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INTRODUCTION

The main scope of these notes is to review and to discuss several
aspects of implementations for the numeriecal computation of special functions.
In this tract we consider functions which are related to the Euler gamma
function, the exponential integrals and the error functions. For each of
these groups we give
1. definitions, analytic properties and fundamental formulas;
2. algorithms, implementations, error analysis, references to tabulated

coefficients, and testing aspects.

We have limited ourselves to discuss the most important implementations,
although we aimed at giving a complete survey. With respect to testing we
have enumerated the techniques in use; no systematic testing has been done,

although occasionally weak points or expensive methods have been cbserved.

We feel that these notes fill up a gap in the existing literature, and
we consider them as an addition to the Handbook of Special Functions
(Abramowitz & Stegun) and to the various books of Luke. Furthermore we
mention in this respect Hart: Computer Approximations and Lyusternik et al.:

Handbook for Computing Elementary Functions.

At the beginning of this project we intended to include more groups of
functions, such as elliptic integrals, incomplete gamma functions and
Bessel functions. However, the present notes grew out and the other groups
are intended for a possible subsequent volume. Much depends on the need for
it. We invite the readers to inform us on this point. Also, is the present
form and set-up all right? Reactions are very welcome and will give us the

motivation to continue, or to stop.

The first two chapters contain general information on the computation
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of special functions. The first one gives an annotated introduction to the
literature and to several program libraries. Some local program libraries
are surveyed when sufficient information happened to be available to us.

No systematic search is made in checking more Computer Centres.

The second chapter gives a theoretical background on error analysis,

recurrence relations, continued fractions and generalized hypergeometric
functions.

This tract originated from reqular meetings of the Working Group
Approximation of Functions, i.e., the Dutch group on the subject. We kindly
acknowledge and appreciate the contributed sections of our colleagues
Dr. R.M.M. Mattheij of the University of Nijmegen (section II. 3.2: The
general aspects of three term recurrence relations), and Drs. J.P. Hollenberg
of the University of Groningen (section II. 4: Continued fractions). Further-
more, we like to thank the members of the working group for their much

appreciated comments and criticisms and for the patience for waiting on this
final version.



I. INTRODUCTION TO THE LITERATURE AND SOFTWARE

This chapter. provides an introduction to the literature on the compu-
tation of (special) functions and to the available software. We give an
annotated selection of relevant books and papers on the subject, which in-

cludes papers on general aspects of software and software engineering.

1. LITERATURE

ABRAMOWITZ, M. & STEGUN, I.A. (1964), Handbook of mathematical functions
with formulas, graphs and mathematical tables, Nat. Bur. Stan-—

dards Appl. Math. Series, 55, U.S. Government Printing Office,
Washington, D.C.

A standard for general properties. A good starting point for classify-
ing special functions, standard notation and definition. Contains many
analytical properties, not always the most useful properties for numerical
computation. No algorithms are provided for the evaluation, although now
and then a polynomial or rational approximation is given. Tables are in-
cluded with detailed information on how to use them in order to obtain
values which are not tabulated. The numerical data are useful for the oc-
casional (desk) calculator, which is actual because of the growing populari-
ty of hand-hold calculators and the break-through of personal computers. It
contains material up to 1960.

ABRAMOWITZ, M. (1954), On the practical evaluation of integrals. 175-190,
in: Ph.J. Davis, Ph. Rabinowitz, (1967), Numerical Integration,
Blaisdell.

Important with respect to the recognition of special functions in in-
tegrals with parameters. Examples concern: a disguised erfc, reduction to

a known form, evaluating by a limiting procedure, use of functional



relationships and termwise integration, extraction of singular part, reduc-
tion to a differential equation, Laplace transformation, saddle point approxi-

mation, inversion of order of integration.

ACTON, F.S. (1970), Numerical methods that work, Harper & Row Publishers.

In order to find approximations to a function and to choose between
them or experimental grounds, trial and error is examplified in chapter 1.
A priori transformation of an approximation problem in order to remove
singularities is treated in chapter 15 by means of: substraction of the
singular part, substitution of trigonometric functions, and substitution of

Jacobian elliptic functions. Complex arguments are not considered.

BAUER F.L. (1973), Software and software engineering, SIAM Rev, 15,
469-480.

The development of software, in the past, now, and in the future, is
discussed, exposing the weaknesses at that moment. Suggestions are given
to overcome the 'software crisis'.

BRUER, F.L. (1980), A trend for the next ten years of software engineering,

in: H. Freeman, P.M. Lewis (eds.): Software Engineering.

A sequel to Bauer (1973) where the correctness preserving transforma-
tion technique is emphasized. The CIP-project is treated as an example.

BOEHM, B.W. et al. (1978) » Characteristics of software quality, North-Hol-

land Publishing Company.
The aspects inherent to software quality are discussed.

BOEHM, B.W. (1981), Software engineering economics, Prentice Hall.

Given quality criteria of software, ways to produce software in an
economic way are discussed.
BRENT, R.P. (1980), Unrestricted algorithms for elementary and special
functions, in: S.H. Lavington (ed.) Information Processing 80,
613~619. North Holland Publishing Company.

Unrestricted algorithms which are useful for the computation of

elemen-
tary and special functions when the required precision is not known i

n
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advance are described. Discussed are: the evaluation of power series, asympr
totic expansions, continued fractions, recurrence relations, Newton itera-
tion, contour integration and transformation of power series into a better

conditioned form.

CLENSHAW, C.W. & F.W.J. OLVER (1980), An unrestricted algorithm for the ex-
penential function, SIAM J. Numer. Anal., 17, 2, 310-331.

An algorithm is presented for the computation of the exponential func-
tion of real argument. There are no restrictions on the range of the argu-

ment or on the precision that may be demanded in the results.

BULIRSCH, R. & J. STOER, (1968), Darstellung von Funktionen in Rechenauto-
maten, 352-446 in: R. Sauer & I. Szabd, (eds.), Mathematische Hilfs-—

mittel des Ingenieurs, Teil III, Springer Verlag.

Chebyshev polynomials (a lot of practical information), continued
fractions, elliptic integrals, Fowier analysis, and Bessel functions are

treated.

coDY, W.J. (1969), Performance testing of function subroutines, Proc. Spring
Joint Computer, Conf., 34, 759-763 AFIPS Press, Montvale, N.J.

A general approach with respect to testing is given. Experience with
testing of special functions is exposed and the test methods for special
functions are enumerated.

CoDY, W.J. (1970), A survey of practical rational and polynomial approxi-
mation of functions, SIAM Rev., 12, 400-423.

A good introduction to min-max approximations. Is rartly overruled by
GAUTSCHI (1975).

CoDY, W.J., (1974), The construction of numerical subroutine libraries,
SIAM Rev., 16, 30-46.

How to develop and maintain a collection of optimal numerical software,

with respect to machine pecularities.

CODY, W.J. (1975a), The FUNPACK package of special functions subroutines,
ACM Trans. Math. Software, 1, 13-25.

The design criteria of FUNPACK are exposed. FUNPACK is highly machine



dependent, but from the start it is implemente& for three lines of (large
scale) computers: IBM 360-370, CDC 6000-7000, UNIVAC 1108. TImportant with

respect to advanced software engineering.

CoDY, W.J. (1975b), An overview for software development for special func-
tions, in: G.A. Watson (ed.), Numerical Analysis, Lecture Notes

in Mathematics 506, 38-48, Springer Verlag.

Again important. It treats various number representations and their
influence on accuracy - transmitted error and generated error - as well as

how to do best. The concept of wobbling word length is introduced. Examples
are given with respect to the gamma function.

CODY, W.J. & W. WAITE (1980),
Prentice Hall.

Software manual for the elementary functions,

Algorithms and test programs for the functions. SQRT, ALOG, ALOGIO,

EXP, %%, SIN,COS,TRN,COT,ASIN,ACOS ,ATAN,ATAN2,SINH,COSH are discussed. The

test programs are available in machine readable form from the authors and
IMSL,

A must for every one who does not trust the elementary function imple-

mentations in use or anyone who intends to provide some. Arithmetic peculari-

ties of computers and their consequences for designing optimal special func-
tion software are treated in a simple and coherent way.

CODY, W.J. (1980a), Basic concepts for computational software, 1-23. In-:

P.C. Messina and A. Murli (eds.): Problems and Methodologies in

Mathematical Software production. Lecture Notes in Computex
Science 142, Springer Verlag.

The relation of numerical mathematics and software engineering is given
for the area of approximation of functions, Arithmetic pecularities which

ought not to occur are given in their simplest form. The

software attributes
reliability,

robustness and (tranSr-)port.ability are discussed. As an illu-
Stration an implementation for lz|

is derived under account of the discus-
sed criteria,
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CODY, w.J. (1980b), Implementation and testing of function software, 24-47
in: P.C. Messina and A. Murli (eds.), Problems and Methodologies
in Mathematical Software Production, Lecture Notes in Computer

Science 142, Springer Verlag.

An overview of proven techniques for preparing and testing function

software. The elefunt collection of CODY & WAITE (1980) is treated as an
example.

CODY, W.J. (1981), Funpack - a package of special function subroutines
TM-385 Applied Mathematics Division, Argonne National Laboratory.

The package includes subroutines to evaluate certain Bessel functions,
complete elliptic integrals, exponential integrals, Dawson's integral, and
the psi-function. The paper reconstructs the events and decisions leading
to FUNPACK. It concludes with: "We also feel that special function programs

can now be written more portable than FUNPACK without sacrificing quality."

