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1. Introduction 

In [5] and [2] the concept of symmetric linear 
systems was introduced and the fundamental role 
of the structure algebra was established. We recall 
those concepts here for the benefit of the reader. 
Let (£ be a class of linear systems where the 
dimensions of the state and input spaces are fixed 
and the (A, B) satisfy some set of relations. The 
archetypical example is 

A, B, H real matrices} 

which arises in a variety of contexts and specifi
cally in the modeling of twin-lift helicopters [6]. 

The structure algebra of the class (I is defined 
to be the algebra 
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R ( (I ) = { ( S, T ) : for all ( A , B ) E (I 

SA= AS, SB= BT). 

The importance of the structure algebra stems 
from the observation that because of commutati
tively relations the state space and input space 
become R(G£)-modules and the maps A and Bare 
module homomorphisms. Thus if the structure of 
R ((I )-modules is known it is possible to reduce the 
structure of the maps A and B. 

In the case that the algebra R ( (£) is semisimple, 
a great deal is known [2]. However in [2] it was 
shown that the symmetric systems with real semi
simple structure algebra R( G£) could always be 
written as the direct sum of ordinary real systems, 
ordinary complex systems and 'ordinary' quater
nionic systems. Unfortunately there is not a well 
established theory of linear systems over the 
quaternions. The goal of this paper is to establish 
a minimal amount of material so that the theory of 
real, semisimple symmetric systems is somewhat 
complete. 

2. Linear algebra over the quaternions 

2.1. In the following we let IHI denote the real 
division algebra of quaternions. Recall that a typi
cal quaternion h has the form 

h=a+bi+cj+dk 

where I, i, j, k form a basis for IHI as an IR-vector 
space. Multiplication in IHI is determined by the 
formulas 

i2 =j 2 =k 2 =-l, ij=k, jk=i, ki=j. 

Also recall that IHI can be represented as the set 
of matrices of the form 

( 
::.. b 
-c 
-d 

b c 
a d 
-d a 
c -b 
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Typically the matrix above represents the quatern
ion a+ bi+ cj + dk. 

Thinking of i, j, k as imaginaries we define a 
bar conjugation on IHI by 

h = Re( h) + Im( h) - ii+ Re( h) - Im( h); 

in terms of the matrix representation above the 
bar conjugate is just the matrix transpose. So we 
immediately find that 

h1h2= ii2ii1. 

We also note that, if IHI is thought of as IR 4 with 
the 1, i, j, k basis, the standard norm is just 

We extend this to obtain a standard norm on IHI n, 

defined by 

llhll= (h*h)l/2' 

where h E IHI n is thought of as a column vector and 
the asterisk denotes taking bar conjugate transpose 
(the multiplication is just matrix multiplication). 

There is another notion of conjugation on IHI 
defined by 

where a E IHI is nonzero. Note that there are com
mutation formulas 

h1h2 = h1h~ 2 

- hhl 'h -. 2 I 

(2.1.1) 

We also define a conjugation on IHI" in the same 
spirit by 

h" =a- 'ha 

where a E IHI is nonzero, h E IHI" and the multipli
cations are performed component by component. 

2.2. By an IHI-vector space we just mean a right 
module over IHI. 

Example 2.2.1. IHI is itself an IHI-vector space in a 
natural way. Scalar multiplication is just multipli
cation on the right. Moreover, there is an isomor
phism IHI - Hom( IHI, IHI) determined by sending h 
to multiplication by h on the left. 
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Example 2.2.2. The map IHI ® IHI - IHI defined by 

x® a -iix 

is a right IHI-module structure on IHI. It is isomor
phic to the module structure on IHI in Example 
2.2.1 via the bar conjugation map. 

Example 2.2.3. IHI" is an IHI-vector space in virtue of 
being a direct sum of IHI-vector spaces. We con
tinue to think of vectors in IHI n as column vectors 
and find that a linear map A : IHI"' - IHI" is just an 
m x n matrix of quaternions acting on the left of 
vectors according to the usual matrix multiplica
tion rules. 

Now, since IHI is a division algebra, any right 
IHI-module is a direct sum of copies of IHI in an 
essentially unique way. So Example 2.2.3 gives a 
good picture of a linear algebra over IHI. 

Let us also note that IHI" has a natural choice of 
IHl-bimodule structure extending the IHI-vector space 
structure of 2.2.3. Consequently, given an isomor
phism of IHI-vector spaces 

A:M-IHI" 

we can extend the IHI-vector space structure on M 
to an IHl-bimodule structure making A an isomor
phism of 11-11-bimodules. Unfortunately this struc
ture is in general dependent in a nontrivial way 
upon the map A. This observation essentially ex
plains our choosing to focus attention on module 
rather than bimodule structures: There are not 
enough linear maps of IHI-modules. In particular 
we have: 

Proposition 2.2.4. A matrix A : IHI n - IHI" preserves 
the canonical bimodule structures if and only if it has 
real entries. 

A somewhat stronger result can be proved as an 
easy corollary of 2.2.4. It will be useful later. 

Corollary 2.2.5. Let A : IHI" - IHI". The canonical 
IHI-vector space structure on IHI" extends to an IHI-bi
module structure which is preserved by A if and only 
if A is conjugate to a real matrix. 

