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High order difference schemes with reduced 
dispersion for hyperbolic differential 
equations 

P.J. VAN DER HOUWEN and B.P. SOMMEIJER 
Centrum voor Wiskunde en lnformatica, Amsterdam 

Abstract: We investigate difference schemes for systems of first order hyperbolic differential equations in two space 
dimensions, possessing the following characteristics: 

(i) The spatial discretizations are fourth order accurate. 
(ii) The time discretization is of explicit Runge-Kutta type and is also fourth order accurate. 

(iii) The scaled stability boundary is approximately 1/i.. 
(iv) The weights in the space discretizations and the Runge-Kutta parameters can be adapted in order to reduce 

the dispersion of dominant Fourier components. 
This method is illustrated by applying it to the shallow water equations simulating the motion of water in a shallow 

sea due to tidal forces. Since in such problems the dominant frequencies in the solution are known in advance, the 
method can take fully advantage of the possibility to tune the various parameters to these dominant frequencies. 

Keywords: Hyperbolic equations, difference schemes, Runge-Kulla methods, dispersion. 

1. Introduction 

Many practical problems in fluid dynamics are modelled by the quasi-linear system 

aw a a 
-=A-w+B-w (x, y)e.Q (1.1) ot ax oy ' 

where A = A ( w) and B = B( w) are symmetric matrices. Equation ( 1.1) represents a hyperbolic 
system. We will assume that the initial condition at t 0 and the boundary conditions on an 
determine a unique solution. 

Replacing the space derivatives in (1.1) by symmetric, finite differences, we obtain a system of 
ordinary differential equations (ODEs) the Jacobian of which possesses purely imaginary eigen
values. This system of ODEs may count several thousands of equations. 

In order to integrate such systems we need an ODE solver with low storage requirements and a 
large imaginary stability boundary, relative to the spatial mesh used in the discretization of (1.1). 

The low storage requirement excludes fully implicit methods such as implicit Runge-Kutta 
methods and implicit linear multistep methods (particularly when the number of back values is 
large). This leaves us with explicit Runge-Kutta methods, linear multistep methods using only a 
few back values, and the class of splitting methods (e.g. ADI and LOO). 

In this paper we concentrate on explicit Runge-Kutta methods, mainly because such methods 
tum out to be economic on vector computers which have recently become available for solving 

0377-0427/85/$3.30 <O 1985, Elsevier Science Publishers B.V. (North-Holland) 



146 P.J. van der Houwen, B.P. Sommeijer / High order difference schemes 

large scale problems. In particular, we will study the class of four-stage, second order Runge-Kutta 
methods. A drawback of such explicit methods is the stability condition, in our case of the form 
t).r ~ cAx, c =constant, which restricts the integration step At more severely than necessary for 
accuracy. To overcome this inconvenient restriction we will use fourth order space discretizations 
allowing us to use large A.x-values and consequently larger At-values. 

The main purpose of this paper is to investigate how the dispersion of difference schemes 
employing Runge-Kutta methods can be reduced by applying exponential fitting techniques. 
Exponential fitting goes back to Gautschi [1] who used the technique for solving periodic 
problems with given frequency of the solution. Liniger and Willoughby [6], who introduced the 
terminology 'exponential fitting', applied this technique for solving stiff problems. Both Gautschi 
and Liniger-Willoughby considered linear multistep methods. Here, we will consider exponen
tially fitted Runge-Kutta methods for the solution of hyperbolic problems. 

The difference schemes derived here, are formally fourth-order accurate both in space and, by 
virtue of the exponential fitting, also in time. In fact, asymptotically (as D..t - 0), the difference 
schemes converge to a scheme consisting of the standard fourth-order spatial discretization and 
the standard fourth-order Runge-Kutta time discretization. However, the dispersion of our 
schemes is much lower than that of this conventional scheme, particularly when we can provide 
estimates of the space and time frequencies of the dominant Fourier components occurring in the 
solution. 

The stability behaviour of our difference scheme strongly resembles that of the standard 
fourth-order Runge-Kutta method, that is the imaginary stability boundary equals 2 Ii. Eff ec
tively, taking into account the number of stages per step, we have 1--12. Let us compare this value 
with the maximal attainable effective, imaginary stability boundary within the class of all explicit 
Runge-Kutta and linear multistep methods; in [2,4] it was shown that for both classes the 
effective, imaginary stability boundary can never exceed 1. Thus, our difference scheme covers 
already 70% of the limit value. 

In our numerical experiments we used the standard fourth-order Runge-Kutta method, the 
exponentially fitted method and the widely used Lax-Wendroff scheme. The experiments were 
performed on relatively long t-intervals in order to illustrate the dispersive behaviour of these· 
methods. The exponentially fitted method turned out to be markedly less dispersive than the 
other ones. 

