
Theoretical Computer Science 34 (1984) 135-156
North-Holland

LINEAR TIME AND BRANCHING TIME SEMANTICS
FOR RECURSION WITH MERGE

J.W. DE BAKKER, J.A. BERGSTRA and J.W. KLOP

135

Department of Computer Science, Centre for Mathematics and Computer Science, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands

J.-J.Ch. MEYER
Department of Computer Science, Free University, De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands

Abstract. We consider two ways of assigning semantics to a class of statements built from a set
of atomic actions (the 'alphabet'), by means of sequential composition, nondeterministic choice,
recursion and merge (arbitrary interleaving). The first is linear time semantics (LT), stated in
terms of trace theory; the semantic domain is the collection of all closed sets of finite and infinite
words. The second is branching time semantics (BT), as introduced by De Bakker and Zucker;
here the semantic domain is the metric completion of the collection of finite processes. For LT
we prove the continuity of the operations (merge, sequential composition) in a direct, combinatorial
way.

Next, a connection between LT and BT is established by means of the operation trace which
assigns to a process its set of traces. We show that the trace set of a process is closed and that
trace is continuous. This requires the compactness of the semantic domains, ensured by the
finiteness of the alphabet. Using trace, we then can carry over BT into LT.

1. Introduction

We study two ways of assigning meaning to a simple language !t which has
elementary actions (a, b, c, .. .), sequential composition, nondeterministic choice,
recursion and merge (arbitrary interleaving) as its constituent concepts. This type
of language may be seen as the core of various current approaches to parallelism
(mostly to be extended with further concurrent concepts such as synchronization
and communication, and often with simple iteration rather than full recursion), and
it deserves in our opinion a full study of its associated semantics. There are a number
of issues one encounters in developing a rigorous theory for this purpose.

Firstly, there is the issue of 'linear time' versus 'branching time', a terminology
one finds, e.g., in investigations of the model theory of temporal logic. In fact, an
important motivation for our investigation was to better understand this
phenomenon. 'Linear time' is easy: it is nothing but trace theory. For example, in
the linear time model both the statements (a ; b) u (a ; c) and a ; (b u c) obtain as
associated meaning the so-called trace set {ab, ac}. 'Branching time' refers to an
approach where one wants to distinguish between these two statements. Here for

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

136 J. W. de Bakker, J.A. Bergstra, J. W. Klop, 1.-J. Ch. Meyer

the two statements we obtain as meaning the two trees

a a
a

and

b c b

(Trees are not quite what we want, though. The statement a u a should yield the

object a I rather than ~ as its meaning, and there are further differences-to be
explained below-between trees and the objects in the branching time universe.)

Secondly, the appearance of merge (\\) introduces various questions. For traces,
"II" is to be defined as the usual shuffle in the sense of language theory; for the
branching time model a new definition is required. Also, various known results
about context-free (or algebraic) languages, possibly with infinite words, have to
be extended due to the addition of the "II" operator.

Thirdly, in accordance with the emphasis which in the study of concurrency is
put onto nonterminating computations, we want to include a mathematically rigorous
treatment of finite and infinite actions specified by the programs in our language.
For example, employing the µ.-notation for recursion, we want as (linear time)
meaning of µ.x[a ;x] the sequence a"' (the infinite sequence of a's), and for
µ.x[(a ; x) u b] the set of sequences (a* b) u a"'. The trace theory to be developed
below is a continuation of the investigation of languages of infinite words by Nivat
and his school [10-13]. The inclusion of the "II" operation is responsible for further
technical problems which-as far as we know-are not dealt with in their work in
a way resembling our approach. (Also, in cases where Nivat addresses questions
of semantics, these concern languages which are completely different from our 2.)

The development of the models for linear time and branching time semantics
(from now on abbreviated to LT and BT) starts with a few tools from metric topology.
For LT, not much more is used than the definition of distance between words. E.g.,
d(abc, abde) = r3+! where 3 is the index where the sequences exhibit their first
difference. Next, a notion of closed set (closed with respect to d) is introduced. For
example, the set a* is not closed since it does not contain its limit point a"'. The
framework for LT semantics is then taken as the complete partially ordered set of
closed sets, with "2" (set containment) as the "i;;;;" ordering of the cpo. For BT we
use the (mathematical) notion of process which is an element of a domain of
processes obtained as solution of a domain equation by topological completion
techniques. Domain equations have been studied extensively by Scott [15, 16] and,
in a nondeterministic setting and using category theory, by Plotkin [14] and Smyth
[17]. The theory of processes has been described elsewhere [3, 4], and is included
here to facilitate comparison between the LT and BT semantics (and to make the
paper more self-contained).

Linear time and branching time semantics 137

Section 2 is devoted to LT semantics, Section 3 to BT semantics, and Section 4
to the relationship between the two, and to some variations on the preceding
definitions. Some of the proofs which support the mathematical theory are contained
in Appendices A and B.

2. LT semantics: Mathematical background and semantic equations

Let A be an alphabet with elements a, b, (Most of the results below hold
when A is finite or infinite. In a few cases, we require A to be finite.) Let x, y, ... be
statement variables from a set Y'tmv-, which we shall use in the formation of recursive
or µ.-statements. The syntax for the language 2 is given (in a self-explanatory BNF
notation) as follows.

2.1. Definition

2.1.1. Examples

(a;b)u(a;c), (allb)u(allc), µ.x[(a;x)ub],

µ.x[a ;(b II x)]ll ,uy[b ;(ally)], ,ux[(a ;µ.y[(b ;y) II x])u c].

2.1.2. Remarks. (1) Syntactic ambiguities should be remedied by using parentheses
or conventions for the priority of the operations.