CRLGO: Collected Algorithms of the ACM.

Nowadays the background of the algorithms, and how to use them, are
published in TOMS, with the complete listing of the code on microfiche.
Most of the implementations are in PFORT, a subset of FORTRAN. The imple-
mentations are refereed before publication. The implementations, supple-
mented with remarks and certifications, are issued in ACM's looseleaf ser-—
vice CALGO. The machine readable versions of the algorithms can be obtained
via IMSL. CALGO provides an index to the above implementations as well as

implementations published elsewhere.

DITKIN, V.A., K.A. KARPOV & M.K. KERIMOV (1981), The computation of special
functions, USSR Comput. Maths. Math. Phys., 20, 3-12.

Gives a review of methods for computing special functions, with the
accent on methods used when tabulating the functions. An extensive list of

references includes a lot of Russian contributions on table making.

FORD, B. (1978), Parametrization of the environment for transportable nu-

merical software, ACM Trans. Math. Software, 4,2, 100-103.

In order to obtain better transportable FORTRAN 66 software the IFIP

Working Group 2.5 on mathematical software defined parameters for:



a. static arithmetic characteristics (i.e. radix, mantissa length, relative
precision, overflow threshold, underflow treshold, symmetric range) ;

b. basic input-output characteristics (i.e. standard input unit, standard
output unit, standard error message unit, number of characters per record
of the standard input unit, number of characters per record of the stan-
dard output unit);

c.

miscellaneous characteristics (i.e. number of characters per word, page
size, number of decimal digits).

REMARK. Some of the suggestions in b) and ¢) are catered for in FORTRAN 77
(e.g. standard units are default, character data type is provided).

FOX, P.A., A.D. HALL & N.L. SCHRYER (1978), The PORT mathematical subroutine
library, ACM Trans. Math. Software, 4,2, 104-126.

A significant portable program library in the PFORT subset of FORTRAN 66.

FULLERTON, L.W. (1977), Portable special function routines, 452-483 in:

W. Cowell (ed.): Portability of numerical software, Lecture Notes
in Computer Science, 57.

Design criteria for his portable FNLIB are given and judged against
CODY's and SCHONFELDER's approach. In fact FORTRAN equivalents of those in
the 'handbook special functions' are treated.

FULLERTON, L.W. (1980), a bibliography on the evaluation of mathematical

functions. CSTR 86, Bell Laboratories.

Over 250 references on the evaluation of mathematical software have
been collected in this annotated bibliography. Because it includes a per-
muted index, one may easily find articles about specific functions. The
collection has been compiled with two groups of users in mind: Those who
frequently consult with scientists and engineers, and those who are devel-
opers of mathematical software and who need to examine past work before

writing programs. Papers of a highly theoretical nature have been excluded
from this bibliography.
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GAUTSCHI, W. (1967), Computational aspects of three-term recurrence rela-

tions, SIAM Rev. 9, 24-82.

How to work with three-term homogeneous recurrence relations is ex-
posed and illustrated with examples on: Bessel functions, incomplete gamma/
beta functions, Legendre functions, Coulomb functions, repeated integrals

of the error function, Fourier coefficients, a Sturm-Liouville problem.

GAUTSCHI, W. (1972), Zur Numerik rekurrenter Relationen, Computing 9,
107-126.

Systems of linear first-order recurrence relations as well as higher
order scalar recurrence relations are analyzed with respect to numerical
stability. Examples of severe numerical instability are presented involving
scalar first- and second-order recurrence relations. Devices for counter-

acting instability are indicated.

GAUTSCHI, W. (1975), Computational methods in special functions - a survey,
1-98 in: R. Askey (ed.) Theory and applications of special

functions, Academic Press.

Emphasis is put on methods for computing approximations such as: best
rational approximation, truncated Chebyshev expansion, Taylor series and
asymptotic expansions, Padé and continued fraction approximations, represen-
tation and evaluation of approximations, linear recurrence relations, non-
linear recurrence algorithms for elliptic integrals and elliptic functions.
A final paragraph is devoted to software for special functions (NATS, NAG

and others).

HANDBOOK SERIES SPECIAL FUNCTIONS

This project has been started by Numerische Mathematik in a similar
spirit as the series on Linear Algebra and Approximation. Published are:
Clenshaw, C.W. c.s. (1963), Algorithms for special functions I, 4, 403-419.
Miller, G.F. (1965), Algorithms for special functions II, 7, 194-196.
Bulirsch, R. (1965), Numerical calculation of elliptic integrals and ellip-

tic functions, 7, 78-90.
Bulirsch, R. (1965), Numerical calculation of elliptic integrals and ellip-

tic functions II, 7, 353-354.



Bulirsch, R. (1967), Numerical calculation of the Sine, Cosine and Fresnel
integrals, 9, 380-385.
Bulirsch, R. (1969), Numerical calculation of elliptic integrals and ellip-

tic functions III, E, 305-315.

The series is not continued after these publications. However, see al-
so Temme, N.M. (1983), The numerical computation of the confluent hypergeo-
metric function U(a,b,z), 41, 63-82.

HART, J.F. et al, (1968), Computer approximations, John Wiley.

A good basis for developing an implementation of a special function.
Design phase, general methods, choice and application of approximation,
description and use of tables as well as examples are discussed. Provided
in appendices are: tables of constants, conversion routines, some decimal

and octal constants as well as a bibliography on published approximations.

HENRICI, P. (1977), Computational analysis with the HP-25 pocket calculator,
John Wiley.

Shows what kind of numerical analysis can be done on a hand-hold cal-
culntg;-. Algorithms are given for (incomplete) gamma function,
tion, complete elliptic integrals,

error func-

Bessel functions (integer and arbitrary
order, of the first and second kind), Riemann zeta function.

HENRICI, P.
John Wiley.
I.

II.

(1974,1977), Applied and computational complex analysis,

Power series, integration, conformal mapping, location of zeros.

Special functions, integral transformations,
fractions.

asymptotics, continued

Basic material for those who apply mathematical analysis in order to
obtain the most suitable representation of a function for computation

(Volume III in the series has been published but it is not related to ap-
proximation of functions).

HOUSEHOLDER, A.S. (1953), Principles of numerical analysis, McGrawHill.

The first chapter The art of computation is still of value.

In the chapters on approximation the mathematical description of the

problems is still relevant, while the treated algorithms are overruled by
more recent anes,
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IEEE P754/82 - 10.0(1982), A proposed standard for binary floating-point

arithmetic.
A nearly final proposal towards standardization. See also KAHAN (1983).

LUKE, Y.L. (1963), The special functions and their approximations, Academic

Press, 2 Vols.

Volume I develops the 2F1' 1F1, qu and the G-functions.

Volume II is mainly concerned with approximations of these functions
with particular emphasis on expansion in series of Chebyshev polynomials of
the first kind, and with the approximations of these functions by the ratio

of two polynomials. Tables of coefficients are given.

LUKE, Y.L. (1975), Mathematical functions and their approximations, Academic

Press.

The author himself classified the boock as a supplement to Abramowitz
and Stegun. Approximations for qu—named functions via analytical and
numerical methods (so, no Mathieu-like functions). Chebyshev and Padé ex-
pansions are provided as well as (recursion) recipes for the computation of
the coefficients of these expansions. Surveys numerical data in literature.
Contains theorems, no proofs. More attractive for numerical oriented people
than LUKE (1969). Emphasis is put on how to choose an expansion such that
the problem is practically solvable.

LUKE, Y.L. (1977), Algorithms for the computation of mathematical functions,

Academic Press.

As a sequel to the previous books FORTRAN programs are given in order

to calculate the coefficients of the approximations.

LYUSTERNIK, L.A. et al. (1965), Handbook for computing elementary functions,

Pergamon press.

Provides basic formulae and some coefficients for approximating ele-

mentary functions.

OLVER, F.J.W. (1978), A new approach to error arithmetic, SIAM J. Numer.
Anal, 15,2, 368-393.

By modification of the standard definition of relative error, a form



of error arithmetic is developed that is well-suited to floating-point com-
putations. Rules are given for conversion from interval analysis to the new
approach, and vice versa, both for real and complex variables. Illustrative
applications include accumulation of products, guotients, sums and inner
products, and the evaluation of polynomials. Also included are some new

error bounds for basic cperations in floating-point arithmetic.

PARTSCH, H.& R. STEINBRUGGEN (1981), A comprehensive survey on program

transformation systems, TUM report I 8108, Munchen.

The important aspect of transformation of software is surveyed around

the CIP-L project of the Technical University of Munich.
RIVLIN, T.J. (1974), The Chebyshev polynomials, John Wiley.

A survey of the most important properties of Chebyshev polynomials are
given along with applications with respect to interpolation, approximation,
integration, and ergodic theory.

SCHONFELDER, J.L. (1976), The production of special function routines for
a multi-machine library, Software-Practice and Experience, 6
71-82.

’

The design of the special function chapter of the NAG program library
is discussed.

STEGUN, I.A. & ZUCKER, R., Automatic computing methods for special functions.

So far four articles have been published in the Journal of Research of
the National Bureau of Standards B:

Part I. Error, probability and related functions, 74B, 211-224, 1970.

Part II. The exponential integral En(x), 78B, 199-216, 1974.

Part III. The sine, cosine, eéxponential integrals and related functions,

80B, 291-311, 1976.

Part IV. Complex error function, Fresnel Integrals, and other related

functions, 81, 661-686, 1981.