2. The class of difference schemes 

Following the method of lines approach we first replace the spatial differential operators a ;ax 
and a;ay in (1.1) by finite difference operators DX and Dy on a uniform grid n~ = 

{(JD..x, /Ay)}j,t· We will restrict our analysis to space-centered approximations of the form 

k k 

Dxw(x, y)= 2l :E E r)'>(Ej-E;1)(E;+E;')w(x, y), 
x r-o j-1 

k k 

Dyw(x,y)= 2! :E Er,U>(E;-E;1)(Ef+E;j)w(x,y) 
Y 1-0 r-1 

(2.1) 
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where Ex and EY are shift operators defined by Exv(x) = v(x +Ax), E .. v(y) = v(y + Ay) and 
where the ~JI} are parameters determining the accuracy of the approximation. 

Let W= ( »)1) be a grid function on the grid DA. Then (1.1) can be approximated by the 
system of ODEs 

dUj1/dt = (A( W)Dx + B( W)Dy] Uj1, (}Ax, lAy) EDA. (2.2) 

We solve this system by an explicit Runge-Kutta method. Writing (2.2) in the compact form 

dW(t)/dt = FA(W(t)), (2.3) 

the general explicit, m-stage Runge-Kutta method is given by 
i-1 

w<i) = wn + !J..t L a;qFA( w<q>), i = 1, ... , m, 
q-1 

m 

wn-1-1 = wn +Ml: bq~(w<q>), 
(2.4) 

where wn and wn+l are numerical approximations to the solution W(t) of (2.3) at t = nAt and 
t = ( n + 1)6..t, respectively; the accuracy of these approximations is determined by the parameters 
a;q and bq. 

3. The order conditions 

Let w be an infinitely differentiable function, then the operators Dx and Dy can be expressed 
as 

a ( a a ) Dx=axx Axax·AYay, 

a ( a a ) 
Dy= ayX !J..yay' !J..xax 

(3.1) 

where X(x, y) is given by 
k k sinh jx 

X(x, y) = 2 .E L tj'> cosh ly. (3.2) 
1-0 j-1 x 

We will always assume that X(O, 0) -1 and Ax/!J..y = c =I= 0 as Ax, !J..y-+ O; then Dx ""'a;ax 
+ 0(6..x) and DY= a;ay + 0(6.x). If, in addition, Xx(O, 0) = Xy(O, 0) = O(A2x) then we have 
second order accurate difference operators, etc .. Furthermore, we assume that !1x = O(At) and 
.l.\y = O(At). 

As observed in the introduction, our starting point will be the family of second order accurate 
Runge-Kutta methods, employing fourth-order accurate discretization for o/ox and o/ay. The 
following theorem provides the precise order conditions (the proof is given in the appendix to 
this paper): 

Theorem 3.1. The difference scheme { (2.1); (2.4)} is second order accurate in time and fourth-order 
accurate in space if 

m q-1 
/32 = E bq E aq, = t 

q-2 i-1 
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and if 
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k k 

1'1 = E E H;n = 1. 
1-oj-1 

k k 

1'21 = E E /rj'> = o( Ll2 t ), 
1-0 J-1 

k k 

Y22 = L L Jl2tj'> = 0( 1~.2t). 
1=0 j= t 

In this paper we will pay particular attention to four-stage Runge-Kutta methods, i.e. m = 4, 
and to the conventional 8-point space discretization of a;ax and a;ay, i.e. 

HO)= l y(O) = _ ..l. 
:)1 )• :)2 12· (3.3) 

In the near future we will investigate adapted space discretizations [3). 
We remark that, usually, the order equations are solved without taking into account the 

O(i:lt 2 ) terms. For our purposes, however, the addition of these terms is essential. 

4. Fourier analysis 

Throughout this section it will be assumed that the matrices A( w) and B( w) are slowly 
varying with w in the neighbourhood of t = tn. Furthermore, we assume that locally the exact 
solution w(t, x, y) of (1.1) contains dominant components of the form 

v(t, x, y)=a exp i(a:t+wxx+wyy)=a exp i(a:t+w·x), (4.1) 

where a, wx and wY are constants and a is a constant vector. If the mode (4.1) satisfies the 
differential equation (1.1), then 

(Awx + Bwy)a = aa 

showing that a is an eigenvalue of the matrix wxA + wYB with eigenvector a. 
The Runge-Kutta solution of the semi-discrete equation (2.2) is approximately given by 

wn+i = R (~tAD + D.tBD) W" 
m x y ' 

(4.2) 

where Rm(·) is the stability polynomial of the method (see e.g. [21). This polynomial is of the form 

(4.3) 

where the pj are certain expressions in terms of the Runge-Kutta parameters (see Section 5). We 
observe that /J1 and {J2 are the same coefficients occurring in Theorem 3.1. 

