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Abstract. We consider two ways of assigning semantics to a class of statements built from a set 
of atomic actions (the 'alphabet'), by means of sequential composition, nondeterministic choice, 
recursion and merge (arbitrary interleaving). The first is linear time semantics (LT), stated in 
terms of trace theory; the semantic domain is the collection of all closed sets of finite and infinite 
words. The second is branching time semantics (BT), as introduced by De Bakker and Zucker; 
here the semantic domain is the metric completion of the collection of finite processes. For LT 
we prove the continuity of the operations (merge, sequential composition) in a direct, combinatorial 
way. 

Next, a connection between LT and BT is established by means of the operation trace which 
assigns to a process its set of traces. We show that the trace set of a process is closed and that 
trace is continuous. This requires the compactness of the semantic domains, ensured by the 
finiteness of the alphabet. Using trace, we then can carry over BT into LT. 

1. Introduction 

We study two ways of assigning meaning to a simple language !t which has 
elementary actions (a, b, c, .. . ), sequential composition, nondeterministic choice, 
recursion and merge (arbitrary interleaving) as its constituent concepts. This type 
of language may be seen as the core of various current approaches to parallelism 
(mostly to be extended with further concurrent concepts such as synchronization 
and communication, and often with simple iteration rather than full recursion), and 
it deserves in our opinion a full study of its associated semantics. There are a number 
of issues one encounters in developing a rigorous theory for this purpose. 

Firstly, there is the issue of 'linear time' versus 'branching time', a terminology 
one finds, e.g., in investigations of the model theory of temporal logic. In fact, an 
important motivation for our investigation was to better understand this 
phenomenon. 'Linear time' is easy: it is nothing but trace theory. For example, in 
the linear time model both the statements (a ; b) u (a ; c) and a ; ( b u c) obtain as 
associated meaning the so-called trace set {ab, ac}. 'Branching time' refers to an 
approach where one wants to distinguish between these two statements. Here for 
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the two statements we obtain as meaning the two trees 

a a 
a 

and 

b c b 

(Trees are not quite what we want, though. The statement a u a should yield the 

object a I rather than ~ as its meaning, and there are further differences-to be 
explained below-between trees and the objects in the branching time universe.) 

Secondly, the appearance of merge (\\) introduces various questions. For traces, 
"II" is to be defined as the usual shuffle in the sense of language theory; for the 
branching time model a new definition is required. Also, various known results 
about context-free (or algebraic) languages, possibly with infinite words, have to 
be extended due to the addition of the "II" operator. 

Thirdly, in accordance with the emphasis which in the study of concurrency is 
put onto nonterminating computations, we want to include a mathematically rigorous 
treatment of finite and infinite actions specified by the programs in our language. 
For example, employing the µ.-notation for recursion, we want as (linear time) 
meaning of µ.x[a ;x] the sequence a"' (the infinite sequence of a's), and for 
µ.x[(a ; x) u b] the set of sequences (a* b) u a"'. The trace theory to be developed 
below is a continuation of the investigation of languages of infinite words by Nivat 
and his school [10-13]. The inclusion of the "II" operation is responsible for further 
technical problems which-as far as we know-are not dealt with in their work in 
a way resembling our approach. (Also, in cases where Nivat addresses questions 
of semantics, these concern languages which are completely different from our 2.) 

The development of the models for linear time and branching time semantics 
(from now on abbreviated to LT and BT) starts with a few tools from metric topology. 
For LT, not much more is used than the definition of distance between words. E.g., 
d(abc, abde) = r3+! where 3 is the index where the sequences exhibit their first 
difference. Next, a notion of closed set (closed with respect to d) is introduced. For 
example, the set a* is not closed since it does not contain its limit point a"'. The 
framework for LT semantics is then taken as the complete partially ordered set of 
closed sets, with "2" (set containment) as the "i;;;;" ordering of the cpo. For BT we 
use the (mathematical) notion of process which is an element of a domain of 
processes obtained as solution of a domain equation by topological completion 
techniques. Domain equations have been studied extensively by Scott [15, 16] and, 
in a nondeterministic setting and using category theory, by Plotkin [14] and Smyth 
[17]. The theory of processes has been described elsewhere [3, 4], and is included 
here to facilitate comparison between the LT and BT semantics (and to make the 
paper more self-contained). 



Linear time and branching time semantics 137 

Section 2 is devoted to LT semantics, Section 3 to BT semantics, and Section 4 
to the relationship between the two, and to some variations on the preceding 
definitions. Some of the proofs which support the mathematical theory are contained 
in Appendices A and B. 

2. LT semantics: Mathematical background and semantic equations 

Let A be an alphabet with elements a, b, .... (Most of the results below hold 
when A is finite or infinite. In a few cases, we require A to be finite.) Let x, y, ... be 
statement variables from a set Y'tmv-, which we shall use in the formation of recursive 
or µ.-statements. The syntax for the language 2 is given (in a self-explanatory BNF 
notation) as follows. 

2.1. Definition 

2.1.1. Examples 

(a;b)u(a;c), (allb)u(allc), µ.x[(a;x)ub], 

µ.x[a ;(b II x)]ll ,uy[b ;(ally)], ,ux[(a ;µ.y[(b ;y) II x])u c]. 

2.1.2. Remarks. ( 1) Syntactic ambiguities should be remedied by using parentheses 
or conventions for the priority of the operations. 