Contains FORTRAN routines. Variable precision and multi-machine approach.
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TEMME, N.M. (1976), Speciale functies, 179-206 in: J.C.P. Bus, (red.)
Collogquium numerieke programmatuur, deel 1b, MC-Syllabus 29.1b,
Mathematisch Centrum, Amsterdam. (Dutch).

About integrals which can be recast as special functions and applica-

tions of routines, among others Bessel function routines.

VANDEVENDER, W.H. & K.H. HASKELL (1982), The SLATEC Mathematical subroutine
Library, SIGNUM, 17,3, 16-21.

A report is given of a cooperative effort to create a mathematical
subroutine library characterized by portability, good numerical technology,
good documentation, robustness and guality assurance. The result is a por-
table FORTRAN mathematical subroutine library of over 130,000 lines of code,

with on-line documentation and help facilities.

2. SOFTWARE

The construction of multi-machine program libraries gave rise to dis-—
cussions on several software engineering aspects, such as
. machine parametrization (FORD (1978)),
. reliable arithmetic (IEEE P754/82-10.0),
. computer aided design, computer-surveyed and intuition-controlled program-

ming (SCHONFELDER (1976), PARTSCH and STEINBRUEGGEN (1981)),

. multi-machine testing (CODY (196%9a) SCHONFELDER (1976), CODY and WAITE (1980))
. (trans-)portability (FOX et al.(1977)).
In our opinion one should design an algorithm in a design language and
transform it by correctness preserving transformation software into a por-
table computer language. It should be possible to use the resulting imple-
mentations in any user language instead of to transliterate portable com-
puter language implementations into various user languages, e.g. PASCAL,
ALGOL 6B or Ada.

2.1. Multi-machine program libraries

The considered libraries are: NATS (FUNPACK), IMSL, NAG, PORT and
SLATEC. Summarized are: the target computers, the contents with respect

to special functions, and the design philosophy.
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FUNPACK (release II, 1976)
» designed for: IBM 360/370, CD 6000/7000, UNIVAC 1108/1110 and written in
FORTRAN 66.
contains implementations for:
-X _.
- exponential integrals: Ei, E,, e = Ei(x),

1
- psi function: ¢ = I''/T,
- Dawson integral: D,
~ Bessel functions: JO'JI'Y\J’ )
~ Modified Bessel functions: IO’Il’KO’Kl’

~ complete elliptic integrals: E,K,

- as well as routines for error handling.

design criteria:

= modular, subroutine based structure (no multiple entry points),
~ robustness (error handling can be overruled by the user),
-~ ultimate accuracy and efficiency,

not portable under ultimate accuracy and efficiency requirement,
= accuracy profile testing and field validation.

IMSL (edition 9, 1982)
» available in FORTRAN for three categories of computers:
T Supercomputers (CRAY 1, CYBER 200) ;
- mainframes and upper mini's (roughly 15 machine ranges)
- mini's (e.g. DBEC PDP 11).
» contains implementations for:
~ various probability functions and their inverses,
= various special functions of mathematical physics and some inverses,
some also in double precision or for complex arguments.
The complete list is too extensive to reproduce here.
« design criteria:

= to provide a general reliable and robust mathematical

and statistical
library,

~ high performance,
= converter portable.

REMARKS,

—

1. The error handling routine is called UERSET with

input parameters-:
ier and name;

fameé contains the name of the subroutine where the

error is detected and
ier denotes either:
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. a hard failure (iexr > 128),
. a warning with fix error (128 2 ier > 64),
. a warning error (64 =z ier > 32) or

an undefined error (32 =z ier).

More detailed information of the error is given in the documentation of

the specific routine: name.

NAG (mark 10, 1983)
NAG provides program libraries in FORTRAN, ALGOL 60 and ALGOL 68.
Here we concentrate on the FORTRAN library.

. available on a wide range of computers.
. contains with respect to special functions implementations for:
- circular function, tan
- inverse circular sine and cosine, arcsin, arccos
- hyperbolic sine, cosine, tangent and
their inverses,

- gamma and log gamma function, ', InT

- exponential integrals, El.Ci,Si

- error function and probability functions, erf,erfc,D,P,Q

- Fresnel integrals, s,C

- Bessel and Airy functions (plus scaling), Ai,Bi,JO,Jl,YO,Yl,
- modified Bessel functions, IG'II’KO’KL

- elliptic integrals, Rb’RF’RD'RJ

. design criteria:
- to provide a general, reliable and robust mathematical and statistical
library in a few major languages,
- high performance and for special functions a uniform approximation
method via Chebyshev series,

- processor portable.

REMARKS .
1. Error handling is done via the function PO1AAF.
2. The special function implementations have two parameters: the argument
and an integer ifail.
ifail: entry O, hard failure mechanism is used
1, soft failure
exit 0, no errors.
# 0, an error occurred; the value indicates the error

as given in the documentation.



3. In the documentation the condition of the function is displayed in clear
graphs.

PORT (version 1, 1977)

PORT is a general portable program library written in the PFORT-subset of
FORTERAN

. available on various machines, as the name indicates.

contains special function implementations for

- tangent, inverse cosine and sine (single and double precision),

- hyperbolic sine, cosine and their inverses as well as the inverse
hyperbolic tangent (single and double precision),

- complex double precision exponent and logarithm,

- Bessel functions: Jk(z"

- modified Bessel functions: Ik(zl -

design criteria:

- to provide a general, reliable and robust mathematical library as trans-
portable as possible via parametrization of the environment: parameter
values are provided for various machines,

~ dynamic storage allocation is simulated via an array in common,

- centralised error handling.

REMARKS.
1. Error handling is done via the principal error routine SETERR:
- just remember the error (recovery mode),
- print and stop,
- print, dump and stop.
The status of the recovery mode can be handled wvia ENTSRC.
2. The programs do not contain (in their calling sequences) a parameter to
‘indicate, on a return from a subprogram, whether an error has occurred.
an error number can be retrieved via the function NERROR. Error messages
are enumerated in the documentation and provided via SETERR, where the

first 72 characters of the messages are printed.

SLATEC (version 1, 1982)

SLATEC stands for the cooperation of Sandia, Los Alamos, Air Force Weapons
Laboratory, Technical Exchange Committee. The computing centers of Sandia
National Laboratory, Lawrence Livermore National Laboratory and the Natio-

nal Bureau of Standards joined the project, VANDEVENDER & HASKELL (1982).
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With respect to special functions the library consists of FNLIB (FULLERTON
(1977)), FUNPACK and exponential and Bessel functions from AMOSLIB of SANDIA
Laboratories.

. design criteria:
- FORTRAN 66 portability based on the PFORT-verifier,

good numerical technology, programming style and documentation,
- reliable and rocbust,

= uniform processing of error conditions.

2.2. Local program libraries

From a historical point of wview the multi-machine program libraries
emerged from local activities, e.g.: IMSL from SSP, FUNPACK (the NATS ac-
tivity) from Argonne National Laboratory, NAG from NPL and HARWELL. Below
we summarise some local program libraries with respect to their special

functions chapter.

ARGONNE

- Apart from FUNPACK they have made available on their IBM 360/370:

circular functions gin, cos, tan, cotan,
inverse circular functions arcsin, arccos
hyperbolic functions sinh, cosh,
exponential integrals FUNPACK, also complex
gamma function FUNPACK, v, I'y1n T, x2
error function FUNPACK, erf, erfc,
Bessel functions Jrr Yr'

modified Bessel functions e“xIU. exKv

Coulomb wave function FL, GL

Coulomb phase shift oL

Legendre functions Qﬁ, dQﬁ/dz

angular momentum coefficients

zeta function z, ¢-1,

elliptic integrals E, K.

CERN library (March, 1976€)
- Available among others on CD-CYBER and contains FORTRAN routines, often
alsc in double precision, for:
exponential integrals El,Ei, si, ci,

gamma function (R ,C) I', In ', ¢, quotient ' functions
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error functions (C), probability

functions erf, D, P, Q
Fresnel integrals s, C,
Bessel functions (R, C) Jr' Yr'
modified Bessel functions Iv' Ku'

Coulomb wave functions
Legendre functions

@-functions, Jaccbi elliptic func-

tion

complete elliptic integrals E, K,
Whittaker functions Mk,m'
Fermi-Dirac function

Struve functions HO’ Hl'

HARWELL (August, 1977)

- Available on IBM 360/370 and contains FORTRAN routines for:

exponential integrals E1

gamma function r, B,

error function (C) erf, D,

Fresnel integrals c, S5,

complete elliptic integrals E, K, I,
incomplete elliptic integrals 1st and 2nd kind
Bessel functions J.r Jer ¥ o ¥

0 1 0 1’

modified Bessel functions IO’ KO’ Il' 1(1,
spherical Bessel functions jn.
Kelvin functions ber, bei, ker, kei, ber', bei',

ker', kei',
angular momentum coefficients

NUMAL (see HEMKER (1981))
- Written in ALGOL 60 for CD-CYBER (elsewhere converted into FORTRAN under

supervision of P. Wynn) and contains implementations for:

inverse circular functions arcsin, arccos,
exponential integrals Ei’ Ei" En(x), or.n, 8i, Cci,
gamma function 'y InT, v, B, Bx'

errox function erf, erfc,

Fresnel integrals C, 8,

Bessel functions Jr' Yrr

modified Bessel functions Iv' Kv,
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spherical Bessel functions Js ¥

Airy functions (also: zeroes of) Ai, Bi, BAi', Bi'.