We want to compare (v(tn+l• x, y)]aA with wn+l if we set wn = [v(tll, x, y)].aA· For that 
purpose it is convenient to introduce the eigenvalues icSx and iSY of the difference operators Dx 
and DY corresponding to the eigenvectors exp(iw · x ): 

(4.4) 
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It is easily verified that 
k k 

ox= fl~ L L kjl> sin (Jwxbi.x) cos(lw_~.Ay), 
l=Oj=l 

k k 

oy = A2 L L tj'> sin(Jwylly) cos(lwxllx }. 
y 1-0 j~l 

Using (4.4) we may write 

Rm ( lltADx + AtBD) a ei<ar.+..·.rl = Rm(illtAox + illtBoy)a ei<ar.h·.r). 
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(4.5) 

Suppose that ox= 8wx and 8Y = owY, then, recalling that a is an eigenvalue of wxA + wYB with 
eigenvector a, we find 

wn+l =Rm( MADX + AIBDY)[ v( tn, X, y )] n.1 = R"'(iallto)[ v(tn' x, y )] ll~· 

From (4.5) it follows that the condition ox= owx, 8Y = owy is satisfied if lwxlflx = lwylfly, at the 
same time defining o. Thus, we have proved: 

Theorem 4.1. Let v(t, x, y) be given by (4.1) with lwxlflx = lwYIAy. Then 

v(tn+l• X, y) - Rm ( AtADx + iltBD) v(tn, X, y) = [eiallr - R,,,(iab.to)] v(tn, x, y ), 

where 

(4.6) 

The function o = 8 ( µ.) will be called the (space) discretization function. 
We now define dissipation and dispersion of the difference scheme {(2.1); (2.4)} in terms of 

the stability polynomial of the Runge-Kutta method: 

Definition 4.1. The dissipation or amplitude error of the difference scheme is defined by the 
quantity 

1 - I R,,, (iat1.t8) j. 
The dispersion or phase error is defined by 

aflt - arg(R,..(ia~to)}. 

4.1. Exponential fitting 

(4.7) 

(4.8) 

In the remainder of this section we will restrict our considerations to the case where m = 4, 
/31 =1 and /32 = t. Then 

(4.9) 

The coefficients ~ and /34 will be determined by the condition that we have zero dissipation and 
zero dispersion when a= a 0 and w_. == w0 where (a0 , w0 ) corresponds to a point in the range of 
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dominant frequencies, i.e. ( a0 , c.>0) E [g, a] X [~x• w,.]. It is convenient to introduce the variables 
.,, == aAt and J.L == w.xAx, and to write 110 = a 0 At, µ 0 = WoLlx, 80 = 8(µ 0 ). Then /33 and /34 follow 
from the equation R 4 (i11080 ) = exp(i110 ) 

a _ P080 - sin P0 _ -l-+(80 -1)/PJ--dovJ 
p3- -

( "080 ) 3 85 
/3

4 
=cos V0 -1 + Hv080 ) 2 = f4+ ( 8J- l)/211J - $vJ 

(11080>4 8~ 
(4.10) 

The Runge-Kutta method is said to be exponentially fitted at (v0 , 80 ) (cf. [5, p. 240]). The 
optimal location of the fitting point will be discussed in section 4.5. 

Theorem 4.2. Let r}'> satisfy the conditions for fourth order accuracy of Theorem 3.1, and let the 
Runge-Kutta parameters satisfy the fitting conditions (4.10). Then 

80 =8(J.L0 )=l+O(A4t), .83 =i+O(A2t), .84 =-b+O(A2t). 

Proof. From (3.2) and ( 4.6) it follows that 

8(µ 0 )- x( ~o, ~o) = 1+0(µ1.) = 1 + O(Ad4t). (4.11} 

Substitution into (4.10) leads to the expansions of /33 and .84 of the theorem. D 

In Section 5 it will be shown that, by virtue of this theorem, we can achieve fourth order 
accuracy in time. 

4.2. Stability 

Before discussing dissipation and dispersion of the modes (4.1) by the scheme {(2.1); (2.4)}, we 
derive the stability condition of the scheme. Assuming that the solution wn can be written as a 
Fourier series we derive from (4.2), (4.4) and (4.5) that each Fourier component is amplified by a 
factor Rm(iAtA.) where A is an eigenvalue of the matrix ( 8.xA + 8yB). Let /3;mag be the imaginary 
stability boundary of the Runge-Kutta method then we have stability if IA-Atl < /l;mag for all 
eigenvalues A (notice that >. is real because A and B are assumed to be symmetric). Thus we 
arrive at the stability condition 

flt< /3ima,,/S( 6.xA + 6JIB ), (4.12} 

where S( ·) denotes the spectral radius. We remark that here in 8.x, 8Y the frequencies "'.x and "'>' 
are independent, in contrast to the restriction made in Theorem 4.1 where we postulated 
l"'xlAx - lwylAy. 