(2) (For the reader who is not familiar with the µ.-notation.) A term such as
µ,x[(a ;x)ub] has the same meaning as a call of the procedure declared (in an
ALGOL-like language) by P<;=(a ; P) u b, or, alternatively, generates the same
language (of finite and infinite words) as the grammar X ~ aX I b.

(3) In a term µ.x[S], x may occur 'guarded' in S, i.e., when S has the form
a ;(--x--): a recursive 'call' of x is guarded by at least one elementary action
a EA. Terms like ,ux[x], µ.x[x ; b] or ,ux[a II x] contain unguarded occurrences of x.

(In language theory, the equivalent notion is the 'Greibach condition', as in [12].)
Certain results below are-though mathematically correct-not necessarily semanti
cally satisfactory for statements with unguarded variables.

We now turn to the development of the underlying semantic framework.

2.2. Definition. (a) A 00 =A* u Aw, where A* is the set of all finite words over A,
and Aw the set of all infinite words.

(b) ~ denotes the usual prefix relation (a partial order) on A 00
• The prefix of

x E A 00 of length n will be denoted by x[n].

(Examples: abc ~ abccb; abccb[3] = abc; abc[5] = abc; abc[O] is the empty word.)

138 J. W. de Bakker, J.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer

(c) Let x, y E A 00• The distance or metric d : A'°...,. [O, 1] is defined by

-{rmin{n lx[nJ;=y[n])+I if (3n)(x[n] rf- y[n]),
d(x,y)- . c· "f) 0 otherwise 1.e., 1 x = y .

(d) Pc(A00) denotes the collection of all closed subsets of A co. Here 'closed' refers
to the metric d, i.e., X E Pc(A00) whenever each Cauchy sequence (xn)n has a limit
in X. (By definition, the elements of a Cauchy sequence have arbitrarily small
distances for sufficiently large index.) In the sequel we shall use-for brevity-<e
for the collection Pc(A00

).

We define the order 11 \;; 11 on cg by putting X G Y iff X 2 Y (with 11 2 11 set-contain
ment).

2.2.1. Notation. Often our notation will not reflect the difference between x and
{x}, for xEA00• Thus we may write a*buaw where really a*{b}u{aw} is meant.

2.3. Lemma. dis a metric on A00, and cg is a complete partially ordered set with respect
to ~' with A OCl as bottom element and with Un Xn = n n xn> for (Xn)n a [;;-chain.

For later use (in Section 4) we introduce one further definition with a theorem
and a corollary.

2.4. Definition (Hausdorff distance). For any metric space (M, d), x, y EM and
X, Y ~ M we define distances J, J as follows:

(a) d(x, Y)=inf{d(x,y)IYE Y}, where inf.0= 1,
(b) d(X, Y)=max(sup{J(x, Y)lxEX}, sup{J(y,X)lyE Y}) where sup.0=0.

2.5. Theorem. (a) J is a metric for Pc(M).
(b) If (M, d) is complete, then so is (Pc(M), J). Also,for (Xn)n a Cauchy sequence

in Pc(M), we then have that limn Xn = {x lxn ._,. x, with Xn E Xn}.

Proof (see, e.g., [6]). A complete proof of (b) is contained in [4]. 0

2.6. Corollary. The Hausdorff metric on cg turns it into a complete metric space.

The Hausdorff metric on cg will be written as dL (to be contrasted with the
Hausdorff metric d8 on <!J>, in Section 3).

In Section 4 we will need the following connection between the metric on cg and
its cpo structure.

2.7. Proposition. Let (Xn)n be both a Cauchy sequence in cg and a [;;-chain. Then

Un Xn =limn Xn.

Linear time and branching time semantics 139

Proof. By Theorem 2.5 we must prove that

nn xn = {x Ix= limn Xn, for some Xn E Xn}.

Here (c:;:) is trivial.

(2): let x =limn x,, for some sequence (xn)n such that Xn EX,,. Since Xn s; X 0 for
all n, we have xn E X 0 • Since X 0 is closed, x E X 0 • Likewise x =limn Xn+i is an element
of Xi. etc. Hence x En,, X,,. D

We shall use cg with its cpo structure as semantic domain for the trace semantics
of ft. (By Corollary 2.6, cg is also a complete metric space. However, contrary to
the situation for BT semantics, we find the cpo structure more convenient for the
LT semantics.) We need two theorems to support cg as model. (Technically, these
two theorems are among the main results of this paper.) First we give the natural
definitions of the basic operations on A 00 and <g_

2.8. Definition. (a) For x, y E A00, x · y (mostly written as xy) is the usual concatena
tion of sequences (including the convention that xy = x for x E Aw). Further, x II y
is the set of all shuffles of x with y (extending to the infinite case the classical
definition of the shuffle of two finite words).

(b) Xu Y is the set-theoretic union of X and Y; X· Y={x· y[xEX,yE Y},
and XII Y = U{x II y [x EX, y E Y}. We will also write XY for X- Y.

The main theorems of this section state that the operations ·, u, II preserve
closedness and are continuous (in the usual cpo sense) in both their arguments. (But
note the proviso in Theorem 2.10).

2.9. Theorem. For X, y in <"6?, x. Y, x u y and x II y are in ce.

The proof will be given in Appendix A.

2.10. Theorem. Let A be finite. Then the operations · , u , II from <g x cg to <g are
continuous in both their arguments.

The proof will be given in Appendix A.