(2) (For the reader who is not familiar with the µ.-notation.) A term such as 
µ,x[(a ;x)ub] has the same meaning as a call of the procedure declared (in an 
ALGOL-like language) by P<;=(a ; P) u b, or, alternatively, generates the same 
language (of finite and infinite words) as the grammar X ~ aX I b. 

(3) In a term µ.x[S], x may occur 'guarded' in S, i.e., when S has the form 
a ;(--x--): a recursive 'call' of x is guarded by at least one elementary action 
a EA. Terms like ,ux[ x ], µ.x[ x ; b] or ,ux[ a II x] contain unguarded occurrences of x. 

(In language theory, the equivalent notion is the 'Greibach condition', as in [12].) 
Certain results below are-though mathematically correct-not necessarily semanti
cally satisfactory for statements with unguarded variables. 

We now turn to the development of the underlying semantic framework. 

2.2. Definition. (a) A 00 =A* u Aw, where A* is the set of all finite words over A, 
and Aw the set of all infinite words. 

(b) ~ denotes the usual prefix relation (a partial order) on A 00
• The prefix of 

x E A 00 of length n will be denoted by x[n]. 

(Examples: abc ~ abccb; abccb[3] = abc; abc[5] = abc; abc[O] is the empty word.) 



138 J. W. de Bakker, J.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer 

( c) Let x, y E A 00• The distance or metric d : A'°...,. [O, 1] is defined by 

-{rmin{n lx[nJ;=y[n])+I if (3n)(x[n] rf- y[n]), 
d(x,y)- . c· "f ) 0 otherwise 1.e., 1 x = y . 

( d) Pc(A00 ) denotes the collection of all closed subsets of A co. Here 'closed' refers 
to the metric d, i.e., X E Pc(A00 ) whenever each Cauchy sequence (xn)n has a limit 
in X. (By definition, the elements of a Cauchy sequence have arbitrarily small 
distances for sufficiently large index.) In the sequel we shall use-for brevity-<e 
for the collection Pc(A00

). 

We define the order 11 \;; 11 on cg by putting X G Y iff X 2 Y (with 11 2 11 set-contain
ment). 

2.2.1. Notation. Often our notation will not reflect the difference between x and 
{x}, for xEA00• Thus we may write a*buaw where really a*{b}u{aw} is meant. 

2.3. Lemma. dis a metric on A00, and cg is a complete partially ordered set with respect 
to ~' with A OCl as bottom element and with Un Xn = n n xn> for (Xn)n a [;;-chain. 

For later use (in Section 4) we introduce one further definition with a theorem 
and a corollary. 

2.4. Definition (Hausdorff distance). For any metric space (M, d), x, y EM and 
X, Y ~ M we define distances J, J as follows: 

(a) d(x, Y)=inf{d(x,y)IYE Y}, where inf.0= 1, 
(b) d(X, Y)=max(sup{J(x, Y)lxEX}, sup{J(y,X)lyE Y}) where sup.0=0. 

2.5. Theorem. (a) J is a metric for Pc(M). 
(b) If (M, d) is complete, then so is (Pc(M), J). Also,for (Xn)n a Cauchy sequence 

in Pc(M), we then have that limn Xn = {x lxn ._,. x, with Xn E Xn}. 

Proof (see, e.g., [6]). A complete proof of (b) is contained in [4]. 0 

2.6. Corollary. The Hausdorff metric on cg turns it into a complete metric space. 

The Hausdorff metric on cg will be written as dL (to be contrasted with the 
Hausdorff metric d8 on <!J>, in Section 3). 

In Section 4 we will need the following connection between the metric on cg and 
its cpo structure. 

2.7. Proposition. Let (Xn)n be both a Cauchy sequence in cg and a [;;-chain. Then 

Un Xn =limn Xn. 
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Proof. By Theorem 2.5 we must prove that 

nn xn = {x Ix= limn Xn, for some Xn E Xn}. 

Here ( c:;: ) is trivial. 

( 2 ): let x =limn x,, for some sequence (xn)n such that Xn EX,,. Since Xn s; X 0 for 
all n, we have xn E X 0 • Since X 0 is closed, x E X 0 • Likewise x =limn Xn+i is an element 
of Xi. etc. Hence x En,, X,,. D 

We shall use cg with its cpo structure as semantic domain for the trace semantics 
of ft. (By Corollary 2.6, cg is also a complete metric space. However, contrary to 
the situation for BT semantics, we find the cpo structure more convenient for the 
LT semantics.) We need two theorems to support cg as model. (Technically, these 
two theorems are among the main results of this paper.) First we give the natural 
definitions of the basic operations on A 00 and <g_ 

2.8. Definition. (a) For x, y E A00, x · y (mostly written as xy) is the usual concatena
tion of sequences (including the convention that xy = x for x E Aw). Further, x II y 
is the set of all shuffles of x with y (extending to the infinite case the classical 
definition of the shuffle of two finite words). 

(b) Xu Y is the set-theoretic union of X and Y; X· Y={x· y[xEX,yE Y}, 
and XII Y = U{x II y [ x EX, y E Y}. We will also write XY for X- Y. 

The main theorems of this section state that the operations ·, u, II preserve 
closedness and are continuous (in the usual cpo sense) in both their arguments. (But 
note the proviso in Theorem 2.10). 

2.9. Theorem. For X, y in <"6?, x. Y, x u y and x II y are in ce. 

The proof will be given in Appendix A. 