4.3. Dissipation 

The concept of dissipation is strongly related to the concept of stability: if we have negative 
dissipation for a particular a and "' then the mode v(t, x, y) will be amplified by the numerical 
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scheme and may cause instabilities. The amount of dissipation is determined by the behaviour of 
IR 4 1 along the imaginary axis. Let us write z == 11 282 , then 

I R4(iv8)1 2 = 1 + z2 ( ~ + 2/J4 - 2/3~ + /3Jz - /34 z + fJiz 2 ). (4.13) 

In Fig. 4.1 two typical situations are plotted, respectively corresponding to the cases /J3 - /34 ~ t 
and /33 - /34 < !. 

In the case /33 - /J4 ~ l we have one positive zero of the error 1 - IR4 (ivc5)1 2 at z = v28 2 = Pi2.n.a· 
This zero is just the imaginary stability boundary. We have dissipation, and therefore stability, if 
v8 < /J;mag• i.e. 

(4.14a) 

This condition should be satisfied not only for those ac5, for which the mode (4.1) is dominant in 
the solution, but for all a8; otherwise, instabilities will rapidly develop, because IR 4 (z)I is 
strongly increasing for z > /J?mas· Since maxla81 is usually rather large, we want a large imaginary 
stability bound~ /3imag· It is easily verified that P)E>as increases if /33 - /34 it to reach a maximal 
value /J;mag - 2v2 for /33 = i and /34 = -14. Thus, 2v2 is the maximal attainable imaginary stability 
boundary of all second-order, four-stage, explicit Runge-Kutta methods [2]. It should be 
remarked, however, that we assumed that /J3 and /J4 are defined by (4.10) from which it can be 
deduced that 

/J3 - /J4 = t-(c5o -1)2/2vg - :rlav; 
for small values of 80 - 1 and v0 ; hence, /J3 - /34 < i unless v0 = 0. 

In the case /33 - /34 < l we have two positive zeros of the error 1 - IR 4 (iv8)1 2 at z = vJSg and 
z -= "Pi2..na1 . We have dissipation, and hence stability, if 

I voc5o/ac5 l < !::t.t < ,8;,,,0 g/I a8 I. (4.14b) 

The right-hand inequality should be satisfied for all o:S because of the same reasons as mentioned 
in the preceding case. The left-hand inequality is less urgent provided that IR4 (iv6)1 is only 
marginally larger than 1 for 0 < v262 < P~8J. Suppose that jv0c501«1 then 

I R412(z) = 1+0 + 2fJ4 - 2/33)z2 + (/J32 - /J4)z3. 



152 P.J. van der Houwen, B. P. Sommeijer / High order difference schemes 

From this approximation we conclude that the first positive zero of IR 412 - 1 is approximately 
given by 

z = (v0o0)2 = (1- 8(/33 - /34))/4(/34 - f3i); 

furthermore, IR4 12 assumes at z = tplo5 a maximum given by 

IR4f~ax = 1+1-7(/34 - f3f)v3o3=1 + ~vgo~, (4.15) 

where we have used (4.10). The value of the stability boundary /3;mag is then approximately given 
by 

P?"ma1 = ( /34 - /3;} ! /31 - ,,gsg = s - o( vJoJ). 
We summarize the preceding results in the following theorem: 

Theorem 4.3. A particular mode of the form (4.1) characterized by a:= a:0 and wx = w0 is 
propagated by the numerical scheme with zero dissipation; the scheme is dissipative with respect to 
all modes where!v0o0 1<lvol<2/2 - 0(11Jog); finally, the scheme has a dissipation error of at most 
= 9j2 11g8~ + O(v~8~) with respect to all modes with lvol < !110001. 

In actual computation the amplitude error in the interval [O, v0o0 ] is negligible so that the 
~ethod may be considered as stable if !::..t satisfies the condition (4.12) with /3;rnag replaced by 

f3imag· 

4.4. Dispersion 

Again write z = 11282 ; thus, for m = 4, the dispersion is given by 

q,(z, 8)=v-arg(R4 (i111S))= irz -arctan(rz \-f33z 2 ). 
u l-2z+/34 z 

( 4.16) 

In order to get some idea of the behaviour of this phase error we have plotted the phase of the 
exact solution and that of the numerical solution as a function of z. In Fig. 4.2 these curves are 
given for 

6 = 1, v0 = 0.1, 80 = 1.0001. 