Implementations for the probability functions: binomial, xz, F, hypergeo-
metric, normal, Smirnov, Students T, non-central T, Poisson, and their in-

verses are provided in the Statistical library STATAL.

2.3. Published software

The Index to the Collected Algorithms of the ACM contains references
to software published in roughly ten journals. The ACM publishes software
in their Transactions-series, where Transactions on Mathematical Software
(TOMS) is of special concern for us. Software published in TOMS is validated,

and available in machine-readable form from the ACM distribution service.

Software related to special functions published in TOMS, up to 1983, is
listed below.

TOMS Algorithm number Item

1.4 498 Airy functions using Chebyshev series approxi-
mations

3.1 511 CDC 6600 subroutines IBESS and JBESS for

Bessel functions IU(xJ and Ju“‘)’ xz20,vz0

3.3 518 Incomplete Bessel function IO: The Von Misest
distribution
3.3 521 Repeated integrals of the coerror function
5.4 542 Incomplete Gamma function
556 Exponential integrals
7.2 571 Statistics for Von Mises' and Fisher's distri-

bution of directions: Iltx}/ID[x), 11,5(:‘);:0.5(}0

7.3 577 Algorithms for incomplete elliptic integrals

9.2 597 Sequence of modified Bessel functions of the
first kind

9.2 599 Sampling from Gamma and Poisson distributions

9.4 &09 A portable FORTRAN subroutine for the Bickley
functions

9.4 610 A portable FORTRAN subroutine for derivatives of

the psi function
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REMARKS.

.If one intends to use software published in TOMS, we advise to look in the
loose-leaf collection of the ACM for additional REMARKS or CERTIFICATIONS,
done by the 'scientific community' after the implementation has been
published. On the other hand if one uses software published in TOMS and
detects scme flaws it is worthwhile for the 'scientific community' to
contribute a REMARK or CERTIFICATION.

.An index to program collections is also provided by Guide to Available
Mathematical Software (GAMS). It is intended for the National Bureau of
Standards Staff and it gives an overview with respect to: NBS Core Math.
Libraries, Mathware and the libraries IMSL, NAG and PORT.

+A general bibliography on numerical software is published by EINARSSON (1977)
with an update of chapter 16 in EINARSSON (1979).

. (Added in print) IMSL has available a new FORTRAN library, the SFUN/
LIBRARY for evaluating the following special functions: elementary func-
tions, trigonometric and hyperbolic functions, exponential integrals, gamma
functions, error functions and Bessel functions. It will be available ini-

tially for FORTRAN 77 compilers on IBM, VAX, DEC 10/20, cDC and DG 32-bit
Eclipse.



II. GENERAL ASPECTS OF COMPUTING FUNCTIONS

In this chapter we will discuss certain topics that play a fundamental
role in the subseguent chapters. In section ! we mention some aspects of
error analysis for the computation of functions, in section 2 we classify
algorithms and describe the general structure of implementations. Section
3 deals with recurrence relations where the first order recurrence relation
is treated in detail. Two-term recurrence relations are treated from a nu-
merical algebraic as well as from a pragmatic point of view, where peculari-
ties of recurrence relations, arising from computing special functions, are
exposed. Section 4 gives an introduction to continued fractions and section

5 pays attention to some basic properties of hypergeometric functions.

1. ERROR ANALYSIS

In this section we point out that a user needs only to consider careful-
ly the effect of perturbation of the argument of a function if the designer of
an implementation takes care of sufficiently accurate and well-conditioned

approximations and benign computational processes.

In discussing the sources of error in the computation of functions we
will consider:
a. the effect of perturbation of the argument;
b. the effect of approximation of a function by more elementary functions;
c. the effect of finite precision arithmetic.
Generally speaking, the designer of a function routine takes care of (b)
and (c) while a user has to be aware of (a). In order to understand this
and to be aware of the assumptions, we will pose the problem and quantify
the qualitative aspects (a), (b) and (c).

The problem is: given
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Z, an approximation of z,
Af, a well-conditioned approximation of f depending on a set of coeffi-
cients {ak} and an argument z,
Afc' a benign implementation of Af,
then the value of Afc({ak};;) and an estimate of

(1.1) if(z)—Afc({ak};zH or |£(=z) ~Afc({ak};z) [/7]£(2) |
are desired. In the sections 1.2 and 1.3 we will return to well-conditioned
approximations and benign implementations.
To estimate (1.1) we consider
(1.2) |f(z)—nfc({ak}=’z“)l < |£(2)-£(D) | + If(ZJ-Af({ak}s"iii +

+ |aga }s2) —Afc({ak};'z")I.

The terms in the upper bound correspond to the qualitative aspects (a), (k)
and (c); they will be treated in the sections 1.1, 1.2 and 1.3, respectively.

1.1. Perturbation of the argument

For a function holomorphic within vy, vy = {t I |t-z| = r}, we have the

Taylor formula

~ 2
~ ~ (z-2) f(t)
(1.3) £lz) - £(z) = (z-z)£'(z) + . § dt.
2mi Y (£-3) 2 (t-2)

In first order we obtain for the absolute and relative errors the well-known
estimates
(1.4) |£@) - £(2)| = |Z-z||£" (2) ]

|£(2) - £(2)|/]|€(2) | = |Z-z| [£' (2) /£(2) |,

with the relative error amplification

1£Z) -£(z) |/1£(2) ] sz'(z)!
12-21/1z £(2)
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EXAMPLE. Suppose z = 100, to three correct significant figures. Then the re-

z
lative error in f(z) = e 1is .5, or 50%. Hence the value of f(z) has no sig-

nificant figures.

REMARK. In order to estimate the errors, an estimate of |f'(2)| must be avail-

able. The NAG library provides a graph of |f'(x)|, for x in the relevant
parts of R.

1.2. Approximation of a function by more elementary functions

By approximation of a function we mean replacing the mapping

(1.5) f: z + £(2)
by
(1.6) Af: {ak},z -+ Af({ak}:z) .

Choices are to be made with respect to:

- approximating form and size (e.g. polynomial or rational form),

- representation of approximating form (e.g. representation of a polynomial
as a sum of Chebyshev polyncmials or powers of the independent variable) .

This has to be done such that for some prescribed e:
(1.7) l€(z) - afda }iz)| < e or [£(2) - afa i) |/[f(2)] <&,
the so-called residual or truncation error, and
(1.8) af is well-conditioned with respect to {ak}.
As a measure of condition of a representation with respect to {ak} we

introduce the condition function C as the l-norm of the vector of the re-

lative derivatives of Af with respect to the parameters, i.e.,

a, BAE({ai};z)

(1.9) ca };z) == J}
3 k'Af{{ai}'Z) Bak

The maximum of the condition function times |Af({ak};2)| over all relevant

z is taken as the condition number k. (We suppose that for these definitions

hf({ak};z) is bounded away from zero in the z-domain.)
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Different approximations to f may yield different condition numbers.

If we have two approximations, say
Af{{ak},-z) and nf({bk};z;,

within the same z-domain, we can compare the condition numbers, say K and
»cb. If Ka < Kb then we call Af better conditioned with respect to fak} than
to {bk}' The best conditioned approximation of a number of approximations is
characterized by the lowest condition number. A well-conditioned form is
characterized by a sufficiently low condition number, which possibly reflects

a compromise between accuracy, efficiency and portability.

In polynomial approximation, on [-1,1], the condition number of the
power sum representation, Pn(x) =1 akxk, equals the condition number of the
Chebyshev representation, P (x) =Ib T (x), if the coefficients {ak}. and
hence {bk}, are strictly alternating or of the same sign (NEWBERY (1974)).

The condition function (1.9) may be used for representations in terms

of an infinite set {ak}- As an example consider the expansions

e = E (—l)nxn/n'-, e X<y }: x/nt, x e [0,x_1,
e 0
n=0 n=0
where xo is a positive number. The condition functions for these repﬁesen—
. 2x
tations are e = and 1, respectively, and the condition numbers are e 0 and

1, respectively.

1.3. Finite precision arithmetic

Given an approximation Af({ak};z) , a well-conditioned computational
problem, we must take into account the aspects of finite precision arith-
metic, in particular in view of different computational processes. Our
approach is inspired by BAUER (1974), who considers computational graphs in
computations. For instance, the evaluation of -Elz—b2 may be performed by
either of the processes (a-b) (a+h) and (azl - (b2} + yielding two different
computational graphs. Another example in point is the evaluation of a poly-
nomial by using Horner's rule. It gives a different computational graph
than the process that computes the polynomial straightforwardly. We write
Afc({a.k}:z) if the approximation Af is computed according to a given com-

putational graph c¢| In a graph several intermediate results arise, giving
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intermediate rounding errors. Loosely speaking, we call a process (a compu-
tational graph) benign if the effect of intermediate rounding errors does
not spoil the computational aim. Intermediate results obtained by multipli-
cation or division need not to be considered.

As in the previocus subsection it is possible to give a more rigorous
definition of the concept benign, as was done for the condition function C
of an approximation Af. First we introduce the condition function of a com-
putational process Afc as the l-norm of the vector of the relative deriva-
tives of Af({ak}:Z) with respect to the intermediate results. Then we in-
troduce the condition number K. of the computational graph Afc as the maxi-
mun of the condition function of Afc times |Afc({ak},z)| over all relevant
z. The computational graph is called benign if the condition number of the

computational graph Afc is smaller than the condition number of the compu-
tational problem Af.