2.10.1. Remark. The finiteness condition on A ensures compactness of A00 (as
observed in [12]). We then have that each sequence in A00 has a convergent
subsequence. It is readily seen that this implies that, for each >;;-chain (X,,)n such
that Xn .,t. .0 for all n, we have that nn Xn 7':- .0, and this fact is needed in the proof
of Theorem 2.10. We do not know whether this fac\ can also be enforced by weaker
conditions than the finiteness of A. A possibility circumventing the need for it would
be to define

x · e = .0 · x = x II .0=e11 x = x.

140 J. W. de Bakker, J.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer

However, this has certain semantic disadvantages which become manifest, e.g., when

elementary actions are articulated to assignments and tests (assuming that a test

which has the value false in some state, delivers the empty state set as a result).

We proceed with the definition of the linear time semantics for !£. We adopt the

usual technique with environments to deal with (free) statement variables. Let

r = Yt mv-> <fi:, and let y range over I'. Let, as before, X range over <&, and Jet

y{X/x} stand for the environment which is like y, but for its value in x which is

now X. Let [<fi: ~ <t5'] stand for the collection of all continuous functions from <fi: to

<fi, and let, for <PE[<'.€-> <:&'], µ,<P denote its least fixed point. We have the following

definition.

2.11. Definition. The semantic mapping [] L: .:£~(I'-> <g) is given by

[a]d y) ={a}, [S1; S2]L(y) = [S1]L(y) · [S2]L(y),

[S1 u S2]L(y) = [S1]L(y) u [S2h(y), [S1 II S:?]L(y) = [S1] d y) llITS2] d y)

and

[µ,x[S]] L (y) = µ,<Ps,y where <Ps,y = AX.[S] L(y{ X / x }).

This definition is justified by the following lemma.

2.12. Lemma. (i) AX1 ... AXn.[S]d y{Xd X;}7= 1) E [<'.€ ~ [<fi: ~ · · ·-> [<t5' ~ cg] · · ·]]
(n factors <e)

(ii) The functions in (i) are monotonic.

Proof. (i) Proving (i) is a routine matter (see, e.g., [l, Theorem 7.9]) once Theorem
2.10 is available.

(ii) Follows by a simple inductive proof. Alternatively: note that cg is also a

complete lattice, and use the fact that in a complete lattice continuous functions
are monotonic (see, e.g., [l]). D

2.13. Corollary. [µ,x[SJ]dy)=nn <P~,y(A00) where <Ps,y is as in Definition 2.11.

Proof. The proof follows by Definition 2.11, Lemma 2. I 2(i) and the Tarski-Knaster
fixed point theorem. 0

2.14. Examples

(I) [µ,x[(a ; x) u b Jh(y) =µ,[AX.[(a ; x) u b] d y{X / x})]

= µ,[AX.((a · X) u b)] = n" Xn,

Linear time and branching time semantics 141

(2) The 'fixed point property':

[µ,x[S]h(y) = [S]L(y{[µ,x[S]h(y)/x})

or

[µ,x[S]] L(y) = [S{µ,x[S]/ x }] L (y),

where in the second equation { · / ·} denotes syntactical substitution.

(3) Let S be µ,x[a ;(bllx)]. Then [S]L(y) is, remarkably, a nonregular set of

traces. Using the fixed point property (2) and the following property of II, which is
easily derived from the definition of II:

U a;X; llU bj0 =U a;(X; llU bj 0)u U bj(0 llU a;X;)

one computes (abbreviating X0 = [S] L (y), X,,+ 1 = X" II b):

from which it is easy to see that X 0 is the set of maximal traces in the labelled and
directed graph

Alternatively, Xo={xEAwl('lfn)lx[nJla~lx[nJlb}, where lx[nJla is the number of

occurrences of a in x[n], the prefix of x of length n.

(4) Let S be as in (3), S'=µx[b;(allx)] and T=µ,x[(a;x)u(b;x)]. Then a

similar computation as in (3) shows that

2.15. Remark. For statements which have unguarded µ,-terms, the semantics [·] L

may not be the most natural one. E.g., we have-for any y-

We shall return to this point in Section 4, where we are in a position to compare

both LT and BT semantics for such unguarded µ,-terms.

3. BT semantics: Mathematical background and semantic equations

The branching time semantics for 3? is based on the theory of processes as sketched

in [3] and described more fully in [4]. We briefly recall the main facts from this

theory (in the terminology of [3, 4] referring only to uniform processes).

For an approach to uniform processes via projective limits, see [5]; and for an

approach where processes are congruence classes of trees ('behaviours'), see [8, 9].

142 J. W de Bakker, J.A. Bergstra, f. W K/op, J.-J. Ch. Meyer

(Cf. also our Remark 4.3 for a brief comparison between the present uniform
processes and Milner's behaviours.)

Here, processes are objects which are best compared to labelled unordered trees
without repetitions in successor sets. Considering the examples

~ ~ ar ~
&&&&&&&

we have that the first and second, and the third and fourth represent the same
process. Also, processes are closed objects: they contain all their limit points, in a
sense to be made precise in a moment. E.g., the tree t, does not represent a process,
but tree t2 does, since it contains also the limit process "aw". (Cf. Remark 4.3 where
it is explained in what sense a tree represents a process.)

a

f I t :2

a a a a a a a

a a a a a

a a a

a

Technically, processes are obtained as follows:
Step 0. Start from the alphabet A as before; in addition, a so-called nil-process p0

is assumed.
Step l. Define Pm n = 0, 1, ... , by P0 = {p0}, Pn+I = P(A X Pn), where P(·) stands

for the collection of all subsets of (·).Write Pw =Un Pn.
Step 2. Introduce a metric on Pn (by suitably combining Definitions 2.2(c) and 2.4)

and take r!/' as the completion of Pw. Let d8 be the metric on r!/'.
We can then show the following theorem.