The most interesting aspect of the phase error is its behaviour in the neighbourhood of the 
origin (0, 0) and of the fitting point (z0, 80 ) •= (vgBl, 80 ). In the region 0 ~ z ~ z0 , 8::::: 80 we 
represent .p(z, 8) by an expression of the form 

.p(z, 8)- {i [1/8 - 1 + d1z + d2 z2J + O(zVz). (4.17a) 

By requiring that .P(z0 , 80 ) = 0 and that t/> has a correct behaviour at z = 0 up to second 
derivatives, we find that 

d1 =/J3 -1;, d 2 =(1-1/60 -(f33 -i)z0 )/z5, z0 =11JoJ. (4.17b) 

In Fig. 4.3 the function ( 4.17) is illustrated for a fixed o > 1 and d1 > 0 (i.e. /33 > i ). In addition, 
the phase error corresponding to the conventional time integrator (i.e. /33 = i, {34 = 2~, or 
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equivalently z0 = 0, 80 = 1) is plotted. This phase error is given by 

cf>(z, 8} = -(1-1/8)/i + O(z 3/i). (4.18) 

In order to compare the phase errors corresponding to the conventional and exponentially 
fitted methods we consider the maximum norm llc/>11 00 over the region 

[£, z] x [§, 8] = [!'2§ 2 , ;; 282 ] x [§, 5]. 
Here, [!', ii] denotes the interval of dominant time constants and [Q, B] denotes the range of the 
function 8(µ) on the interval of dominant frequencies [µ, ji]. Since cf>(z, 8) is a monotone 
function of S we have -

11 q, IL., = Max_ {I <t> ( z, §) I. I<> ( z, 8) I}. 
,r.;;z.;;z 

(4.19) 

Fig. 4.3 indicates that for z ~ (1 - 1/8)/ d1, 8 E [.§, B] the phase error of the exponentially fitted 
method is at least a factor the exponentially fitted method is at least a factor !/3 smaller than 
the phase error of the conventional method, even for~--+ 0. However, if£__.. z an increasing gain 
factor is obtained. This will be illustrated in the following subsections. 

4.5. The location of the optimal fitting. (110, 80 ) 

In order to obtain a small phase error the choice of the fitting point (v0 , 80 ) is of crucial 
importance. As will be shown, the location of 80-or, actually, the location of µ. 0 E [µ, ;:t]-is less 
Critical than the position Of Vo in the interval[!', ii). This is due to the fact that the range Of 8(µ) 
is usually very small. 

To demonstrate the influence on the phase error of each parameter separately, we performed 
two calculations in which one of the parameters is kept fixed and the other one is chosen optimal 
by a straightforward numerical search. Here, optimal means that llc/>lloo is minimal. In Tables 4.1 

Table 4.1. 
Gain factors ll4>cll .. /llt1>.ll .. for µ.0 - 0.25 and the optimal fitting point "o (in parentheses). 

0.1 10.7(0.1004) 5.8(0.1015) 3.6(0.1059) 3.1(0.1300) 
0.2 13.0(0.2007) 7.1(0.2027) 4.6(0.2101) 5.0(0.2507) 
0.3 31.5(0.2999) 18.0(0.2996) 12.3(0.2908) 16.2(0.4500) 
0.4 64.6(0.4068) 38.9(0.4224) 22.4(0.4560) 14.8(0.2507) 
0.5 22.7(0.5050) 14.4(0.5190) 11.4(0.5620) 8.6(0.6983) 

Table 4.2. 
Gain factors ll4>clloo/llcf>,l100 for "o = 0.25 and the optimal fitting point µ.0 (in parentheses). 

jl tlµ.- 5% .6µ. =10% 6.µ.- 20% 6.µ. - 50% 

0.1 53.7(0.1004) 27 .3(0.1015) 14.0(0.1056) 5.8(0.1263) 
0.2 9.0(0.2007) 5.1(0.2029) 3.2(0.2112) 2.3(0.2527) 
0.3 6.7(0.3011) 3.9(0.3044) 2.6(0.3164) 2.1(0.3790) 
0.4 6.3(0.4015) 3.7(0.4059) 2.5(0.4219) 2.0(0.5040) 
0.5 6.2(0.5018) 3.7(0.5070) 2.5(0.5273) 2.0(0.6300) 
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and 4.2 we have listed the gain factors ll4>cll""'/ll4>ell""'' where the indices c and e refer to the 
classical method (i.e. /33 = i. /34 = 14) and the exponentially fitted method (i.e. /33 and /34 

according to (4.10)), respectively. These gain factors are listed for several intervals [!', v) and 
[µ., µ:] which are characterized by their respective centres Ji and p. and the' uncertainty per
centages' tl.11 and Aµ defined by 

tl.11 = lOO(v - ;.. )/J.., Aµ•= 100(µ- fl)/p.. 
Moreover, we give in each case the value of the optimal fitting parameter as it was found by the 
numerical search. The discretization function 8(µ.) is determined by (3.3). 