3. Quatemionic linear systems 

3.1. In what follows, a system will be a time-in
variant linear ordinary differential equation on 
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IHI-vector spaces 

x =Ax+ Bu, x E 9', u E WL (3.1.1) 

Typically we take for granted isomorphisms 

9'-IHI", WC-!Hlm, 

allowing us to think of A and B as matrices of 
quaternions. We also use the notation (A, B) as a 
shorthand designation for (3.1.1). 

Now the elementary theory of linear O.D.E.'s 
over IHI is essentially the same as that of real or 
complex O.D.E.'s. In particular, we find that there 
is a well defined matrix exponential 

Moreover, the system (3.1.1) has a unique solution, 
denoted x(x0 , u, t), which satisfies the initial con
dition x(x0 , u, t) = x 0 and which is given by 

x(x0 , u, t) = e'Ax0 + fo1eU-s>ABu(s) ds. 

Now, the formula just above enables one to 
prove the following very important theorem. 

Theorem 1. Let ITT A.B denote the set of states which 
can be reached by the system (A, B) from the origin 
in finite time. Then 

where IB denotes the image of B. 

Then, with the usual definition of controllabil
ity in mind one can quickly prove: 

Theorem 2. The space of matrix pairs 

(A, B) E Matnxn{IHI) X Matmxn{IHI), 

with (A, B) controllable, is open and dense. 

Just as easily, one can use Theorem I to prove 
that controllability is preserved by the action of 
the feedback groups, that is: 

Theorem 3. Change of basis in either state or input 
space preserves controllability. 

Theorem 4. Controllability is preserved by state 
space feedback. 

3.2. The classical eigenvalue criterion for the sta
bility of a linear system over the real or complex 
numbers has no clear analogue in the quaternionic 
case. The reason for this is, in effect, that the 
classical theory takes liberal advantage of the fact 
that linear endomorphisms of classical vector 
spaces preserve the canonical bimodule structures 
available. 

One way to circumvent this difficulty is to 
appeal to some real or complex representation of a 
system whose stability is in question. This ap
proach is considered in [2]. Of course, the control 
theorist is less interested in testing for stability 
than in stabilizing controllable systems using 
feedback. So we ought to prove: 

Theorem 5. The orbit of any controllable system, 
under the action of the feedback group, contains a 
stable system. 

In fact, we prove Theorem 5 as a corollary of 
somewhat stronger results in the next section. 

4. Stabilization and invariants 

4.1. The key to stabilizing quaternionic systems is 
a quaternionic Heymann lemma. 

Lemma 4.1.1. Let (A, B) be a controllable system 
over IHI. Then,for any bin the image of B, there is a 
feedback matrix F such that the single-input system 
(A + BF, b) is controllable. 

The proof of 4.1.1 is .trivially adapted from the 
proof of the real Heymann lemma. So we refer the 
interested reader to [7], Lemma 3.2. 

Given stabilizing feedback for a system (A + 
BF, b) with b E \8 we can obtain stabilizing feed
back for (A, B) by an obvious lifting. So to prove 
Theorem 5 we need only concern ourselves with 
the feedback stabilization of single-input systems. 
We begin by exhibiting a canonical form for con
trollable single-input systems. 

Lemma 4.1.2. Given a controllable single-input sys
tem (A, b) over IHI, there is a unique matrix A' of 
the form 
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such that for some P we have 

p- 1AP=A' and p- 1b=en. 

Proof. Let (A, b) be controllable. By Theorem 1 
there is a unique n-tuple ap ... , an such that 

O=Anb-An-lba1 - ••• -ba,,. 

Now define a matrix P = [P1 • • • P11 ] by the for
mulas 

P1 = A"- 1b -A"- 2ba1 · · · - ban, 

P2 =An- 2b-An- 3ba3 ••• -ba,,, 

P11 _ 1 =Ab-ba 11 , P11 =b. 

Then one easily checks that AP =PA' and that 
Pe11 =b. But by Theorem I the P; are independent, 
so P is invertible; and, the proof is complete. 

Let us refer to the a; in the above as the 
characteristic indices of the system (A, b) and 
observe that we have immediately an index assig
nability theorem. 

Theorem 6. The characteristic indices of a controlla
ble single-input system can be altered in an arbitrary 
fas hi on by use of state-space feedback. 

In particular Theorem 6 allows us to obtain real 
indices. So Theorem 5 follows from its real ver
sion. 

4.2. Recall that in the real Heymann lemma the 
characteristic indices a1, ••• , an of the system (A, b) 
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are such that 

is the characteristic polynomial of A. One conse
quence of this is that the a; are independent of the 
choice of the vector b, so long as the system 
remains controllable. 

As it turns out, no such thing occurs in the 
quaternionic case. It is easy to see why: 

Suppose the single-input system (A, b) is con
trollable. Suppose also that at least one character
istic index of (A, b) is nonreal, say a;. Then, there 
are nonzero f3 E IHI such that 

(4.2.1) 

Now, of course, the system (A, b{3) is controllable. 
But, its characteristic indices are af, ... , af,. To see 
this just note that by (2. l. l) 

0=A"b/3-A"- 1bf3af- ··· -b{3af,. 

So by (4.2.1), (A, b) and (A, b/3) have distinct 
characteristic indices. 
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