3.1. Theorem. r!/'={p0}uPc(Axr!/').

(Here Pc(·) refers to the collection of all closed subsets of (·)-with respect to
d8 -and =denotes isometry.)

Linear time and branching time semantics 143

The next definition gives the main operations upon processes. We distinguish the

cases p = p0 , p = X <;; P(A x Pn) for some n > 0, or p = limi pi, with (pi)i a Cauchy

sequence of elements Pi in Pi.

3.2. Definition

(a) P 0 Po= p, poX={poxlxEX}, po(a, q)=(a,poq),

p 0 limi q; = lim; (p 0 qi),

(b) Pu Po= Pou p = p, and, for p, q ~ p0 , p u q is the set-theoretic union of p and q,

(c) PllPo=Pollp=p, XII Y={xll YlxEX}u{XllYIYE Y},

(a,p)ll Y=(a,pll Y), Xll(a,q)=(a,Xllq),

(limi pJ II (limj %) = limk (Pk II qd.

3.3. Lemma. The above operations are all well defined and continuous in both their

arguments.

This lemma is the counterpart of the results in Appendix A for the LT framework.

The proof of the lemma-which does not require more effort than the LT case-is

contained in [4].
By way of preparation for the definition of the recursive case we need a classical

result. A mapping T: '!J ~ '!J is called contracting whenever dB(T(p), T(p')) ~

c · dB(p, p'), with 0 ~ c < 1. We have the following theorem.

3.4. Theorem. If T is continuous and contracting, then for each q E '!P, the sequence

q, T(q), T 2(q), ... is a Cauchy sequence converging to the unique fixed point of T.

Proof. This is Banach's fixed point theorem. D

3.5. Remark. Let - : '!J-? {p0} u Pc(Ax '!P) be the isometry whose existence was

mentioned in Theorem 3.1. Then it is not hard to show that one can construct (via

Cauchy sequences of approximations) elements p satisfying 'recursive definitions'

such as

ft={(a,p)} or p={(a,p)laEA}u{(a,p0)laEA}.

(Moreover, the solutions to these equations are unique.)

Par abus de langage, we will omit reference to - henceforth and simply write

p ={(a, p)} etc. Without this convention, an equation p ={(a, p)} could not have a

solution, by the Axiom of Foundation of axiomatic set theory (ZF).

In the same vein we will speak about an infinite path (ai. Pi>. (a2, P2), ... such

that (an+ i, Pn+i) E Pn for all n > 1. Here one should also read:

144 J. W. de Bakker, J.A. Bergstra, f. W. Klop, J.-1. Ch. Meyer

Summing up, we can deal with · =' and 'E' in the usual way, without being
bothered by the Axiom of Foundation.

As final preparatory step for the semantic definition we extend the alphabet A
with a special so-called unobservable action T and take as process domain the
domain rl'2 given by

As before, we apply the familiar environment technique. Let I'= Y'tmv--" r:!P2• We
define the BT-semantics for 2 as follows.

3.6. Definition. The semantic mapping [] 8 : 2--'> (I'--" '!P2) is given by

[a] B ('Y) = { (a, Po)},

[S1 ; S2] B('}') = [S2] B('}') 0 [S1]B('y),

[s, u S2] B ('}') = [s ,] B ('}') u [S2] B ('}'),

[S, II Sz]B(y) = [S,]B(y) II [S2]B(y),

[x]e(y) = y(x),

[µx[S]]e(y) = lim; p;, where p0 is the nil-process and

P;+1 = {(T, [S]e(y{p;/ x}))}.

3.7. Examples. (For simplicity we omit y.)
(I) [a 1 ; a2] B = { (a2, Po)} 0 { (a 1, Po)}= { (a,, { (a2, Po)})},
(2) [a II (bu c)h =(in a natural picture representation)

a
b

h a a

(3) [µx[(a ;x) u b]]B =Jim; p;, where P;+ 1 = { (T, {(a, p;), (b, p0)})}. In a picture we
have

T

a b

T

a h

Linear time and branching time semantics 145

3.8. Remark. The central clause is the definition of recursion ,ux[S]. We have solved

this by introducing for each S an associated contracting mapping T =

Ap.{(7, [S]ll(y{p/x}))}. Contractivity is enforced by the (7, ...) construct.

Operationally, the (7, ...) action corresponds to the action of procedure entrance,

which does not involve any "observable' action in A. For such T, lim, T'(p0) is its

unique fixed point. (Po is only chosen for definiteness; other choices would of course

yield the same result.) We shall return to the motivation for adopting this strategy
in the next section.

4. LT and BT compared

In this section we compare the two semantics presented in Sections 2 and 3. More

specifically, we discuss the relationship between LT and BT both for statements

with guarded ,u-terms only, and for statements with any form of recursion.

The main result of the section is stated in terms of the notion of trace set of a

process. Roughly, the trace set of process p is the set of branches (terminating or

infinite) obtained by viewing pas a labelled tree. Here we meet the following problem.

Remember that a finite path of process p terminates in p0 or in 0. Semantically,

the latter case signals unsuccessful termination. Now there are two possibilities:

(i) because in '€ there is no way of signalling unsuccessful termination, we may

decide to exclude paths ending in 0 from the trace set of p, or

(ii) cg· will be enriched with a fail symbol which may be appended to the end of

a finite word over A.
The disadvantage of (ii) is technical: all the operations on '€have to take the fail

possibility into account. (Although we are not prepared to do so here, it seems quite

well possible to extend LT semantics in this way.)
The disadvantage of (i) is essential: the operation 'trace', which is defined below,

would not be continuous. (For, consider q =limn q" where q0 ={(a, 0)}, qn+t =
{(a, qn)}. Then the trace set of qn is 0, but that of q is {aw}.)