The larger numbers in the first Table clearly show that fitting the 'time frequency parameter' .,, 
is more advantageous than using an optimal value for the 'space frequency parameter' µ. 

5. Construction of the Runge-Kutta scheme 

In Theorem 3.1 the order equations for second order accuracy of the Runge-Kutta time 
integrator have been given. In this section it will be shown that, taking into account the 
exponentially fitting conditions (4.10), it is possible to construct a four-stage method which is 
even fourth-order accurate. 

Let us denote the scheme (2.4) by the Butcher array 

%• A= (aiq), b = (bq) 

where the elements of care the row sums of A. We will look for fourth-order schemes of the 
form 

0 0 
I l 
2 2 

I 0 l (5.la) 2 2 

1 0 0 1 
bi b2 b3 b4 

From the Runge-Kutta theory (e.g.[2]) it can be derived that this scheme is fourth-order 
accurate if the bi satisfy the system 

1 1 1 1 1 
0 1 1 1 l 

2 2 2 

0 0 1 l {33 4 2 

0 1 l 1 1+0(82t) 4 4 

0 0 0 1 b= 4{34 

0 0 l 1 f2 + 0( M) 4 

0 0 l ! i + o(ar) 8 

0 1 .L 1 { + O(M) 8 8 

where /33and /34 should equal i + O{d2t) and 2~ + 0(1'.lt), respectively. It turns out that the 
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system can only be solved if, and only if, {34 equals $i + O(A2t) instead of :i4 + O(At). 
Conveniently, by virtue of Theorem 4.2, {J4 does equal 2~ + O(A2t). The system can now be 
solved to obtain 

6. Numerical illustration 

6.1. A model problem 

Consider the linear test equation 

aw - --2.. aw ..l. aw 
at - 10 ax + 10 a y • te[O,TJ, (x,y)eR 2 

and the initial condition 

w(O, x, y)=cos{x+ 2y), (x, y)eR 2 • 

The exact solution is given by 

w(t, x, y) = cos(!t + x + 2y). 

(5.lb) 

(6.1) 

(6.2) 

(6.3) 

According to the discussion in Section 4, we have chosen a uniform grid such that wxAx = wYAy, 
i.e. 

Ax= 2Ay. (6.4) 

Let o/ox and a;ay be discretized using the 'line-molecules' defined by (3.3): 

Dx=(fi, -j,O, j, --b]/Ax, D>'=(Ax/Ay)D']. (6.5) 

For the space meshes we have chosen Ax= 2Ay = i'TI'. By this particular choice we achieve 
that the solution w(t, x, y) is periodic on the rectangle [O, 2'TT] x (0, 'IT] in the (x, y)-plane; this 
feature has been used in the implementation to reduce the IR 2 to this rectangle and requiring 
periodicity on the boundaries. 

For the time integration we used the four-stage Runge-Kutta scheme (5.1) where the 
coefficients /33 and /34 are determined by the fitting point (110 , 80 ) (cf. (4.10)). The results of this 
method will be compared with the classical four-stage RK method (i.e. (5.1) with bT - ( i, t, ! , i )). 

As the time step At should satisfy the stability condition (cf. (4.12)) 

At~ 2ti /S(0.28x + 0.38y) (6.6) 

we need an estimate of the spectral radius S. Using Gerschgorin's disc theorem we find 

S(0.28;ic + 0.38y) =.: i!(0.2/Ax + 0.3/Ay) = J/Ax- 24/'lf (6.7) 

resulting in At S 0.37. In our experiments we used ~t = !. 
Additionally, a comparison is made with a two-dimensional application of the celebrated 

method of Lax-Wendroff (see e.g. [7, p. 181D. We applied this method on the same rectangle in 
the (x, y)-plane; however, the values of the mesh spacings are chosen somewhat smaller, viz. 
Ax = 2Ay == fi-rr. Now, by integrating with the maximal stable integration step for this method, 
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Clt = t, we achieve that the same amount of work is required-to reach the end point t= T-as 
in the case of the RK methods. By this we mean that the total number of evaluations of an 
expression of the form r · (W + - W _)/Cl is the same for both types of methods. Note that, using 
this working-unit, one time step with the Lax-Wendroff method (which is second order in space) 
is four times as cheap as one step with the RK method (fourth order in space). 

To be able to apply the exponentially fitted method we need the values of the fitting 
parameters "o and µ. 0 • We will have a minimal phase error (minimal dispersion) if we solve the 
minimax problem 

min max jS(v, µ) [, R = [p, Ji] X [!',ii] (6.8) 
(J.to, "o)ER (µ,v)ER 

for given intervals[!:', Ji] and [µ, ji]. For this two-dimensional minimization problem we used the 
routine E04JAF from the NAG library [8]. 