2.10. Theorem. Let A be finite. Then the operations · , u , II from <g x cg to <g are 
continuous in both their arguments. 

The proof will be given in Appendix A. 

2.10.1. Remark. The finiteness condition on A ensures compactness of A00 (as 
observed in [12]). We then have that each sequence in A00 has a convergent 
subsequence. It is readily seen that this implies that, for each >;;-chain (X,,)n such 
that Xn .,t. .0 for all n, we have that nn Xn 7':- .0, and this fact is needed in the proof 
of Theorem 2.10. We do not know whether this fac\ can also be enforced by weaker 
conditions than the finiteness of A. A possibility circumventing the need for it would 
be to define 

x · e = .0 · x = x II .0=e11 x = x. 
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However, this has certain semantic disadvantages which become manifest, e.g., when 

elementary actions are articulated to assignments and tests (assuming that a test 

which has the value false in some state, delivers the empty state set as a result). 

We proceed with the definition of the linear time semantics for !£. We adopt the 

usual technique with environments to deal with (free) statement variables. Let 

r = Yt mv-> <fi:, and let y range over I'. Let, as before, X range over <&, and Jet 

y{X/x} stand for the environment which is like y, but for its value in x which is 

now X. Let [<fi: ~ <t5'] stand for the collection of all continuous functions from <fi: to 

<fi, and let, for <PE[<'.€-> <:&'], µ,<P denote its least fixed point. We have the following 

definition. 

2.11. Definition. The semantic mapping [ ] L: .:£~(I'-> <g) is given by 

[a]d y) ={a}, [S1; S2]L( y) = [S1]L( y) · [S2]L( y), 

[S1 u S2]L( y) = [S1]L( y) u [S2h( y ), [S1 II S:?]L(y) = [S1] d y) llITS2] d y) 

and 

[µ,x[S]] L ( y) = µ,<Ps,y where <Ps,y = AX.[S] L( y{ X / x }). 

This definition is justified by the following lemma. 

2.12. Lemma. (i) AX1 ... AXn.[S]d y{Xd X;}7= 1) E [<'.€ ~ [<fi: ~ · · ·-> [<t5' ~ cg] · · · ]] 
( n factors <e) 

(ii) The functions in (i) are monotonic. 

Proof. (i) Proving (i) is a routine matter (see, e.g., [l, Theorem 7.9]) once Theorem 
2.10 is available. 

(ii) Follows by a simple inductive proof. Alternatively: note that cg is also a 

complete lattice, and use the fact that in a complete lattice continuous functions 
are monotonic (see, e.g., [l]). D 

2.13. Corollary. [µ,x[SJ]dy)=nn <P~,y(A00 ) where <Ps,y is as in Definition 2.11. 

Proof. The proof follows by Definition 2.11, Lemma 2. I 2(i) and the Tarski-Knaster 
fixed point theorem. 0 

2.14. Examples 

(I) [µ,x[( a ; x) u b Jh( y) =µ,[AX.[ (a ; x) u b] d y{X / x} )] 

= µ,[AX.((a · X) u b)] = n" Xn, 
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(2) The 'fixed point property': 

[µ,x[S]h( y) = [S]L( y{[µ,x[S]h( y)/x}) 

or 

[µ,x[S]] L( y) = [S{µ,x[S]/ x }] L ( y ), 

where in the second equation { · / ·} denotes syntactical substitution. 

(3) Let S be µ,x[a ;(bllx)]. Then [S]L(y) is, remarkably, a nonregular set of 

traces. Using the fixed point property (2) and the following property of II, which is 
easily derived from the definition of II: 

U a;X; llU bj0 =U a;(X; llU bj 0)u U bj( 0 llU a;X;) 

one computes (abbreviating X0 = [ S] L ( y), X,,+ 1 = X" II b): 

from which it is easy to see that X 0 is the set of maximal traces in the labelled and 
directed graph 

Alternatively, Xo={xEAwl('lfn)lx[nJla~lx[nJlb}, where lx[nJla is the number of 

occurrences of a in x[n], the prefix of x of length n. 

(4) Let S be as in (3), S'=µx[b;(allx)] and T=µ,x[(a;x)u(b;x)]. Then a 

similar computation as in (3) shows that 

2.15. Remark. For statements which have unguarded µ,-terms, the semantics [ ·] L 

may not be the most natural one. E.g., we have-for any y-

We shall return to this point in Section 4, where we are in a position to compare 

both LT and BT semantics for such unguarded µ,-terms. 

3. BT semantics: Mathematical background and semantic equations 

The branching time semantics for 3? is based on the theory of processes as sketched 

in [3] and described more fully in [ 4]. We briefly recall the main facts from this 

theory (in the terminology of [3, 4] referring only to uniform processes). 

For an approach to uniform processes via projective limits, see [5]; and for an 

approach where processes are congruence classes of trees ('behaviours'), see [8, 9]. 
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(Cf. also our Remark 4.3 for a brief comparison between the present uniform 
processes and Milner's behaviours.) 