REMARK. In numerical linear algebra the concept of growth of intermediate
results in a computation is used in order to decide upon which algorithm is

best with respect to error propagation.
EXAMPLE 1. Consider the evaluation of the polynomial

k
a.kx

af({a, };x) =
k k

I 1~

0

as an approximation for a function f. The condition function of the approxi-

mation is
3 3
k k
ct{a bix) = § |ax |/} x|
k k=0 k k=0 %

and the condition function of the computational graph based on Horner's

rule is given by

k
|.

2
P +alx!}/] Z a, x

3 2 3
(lax"+a x| + |a_x"+a
3¢ 82 3 o

2.2 .
EXAMPLE 2. The evaluation of a -b . The condition function of this problem

is

2.2 2 2 2 2
(la 22220 4 ——-a(aa;b 2|y /la2p?| = 2 LaZlrp7] T
la®-p7|
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2 2
The evaluation may be performed by the processes (a-b)(a+b) and (a ) = (b))

with condition functions
2 and (tazl + |b2|)/1a2—b2i,

which are both smaller than the condition function of the problem.

REMARK. The above ideas are candidates for automatization. Work in this
direction is indicated by BAUER (1974) and realized by MILLER (1975),
MILLER & SPOONER (1978) with respect to the behaviour of absolute errors

and LARSON et al. (1983) with respect to the behaviour of relative error.

2. SOFTWARE

In this section we classify algorithms and describe the general struc-

ture of implementations.

2.1. Algorithms and implementations

In mathematical software for function approximations algorithms may be

classified according to the input parameters:
(2.1) = the argument;
(2.2) - the argument and the precision.

In the (nearly) maximum precision class (2.1) the approximation Af({ak};z)
is determined such that the approximation error (1.7) is less than the
machine accuracy e. Commonly a uniform approximation is predetermined based
on an error bound for the worst case; when several approximation approaches
are combined - say Taylor series and asymptotic series - uniform approxima-
tions are commonly used for each approach. We call this a nearly class be-
cause the resulting error (1.1), in general slightly exceeds the machine
precision due to finite precision arithmetic, even for exact z. In the
variable precision class (2.2) approximations are used for which the ap-
proximation error (1.7) is easily available. Often, (especially when the
approximating error alternates) the differences of the n-th and the
(n+1)=-st approximation majorates the approximation error; this property is
commonly used as a stopping criterion. However, when dealing with monotonic
convergence or with finite precision arithmetic this criterion may not be

reliable.
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The implementations based upon (2.1) are generally structured in:

(2.4) - checking of argument z;

(2.5) - selection of appropriate {a.k} as a function of z (segment or domain)

and initialization;
(2.6) - evaluation of appropriate approximation Afc({ak};z) .
The implementations based upon (2.2) are generally structured in:
(2.7) - checking of argument z and the precision §,

(2.8) - evaluation of Afc({a.k};z) such that an approximation of the trun-

cation error is less than §.
Twe elaborations of module (2.8) are in use:

(2.8.1) - selection of appropriate {ak} as a function of z (segment or do-
main) and & (precision); cne could think of evaluation of part of
a finite Chebyshev sum - for example as determined by the proce-
dure Set (CLENSHAW, c.s. (1963)) - or one could think of evalu-
ation of the appropriate minimax approximations while the coeffi-
cients of respectively the finite Chebyshev sum or the minimax

approximations are included in the program for the precision range.

(2.8.2) - no selection of appropriate {ak} as a function of z is made a
priori.

Further refinement of the modules with respect to portability may be
achieved with either a special target computer in mind (advantage may be
taken of, or measures may be taken against, some machine-enviromnmental-
peculiarities; this approach was common in local program libraries) or for
a range of computers (standards and subsets are used; NAG approach). Of
course one could think of a range of computers as a sum of special target

computers (NATS approach) .

2.2. Testing

In our opinion testing of software is verifying by a human being the

correctness of different design stages of an implementation. RUTISHAUSER
(1976) distinguishes for the creation of mathematical software the design
stages:
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. formal algorithm: a description of the principal flow of a calcula-
tion;

. naive program: an unambigious definition of the calculation process
is given, where program correctness is empirically obtained via
checking of a limited number of argument values;

. strict program: apart from round-off error effects the program is
proven to be correct;

. numerically safe: the errors in the results are within proven bounds.

The various states of a program can be placed in the total activity of

mathematical problem solving in the following way.

Starting point Tasks Region of competence
mathematical problem analysis
discretisation
discrete mathematical algebra
problem
developing

numerical method

formal algorithm numerical calculation
in exact arithmetic

taking care of
finite precision

arithmetic
naive program numerical calculation
in finite precision arithmetic
strict program sequential safety
strict program with numerical safety

a priori or a posteriori
error bounds

+ numerical mathematics - applied mathematics =

Nowadays test activities, at least with respect to approximation of
functions, deal with the 'naive program'-level. On this level the tech-
nigue is automated by generation, via possibly different algorithms, of
multi-length tables by CODY (1973,1975b) and SCHONFELDER (1976) . Consisten-
cy tests are treated by NEWBERY & LEIGH (1971).

The creation of strict programs wvia pre- and postconditions and Hoare-

like lcop invariants has not been done in the considered software.

The creation of numerically safe programs has not yet emerged, while

first order error bounds are provided in the documentation of some
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considered implementations.

With respect to error bounds one could think of a first order estimate
and a rigorous estimate, where the latter is generally pessimistic. During
the checking of obtained values one could classify the errors into the clas-
ses red, orange, green. Where red indicates a true error because it exceeds
the rigorous bounds, orange indicates a possible error because it is within
the rigorous bounds but exceeds the first order bounds, and green indicates

an acceptable error because it is within the first order bounds.

In our discussion of some special function implementations we will con-
centrate our efforts on the 'naive program'-level
- are the used approximations accurate enough?
. are the used stopping criteria provable correct?
- is the program readible; does it look correct?

. can we classify the implementations as 'good in principle'?

Only after positive answers on the above guestions by an initiated
worker one can consider to
either
perform the costly job of stringent tests in the sense of Cody and
Schonfelder
or
proof the program correctness and to provide bounds for the numerical
errors.
Only in the last case a numerically safe program is obtained while for prac-

tical purposes the former approach is sufficient.
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3. LINEAR RECURRENCE RELATIONS

The behaviour of linear scalar recurrence relations in finite precision
arithmetic is described in terms of first order matrix-vector recursions.
We shall treat two-term recurrence relations (1lXl-matrix) and three-term
relations (2*2-matrix) separately. Our main tocl is the concept of stabili-
ty of the problem: amplification of perturbations of input data into the
answer. For this class of problems it is convenient to consider rounding er-
rors as perturbations of the input data. The amplification is quantified by
the earlier introduced condition (§1.2.). Wherever appropriate we make use
of gecometric concepts in order to abstract from details and to strengthen
the intuition. Furthermore, we shall make use of general knowledge of the
solution when it concerns special functions. A half page introduction with
practical information about stability directions for a few classical ex-
amples is given in ABRAMOWITZ & STEGUN (1964, p.XII); see also §3.3.
A state of the art survey is given in GAUTSCHI (1975).

3.1. First order inhomogeneous scalar recurrence relations

A thorough treatment of the stability, with emphasis on the effect of
perturbations of the initial value, is given by GAUTSCHI (1972a). His graphs
of pn make clear whether we must prefer the forward to the backward recur-—
rence or consider starting somewhere in between, eventually as a function
of the (real) argument of the approximated function. We shall introduce
Gautschi's pn as part of the condition of the problem; this gquantity re-
flects the stability due to the initial value neglecting other effects.
Moreover, we shall introduce a new gquantity Un, which reflects the stabili-
ty due to the initial value and the inhomogeneous terms while other effects
are neglected. The examination of the stability of a recursion can be done
by demonstrating that p, oFr o are large, an instable recursion, and if not

by proving that the condition is small.
Introduction

As an introduction we shall talk about

=ay. +b,, j = 0,1,...
¥ JYJ 3 J

j+1
(3.1.1)

YO given.
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Recurrence relations of this type play a role, for example, in calculations
of the incomplete gamma function with the exponential integrals as a special
case. Sometimes recurrence relations are used in the forward direction, as

in (3.1.1), and sometimes they are used in the backward direction:

.= (y.,,~b.)/a_, j = n,n-1,...
73 Y3¢17°37 7% )

(3.1.2)

y, 9iven,

provided of course that aj # 0. We like to stress that mathematically the
same values {yj}g are defined, but that the algorithms differ, especially
in finite precision arithmetic.

In order to decide a priori upon which algorithm is to be preferred
in finite precision arithmetic, we will derive macroscopic guantities which
govern the stability of linear first-order inhomogeneous recurrence rela-

tions.

The formulation of the problem

The recurrence relation (3.1.1) may be stated as: given

n-=1 n-1
Yor {aheoor Toydyao
obtain
n-1 n§1 n-1
(3.1.3) £ = ( n a.) vy, + ) ( m ) b,
n j=0 3/ 70 §=0 ‘k=j+1 %) 73

in finite precision arithmetic as accurate as possible. (This formula may
be derived from (3.1.1) by the variation of parameters technique (HAMMING
(1971)). The first term of the right hand side eguals the solution of the

homogeneous problem; the second term is a particular solution).
Stability

The stability of the problem may be characterized by the condition as
introduced in formula (1.9), i.e.,

(3.1.4) ¢ =c + c + cn
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with
y,. af n-1
(3.1.42) ¢ = ‘_Q ——Ew l,ﬂ a,‘[y /f |, due to the initial value,
y f 9y =0 73 0" n
0 n ‘0
n n-1 \bk afn n-1 n-1 | |
(3.1.4b) ¢, = § |==2 =1 i Ty a.| b /£ |,
Py k=0 fa ¥ k=0 I J

due to the inhomogeneous terms,

n n;l |ak 3fnl nfl l n-1 k-1 n]:[i \ [/'_f |
(3.1.4c) ¢ = ) |=—=—5—| = } (.U a.)y + ) (.:. a, jb '
% k=0 fnd% xop N0 IS0 4o \iSIHD 1T n

=0
due to the coefficients {ak}.

