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A common feature of most methods for numerically solving ordinary differential 
equations is that they consider the problem as a standard one without exploiting 
specific properties the solution may have. 

Here we consider initial-value problems the solution of which is a priori known to 
possess an oscillatory behaviour. The methods are of linear multistep type and 
special attention is paid to decreasing the value of those terms in the local 
truncation error which correspond to the oscillatory solution components. 
Numerical results obtained by these methods are reported and compared with those 
obtained by the corresponding conventional linear multistep methods and by the 
methods developed by Gautschi. 

1. Introduction 

WE WILL BE CONCERNED with linear k-step methods 

p(E)Yn - hu(E)j;n = 0 

for integrating the equation 

y(t) = f(t, y(t)) 

(1.1) 

(1.2) 

in cases where the exact, local solution is known to be approximately of the form 

m 
y(t) ::::;: Co + L Ci eiw1t, 

j= 1 
(1.3) 

where the frequencies wi are in the interval [QJ, ro] with Q} and & given numbers. 
Assuming (1.3), the values of Q} and w can often be derived from the eigenvalue 
spectrum of the Jacobian matrix of joy (see e.g. Section 4). 

In the special case where the frequencies mi in (1.3) are such that the solution is 
periodic or "almost" periodic, that is y(t) :::::: y(t + 2rc/w0) for some a priori given 
frequency w0 , Gautschi (1961) has developed special linear multistep methods. 
However, these methods are rather sensitive to a correct prediction of the frequency 
Wo (cf. Sections 4.2 and 4.3). This unfavourable property of the Gautschi methods 
(which are of Adams type, i.e. p(() = (k-(k- 1) motivated Neta & Ford (1984) to 
propose methods of Nystrom and Milne-Simpson type (p(() = (k-(k- 2). These 
methods, however, although demonstrating a less sensitive behaviour if the value of 
w0 is perturbed, are rather sensitive to non-imaginary noise (cf. Section 4.3). 
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In this paper we will try to construct methods which do not suffer the above­
mentioned disadvantages. 

2. Reduction of the Truncation Error for a Given Interval of Frequencies 

Let 
</>(z) := p(e')-zu(e'), (2.1) 

then the local truncation error at tn+k is given by (cf. e.g. Lambert, 1973, p. 27) 

Tn+k: = </> ( h :t) y(t) lt=tn' (2.2) 

where y(t) denotes the exact solution satisfying y(tn) = y •. We assume </>(O) = O; in the 
case (1.3) we then have approximately 

m 

IT.HI~ L le) l</>(iv)I, vi := wih. (2.3) 
j= 1 

In the case where y(t) is a periodic or "almost" periodic function with frequency w0, 

we may replace y(t) by the approximating Fourier series 

"" y(t) = L c1 eilwot +e(t), lel « 1 (2.4) 
l=O 

to obtain the approximate inequality 

"" IT.HI~ L lc1l l</>{ilvo)I, (2.5) 
l=O 

The inequalities (2.3) and (2.5) suggest essentially three approaches for adapting 
the linear multistep method to the additional information available on the exact, 
local solution y(t). Let us start with a family of linear k-step methods containing 2q 
not yet specified coefficients, and let the remaining coefficients be such that 
</>(z) = O(z'), r ~ 1. Then one may proceed as indicated in Table 1. 

The first approach is that of Gautschi. The resulting method is said to be of 
trigonometric order q. Its order in the conventional sense (the algebraic order) is 
given by p = 2q. The Gautschi method may be interpreted as a method which is 
exponentially fitted at the points ilw0, l = 1, .. ., q (cf. Liniger & Willoughby (1970). 