We will adopt the following solution: in the present case of ·uniform' processes,

i.e., processes where the a EA are atomic actions and not further specified, the issue

of unsuccessful termination is not yet at stake. In fact, a process p which is the

denotation of an expression, p = [S~ 8 (y), has no branches ending in ,0. Therefore

we decide, in order to establish a correspondence between LT and BT semantics,

to adopt the natural restriction to the closure of

2f>rr u = {[S]ll(y) I closed S, y E Y'tmv-" ff.'}.

(Note that i!f>u ~ itself is not closed.) We will write 91>+ for this closure. Obviously,

gi+ is a complete metric subspace of PP. An alternative characterization of [ff>+ is

'21'+ = { p E PP J all terminating paths of p end in Po}.

146 J. W. de Bakker, J.A. Bergstra, J. W Klop, J.-J. Ch. Meyer

For use in Theorem 4.9 we note that

4.1. Definition. Let p E ff!'+.
(1) A path 1T for p is a (finite or infinite) sequence

such that (ai.p1)Ep and (ai+t.Pi+1/Epi, i= 1,2, ...
(2) (i) Let 1T = (a 1, p 1), (a2 , p2), ••. be an infinite path of p E qp+. Then a 1 a 2 ••• E

Aw is called a trace of p.
(ii) Let 1T = (a1, P1J, ... ' (an, Pol be a finite path of p Erz;+. Then a1a2 ... an E

A* is a trace of p.

(3) liace(p) is the set of traces of p.

4.2. Examples

liac,,({(a, {(b, p0/}), (a, {(c, p0)})}) = {ab, ac},

liace({(a, {(a, ... >})})= {aw},

liace([,ux[(a ; X) U b]] 8 (y)) = (ra)w u (ra)*rb.

4.3. Remark. Clearly, the definition of traces of a process p suggests viewing p as
a labelled tree t(p), having the traces as branches. This view is not without difficulties,
however; e.g., the labelled trees

/I and 12

j:
a a

a

a a a

should be identified as their approximations coincide. In [9], this consideration has
given rise to the notion of a process (a 'behaviour') as the equivalence class of
labelled trees (in fact, charts) modulo a congruence called 'bisimulation' (=). E.g.,
t 1 = t2• A bisimulation is a certain relation R between the nodes of ti. t2 , where
Dom(R) is the set of nodes of t 1 and Range(R) is the set of nodes of 12 •

Now one can prove (we will not do so here) the following. If the bisimulation R
is a function, write 11 > t2 • (In the example this is the case.) We observe that an
equivalence class of trees contains a unique <-minimal tree. This is precisely the

Linear time and branching time semantics 147

tree which one can associate to a process p by the following definition:

(i EI)

provided the (a;, p;) are pairwise different.
(I.e., the set {(a;, p;) Ii E I} contains no duplications.)

Moreover, if this proviso is dropped, then p can be developed in many different
trees; in fact, to every tree which is bisimulation congruent with t(p).

Example. If p ={(a, p)}, then t(p) = t2 above; also one can develop p to t 1 above,
using at some points the representation p ={(a, p), (a, p)}.

Note, finally, that congruent trees have the same set of branches.

Now we would like to assert that ii.ace is an operation from g:i+ to Cf6, i.e., for
p E g:i+, t iace(p) is a closed set. Surprisingly, this need not to be the case if A is
infinite; say A= {a; Ii;:::. O}.

4.4. Example. Consider p E g:i+ as given by the tree

i.e., p = {(a0 , p;) Ii;:::. O} where p0 is the nil-process, and, for n > 0,

Pn ={(an, Po), (ao, qn-1)},

q" = { (a0, (ao, (a0 , ••• , (ao, Po)})· · ·)} (n times ao).

Then ii.ace(p)={a~!n;::.1}u{a0am!m;::.1}, which is not closed as it lacks a~.

However, with the additional assumption that A is finite, we have (by a nontrivial
proof) that t 'tace(p) is closed indeed. In fact we have the following lemma.

4.5. Lemma. Let A be finite. Then:
(i) t 'tace(p) E 'f6,

(ii) t McJJ is continuous (with respect to the Hausdorff metrics in g:i+ and <6').

The proof will be given in Appendix B.

148 1. W. de Bakker, I.A. Bergstra, 1. W. Klop, 1.-1. Ch. Meyer

We will also need the following fact, the proof of which is routine and omitted here.

4.6. Proposition. hace: '!/'+--> Cf5 is an homomorphism (with respect to the operations
·, u, II on g>+ and "€).

4.7. Remark. A corollary of Lemma 4.5(i) and Proposition 4.6, together with the
obvious surjectivity oft t.ace, is that

X, y E cg =? x II y E Cfi.

(For, given X, YECfi, take p,q such that tiace(p)=X and tiac.e(q)= Y. Then
XII Y = t.zac.e(p) II tMce(q) = tzace(p II q) E Cfi.)

However, we have preferred to give also a direct combinatorial proof of this fact
in Appendix A.

We also need the notion of universal process for '!/'+.

4.8. Definition. The universal process for g>+, called Pu, is the (unique) solution of
the equation

p = { (a, p) I a E A} u { (a, p0) I a E A}.

Note that tzac.e(pu) =A"".