The condition may macroscopically be represented in terms of the solu-

h
tion of the homogeneous recurrence: f; ), as

(3.1.5) c® = |f;h’/fn]{1 + nzl{ibk/f]il:“ + |1+ kzl bj/fézi }}
k=0 =0

The absclute value of the quotient of the homogeneous solution (with the

same initial value) and the inhomogeneous solution is Gautschi's PL- So

from the perturbation point of view Pu reflects the stability of fn due to

a perturbation in the initial value, say g: P, = cg. In the sequel we will

use p_as a symbol to denote the relative amplification of a perturbation of

the initial value into the answer fn' given a particular recurrence relation,

independent of whether we call it a forward or a backward recurrence. If we

consider P large - a so called ill-conditioned initial-value problem -

we may pose another problem, for example by recurring in the opposite direc-—

tion; the latter generally has a different Py- For the calculation of fn by

(3.1.1) - we call this forward - we have for pn of the forward problem

(superscripted by £)

-1
o = IGEO a:‘)"ﬂ/ AL

while for the calculation of fn by (3.1.2) by starting at Youe ~— we call

this backward (superscripted by b) - we arrive at

b ‘ n+k~1 -1
n

= mn
P L aj ) yn+k/fn|'
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N f.n+k b
From {pj}j=n we may obtain Pnt the backward amplification factor, as
pb _ f/ f
n Pn Pk "

We appreciate Gautschi's graphs of P given a particular recurrence rela-
tion, because from these we may obtain by the above formula the p's of the
recurrence relation in the opposite direction.

Another representation of cn is obtained if we use the solution of the
absolute recurrence: féa) (with input parameters ifol.{|ak|}.{|bkl}); in
(3.1.4)

B L ARl )

h
with f; ) again not zero, of course.

In the sequel we will denote the quotient of the solution of the absolute
recurrence and the solution of the given recurrence by Un, i.e.

(3.1.6a) o= féa)/|fn|.

From the perturbation point of view Un reflects the stability of fn due to
perturbations of the initial value as well as perturbations of the inhomo-
geneous terms, because the sum of the right-hand sides of (3.1.4a) and
(3.1.4b) equals f;a)/[fn]; so g is the symbol to denote the amplification
of perturbations of the initial value and of the inhomogeneous terms into
the answer fn. This amplification is realistic when all perturbations are
roughly equal. From these representations we easily obtain the inequalities

n (a) (h)
(3.1.7) c = [f] /nt z £ /g L.

If pn or Un is large we have an ill-conditioned problem. Usually this is

stated in a geometrical sense (see also section II.3.2): an ill-conditioned
(h)
n

(prl is large); an ill-conditioned inhomogeneous (initial-value) problem is

characterized by the dominance of fia) over fn (Un is large). The latter is

not generally known, e.g. it is not mentioned in section II.3.2. Finally,

initial-value problem is characterized by the dominance of f over fn

we will consider a problem suitably conditioned when " is tolerable; this
introduces the context.
For an absolute recurrence relation, say the absolute version of

(3.1.3), an attainable upper bound for the condition is given by
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(3.1.8) " < ntl.

perivation: (3.1.4a) + (3.1.4b) contributes 1
(3.1.4c) contributes at most n-times the contributions of

(3.1.4a) and (3.1.4b); a well-conditioned problem

REMARK. With matrix recurrence relations the relative values of the solu-

tion of an absolute recurrence are of importance.

For the problem of evaluating a polynomial as a power sum: the condi-
tion may, after confluence of all aj into x, conveniently be bounded below

by

3.1.9) &M (g 4 x ag_x)/ax|¥/|£ |,

where we recognize the contribution of the derivative; for this particular

recurrence we have for the absolute recurrence and for Un

n-1
fo7 = I Iogy |
k=0
n-1 n-1
k k
o =Z|b_x|/|2b‘_x]-
n k=0 n-k k=g B k

So, dn equals the l-noxrm of the relative derivatives with respect to the

coefficients in the power sum representation.

REMARKS .

1. We like to stress that so far we have considered the stability of the
problem and not yet any particular ccmputational graph nor the effects
of finite precision arithmetic. The condition of the problem gives
(first-order) information about the effect of perturbation of the input
data - initial value and recurrence coefficients - into the solution;
finite precision arithmetic or bad algorithms can only make things worse.
Even if the input data are exact representable in the machine and there
are no measurement errors in the picture, the above introduced concepts
are still of interest. Namely for the class of problems defined by
the recurrence algorithms, the intermediate rounding errors due to finite
precision arithmetic can be considered in a natural way as perturbations

of the initial data; backward analysis is easily applied.
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For example, the recurrence relation (3.1.1) in finite precision arith-
metic (the tilde denotes finite precision operations)

Y., =a,*y. +b., §=0,1,...

5 7 ¥ Ty 3

(3.1.10)

YO given,

may be stated (in first order) as (the tilde denotes the perturbated co-
efficients which yield the same result as (3.1.10))

Yj = g * v, + b i=0,1,...

¥y, given

in exact arithmetic, with aj = ;j(1+6+61), bj = Ej(1+61), where we ai—
sumed for the machine operators (with tilde): x ¥ y = x * y(1+8), x + v =
= (x+y)(1+61) with max([ﬁl,]61|) < € (= machine precision).

S0 the contributions (3.1.4b) and (3.1.4c) govern also the effect of in-

termediate rounding errors. Commonly, (3.1.11) is replaced by

Yj+1 = aj * Yj + bj + aj,
with Aj the local error. We think our approach for this class of prob-
lems simpler, because, the local errors are absorbed in the recurrence
coefficients and so we only have to lock at the effects of perturbations
of the input data; i.e., we only have to concentrate on the condition

of the computational problem and not on the condition of the computational
graph. The perturbations of the recurrence coefficients due to finite
precision arithmetic is of the order of the machine precision: the recur-

rence algorithm is benign.

2. One can ask whether the positive recursion with bound for the condition
(3.1.8) is well-conditioned or not. Such pin-point guestions can easily
be circumvented by going back to the perturbation idea; the condition is
only a macroscopic tool. The condition as a l-norm is a suitable tool
when all perturbations, initial or due to interpretation of rounding
errors, are of equal order of magnitude. For rounding errors in recur-

rence relations this is the case, so we think this norm convenient. For
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3.

4.

(3.

5.

example (3.1.9) only states that perturbations are linearly amplified.
Whether this is tolerable or not depends upon the circumstances. One has
to decide upon this oneself given the particular situation; generally a

linear amplification bound is considered harmless.

An example of a stable initial value problem but an unstable inhomogene-
ous problem, is given by

(...((6)—x1-)+1{2)—x3) ...t Ky o K~ K> 0,

2n

where p =1 and o ~ 2nK/8; o can be made as large as we please.
2n 2n 2n

If the contribution to the condition is mainly due to (3.1.4a), and we
judge this intolerable, we can look for another problem formulation: a
terminal wvalue problem for example; i.e., (3.1.2). In closed form the
solution may be represented by

, ) (1‘&]}_:;1 ) n+k-1 n+115'—1 afl} b,
R QL a’j)yn-i-k_ iin (j:i 1/
with k suitable chosen. This is the so-called backward recurrence; Yotk
as starting value must be known or a perturbation of it is harmless in
fn' so that we can take nearby values: (asymptotic) estimates or crudely
0. As a special class of problems we have the absolute recurrence rela—
tions with their stable properties. Absolute recurrences may just be
given or recognized as the opposite recurrence from a recurrence rela-
tion with all {ak} and {yk} positive and all {bk} negative. An error in
the starting value of an absolute (or positive) recurrence is damped be-
cause the (inhomogeneous) solution dominates the solution of the homo-
geneous recurrence relation. The effectiveness of this damping determines

k: fast damping induces a small k; slow damping needs a large k.

In estimating the condition of a problem defined by a recurrence relation
with non-constant coefficients, we can sometimes - for the so defined
slowly-varying recursions - consider the general problem as a perturba-
tion of a problem with constant coefficients. On the other hand scme
recurrence relations have variable coefficients which exhibit a high
rcgularity; for these recurrence relations one can look for - and we

will in the sequel - handsome representations of (3.1.4a), (3.1.4b) or
(3.1.4c) .



II.3.1 FIRST ORDER RECURSIONS 35

6. When dealing with a polynomial it is convenient to have a tool which can
be used in order to decide upon its representation. In this remark we re-

strict ourselves to the problem of evaluation of the representations:

]

a power sum ’ Pn(x)

o
k=0

n
a Chebyshev sum ¢ P(x) = k£O b T, (x).