Many authors proposed integration methods following the second approach. For 

TABLE 1 
Reduction of truncation errors 

y(t) is periodic with frequency ro0: 

II y(t) has dominant solution components 
exp (iw1t) with given Wi 

III y(t) has dominant solution components 
exp (iwt) with w E [Q.l, i1J ]: 

Solve the system (Gautschi, 1961) 
<f>(ilw0 h) = 0, l = 1, .. ., q 

Solve the system 
<f>(iro 1h) = 0, j = 1,. . ., q 

Try to minimize the function (cf. (2.7)) 
1</J(iwh)I on 91 ~ ro ~ i1J 
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example. Stiefel & Bettis (1969), Bettis (1970) and Lyche (1972) constructed schemes 
by which not only the harmonic oscillations wi are integrated exactly but by which 
also products of Fourier and ordinary polynomials are integrated without 
truncation error. However, to apply this approach we should start with a linear 
multistep method containing sufficiently many free parameters in order to achieve 
that </J(iwih) = 0 for all wi occurring in (1.3), i.e. q ;;:: m. Another disadvantage is that 
a rather detailed knowledge of the dominant solution components is required. And 
even if this information is available, the frequencies roi may vary over one 
integration step (e.g. in non-linear problems) which will decrease the accuracy of 
these methods. Therefore, we are automatically led to the last approach of Table 1. 

This third approach seems to be applicable to a fairly large class of problems. 
However, we have first to solve the minimax problem in which the 2q parameters in 
cf> are to be determined in such a way that max J</J(iv)J is minimal in the interval 
1 ~ v ~ii (with 1 := wh, ii:= wh). We will approximately solve this problem for 
small values of ii-1 = (w-w)h. Let the family of linear k-step methods containing 
the 2q free coefficients be such that <f>(z) = O(z'), r ;;:: l. Then, for sufficiently small 
values of ii-1, with 1 ¥- 0, we approximate J</J(iv)J by 

( ii+v)' J</>(iv)J >=::: v'P2J.v) >=::: 2 P 2q(v), v E [J:, ii], (2.6) 

where P 2q is a polynomial of degree 2q in v assuming non-negative values in the 
interval [J:, ii]. Adopting the validity of the approximation (2.6) we now define P 2q(v) 
such that it has a minimal maximum norm in the interval [J:, ii]. If the 
approximation (2.6) would be exact then such a minimax polynomial would be 
optimal. Thus, the value of this third approach depends on the validity of the 
approximation (2.6). 

The minimax polynomials P 2 q can be determined by exploiting the so-called 
"equal ripple property" satisfied by such polynomials, that is P 2 q assumes 
alternatingly equal minimum and equal maximum values in the interval ~. ii]. Now 
consider the shifted Chebyshev polynomial 

a [ 1 + T2q (2v;~;1)]. T2q(x): =cos [2q arccos x], 

where a. is an approximate constant. It is easily verified that this polynomial satisfies 
the equal ripple property in [J:, v] so that the minimax-polynomial P2q(v) is of this 
form. As a consequence, P2q(v) has the q (double) zeros 

21-1 
v(l>:=t(ii+1)+!(ii-1)cos2qn, l= 1,2,. . .,q. (2.7a) 

The free coefficients in the function <P are therefore determined by the (linear) system 

ef>(ivCll) = 0, l = 1, 2, .. ., q. (2.7b) 

Obviously, for h = 0 the methods defined by (2.7) reduce to a "conventional" linear 
multistep method, that is all zeros of the function ef>(z) are located at z = 0 if h = 0 
(notice that the coefficients in <f>(z) depend on 1 and ii, and therefore on h). Since </J(z) 
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has r zeros at z = 0 (by assumption) and q double zeros at z = iv<n, l = 1, 2, ... , q, we 
have a zero of order r+2q at z = 0 if h = 0. Thus, the method resulting from the 
third approach is of (algebraic) order p = r + 2q- 1. 

In this paper we concentrate on methods satisfying the minimax conditions (2.7). 
These methods will be called minimax methods. In particular we will consider the 
minimax methods generated by 

{k = 5, p(() = C5 -C4 , r == 1, q = 3, a(C) 

{k = 5, p(O = C5 -(3, r == 1, q = 3, a(() 

{k = 6, 147u(() = 60(6 , r = 1, q = 3, p(C) 

determined by (2.7a) and (2.7b)}, 

determined by (2.7a) and (2.7b)}, (2.8) 

determined by (2.7a) and (2.7b)}. 