Here, processes are objects which are best compared to labelled unordered trees 
without repetitions in successor sets. Considering the examples 

~ ~ ar ~ 
&&&&&&& 

we have that the first and second, and the third and fourth represent the same 
process. Also, processes are closed objects: they contain all their limit points, in a 
sense to be made precise in a moment. E.g., the tree t, does not represent a process, 
but tree t2 does, since it contains also the limit process "aw". (Cf. Remark 4.3 where 
it is explained in what sense a tree represents a process.) 

a 

f I t :2 

a a a a a a a 

a a a a a 

a a a 

a 

Technically, processes are obtained as follows: 
Step 0. Start from the alphabet A as before; in addition, a so-called nil-process p0 

is assumed. 
Step l. Define Pm n = 0, 1, ... , by P0 = {p0}, Pn+I = P(A X Pn ), where P( ·) stands 

for the collection of all subsets of (·).Write Pw =Un Pn. 
Step 2. Introduce a metric on Pn (by suitably combining Definitions 2.2(c) and 2.4) 

and take r!/' as the completion of Pw. Let d8 be the metric on r!/'. 
We can then show the following theorem. 

3.1. Theorem. r!/'={p0}uPc(Axr!/'). 

(Here Pc(·) refers to the collection of all closed subsets of (·)-with respect to 
d8 -and =denotes isometry.) 
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The next definition gives the main operations upon processes. We distinguish the 

cases p = p0 , p = X <;; P(A x Pn) for some n > 0, or p = limi pi, with (pi)i a Cauchy 

sequence of elements Pi in Pi. 

3.2. Definition 

(a) P 0 Po= p, poX={poxlxEX}, po(a, q)=(a,poq), 

p 0 limi q; = lim; (p 0 qi), 

(b) Pu Po= Pou p = p, and, for p, q ~ p0 , p u q is the set-theoretic union of p and q, 

(c) PllPo=Pollp=p, XII Y={xll YlxEX}u{XllYIYE Y}, 

(a,p)ll Y=(a,pll Y), Xll(a,q)=(a,Xllq), 

(limi pJ II (limj %) = limk (Pk II qd. 

3.3. Lemma. The above operations are all well defined and continuous in both their 

arguments. 

This lemma is the counterpart of the results in Appendix A for the LT framework. 

The proof of the lemma-which does not require more effort than the LT case-is 

contained in [ 4]. 
By way of preparation for the definition of the recursive case we need a classical 

result. A mapping T: '!J ~ '!J is called contracting whenever dB( T( p ), T( p')) ~ 

c · dB(p, p'), with 0 ~ c < 1. We have the following theorem. 

3.4. Theorem. If T is continuous and contracting, then for each q E '!P, the sequence 

q, T(q), T 2(q), ... is a Cauchy sequence converging to the unique fixed point of T. 

Proof. This is Banach's fixed point theorem. D 

3.5. Remark. Let - : '!J-? {p0} u Pc( Ax '!P) be the isometry whose existence was 

mentioned in Theorem 3.1. Then it is not hard to show that one can construct (via 

Cauchy sequences of approximations) elements p satisfying 'recursive definitions' 

such as 

ft={(a,p)} or p={(a,p)laEA}u{(a,p0)laEA}. 

(Moreover, the solutions to these equations are unique.) 

Par abus de langage, we will omit reference to - henceforth and simply write 

p ={(a, p)} etc. Without this convention, an equation p ={(a, p)} could not have a 

solution, by the Axiom of Foundation of axiomatic set theory (ZF). 

In the same vein we will speak about an infinite path (ai. Pi>. (a2, P2), ... such 

that (an+ i, Pn+i) E Pn for all n > 1. Here one should also read: 
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Summing up, we can deal with · =' and 'E' in the usual way, without being 
bothered by the Axiom of Foundation. 

As final preparatory step for the semantic definition we extend the alphabet A 
with a special so-called unobservable action T and take as process domain the 
domain rl'2 given by 

As before, we apply the familiar environment technique. Let I'= Y'tmv--" r:!P2• We 
define the BT-semantics for 2 as follows. 

3.6. Definition. The semantic mapping [ ] 8 : 2--'> (I'--" '!P2 ) is given by 

[a] B ( 'Y) = { (a, Po)}, 

[S1 ; S2] B( '}') = [S2] B( '}') 0 [S1]B('y ), 

[ s, u S2] B ( '}') = [ s ,] B ( '}') u [ S2] B ( '}'), 

[S, II Sz]B( y) = [S,]B( y) II [S2]B( y), 

[x]e( y) = y(x), 

[µx[S]]e( y) = lim; p;, where p0 is the nil-process and 

P;+1 = {( T, [S]e( y{p;/ x} ))}. 

3.7. Examples. (For simplicity we omit y.) 
(I) [a 1 ; a2] B = { ( a2, Po)} 0 { (a 1, Po)}= { (a,, { ( a2, Po)})}, 
(2) [a II (bu c)h =(in a natural picture representation) 

a 
b 

h a a 

(3) [µx[(a ;x) u b ]]B =Jim; p;, where P;+ 1 = { ( T, {(a, p;), (b, p0)})}. In a picture we 
have 

T 

a b 

T 

a h 
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3.8. Remark. The central clause is the definition of recursion ,ux[ S]. We have solved 

this by introducing for each S an associated contracting mapping T = 

Ap.{(7, [S]ll(y{p/x}))}. Contractivity is enforced by the (7, ... ) construct. 

Operationally, the ( 7, ... ) action corresponds to the action of procedure entrance, 

which does not involve any "observable' action in A. For such T, lim, T'( p0 ) is its 

unique fixed point. (Po is only chosen for definiteness; other choices would of course 

yield the same result.) We shall return to the motivation for adopting this strategy 
in the next section. 