Our tool is: the representation with smallest l-norm of the coefficient
vector is best. (Indeed, the relative perturbations are amplified by
EE=O |ak xk| or El]:'=0 lbk Tk(x) I ; which in turn are uniformly bounded by
the 1-norms.) With this tool we easily understand Newbery's (1974) ex-
perimental result (see §1.2) as well as some spread results:

CLENSHAW (1962) :

122 122 2k
J. (x) ~ )" b, T. (x/8) = a,, (x/8)°,
o] k=0 2k T2k k=0 2k

where the Chebyshev sum representation is to be preferred because

][bzkuj =1 < ""‘21;”1 = 427.

HART c.s. (1968):
'I‘6 (%) = 32x6 - 48}:4 + 18):2 -1,

where the explicit power sum representation is not to be preferred,

because
I = .
Tflll < lak 99
RUTISHAUSER (1968); (T, (x) = T, (2x-1)):
1 - 13.7x + 6?.5x2 - 153x3 + 162):4r - 64.8):5 =

= ~(.522Tt(x) + .352T;(x) + 126, (x)),

where the shifted Chebyshev sum representation is to be preferred, be-

cause



Ibkﬁ .

1< Iakl = 462.

.

NEWBERY (1974): If {ak} are of the same sign or strictly alternating then

Ebkﬁl = lakﬂ1; no preference, so for efficiency reasons the power

sum can be used.

GAUTSCHI (1972b) introduced the condition number of the coordinate map asso—
ciating to each polynomial its coefficients with respect to a system of

orthogonal polynomials. Let

n-1 L
i t
i.e., with (uj,...,u__,) we associate Ek=0 W, by (x), with {pp hy o 2@ se
of orthogonal polynomials. Then

cond_ M= lu 0 In~Y .

From the perturbation point of view we have

| ] 1
&pn—l - 1 auﬂm

ip_ 1 cond M_ Tl
w )

n-1 =

We did not follow Gautschi's approach because it concentrates on uniform
results for a class of problems, while we are more concerned with tools
for particular problems which do reflect the (known) gualitative beha-
viour. Gautschi's ideas are worked out in GAUTSCHI (1972b, for orthogo-
nal polynomials; 197%a, for polynomials in power form; 1978, for poly-

nomials) .

- The second term in (3.1.9) is inherent in the polynomial and cannot be
minimized. We like to remark, however, that a perturbation of the argu-
ment of the function, which is approximated by a polynomial, was already
considered (see §1.1). But, because of confluence of all a, into x we
are not surprised to see again the derivative of the approximating func-
tion - the polynomial - in the stability of the problem of evaluating

the approximation.
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8. For the homogeneous recurrence relation the condition is

n
c = n+l.

For this simple case the effect of relative perturbations of the input
data 6f0 and {Gak}, is in first order easily given by

n-1
lof | = |6, + ¥ sa | =c” * e,
n 0 X=0 %

where g = max{GfO,Gak}. We see at once that the bound is attained if all
relative perturbations of the input data are the same. Rounding errors
behave not that systematic. In order to get a more realistic estimate
of the effect of rounding errors we could think of an effective machine

precision or introduce an effective condition notion.

EXAMPLES.
1. The following example about evaluating a polynomial is theoretical. It is
constructed in order to elucidate the use of different algorithms or

properly speaking: to contrast the forward problem with the backward
problem. Let

Y

]
(¥
*
e
.
|
-
-
.
L}
©

j+1 1,2,...,n-1

(3.1.13)

¥q =1 =2 + €.

The solution is given by

, Jzt 3
(3.1.14) £ =2y -} 2= (y-1)27+1, 3§ =0,1,2,...,n.

The backward formulation is given by

= ] = =1,...,n+1,
Yj (Yj+1+1)/2, 3j n+k-1 n+l,n

(3.1.15)

v - (€_2-2n)2n+k+

n+k 1:
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we have taken k = n, so the (terminal) starting value is

2n
Yon = [

In table 3.1 we have enumerated the results of: the direct methed (3.1.14),

;ﬂ ; and the backward problem

f;d}i the forward problem (3.1.13), £
(3.1.15), f;b). We have taken n = k = 10, € = machine precision, and re-

~ -2 ~ 2
lative perturbated starting values: ¥g = 1 - 27" ana Yoo = e2 M (1-e) .

The erronecus digits with respect to the direct method are underlined.

3| direct: f; | forward: f;ﬂ
=
U?.‘)‘?ﬁ‘)‘) 904631 2569 | .99999 90463 2568 .99999 90463 2569
1'..99999 80926 5138 .99999 80926 5137 .99999 80926 5138
.99999 £1853 0276 .99999 61853 0273 | .99999 61853 0276
.99999 23706 0553 .99999 23706 0547 | .99999 23706 0552
.99998 47412 1105 .99998 47412 1094 | .99998 47412 1105
.99996 94824 2210 .99996 94824 2188 | .99996 94824 2210
99993 B964E 4420 .99993 B9648 4375 | .99993 B9648 4420
|.99987 79296 B84l ,99987 79296 BI5Q l .99987 79296 8841
99975 58593 7682 .99975 SB593 7500 | .99975 58593 7682
.99951 17187 5364 L99951 17187 5000 .99951 17187 5363
10| .99902 34375 0728 .99902 34375 0000 L99902 34375 0727
11| .99804 68750 1455 | .99804 68750 Q000 .99804 G6B750 1455
12| .99609 17500 2910 | .99609 37500 0000 .99609 37500 2910
13} .99218 75000 5821 .99218 75000 0000 .99218 75000 5820
14| .98437 50001 1642 .98437 50000 0000 L9E437 50001 1641
15| . 96875 00002 3283 L96875 00000 0000 .96875 00002 3283
16| .93750 00004 6566 . 93750 00000 Q000 .93750 00004 6566
17; .87500 00009 3132 L87500 00000 Q000 .B7500 00009 3132
18| . 75000 00018 6265 . 75000 00000 0000 .75000 Q0018 6264
19| .50000 00037 2529 . 50000 00000 0000 .50000 00037 2529
20/ .00000 00074 5058 | .00000 000QO 0000 | .00000 00074 5058

.......... o -

4 backward: f

S S

O e O e b

Table 3.1
Discussion

The contribution to the condition of f, due to a perturbation in Yo is

3

(3.1.16) pj~2j. 3 =0,1,2,...,n,

so we expected the forward recursion to grow erroneously. A perturbation of

h0 i 1, the linearly transformed initial value, is amplified by

(3.1.17) oy~ p3-2n

(Note the difference in the condition due to the simple change of variable!l)

The backward problem is a positive recurrence, so we expected it benign;
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. -{n+k-3j) ,
& 18 damped by 2 in fj'

an error in fn
For the problem of evaluating a polynomial other algorithms can be

considered. TRAUB & SHAW (1974) introduced a family of splitting algorithms
for the power sum representation.

In stead of

(3.1.18) P (x) = (..-((anx+an_1)x+an_2)x+...+a1)x +a,

they considered

_ q qg-1 q+1
(3.1.19) P _(x) (.- ((a x™+a _x +...+an_q)x -
+ (a xIia_ 37, s ))xq+1
2q+1 2q g+1
+ (a x¥+a Il 4a )
q q—l - 0 r

with g+l a divisor of n+l. The advantage of this approach is that the linear
amplification factor, say n, can be reduced to the sum of factors of n+l.
Furthermore, this approach is also advantageous when all derivatives are
needed because the number of multiplications is of order ((n), while the
complete Horner is of O(nz). The problem of summation of numbers may be
considered as a special case of polynomial evaluation. BABUSKA (1972)
reported the benign nature, 2log n, of the repeated splitting-summation

computational graph. However, his example

1/k
1

w0
=}
]
I~

k

should have been compared with the "backward" process
(... ((1/n+1/(n-1)) + 1/(n=-2))+...+1/2)+1.
n .
The conditions of Sn with 1 as starting wvalue, ey - i.e. summation of de-

n . . .
creasing terms - and with 1/n as starting wvalue, cl/n ~ i.e. summation of in-

creasing terms — behave as
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n 2 i
(e} = 1 + ) 1/x}/s ) >
3=2 k=1

n j-1
(cT/n =1+{) ¥

Il(n-k)}/sn) ~ 1+n/log n.
j=2 k=0

This illustrates the general rule of thumb: keep intermediate results
small. Another elaboration of this general rule is the summation tech-—
nique of HAMMING (1971): order the positive terms and negative temms;
merge these rows by keeping the intermediate results as close to zero

as possible.

2. This example is given by GAUTSCHI (1972a)..Let

(3.1.20) £ _=n' ("< (x)), n=0,1,2,..
n n
with
n
(3.1.21) e = | X /K.

k=0

Gautschi enumerates illustratively for x = 1 the horrible results ob-

tained by the forward recurrence

. b
= * oy, - x7, =1,2,...
Yy =3 %Y, ]
(3.1.22)

yo =e =1.
The condition of this initial wvalue problem is bounded below by

e*-1
(3.1.23) p_=

ex—en (x)

i

For x away from zero we see immediately limn_m P, = =i an unstable ini-
tial walue problem.
The recurrence relation (3.1.22) is easily posed backwards
3y 4
(3.1.24) . = (y,+x”)/

yj—l Y] Js
which for x > 0 is an absolute recurrence and so a benign problem.
Moreover, a perturbation in the (terminal) starting value yt is damped
by ji/t! in fj. As an illustration we have depicted Pa for x = 5, 10, 15,
20, 25, 30. See Figure 1.
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Figure 1. Py of (3.1.23)

3. Calculation of exponential integrals
The exponential integrals

(3.1.25) E_(2) = J £ 7% g¢
1

obey the recurrence relation

-z
Yiepp = -z/k v, +e /K, k=1,2,3,...