These methods will be denoted by AM 6(1'., V), MS6(1'., v) and BD6 (1'., v), respectively. 
For h ~ 0 they successively converge to the well-known sixth order Adams­
Moulton (AM6 ), Milne-Simpson (MS6 ) and backward differentiation (BD 6 ) method. 
These conventional methods are characterized by 

AM 6 : p(() = ( 5 -(4 ; 1440a(() = 475(5 + 1427(4 - 798(3 +482(2 -173( + 27, 

MS6 : p(() = C5 -C3; 90a(() = 28(5 + 129(4 + 14(3 + 14(2 -6( + 1, (2.9) 

BD 6 : 147p(() = 147(6 -360(5 +450(4 -400(3 +225(2 -72(+10; 147a(() = 60(6, 

respectively. 
Crucial for the accuracy behaviour of the minimax methods and of the 

conventional methods as well, is the maximum norm of the corresponding function 
cf>(z), where z e [i_y, iv], i.e. 

M(l'., v; q): = max l</J(iv)I. (2.10) 
,!~V~V 

For several (y, \i)-intervals we calculated the M(y, v; 3)-values for the mimmax 
methods (2.8) and compared them with M(O, v; 0), which determines the local 
truncation error of the corresponding conventional method. In Table 2 we give 
these M(O, v; 0)-values for the methods (2.9), while Table 3 contains the gain factors 

TABLE 2 

M(O, ii; 0)-values for the conventional methods (2.9) 

0·05 
0·10 
0·15 

AM6 

0·11.10- 10 

0·14.10- 8 

0·24.10- 7 

MS6 BD6 

0·76.10- 11 0·46 .10- 10 

0·98.10- 9 0·58.10- 8 

0·17.10- 7 0·99.10- 7 

TABLE 3 
M(O, ii; O)/M~, ii; 3)factor for the minimax methods (2.8) 

0·05 
0·10 
0·15 

10 
10 
10 

.}'.= 0·05 

co 
48 
24 

.}'. = 0·10 

00 

140 
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M(O, ii; O)/M(l', ii; 3) for the minimax methods (2.8). These factors turned out to be 
constant for the several types of methods. 

3. Stability 

Concerning the stability of the linear multistep methods we followed the usual 
approach as can be found in e.g. Lambert (1973). In Fig. 1 are plotted (parts oD the 
stability regions of the AM 6, MS6 and BD6 method (we mention that the regions are 
symmetric about the real axis). 

The stability regions of the corresponding minimax methods for realistic 
(l', ii)-values (say _y:::; ii:::; 0·1) are very similar to the ones given in Fig. 1. It turned 
out that there are no points on the imaginary axis for which the sixth order Milne­
Simpson method is absolutely stable. 

In connection with stability we mention a paper by Skelboe & Christensen (1981) 
in which the stability regions of the BD methods are enlarged by appending two 
exponential terms to the polynomial basis of the classical formulae. 

4. Numerical Comparisons 

In this section the minimax methods generated by (2.8) are compared with the 
corresponding conventional linear multistep methods and with the methods based 
on the approach of Gautschi, that is, if w0 is an estimate of the frequency of the 
exact local solution (cf. (2.4)) and v0 = w0 h then these methods are also based on 
(2.8) in which the condition (2.7a) is replaced by v<1> = lv0 , l = 1, ... , q. These 
methods will be indicated by AM6(v 0 ), MS6(v0 ) and BD6(v 0 ), respectively. In both 
cases the linear system (2.7b) (to obtain the coefficients for the linear multistep 

2·0 

A Me 

O·O 
-0·5 O·O 0·5 

0·5 

F1G. 1. Stability regions of the AM6 , MS6 and BD6 method. 
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methods) was solved numerically. However, if the v<0-values are nearly equal this 
system is very ill-conditioned and we ran into numerical problems. In that case we 
changed to the system 

di I 
d i cp(z) = 0, j = 0, 1, ... , q-1. 