4. LT and BT compared 

In this section we compare the two semantics presented in Sections 2 and 3. More 

specifically, we discuss the relationship between LT and BT both for statements 

with guarded ,u-terms only, and for statements with any form of recursion. 

The main result of the section is stated in terms of the notion of trace set of a 

process. Roughly, the trace set of process p is the set of branches (terminating or 

infinite) obtained by viewing pas a labelled tree. Here we meet the following problem. 

Remember that a finite path of process p terminates in p0 or in 0. Semantically, 

the latter case signals unsuccessful termination. Now there are two possibilities: 

(i) because in '€ there is no way of signalling unsuccessful termination, we may 

decide to exclude paths ending in 0 from the trace set of p, or 

(ii) cg· will be enriched with a fail symbol which may be appended to the end of 

a finite word over A. 
The disadvantage of (ii) is technical: all the operations on '€have to take the fail 

possibility into account. (Although we are not prepared to do so here, it seems quite 

well possible to extend LT semantics in this way.) 
The disadvantage of ( i) is essential: the operation 'trace', which is defined below, 

would not be continuous. (For, consider q =limn q" where q0 ={(a, 0)}, qn+t = 
{(a, qn)}. Then the trace set of qn is 0, but that of q is {aw}.) 

We will adopt the following solution: in the present case of ·uniform' processes, 

i.e., processes where the a EA are atomic actions and not further specified, the issue 

of unsuccessful termination is not yet at stake. In fact, a process p which is the 

denotation of an expression, p = [S~ 8 ( y ), has no branches ending in ,0. Therefore 

we decide, in order to establish a correspondence between LT and BT semantics, 

to adopt the natural restriction to the closure of 

2f>rr u = {[S]ll( y) I closed S, y E Y'tmv-" ff.'}. 

(Note that i!f>u ~ itself is not closed.) We will write 91>+ for this closure. Obviously, 

gi+ is a complete metric subspace of PP. An alternative characterization of [ff>+ is 

'21'+ = { p E PP J all terminating paths of p end in Po}. 
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For use in Theorem 4.9 we note that 

4.1. Definition. Let p E ff!'+. 
(1) A path 1T for p is a (finite or infinite) sequence 

such that (ai.p1)Ep and (ai+t.Pi+1/Epi, i= 1,2, ... 
(2) (i) Let 1T = (a 1, p 1), (a2 , p2), ••. be an infinite path of p E qp+. Then a 1 a 2 ••• E 

Aw is called a trace of p. 
(ii) Let 1T = (a1, P1J, ... ' (an, Pol be a finite path of p Erz;+. Then a1a2 ... an E 

A* is a trace of p. 

(3) liace(p) is the set of traces of p. 

4.2. Examples 

liac,,({(a, {(b, p0/}), (a, {(c, p0)})}) = {ab, ac}, 

liace({(a, {(a, ... >})})= {aw}, 

liace([,ux[(a ; X) U b ]] 8 ( y)) = ( ra)w u ( ra )*rb. 

4.3. Remark. Clearly, the definition of traces of a process p suggests viewing p as 
a labelled tree t(p ), having the traces as branches. This view is not without difficulties, 
however; e.g., the labelled trees 

/I and 12 

j: 
a a 

a 

a a a 

should be identified as their approximations coincide. In [9], this consideration has 
given rise to the notion of a process (a 'behaviour') as the equivalence class of 
labelled trees (in fact, charts) modulo a congruence called 'bisimulation' ( =). E.g., 
t 1 = t2• A bisimulation is a certain relation R between the nodes of ti. t2 , where 
Dom(R) is the set of nodes of t 1 and Range(R) is the set of nodes of 12 • 

Now one can prove (we will not do so here) the following. If the bisimulation R 
is a function, write 11 > t2 • (In the example this is the case.) We observe that an 
equivalence class of trees contains a unique <-minimal tree. This is precisely the 
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tree which one can associate to a process p by the following definition: 

(i EI) 

provided the (a;, p;) are pairwise different. 
(I.e., the set {(a;, p;) Ii E I} contains no duplications.) 

Moreover, if this proviso is dropped, then p can be developed in many different 
trees; in fact, to every tree which is bisimulation congruent with t( p ). 

Example. If p ={(a, p)}, then t(p) = t2 above; also one can develop p to t 1 above, 
using at some points the representation p ={(a, p), (a, p)}. 

Note, finally, that congruent trees have the same set of branches. 

Now we would like to assert that ii.ace is an operation from g:i+ to Cf6, i.e., for 
p E g:i+, t iace( p) is a closed set. Surprisingly, this need not to be the case if A is 
infinite; say A= {a; Ii;:::. O}. 

4.4. Example. Consider p E g:i+ as given by the tree 

i.e., p = {(a0 , p;) Ii;:::. O} where p0 is the nil-process, and, for n > 0, 

Pn ={(an, Po), (ao, qn-1)}, 

q" = { (a0, (ao, (a0 , ••• , (ao, Po)})· · · )} (n times ao). 

Then ii.ace(p)={a~!n;::.1}u{a0am!m;::.1}, which is not closed as it lacks a~. 

However, with the additional assumption that A is finite, we have (by a nontrivial 
proof) that t 'tace( p) is closed indeed. In fact we have the following lemma. 

4.5. Lemma. Let A be finite. Then: 
(i) t 'tace( p) E 'f6, 

(ii) t McJJ is continuous (with respect to the Hausdorff metrics in g:i+ and <6'). 