In the following, it will be convenient to restrict ourselves to closed statements,
i.e., statements without free statement variables. Now the natural question which
suggests itself concerning the relationship between LT and BT is whether, for each
closed S-omitting I' which is then superfluous-we have that

(*)

Taken as it stands, the answer to the question is "no". For example, taking S = µ,x[x]

we have that

tiac.e([µ,x[x]TI 8) = tMc.e({(7, { (r, ...) }) }) = { 'T"'} r" A 00 = [µ,x[xJTI L·

This discrepancy is not an essential phenomenon, but due to the special role of the
unobservable action 'T for BT semantics. Remember that r was introduced to enforce
contractivity of the mapping T as defined in Remark 3.8, which in turn was necessary
to allow us to apply Banach's fixed point theorem. However, another approach may
also be adopted which will lead to a positive answer to the question (*). It is
convenient to separately treat the cases where

(i) S has only guarded µ,-terms, and
(ii) S may have unguarded µ,-terms.
Case (i) (only guarded µ,-terms). In this case the '7-trick' for BT is in fact

superfluous. Taking T' = Ap.[STis(')'{p/ x}), T' is now contracting for each S, and
lim;,,, 1 T'(p;), with p 1 arbitrary, p;+ 1 = T'(pi), converges to the unique fixed point of

Linear time and branching time semantics 149

T' independent of the initial p 1-which we may therefore choose as Pu to facilitate
the proof of the following theorem.

4.9. Theorem. Assume statement S is closed and involves only guarded µ,-terms. Let

[Sh be as before, and let [S] 8 be as in Definition 3.6, except that in the clause for

µ.,x[S], we replace p0 by Pu and define

Pi+l = [S] 8 (y{p;/ x}).

Then,

tiace([Sh) = [S]v

Proof. (The proof uses all the results of this paper except the present theorem.)
We will prove the following stronger fact, necessary for the induction on the

structure of statements S' (which now need not to be closed): for every S' containing
only guarded µ,-terms, and for every y E Ytmv·~ (!/'+:

[S'h(tiace 0 y) = hace([S']a(y)).

Case (i). S' '/= µ.,x[S]. Now the result easily follows by the induction hypothesis
and the homomorphism properties of t2ace.

The interesting case is the following:
Case (ii). S' = µ.,x[S].

Some notation is needed first: tiace 0 y = y'. Further, we employ again the notation

of Definition 2.11: <Ps.y' = AX.[S] L(y'{X / x}). Finally, p,, is defined as in the statement
of the theorem.

First we prove the following:
Claim 1. liace(pn) = <P~,y·(A00).

Proof of Claim 1

Hence,

liace(pn) = tiace([S]a(Y{Pn-1/x}))

=(by the induction hypothesis) [Sh(y'{tiace(p,,_ 1)/x})

= (AX[S] L(y'{X / x}))(hace(Pn-il) = <Ps,y{I iace(Pn-l)).

tiace(p,,) = <P~,y·(ltace(pu)) = <Ps,y·(A''°).

Claim 2. n,, <P~,y·(A00) = lim" <PL·(A00
).

Proof of Claim 2. By the fact that only guarded µ,-terms are considered, {p,,} is

a Cauchy sequence. By the continuity of /11,ace (Corollary B.7), {tMce(p,,)} is

therefore also a Cauchy sequence. So, by Claim 1, { <PL·(A 00
)} is a Cauchy sequence.

Furthermore, the <P~,y' are monotonic (Lemma 2.12(ii)). Since A00 is the maximal

element of CCi, the sequence { <P~,y·(A00)} is therefore decreasing (w.r.t. £).Now Claim

2 follows by Proposition 2.7.

150 J. W. de Bakker, I.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer

Now we have

[S'h(t-t.ace 0 y)

= [µx[S]DL(y')

= nn cP$,y.(A "')

=limn <Ps,y·(A"')

=limn t-t..ace(pn)

= ti.ace(limn Pn)

= t-t..ace[µx[S]Ds('Y)

= t-t..ace[S'Ila(y).

(by Corollary 2.13)

(by Claim 2)

(by Claim l)

(by Corollary B.7)

(by the definition in the present theorem)

We continue with the second case.

0

Case (ii). S involves at least one unguarded µ-term. Now two ways of achieving
(*)are available.

Firstly, we can maintain the definition of [Sh, and use the revised definition of
[Sil 8 as stated in Theorem 4.9. The crucial difference is that the mapping T' is now
no longer contracting in general, and we cannot use Banach's fixed point theorem
to show that the sequence Pu, T'(pu), T'2(pu), ... converges to a fixed point of T'.
However, this fact has indeed-with some effort, and for arbitrary initial q-been
established in [5]. Thus, we can base our revised definition on their theorem, and
again obtain-by the same reasoning as in the proof of Theorem 4.9-that (*) holds.

Secondly, we may also keep the definition of[Slla as in Definition 3.6, and revise
that of [S] v We then replace the last clause of Definition 2.1 l by

[µx[S]]L(y) =µ[AX.[T; S]L(y{X Ix})].

All this amounts to the idea of replacing, both for LT and for BT, µx[S] by µx[T ; S],
thus ensuring that all statements have only guarded terms, so that Theorem 4.9
applies again.

Appendix A: Well-definedness and continuity of the operations·, u, II on CIJ

We will now give the proofs of Theorem 2.9 and 2.10. For both theorems the case
of" u" is trivial; this leaves us with the following four propositions, which we will
treat together since their proofs have a common structure.

Theorems 2.9 and 2.10. (i) X, Ye<€ ~ XII YE<€.
(ii) X, Ye Cf£ ~ XYe <€.

(iii) Let A be finite. Let Xm Ym E <€(n, m ~ O) be such that X 0 2 X 1 2 · ··and

Linear time and branching time semantics 151

Yo2 Y 1 2 ···.Then

(D0 x") II (,00 Ym) = Ll (xk 11 Yk).