Z z=ti(Jl+V) 

In all experiments the starting values were taken from the exact solution or from 
a sufficiently accurate reference solution. The implicit relations were solved using 
Newton iteration. All problems were converted to their first-order equivalents and 
for measuring the obtained accuracy we used the number of correct significant 
decimals in the end point tend of the integration, i.e. 

sd: = log10 (L2 - norm of the error at tend). (4.1) 

The calculations were performed an a CDC CYBER 175-750 which has a 48-bit 
mantissa yielding a machine precision of about 14 decimal digits. 

Finally, we deliberately tried to select problems which are illustrative for the 
various kinds of difficulties we wanted to test for. The particular difficulty is 
mentioned in each subsection. 

4.1 Periodic Solutions 

Consider the sixth order model differential equation 

{ll (:t: + wi)} y(t) = 0, 0 :;;,; t:;;,; 12n = tend; wi ~ 0 (4.2) 

with the exact solution 
3 

y(t) = L (Ct eiw;i+ci- e-iw;t), 
j=l 

where the constants CJ are determined by the initial conditions. 
Choosing 

et = (1- i)/2, 

we have the solution 
3 

y(t) = L (sin (wit)+ cos (wit)) 
j= 1 

which is periodic with frequency 

0·7 
Wo = 3 = 0·2333 .... 

(4.3) 

OJ3 = 1 ·4 (4.4) 

(4.5) 

(4.6) 

Applying the several methods we obtained the results as listed in Table 4. For this 
linear model problem, the theory of Section 2 is confirmed rather well. 

We repeated the experiment but now the frequency w2 was changed to 0·9. The 
solution is no longer periodic in the interval of integration, but we can regard it as 
"almost" periodic with frequency w0 ~ 0·23. The results obtained differ only slightly 



h AM6 MS 6 BD6 

n/10 1-44 1 ·97 0·41 

n/25 3-86 4·32 2·85 

n/50 5·66 6-12 4·66 

h AM6 MS6 BD6 

1/25 2·27 2·02 1·05 

1/50 4·57 5·14 3·24 

1/100 fr38 6-73 5·49 

TABLE 4 

Results obtained for problem (4.2)-(4.4) 

(°'7 ) (°'7 ) (°'7 ) AM6 )h MS6 ]h BD6 ]h AM6(0·7h, 1·4h) MS 6(0·7h, 1-4h) BD6(0·7h, IAh) 

1'62 2·13 0·59 3·12 3·56 2·09 

4·05 4·51 3·04 5·54 6-00 4·35 

5·85 6-31 4·85 7·34 7-80 6-34 

TABLE 5 

Results for problem (4.7), (4.8) 

AM6 (10h) MS6(10h) BD6(10h) AM 6(9·9h, 10· lh) MS6(9·9h, lO·lh) BD6(9·9h, 10' lh) 

4·50 4·51 3·32 no 5·66 6-42 

6-89 fr80 5·56 8·60 8·73 7·74 

8·46 8·88 7·66 10·30 10·77 9·30 

"d 

~ 
d 
() 
..... z 
3 
;i:.. 
r 

I 

< 
;i:.. 
r c:: 
ttl 
"d 
:;..i 
0 
tJ:! r m 
:s:: 
V1 

-""' 00 
Vo 
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from the results of Table 4 (there was no difference in sd-values found, greater 
than 0·03). 

Conclusions: 

The change from a periodic solution to an "almost" periodic solution has no 
significant influence on the accuracy of the results. 

The methods have some benefit from the Gautschi approach; however, a 
substantial gain in accuracy is obtained by minimizing the local truncation error on 
the w-interval [0·7, 1·4]. 

Making a mutual comparison between the methods, the Milne-Simpson method 
seems to be the most accurate one for this problem (cf. Table 2). 