The proof will be given in Appendix B. 
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We will also need the following fact, the proof of which is routine and omitted here. 

4.6. Proposition. hace: '!/'+--> Cf5 is an homomorphism (with respect to the operations 
·, u, II on g>+ and "€). 

4.7. Remark. A corollary of Lemma 4.5(i) and Proposition 4.6, together with the 
obvious surjectivity oft t.ace, is that 

X, y E cg =? x II y E Cfi. 

(For, given X, YECfi, take p,q such that tiace(p)=X and tiac.e(q)= Y. Then 
XII Y = t.zac.e(p) II tMce(q) = tzace(p II q) E Cfi.) 

However, we have preferred to give also a direct combinatorial proof of this fact 
in Appendix A. 

We also need the notion of universal process for '!/'+. 

4.8. Definition. The universal process for g>+, called Pu, is the (unique) solution of 
the equation 

p = { (a, p) I a E A} u { (a, p0 ) I a E A}. 

Note that tzac.e(pu) =A"". 

In the following, it will be convenient to restrict ourselves to closed statements, 
i.e., statements without free statement variables. Now the natural question which 
suggests itself concerning the relationship between LT and BT is whether, for each 
closed S-omitting I' which is then superfluous-we have that 

(*) 

Taken as it stands, the answer to the question is "no". For example, taking S = µ,x[x] 

we have that 

tiac.e([µ,x[x]TI 8 ) = tMc.e( {( 7, { ( r, ... ) }) } ) = { 'T"'} r" A 00 = [µ,x[xJTI L· 

This discrepancy is not an essential phenomenon, but due to the special role of the 
unobservable action 'T for BT semantics. Remember that r was introduced to enforce 
contractivity of the mapping T as defined in Remark 3.8, which in turn was necessary 
to allow us to apply Banach's fixed point theorem. However, another approach may 
also be adopted which will lead to a positive answer to the question ( *). It is 
convenient to separately treat the cases where 

(i) S has only guarded µ,-terms, and 
(ii) S may have unguarded µ,-terms. 
Case (i) (only guarded µ,-terms). In this case the '7-trick' for BT is in fact 

superfluous. Taking T' = Ap.[STis( ')'{p/ x} ), T' is now contracting for each S, and 
lim;,,, 1 T'(p;), with p 1 arbitrary, p;+ 1 = T'(pi), converges to the unique fixed point of 
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T' independent of the initial p 1-which we may therefore choose as Pu to facilitate 
the proof of the following theorem. 

4.9. Theorem. Assume statement S is closed and involves only guarded µ,-terms. Let 

[Sh be as before, and let [S] 8 be as in Definition 3.6, except that in the clause for 

µ.,x[S], we replace p0 by Pu and define 

Pi+l = [S] 8 ( y{p;/ x} ). 

Then, 

tiace([Sh) = [S]v 

Proof. (The proof uses all the results of this paper except the present theorem.) 
We will prove the following stronger fact, necessary for the induction on the 

structure of statements S' (which now need not to be closed): for every S' containing 
only guarded µ,-terms, and for every y E Ytmv·~ (!/'+: 

[S'h(tiace 0 y) = hace([S']a( y) ). 

Case (i). S' '/= µ.,x[S]. Now the result easily follows by the induction hypothesis 
and the homomorphism properties of t2ace. 

The interesting case is the following: 
Case (ii). S' = µ.,x[S]. 

Some notation is needed first: tiace 0 y = y'. Further, we employ again the notation 

of Definition 2.11: <Ps.y' = AX.[S] L( y'{X / x} ). Finally, p,, is defined as in the statement 
of the theorem. 

First we prove the following: 
Claim 1. liace(pn) = <P~,y·(A00 ). 

Proof of Claim 1 

Hence, 

liace(pn) = tiace([S]a( Y{Pn-1/x})) 

=(by the induction hypothesis) [Sh(y'{tiace(p,,_ 1)/x}) 

= (AX[ S] L( y'{X / x}) )(hace(Pn-il) = <Ps,y{I iace( Pn-l) ). 

tiace(p,,) = <P~,y·(ltace(pu)) = <Ps,y·(A''°). 

Claim 2. n,, <P~,y·(A00) = lim" <PL·(A00
). 

Proof of Claim 2. By the fact that only guarded µ,-terms are considered, {p,,} is 

a Cauchy sequence. By the continuity of /11,ace (Corollary B.7), {tMce(p,,)} is 

therefore also a Cauchy sequence. So, by Claim 1, { <PL·(A 00
)} is a Cauchy sequence. 

Furthermore, the <P~,y' are monotonic (Lemma 2.12(ii)). Since A00 is the maximal 

element of CCi, the sequence { <P~,y·(A00)} is therefore decreasing (w.r.t. £).Now Claim 

2 follows by Proposition 2.7. 
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Now we have 

[S'h(t-t.ace 0 y) 

= [µx[S]DL( y') 

= nn cP$,y.(A "') 

=limn <Ps,y·(A"') 

=limn t-t..ace(pn) 

= ti.ace(limn Pn) 

= t-t..ace[µx[S]Ds( 'Y) 

= t-t..ace[S'Ila( y). 

(by Corollary 2.13) 

(by Claim 2) 

(by Claim l) 

(by Corollary B.7) 

(by the definition in the present theorem) 

We continue with the second case. 

0 

Case (ii). S involves at least one unguarded µ-term. Now two ways of achieving 
(*)are available. 