(iv) Under the same conditions as in (iii):

(Do Xn)(00 Ym) =Do (XkYk)·

Proof. The proofs of (i), ... , (iv) all start with a Cauchy sequence {z; Ii;;;,, O}, where
the z;'s are elements of x II Y, XY, nk;;.O (Xk II Yk), nk;;.Q xk Yk, respectively. Since
we will need to specify which parts from Z; originate from X (respectively Xk) and
which from Y (respectively Yk), we introduce two disjoint copies A,; and A77 of the
alphabet A. Intuitively, Ag and A77 are colored copies of A, say 'blue' respectively
'red'. The sequence {z;} is then colored, i.e., lifted to a sequence {n where ?i E

(As u A 77)"°= B00 and h(?i) = z;; his the 'decoloring homomorphism' whose precise
definition is left to the reader.

The sequence UJ is, h?wever, in general no longer a Cauchy sequence in Pc(B00).

But it contains a subsequence {{g<n} which is a Cauchy sequence. The (colored)
limit I: of this subsequence is then used to prove the result. More precisely:

Proof of (i). Let {z; Ii;;;,, O} be a Cauchy sequence such that zi EX II Y (i;;;,, O). So
zi E xi 11 Yi for some X; EX, Yi E Y Lifting to the alphabet B we find colored versions
t;b ~;, 1Ji such that gi EA~, YJ; EA'; and ?; E g; 11 YJ;.

EA EA

l q n
t; = - - - - -
0

t; = - - - - -
1

- - - -·
I
I
I
I

t;g (0) = 'f0 (Ol = ---
I

' '
t; f 0 (l) = -- -

I
I

'

=
(f0 (O).)

I
I

= (f0 (1))
'
' I

t; =

152 J. W. de Bakker, J.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer

Consider· n = n0 • Since {z;} is a Cauchy sequence, there is a k0 such that the
prefixes z;[n0] are constant for i ~ k0, namely equal to zko[no]. This need not be the
case for {;[n0]. However, since there are only finitely many colorings of zko[n0], there
is Cby the pigeon-hole principle) a subsequence Uto(i)} of {t'; Ii~ kol such that the
prefixes {fo<il[n0] are constant for all i. (Here f 0 is some monotonic function from~
to N.)

Now consider n 1 > n0• From the sequence Uto<il} we can in the same way extract
a subsequence {{Ji(fo(ill} whose n1 -prefixes are constant. Continuing this procedure
we find a sequence {{guJ} where g is a monotonic function such that g(j) =

(Jjo· · · 0 f 0)(0), which evidently is a Cauchy sequence in Pc(B"°). Call the limit(.
Then (can be decomposed (by projections to Ag, respectively A,,) into g, T/ such
that (E g II T/· Decoloring, we have z Ex II y. Since z is the limit of { z;}, we are through
if x EX and y E Y. This easily follows because X, Y are closed.

Proof of (ii). The proof is almost identical to that of (i): we only have to replace
X \I Y by XY, and Z; EX; II Yi by z; = xiyi etc. (In the diagram of the proof of (i): the
'blue' parts precede the 'red' parts, instead of being mixed.)

Proof of (iii). (s;;) is trivial.
(=2): Take z En (Xi II Y;), so, for all i, z E X; II Yi for some xi E X; and Yi E Y;. Again,

find colored versions(;, g;, T/; such that{; E B 00
, g; E Ag', T/i EA':, h((;) = z, h(g;) = X;,

h (TJ;) = Y; and {; E gi II TJ;. Construct {, g, T/ such that (E g 11 TJ as in (i).
Let h(g) = x and h(T/) = y. It remains to show that x En Xn and y En Ym. This

follows because for each prefix x' of x there is a p such that x' ~ xP E XP s;; X0. Since
X 0 is closed, it follows that x E X 0 ; likewise x E Xi. etc.

The finiteness condition on A is used to ensure that n Xn >= 0 and n Ym >= 0. The
nonemptiness of these intersections is needed in the case that (E Ag' or t" EA': (i.e.,
(is entirely 'blue' or 'red'). In that case we need to pick an arbitrary 'Y/ respectively
g such that h(T/) = y En Ym respectively h(g) = x En Xn, to be able to write (E g II TJ

and ZEX llY·
Proof of (iv). This proof is again mutatis mutandis identical to that of (iii). (Here

we only need the nonemptiness of n Ym.) D

Appendix B. The operation tiace: g;+-+ Cf6

We will now prove Lemma 4.5, stating that, for finite A, the operation t1tace: g;+-+

Cf6 is well defined and continuous. In order to do so, we need some preliminary
facts which also have some independent interest. First we recall a definition from
[3, 4].

B.O. Definition. (i) Let p E Pw (the set of processes of finite depth). Define p[n]

(n~O) as follows:
(I) if p=p0 , then p[n]=p0 (n~O),

(2) otherwise p[O] = p0 , p[n + 1] ={(a, q[n]) I (a, q) E p}.

Linear time and branching time semantics 153

(ii) Let p E @>\Pw. Then p = lim;p;, for a Cauchy sequence {p;}; with p; E P;. Now
p[n]=lim;p;[n].

B.l. Proposition. (i) Let dB be the Hausdorjf metric on @>. Let 88 be the metric on @>
defined by

{
2-min{n IP[n] .. q[n])+l

8B(p,q)= Q
if (3n)(p[n] ;;C q[n]),

otherwise (in which case p = q).

Then d8 (p, q) = 88 (p, q) for all p, q.

(ii) Let dL be the Hausdor.ff metric on ri. Let 8L be the metric on r5 de.fined analogous
to 88 • (For X E ~. X[n]= {x[nJlxE X}.)

Then dL(p, q) = 8L(X, Y) for all X, Y.