4.2 Uncertainty in the Periodicity 

Next, we test the problem (cf. Gautschi, 1961; Neta & Ford, 1984) 

y(t) + ( 100 + 4:2) y(t) = 0, 1 ::::; t ::::; 10, 

with the initial values according to the "almost" periodic particular solution 

y(t) = jtJ0(10t), 

(4.7) 

(4.8) 

where J 0 is a Bessel function of the first kind. Clearly, the frequency of this "almost" 
periodic solution is close to 10 and therefore we applied the Gautschi-methods with 
w 0 = 10. However, this problem is an example for which the spectrum of the 
Jacobian matrix gives detailed information about the local behaviour of the 
solution. A straightforward calculation reveals that the eigenvalues w are 
approximately given by w±(t)::;::: ± lOi[l + 1/(800t2)]. Hence, we applied our minimax 
methods with QJ = 9·9 and w = 10-1. 

Table 5 shows the results of the various methods. Compared with the 
conventional methods there is a gain in accuracy of about two decimal digits in 
favour of the Gautschi approach. 

The minimax methods, however, have a further increase in accuracy of about two 
decimal digits. 

Finally, we anticipate that the accuracy can be still more increased by exploiting 
the special structure of the second order differential equation, i.e. the absence of the 
first order derivative. For, the ideas of minimizing the function </J on a suitable 
interval can analogously be applied to linear muitistep methods which are designed 
for this type of equation, e.g. Stormer type methods. 

4.3 Non-imaginary Noise 

In this subsection we want to test, apart from over- or underestimating the 
frequency of the solution, the influence of non-imaginary noise. By this, we mean 
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that the local solution contains not only oscillatory components but also some 
"noise", caused by non-imaginary eigenvalues of the Jacobian matrix, i.e. 

y(t) = L ci eiw;z + Ciz(t). (4.9) 
j 

For that purpose we selected the orbit equation (cf. Hull, Enright, Fellen & 
Sedgwick, 1972, Problem Class D) 

ii(t) + u(t)/r3 = 0, u(O) = 1 -e, u(O) = 0, 

v(t)+v(t)/r3 =0, v(O)=O, v(O)=((l+e)/(1-e))t, (4.10) 

with solution 
r2 = u2(t) + v2(t), 0 ~ t ~ 12n 

u(t) =cos r-e, 

v(t) = (1-e2)t sin r, 

u(t) =-sin r/(1-e cos r), 

v(t) = (l -e2)t cos r/(1-e cos r), 

where r-e sin r = t (e is the eccentricity of the orbit). 

(4.11) 

The initial conditions correspond to a local solution of the form (4.9) in which Ci is 
small. 

First, we concentrate on an adequate treatment of the oscillatory part of the 
solution. For e = 0, the complex eigenvalues of the Jacobian matrix are ±i. 
However, for a non-zero eccentricity e they are time-dependent and hard to 
determine in advance. Fore= 0·01 we integrated this problem twice: 

(i) the estimate of the frequency of the solution is 1, that is the Gautschi­
approach was applied with ro0 = 1 and the minimax methods employed the 
ro-interval [0·9, 1-1]. The results are given in Table 6. 

(ii) secondly, w 0 = 0·9 in the Gautschi approach and the OJ-interval [0·8, 1] for 
the minimax methods was used. Table 7 shows the results of this experiment. 

From these tables we see a dramatic drop in accuracy for the Gautschi methods 
when the frequency is wrongly estimated by only a small percentage. 

Again, the minimax methods show that they perform equally well in both cases 
and do not need an accurate foreknowledge of the frequency of the solution. 

Let us return to the real subject of this subsection. The first part of the right-hand 
side of (4.9) is properly treated by the minimax methods (cf. (1.3)), the second part is 
not. If h decreases, the influence of this term on the accuracy increases, hence the 
minimax methods gradually lose their superiority, as can be seen in Table 7. This 
effect is pronounced in the experiment with an eccentricity e = 0·1, the results of 
which can be found in Table 8. 

