivers P-2 
(i) . . (i) ( p+i) 

estimates est i = I, •.. ,P-2, satisfying est = En p + 0 H . The 
n ' n , 

results of the present investigation show that a value P > 3 should be in-

vestigated. The cost ratio, in terms of f(y)-evaluations, is given by 

(P+l)/2. Hence, for a given accuracy, the additional computer time for the 

global estimation will be roughly a factor (P+l)/2-1 of the computer time 

required when no global error estimation is performed. In this respect it 

is worthwhile to observe that global Richardson extrapolation is uncommonly 

attractive for users who have a parallel computer at their disposal. De

pending on the number of processors, the additional computer time can then 

be greatly reduced, even to zero (see e.g. JOUBERT & MAEDER [6]). 

ACKNOWLEDGEMENT. The authors greatfully acknowledge the programming assistance 

of Mrs. M. Louter-Nool. 

REFERENCES 

[I] ARNDT, H., Der> Einflusz der> Interpolation auf den globalen Pehler> bei 

r>et,ar>dier>ten Differentialgleichurzgen. These proceedings. 

[2] DEKKER, K. & J.G. VERWER, Estimating the global er>ror> of Runge-Kutta 

appr>oximations, Report NW 130/82, Mathematical Centre, Amsterdam, 

1982. 

[3] FEHLBERG, E., Low-or>d.er> c"lassical Rurzge-Kutta formulas with step-size 

control and their> applications to some heat tr>ansfer pr>oblems, NASA 

Tech. Rep. TR R-315, George C. Marshall Space Flight Center, 

Marshall, Ala. 

[4] HENRICI, P., Discr>ete Var>iable Methods for> Or>dinar>y Differ>ential 

Equations, Wiley, New York, 1962. 

[5] HULL, T.E., W.H. ENRIGHT, B.M. FELLEN & A.E. SEDGWICK, Compar>irzg numer>ical 

methods for> ordinar>y differ>ential equation, SIAM J. Numer. Anal. 9 

( 1972)' 603-637. 

[6) JOUBERT, G. & A. MAEDER, Solution of differ>ential equations with a simple 

parnlZ.eZ. computer>, ISNM series Vol. 68, pp. 137-144. 



Global Error of Runge-Kutta Approximations 

[7] LAMBERT, J.D., Computational methods in ordinary differential equations, 

Wiley, New York, 1974. 

71 

[8] LETHER, F.G., The use of Richardson extrapolation in one-step methods with 

variahle step-size, Math. Computation 20 (1966), 379-385. 

[9] OPPELSTRUP, J., The RXFHB4 method for delay-differential equations, 

Lecture Notes in Mathematics 631 (1978), 133-147. 

[JO] SHAMPINE, L.F. & H.A. WATTS, Global error estimation for ordinary differ

ential equations, ACM Transactions on Mathematical Software 2 (1976) 

172-186. 

[I I] STETTER, H.J., Analysis of discretization methods for ordinary differen

tial equations, Springer-Verlag, Berlin-Heidelberg-New York, 1973. 

K. Dekker, J.G. Verwer 
Mathematisch Centrum 
Kruislaan 413 
1098 SJ Amsterdam 
The Netherlands 