To measure the obtained accuracy we define 

cd = - 10 log( II global error at the endpoint t = T II"°), ( 6 .9) 

denoting the number of correct digits in the numerical approximation at the end point. 
First, as a reference, we give the cd-values of the various methods obtained at the end point 

T= 100. 

cd-value of the classical RK method 
cd-value of the exponentially fitted RK method 
cd-value of the Lax-Wendroff method 

2.31, 
11.02, 
1.66. 

As the exponentially fitted method was given the exact values for the space and· time frequencies, 
its integration process is 'exact' (relative to the machine-precision). 

Next we vary the frequency intervals to test their influence on the accuracy of the exponen
tially fitted methods. Such an interval can be considered as an uncertain estimate of the exact 
value of the corresponding frequency. We start with varying the length of the v-interval, centered 
around the exact value 0.8.dt, whereas the µ-parameter is assumed to be estimated correctly, i.e. 
µ = µ. = t:u. The results can be found in Table 6.1. Further, the roles of v and µ have been 
Interchanged, yielding the cd-values as listed in Table 6.2. 

These results clearly show that the exponentially fitted method can take profit from a good 
estimate of the frequencies of the (dominant) solution component. However, even if this estimate 
is rather poor there still remains a substantial gain in accuracy when compared with the classical 

Table 6.1 
cd-values for the exponentially fitted method for several 11-intervals; 1!-µ. =tu -fo"TT, At -i and T=lOO. 

[.!:'. i] 
cd 

Table 6.2 

(0.75, 0.85]At 
4.03 

[0.7, 0.9]At 
3.71 

[0.6, l.l]M 
3.37 

[0.5, l.2]At 
3.16 

cd-values for the exponentially fitted method for several µ-intervals; .!:'"" v = 0.8At -11. T =100 and Ax""' fo"TT. 

[1_£, ill 
cd 

[0.95, l.05]Ax 

3.88 

[0.9, 1.1].dx 
3.56 

[0.8, 1.2].dx 

3.24 

[0.5, 1.5)..:\x 
2.76 
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method (note that this method yields cd = 2.31 for this problem). Especially if we realize that the 
additional effort to adapt the Runge-Kutta scheme to the behaviour of the solution is quite 
negligible. 

It should be observed that the errors are mainly due to phase errors (dispersion) and not to 
dissipation. Hence, we have linear accumulation of the phase errors made in each integration 
step. This observation is confirmed by an experiment in which we set the end point of the 
integration interval to T = 10; the cd-values obtained were approximately 1.0 larger than those 
given in the Tables of results, i.e. we have a 10 times smaller global error. This feature places 
great emphasis on the necessity of having a small phase error in long term integration processes. 

6.2. The shallow water equations 

Consider the basic, linearized form of the shallow water equations: 

au/at=-gVh, ah/at=-h0Vu, te(O,T], (x,y)elR 2 (6.10) 

where u is the depth-averaged velocity, h is the depth below the moving water surface, h0 is the 
depth when the water is in rest, and g is the acceleration of gravity. Initial and boundary 
conditions on the square 0 < x, y < L were taken from the exact solution 

(u, h-h0 )==~ sin{(-/2gh 0 t+x+y)2'1T/L)·(l, l, /2h 0/g). (6.11) 

In our experiments we used h0 = 80, g = 10, L = 600000, !::..x = Ay = 2~L and T= 18000; the 
integration step ll.t was chosen maximal with respect to stability and was found to be = 818.2, 
which resulted in 22 steps. Furthermore, Dx = D,, were defined according to (6.5). 

When written in the form (1.1) the eigenvalues of the matrix wxA + "',,B = 2'1T(A + B)/L are 
given by 

(6.12) 

In the exponentially fitted method the fitting point (a0 , w0 ) was chosen at (a+, 2'f'l/L) so that 
(v0 , 80 )==(dta+, 8(2'1Tdx/L)). We observe that fitting at (a+, 2'1T/L} automatically implies 
fitting at (a_, 211/L). 

In addition to the linear system (6.10) we also integrated the non-linear modifications which 
are closer to the actual shallow water equations: 

au/at= -gVh-(u· V)u, ah/at== -h0Vu, 

au;at- -gvh, ah/at= -v(hu), 
au/at= -gvh-(u· v)u, ah/at= -v(hu). 

(6.13) 

(6.14) 

(6.15) 

In Table 6.3 the numbers of correct digits, defined according to (6.9). are listed; here, the error 
is given by h - h0 • 

Table 6.3 
cd-values for the conventional and exponentially fitted methods: Ax - Ay • 25000, At""' 818.2, T-18000. 