4.4 Stiff Components 

So far, the BD6 methods turned out to be inferior to the AM 6 and MS6 methods 
as far as accuracy was concerned. In this subsection we will illustrate the use of BD6 

methods when the exact local solution is of the form (cf. (1.3)) 

m1 m.2 

y(t) ~ c0 + L ci ei°''1 + L di e-w,r, (4.12) 
j= 1 j= 1 

where the roi are positive and large (the so-called stiff components). 



TABLE 6 """ 00 

Results for problem (4.10), (4.11) (e = 0·01), with Wo = l·O, !'.!.l = 0·9 and w = l·l 00 

h AM6 MS6 BD6 AM6(h) MS6(h) BD6(h) AM6(0·9h, 1-lh) MS6 (0·9h, l·lh) BD6(0·9h, l · lh) 

n/10 1·46 0·56 0·27 6-32 3·56 4·59 2·76 1·21 1·86 
n/25 4·34 3·09 3·08 7·68 5·69 6-73 5·01 3·69 4·04 
n/50 6-81 5·08 5·33 9·42 7·66 8·85 6-79 5·68 5·80 

'."d 
:--
<! 
> z 

TABLE 7 
0 
~ 

Results for problem (4.10), (4.11) (e = 0·01), with Wo = 0·9, w = 0·8 and w = 1·0 
~ 

h AM6 MS6 BD6 AM6(0·9h) MS6(0·9h) BD6(0·9h) AM 6(0·8h, h) MS6(0·8h, h) BD6(0·8h, h) i 
n/10 1·46 0·56 0·27 0·94 0·74 -0·24 2-70 1·13 1-80 > 
n/25 4·34 3·09 3·08 3·73 3·06 2·55 4·94 3·62 3·97 s 
n/50 6-81 5·08 5·33 5·84 5·01 4·65 6-71 5·61 5·73 ?' 

'."d 
Cl> 
0 

~ 
tl1 

TABLE 8 !::d 

Results for problem (4.10), (4.11) (e = 0·1), with w0 = 0·9, w = 0.8 and w = 1·0 

h AM6 MS6 BD6 AM6(0·9h) MS6(0·9h) BD6(0·9h) AM 6(0·8h, h) MS6(0·8h, h) BD6(0·8h, h) 

n/10 1-10 -0·64 0·09 0·90 0·31 -0·25 1·71 -0·47 0·78 
n/25 3·63 1·61 3·28 3-81 2·11 2·58 3·62 1·73 2·83 
n/50 5·14 3·61 4·25 6-34 4·09 4·87 5·25 3·73 4·31 
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TABLE 9 

Results of the BD6 methods for problem (4.13), (4.14) with w0 = 1, 
QI = 0·9 and m = 1·1 

h 

1/10 
1/25 

5·40 
7·76 

fr08 
8·44 

7-34 
9·51 
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Apart from the initial phase, these components hardly influence the oscillatory 
behaviour of the solution but they demand a highly stable method. For example, 
we see from Fig. 1 that the step size in the AM 6 method should satisfy h :;::;; 1·18/W, 
w = m~x wi, and that the MS6 method is absolutely unstable for every h. However, 

J 

in case of the BD6 method, the value of w does not impose a restriction on the step 
size (see also Lambert, 1973). 

Let us consider the problem 

)i(t) + (2sy(t)-Jc)y(t) + (1 + c2 y 2(t)- 2GJiy(t))y(t)-Jc(l + s2y2(t))y(t) =COS t, 

0 ~ t ~ 20 (4.13) 
with initial conditions 

y(O) = 1, y(O) = 1, y(O) = -1. (4.14) 

For small values of e, the eigenvalues of the Jacobian matrix are approximately 
given by ± i and by A.. In our experiment we choose e = 10- 2, A.= -100 and 
determined a reference solution with an explicit Runge-Kutta method using a very 
small step size. The results of the BD6 methods are given in Table 9. For the step 
sizes of this table the AM 6 and MS6 methods behaved unstably. Again, the minimax 
method is superior to the Gautschi-approach and to the conventional method. 

The authors are indebted to the referee for carefully reading the manuscript and for 
several suggestions which improved the paper. 
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