Proof. The proof is a mere routine matter. D

B.2. Proposition. Let q0 , qt. ... be a Cauchy sequence in ~+ with limit q. Suppose
X; E tiace(q;), i;;;.: 0, and x0, Xi. ••. is a Cauchy sequence (in A 00

) with limit x.
Then iiac.e (q) contains a Cauchy sequence x~, x;, ... with limit x.

Proof. The proof is immediate, via the metric l>8 (the n-prefixes of the traces of qk
can be made to coincide with those of q, for arbitrary n, by taking k large enough,
i.e., such that 88 (qk, q)<T"). D

B.3. Remark. The preceding proposition can be rephrased as follows:

Jim iiace(qn) !:;;; i't.ace(lim qn)·
n n

(Here, the overbar denotes the closure operator.)

B.4. Lemma. Let A be.finite. Then iiac.e(p) is closed for all pE gp+_

Proof. Suppose x E tMc.e(p). We have to prove x E t't.ace(p). First we introduce
the notation x(n) to denote the result of removing the prefix x[n] from x. So
x = x[n]x(n). Further, write x = x1x2 ••••

Now we define by induction on n a path (xi. P1), (x2, P2), (x3, p3), ... in p. The
result is (by Definition 4.1) that xEt'tace(p).

--~~

Basis. Start with p and the hypothesis xEt'tace(p).
Induction step. Suppose Pn is defined. The induction hypothesis is x(n) E

ltac.e(pn).

154 J. W de Bakker, J.A. Bergstra, J. W Klop, J.-1. Ch. Meyer

From the induction hypothesis we have

x(n) = lim tm
m

for some converging sequence Um} in tiace(pn). (tm depends also on n, but we
will not reflect this in our notation.) Likewise, by removing the first symbol:

x(n + 1) = lim q;,,,
m

where q;,, = tm(l).
Let qm be such that t:n E t'tace(qm)· Since A is finite, '!/'+is compact and so there

is a converging subsequence {qf(mJ} of {qm}. (Here f is some monotonic function

from N to N.) Let q be its limit. Since Pn is closed, we have (xn+ 1, q)EPn- Now Pn+1
will be q.

Finally it follows by Proposition B.2 that

x(n + 1) E t-za,cc(Pn+1),

which is the induction hypothesis for Pn+I· 0

In order to prove the continuity of tMce, we observe the following.

Linear time and branching time semantics 155

B.5. Proposition. For all p, q E g>+;

8a(p, q)~ 8L(hace(p), hace(q)).

Proof. The proof easily follows by the simple nature of the 8-metrics. O

This fact is exploited via the following general lemma.

B.6. Lemma. Let (M;, d;) be complete metric spaces (i =I, 2). Let f: M 1 ~ M 2 be a
function such that d 1 (x, y) ~ d2(f(x),f(y)). Then f is continuous, i.e., limn/(x") =
/(limn Xn).

Proof. Obvious. D

B.7. Corollary. The operation ttace: gi>+ ~ 1:€ is continuous, i.e.,

lim t tace(Pn) = t tac.i lim(Pn)
n n

for {p"}" a Cauchy sequence in t!J+.

References

[I] J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs, NJ,
1980).

[2] J.W. de Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer, Linear time and branching time
semantics for recursion with merge, in: J. Diaz, ed., Proc. ICALP 83, Barcelona, Lecture Notes in
Computer Science 154 (Springer, Berlin, 1983).

[3] J.W. de Bakker and J.I. Zucker, Denotational semantics of concurrency, Proc. 14th ACM Symp. on
Theory of Computing (1982) pp. 153-158.

[4] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Inform.
Control 54 (1/2) (1982) 70-120.

[5] J.A. Bergstra and J.W. Klop, Fixed point semantics in process algebras, Rept. IW 206/82,
Mathematisch Centrum, Amsterdam, 1982.

[6] R. Engelking, General Topology (Polish Scientific Publishers, 1977).
[7] N. Francez, D.J. Lehmann and A. Pnueli, Linear history semantics for distributed languages, Proc.

21st Symp. on Foundations of Computer Science (IEEE, 1980) pp. 143-151.
[8] R. Milner, A Calculus for Communicating Systems, Lecture Notes in Computer Science 92 (Springer,

Berlin, 1980).
[9] R. Milner, A complete inference system for a class of regular behaviours, J. Comput. System Sci.

28 (3) (I 984) 439-466.
[10] M. Nivat, Mots infinis engendres par une grammaire algebrique, RAIRO Informatique Theorique

11 (1977) 311-327.
[11] M. Nivat, Sur Jes ensembles des mots infinis engendres par une grammaire algebrique, RAIRO

Informatique Theorique 12 (1978) 259-278.
[12] M. Nivat, Infinite words, infinite trees, infinite computations, in: J.W. de Bakker and J. van Leeuwen,

eds., Foundations of Computer Science Ill.2, Mathematical Centre Tracts 109 (1979) pp. 3-52.
[13] M. Nivat, Synchronization of concurrent processes, in: R.V. Book, ed., Formal Language Theory

(Academic Press, New York, 1980) pp.429-454.

156 J. W. de Bakker, J.A. Bergstra, J. W. Klop, J.-J. Ch. Meyer

[14] G.D. Plotkin, A power domain construction, SIAM J. Comput. 5 (1976) 452-487.
[15] D.S. Scott, Data types as lattices, SIAM J. Comput. 5 (1976) 522-587.
[16] D.S. Scott, Domains for denotational semantics, in: M. Nielsen and E.M. Schmidt, eds., Proc. 9th

ICALP, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) pp. 577-613.
[17] M.B. Smyth, Power domains, J. Comput. Systems Sci. 16 (1978) 23-36.