Conventional method 
Exponentially fitted method 

(6.10) 

2.72 
11.64 

(6.13) 

2.58 
3.35 

(6.14) 

2.41 
2.91 

(6.15) 

2.28 
2.64 



P.J. van der H ouwen, B_P. Sommeijer / High order difference schemes 159 

These results clearly show the effect of deviating from the model problem situation (eq_ (6-10)). 
However, in spite of the considerable drop in accuracy when nonlinear terms are introduced, we 
will obtain an error that is smaller by a factor 6 to 3, with insignificant additional effort (in this 
connection we remark that in the case of the equations (6.14) and (6.15) we replaced h 0 by h in 
(6.12) and computed the Runge-Kutta parameters {33 and {34 by exponential fitting in every grid 
point). 

Appendix 

Proof of Theorem 3.1. Let us substitute the expressions (3.1) into the semi-discrete equation (2.2) 
to obtain the so-called modified equation 

~7 = [A ( w) a: x( Ax aax , ily a~) + B( w) 3
3Y x( Lly a~, ax a:)] w 

==[A(w)a: +B(w) 0~]w+C4w(t, x, y), (A.I) 

where the error term C4 w vanishes as Ax - 0. Thus, when solving (2.2) we are not solving (1.1), 
but a slightly perturbed equation which differs from the original equation (1.1) by the term t!Aw. 
From (3.2) it is immediate that the operator t!A is given by 

If =A.i_[x(Llx.i_, 6.y.i_)-i]+B.i_[x(Ay.i_, ax.i_)-1)=o(a), (A.2) 
A ax ax oy oy ay ax 

where A= max{ Ax, Ay }. 
Using Runge-Kutta theory we are now able to derive the truncation error of the difference 

scheme {(2.1), (2.4)}. Let us assume that the approximation wn in (2.4) is exact, i.e. wn - W(tn) 
= ( w(t,,, jAx, /Ay)), where W(t) denotes the exact solution of (2.3) through the point (t,,, W(tn)). 

We compare the numerical solution with the exact solution w of the original equation (1.1). On 
!16 this solution satisfies the system of ODEs 

dW/dt=F6(W)-[t9'6w]a~· W=[w}a~, (A.3) 

where [·la denotes the restriction of a continuous function onto the grid QA. We write the local 
• ..I 

truncation error as 

wn+l - W{t,,+1) = wn+I - W(tn+l) + W(tn+1)- W(tn+il· 

First, we estimate the difference of the solutions of (2.3) and (A.3) by Taylor expansion: 

W(t,,+ 1)- W(t,,+ 1 ) = { W(t,,) + AtFA( W(t,,)) + !A2t( ~~F4.)(w(r,,)) + ... } 

-{ W(t,.) + ilt( Fa( W(t,,))- [@°Aw] o~.iJ 

+ 1a21( a~( Fa( W(t,,)) - [ t!Aw} a~.iJ) 

·(£a(W(t,.))-(<S'Aw)!JA, t,.)+ · ·· }· 

(A.4) 
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Since, by assumption, W(tn) = W(tn)• we find 

W(tn+ 1)- W(tn+l) = At[&'~w)o~. 1.(1 + O{Llt)). 

From (A.2) it follows that @"t.w = O(A4t) if 

x( Ax aax, A.y 0:) = 1 + O(A4 t). 

Since 

X(x, Y) = 211 + 1-Yiix 2 + Y21Y 2 + O(x 4 + Y4 + x 1y 2 ), 

(A.Sa) 

where y1, y21 , y22 are the expressions in terms of the weights rpi given in the theorem, it follows 
that the contribution of the spatial discretization to the truncation error is 0( A5t) provided that 
the y1, y21' y12 satisfy the conditions of the theorem. 

The contribution of the Runge-Kutta discretization to the local truncation error is given by 
( cf. e.g. (5]) 

wn+t - W(tn+t) = (/31 - l)AtD1 + (/32 - i}A.2tD2 + (/33 - i )A3tD3 

+ ( ,83,1 - t) .:~.3tDJ.1 + ( /34 - 2~) A4 tD4 

+ ( .84.1 - -b )A4tD4,1 + ( /34.2 - l) A4tD4.2 + ( .84.3 - 1) t:i.4 tD4.3 + 0( :l51 · 

(A.Sb) 

Here the Dp Dj.I are expressions in the right~hand side function Fa, for example 

D1 =Fa( W(tn)), 

The coefficients ,81 and /3p are expressions in terms of the Runge-Kutta parameters a;q and bq as 
given in the theorem. Evidently, the conditions of the theorem imply that (A.Sb) is of order t:.3t as 
At-+ 0, which proves the theorem. D 
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