Firstly, we can maintain the definition of [Sh, and use the revised definition of 
[Sil 8 as stated in Theorem 4.9. The crucial difference is that the mapping T' is now 
no longer contracting in general, and we cannot use Banach's fixed point theorem 
to show that the sequence Pu, T'(pu), T'2(pu), ... converges to a fixed point of T'. 
However, this fact has indeed-with some effort, and for arbitrary initial q-been 
established in [5]. Thus, we can base our revised definition on their theorem, and 
again obtain-by the same reasoning as in the proof of Theorem 4.9-that ( *) holds. 

Secondly, we may also keep the definition of[Slla as in Definition 3.6, and revise 
that of [ S] v We then replace the last clause of Definition 2.1 l by 

[µx[S]]L( y) =µ[AX.[ T; S]L( y{X Ix})]. 

All this amounts to the idea of replacing, both for LT and for BT, µx[ S] by µx[ T ; S], 
thus ensuring that all statements have only guarded terms, so that Theorem 4.9 
applies again. 

Appendix A: Well-definedness and continuity of the operations·, u, II on CIJ 

We will now give the proofs of Theorem 2.9 and 2.10. For both theorems the case 
of" u" is trivial; this leaves us with the following four propositions, which we will 
treat together since their proofs have a common structure. 

Theorems 2.9 and 2.10. (i) X, Ye<€ ~ XII YE<€. 
(ii) X, Ye Cf£ ~ XYe <€. 

(iii) Let A be finite. Let Xm Ym E <€(n, m ~ O) be such that X 0 2 X 1 2 · ··and 
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Yo2 Y 1 2 ···.Then 

(D0 x") II (,00 Ym) = Ll (xk 11 Yk). 

(iv) Under the same conditions as in (iii): 

(Do Xn )(00 Ym) =Do (XkYk)· 

Proof. The proofs of (i), ... , (iv) all start with a Cauchy sequence {z; Ii;;;,, O}, where 
the z;'s are elements of x II Y, XY, nk;;.O (Xk II Yk), nk;;.Q xk Yk, respectively. Since 
we will need to specify which parts from Z; originate from X (respectively Xk) and 
which from Y (respectively Yk), we introduce two disjoint copies A,; and A77 of the 
alphabet A. Intuitively, Ag and A77 are colored copies of A, say 'blue' respectively 
'red'. The sequence {z;} is then colored, i.e., lifted to a sequence {n where ?i E 

(As u A 77 )"°= B00 and h(?i) = z;; his the 'decoloring homomorphism' whose precise 
definition is left to the reader. 

The sequence UJ is, h?wever, in general no longer a Cauchy sequence in Pc(B00 ). 

But it contains a subsequence {{g<n} which is a Cauchy sequence. The (colored) 
limit I: of this subsequence is then used to prove the result. More precisely: 

Proof of (i). Let {z; Ii;;;,, O} be a Cauchy sequence such that zi EX II Y ( i;;;,, O). So 
zi E xi 11 Yi for some X; EX, Yi E Y Lifting to the alphabet B we find colored versions 
t;b ~;, 1Ji such that gi EA~, YJ; EA'; and ?; E g; 11 YJ;. 

EA EA 

l q n 
t; = - - - - -
0 

t; = - - - - -
1 

- - - -· 
I 
I 
I 
I 

t;g (0) = 'f0 (Ol = ---
I 

' ' 
t; f 0 (l) = -- -

I 
I 

' 

= 
(f0 (O).) 

I 
I 

= (f0 (1)) 
' 
' I 

t; = 
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Consider· n = n0 • Since {z;} is a Cauchy sequence, there is a k0 such that the 
prefixes z;[ n0] are constant for i ~ k0, namely equal to zko[ no]. This need not be the 
case for {;[n0]. However, since there are only finitely many colorings of zko[n0], there 
is Cby the pigeon-hole principle) a subsequence Uto(i)} of {t'; Ii~ kol such that the 
prefixes {fo<il[n0 ] are constant for all i. (Here f 0 is some monotonic function from~ 
to N.) 

Now consider n 1 > n0• From the sequence Uto<il} we can in the same way extract 
a subsequence {{Ji(fo(ill} whose n1 -prefixes are constant. Continuing this procedure 
we find a sequence {{guJ} where g is a monotonic function such that g(j) = 

(Jjo· · · 0 f 0)(0), which evidently is a Cauchy sequence in Pc(B"°). Call the limit(. 
Then ( can be decomposed (by projections to Ag, respectively A,,) into g, T/ such 
that ( E g II T/· Decoloring, we have z Ex II y. Since z is the limit of { z;}, we are through 
if x EX and y E Y. This easily follows because X, Y are closed. 

Proof of (ii). The proof is almost identical to that of (i): we only have to replace 
X \I Y by XY, and Z; EX; II Yi by z; = xiyi etc. (In the diagram of the proof of (i): the 
'blue' parts precede the 'red' parts, instead of being mixed.) 

Proof of (iii). ( s;; ) is trivial. 
( =2): Take z En (Xi II Y; ), so, for all i, z E X; II Yi for some xi E X; and Yi E Y;. Again, 

find colored versions(;, g;, T/; such that{; E B 00
, g; E Ag', T/i EA':, h((;) = z, h(g;) = X;, 

h ( TJ;) = Y; and {; E gi II TJ;. Construct {, g, T/ such that ( E g 11 TJ as in (i). 
Let h(g) = x and h( T/) = y. It remains to show that x En Xn and y En Ym. This 

follows because for each prefix x' of x there is a p such that x' ~ xP E XP s;; X0. Since 
X 0 is closed, it follows that x E X 0 ; likewise x E Xi. etc. 

The finiteness condition on A is used to ensure that n Xn >= 0 and n Ym >= 0. The 
nonemptiness of these intersections is needed in the case that ( E Ag' or t" EA': (i.e., 
(is entirely 'blue' or 'red'). In that case we need to pick an arbitrary 'Y/ respectively 
g such that h( T/) = y En Ym respectively h(g) = x En Xn, to be able to write ( E g II TJ 

and ZEX llY· 
Proof of (iv). This proof is again mutatis mutandis identical to that of (iii). (Here 

we only need the nonemptiness of n Ym.) D 

Appendix B. The operation tiace: g;+-+ Cf6 

We will now prove Lemma 4.5, stating that, for finite A, the operation t1tace: g;+-+ 

Cf6 is well defined and continuous. In order to do so, we need some preliminary 
facts which also have some independent interest. First we recall a definition from 
[3, 4]. 

B.O. Definition. (i) Let p E Pw (the set of processes of finite depth). Define p[n] 

(n~O) as follows: 
(I) if p=p0 , then p[n]=p0 (n~O), 

(2) otherwise p[O] = p0 , p[n + 1] ={(a, q[n]) I (a, q) E p}. 
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(ii) Let p E @>\Pw. Then p = lim;p;, for a Cauchy sequence {p;}; with p; E P;. Now 
p[n]=lim;p;[n]. 

B.l. Proposition. (i) Let dB be the Hausdorjf metric on @>. Let 88 be the metric on @> 
defined by 

{
2-min{n IP[n] .. q[n])+l 

8B(p,q)= Q 
if (3n)(p[n] ;;C q[n]), 

otherwise (in which case p = q). 

Then d8 (p, q) = 88 (p, q) for all p, q. 

(ii) Let dL be the Hausdor.ff metric on ri. Let 8L be the metric on r5 de.fined analogous 
to 88 • (For X E ~. X[n]= {x[nJlxE X}.) 

Then dL(p, q) = 8L(X, Y) for all X, Y. 

Proof. The proof is a mere routine matter. D 

B.2. Proposition. Let q0 , qt. ... be a Cauchy sequence in ~+ with limit q. Suppose 
X; E tiace(q;), i;;;.: 0, and x0, Xi. ••. is a Cauchy sequence (in A 00

) with limit x. 
Then iiac.e (q) contains a Cauchy sequence x~, x;, ... with limit x. 

Proof. The proof is immediate, via the metric l>8 (the n-prefixes of the traces of qk 
can be made to coincide with those of q, for arbitrary n, by taking k large enough, 
i.e., such that 88 (qk, q)<T"). D 

B.3. Remark. The preceding proposition can be rephrased as follows: 

Jim iiace(qn) !:;;; i't.ace(lim qn)· 
n n 

(Here, the overbar denotes the closure operator.) 

B.4. Lemma. Let A be.finite. Then iiac.e(p) is closed for all pE gp+_ 

Proof. Suppose x E tMc.e(p ). We have to prove x E t't.ace(p ). First we introduce 
the notation x(n) to denote the result of removing the prefix x[n] from x. So 
x = x[n]x(n). Further, write x = x1x2 •••• 

Now we define by induction on n a path (xi. P1), (x2, P2), (x3, p3), ... in p. The 
result is (by Definition 4.1) that xEt'tace(p). 

--~~ 

Basis. Start with p and the hypothesis xEt'tace(p). 
Induction step. Suppose Pn is defined. The induction hypothesis is x(n) E 

ltac.e(pn). 
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From the induction hypothesis we have 

x(n) = lim tm 
m 

for some converging sequence Um} in tiace(pn). (tm depends also on n, but we 
will not reflect this in our notation.) Likewise, by removing the first symbol: 

x(n + 1) = lim q;,,, 
m 

where q;,, = tm(l). 
Let qm be such that t:n E t'tace(qm)· Since A is finite, '!/'+is compact and so there 

is a converging subsequence {qf(mJ} of {qm}. (Here f is some monotonic function 

from N to N.) Let q be its limit. Since Pn is closed, we have (xn+ 1, q)EPn- Now Pn+1 
will be q. 

Finally it follows by Proposition B.2 that 

x(n + 1) E t-za,cc(Pn+1), 

which is the induction hypothesis for Pn+I· 0 

In order to prove the continuity of tMce, we observe the following. 
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B.5. Proposition. For all p, q E g>+; 

8a(p, q)~ 8L(hace(p), hace(q)). 

Proof. The proof easily follows by the simple nature of the 8-metrics. O 

This fact is exploited via the following general lemma. 

B.6. Lemma. Let (M;, d;) be complete metric spaces (i =I, 2). Let f: M 1 ~ M 2 be a 
function such that d 1 (x, y) ~ d2(f(x),f( y)). Then f is continuous, i.e., limn/(x") = 
/(limn Xn). 

Proof. Obvious. D 

B.7. Corollary. The operation ttace: gi>+ ~ 1:€ is continuous, i.e., 

lim t tace( Pn) = t tac.i lim( Pn) 
n n 

for {p"}" a Cauchy sequence in t!J+. 
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