(3.1.26)
Y,y given.
The contribution to the condition due to perturbations in the initial

value is given by

n
z E1(z)

(3.1.27) o = ~ 12|® ! |n+z+1]|/nt .

—_—
n.En+1(z)
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For some x € R+ GAUTSCHI (1972a) depicted the graphs as given in

Figure 2.

Figure 2. pn of (3.1.27)

The stability for z € € is similar, because pn is approximately a func-
tion of 12[. So the above graphs may be seen as iso—izl—curVES. The
curves have a maximum for 2 = [|z]]. The graphs suggest to start at Y,
and recur down the pn—hill on either side. So we obtain from (3.1.26)
either of the problems

(3.1.28a) y, ., =-z/ky +e °/k, k=8,0+1,...,n
k+1 k

-z

(3.1.28b) ¥ = “k/z +e “/z, k

Va1 2-1,8-2,...,1

with

y, given, 2 =[l=z]1.

After some calculations we arrived at the bound for the condition
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n
¢ = 4|n-g| * ([n-2|+1).

A class closely related to the exponential integral is

o
@, = I tne_tht, Re z >0, n=20,1,2,...
1

The integrals obey the recurrence relation

=]
[

kar = (D +e™®/z,  k =0,1,2,...

-z
o e J=z.

0

+
For z ¢ R this is a positive recurrence relation and thus a benign

problem. For {z | Re > 0, z € ¢} we obtained with respect to the condi-

tion

Q
il

en(IzI)/Ien(z)L
Namely,
n+1

-z
a =e “nt en(z)/z

and the solution of the recurrence relation with absolute values equals

- +

o < le™®Int e_(1z]) /12|,

n n
with

2 n

en(z) =1+ 2z + 2 /2" +...+ 2z /n'.
The limit

lim o = e]zl/ex, z = x+iy,

nsw O

is a growing function of y, so we expect the recursion to become un-
stable when |y| increases. As an illustration we have depicted o, as

iso—|im zl—graphs with Re 2z = 1 and Im 2z = 1,5,10,15,20,25,30. See Fig.3.
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Im z = 20

Im z /= 25
Im 2 30

s

= 10

3]
I

Figure 3. %y for the computation of o

The integrals

obey the recurrence relation

By = (Gr)8 = (- Pz, x =0,1,...

k+1

BO = {ez—e_z}/z.



(3.1.29) o, = 2]sinh(Re z)|

(3.1.30)

I1.3.1 FIRST ORDER RECURSIONS

In closed form the solution can be represented by

g = n.

z -z
n zn+1 (e en(—z)—e en(z)).

The solution of the recurrence relation with absolute values can be
bounded below by

(a) n' .
Bn = ?;?E:Tvz sinh(x) en(lzi), z = x + iy.

As a conseguence o can be bounded below by

en(IZI)

z -z

-z) - z
le en( z) —e en( ) |
For the second factor in the lower bound we have

en(lzI) (n+1) ! e!zf

n+1

le“e (-z)-e"% (2)] |zl e
e e (~z)-e “e (z z
n n

so the recurrence is (ultimately) unstable. As an illustration we have
depicted (3.1.30) for |z| =1,2,3,5,7 with Re z = 1, as iso-|z|-graphs,
in Figure 4.

Figure 4. Graphs of (3.1.30]
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REMARK. In STEGUN & ABRAMOWITZ (1956) it is suggested that forward recursion

is

stable if the function is increasing as the index increases. According

to this principle the calculation of En(x) for small arguments should be

stable in the backward direction. This is not the case.

4.

(3.

Let
fla,b) = [T(a) - M'(a+b) )/b, a >0, b =0.

The computation of f(a,b) is straightforward if b is bounded away from
zero. If b is small, however, the above representation of f is net
stable. For an application of f(a,b) we refer to GAUTSCHI (1979b), where
it is needed in the computation of the incomplete gamma functions.
Gautschi computes £(1,b) by using a Taylor expansion of the gamma func-

tion. Here we analyse the recursion, of which YO = fla,b),

v, = (v ¥ (atb+k))/(a+k), k = N-1,N-2,...,0
1.31)

I‘(a+b+N)( T(a+N) |\

Y= T b T(atoN) )"

The starting value may accurately be cbtained by (III 2.12) or its modi-

fications. The stability with respect to the initial wvalue, Yy is giwven
by

o = | Yim ayo s I'(a) F(a+N)—1"(a+b+_N)/ F(a)-l‘(a+b)i
0 Yq 3yN I (a+N) b b :

(This may be obtained via (3.1.12) with aj =a + j and bj = ~T (a+b+j) .)

For small b we arrive at
0o ~ V@ /v(@ | = 0ttog m, N>

The stability which also accounts for the inhomogeneous terms, for

b + 0, is given by

g~

0~ o * Wu@l.

The conclusion is that (3.1.31) is a mildly unstable inhomogeneous problem.
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3.2. General aspects of three-term recurrence relations

We give a survey of problems and methods involved with recursions,
with the emphasis on three-term recurrence relations. Stability of sclutions
1s discussed and some algorithms are given for the computation of minimal

(or dominated) solutions.

3.2.1. Introduction

Recursions play an important role in special functions. Of course, the
three term recurrence relation is a well-known tool for calculating func-
tions of mathematical physics, such as Bessel functions. But also processes
like determining partial sums of a series or evaluating polynomials with
Horner's scheme, exploit recursions.

In this section we consider several aspects of recursions which are in
particular important from a computational point of view. The general second
order scalar recursion (or difference equation) has the form

(1.1) |3 = aigi + bigi- + c., iz=1.

i+l 1 i

This recurrence relation is called homogeneous if Vici = 0 and inhomogen-
eous otherwise. A solution of (1.1), i.e. a segquence {Eo,al,...} satisfying
(1.1) for all i, will be denoted by {Ei}.

In order to be able to study more general recursions we introduce
matrix vector recursions, viz.

(1.2) x =A.x, +1r,, izo
S 1

i+l
where Vixi e ®” (for some fixed integer n) and Vini is a square matrix. As
for the scalar case {xi} will denote a solution of (1.2).

In §3.2.2 we shall consider the constant scalar recursion, which can be
used as a kind of model problem. In order to get insight into the problems
which are involved in the numerical computation of solutions, it is very
useful to study the growth of solutions of (1.1) or (1.2), which is there-
for the subject of §3.2.3. Armed with such information it will be possible to
understand the effect of (rounding) errors made during the recursion, as
will be shown in §3.2.4. As it will turn out that straightforward use of (1.1)
or (1.2), for i.e., the initial value problem, is unstable for certain solu-

tions (which are of great interest), other methods have to be used. In §3.2.5
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we shall give a brief discussion of several such methods.
For general papers dealing with this subject, see e.g. GAUTSCHI(1967,
1972a, 1975), MATTHEILJ (1977) & OLIVER (1968a) .

3.2.2. The scalar second order constant recursion

Consider the recursion

(2.1) E = af, +bE ., iz 1.

i+l
As is known (NORLUND (1924, p.295) the general solution can be found using

the so-called characteristic equation, given by
(2.2) 1'2 = at + b.

Let (2.2) have roots a and B with |a] < |B], then the general solution of
(2.1) is

(2.3) £ = pel + q8', p.ge R.

Obviously the solutions {@i} = {ui} and {lpi} = {Bi} constitute a basis for
the two dimensional solution space. We have
¢i

2.4 im — = 0.
( ) }mw

i=ee Ti

Therefore {wi} is called a dominant solution and {¢;} a dominated (or mini-
mal) solution, cf. GAUTSCHI (1967).

It is immediately clear that any solution of (2.1) written in the form
(2.3) and with q # 0 will dominate {¢i]. If we use the recursion (2.1) in
practice, we inevitably make rounding errors. A complete and detailed analy-
sis of their effects on the computed solution is a tedious and laborious
task. However, investigating the effect of a single rounding error, made
during the computation, at stage j say, is often satisfactory to get in-
sight into the well - posedness of the problem. For simplicity we take
j = 0; so assume EO is perturbed by a quantity eo- Denote the solution of
(2.1) with initial values €y = EO + e, and El = El by {Ei}, then we clearly

have

i+1 T Giag T B(EE )DCE

(2.5) £ 11t
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Hence the error {Ei-Ei} is propagated as a solution of (2.1), so we have

(2.6) Ei - Ei = p¢i + qwi.

Substituting EO - £y = 6, and El - £, =0 it can be seen that g # 0. This

means that the perturbation EO gener;tes a dominant solution.

A similar statement also holds for perturbations made at other stages.
Therefore (2.1) is not an appropriate recursion to compute a dominated
solution, at least if relative precision is desired. In order to show that
(2.1) is suitable for computing a dominant solution, we have to take con-
taminations of errors into account. Thinking of a computer with floating
point arithmetic, however, the rounding errors generally are relatively
small with respect to a computed iterand (i.e. if no serious cancellation
occurs) and therefore only generate small additional components of {wi}:
whence the total relative error will remain small.

The previous analysis also applies to inhomogeneous recursions. Con-

sider

(2.7) £

= aEi + bgi_l + ey i

v
[y

i+l

Let {xi} be a particular solution of (2.7), then the general sclution will
be given by

(2.8) gi = ¢i + mi + Xi'

Perturbing EO as above, we see that the difference between the computed
¢; and & itself also obeys (2.5) for all i and that the perturbations are
propagated as solution of the homogeneous part. Therefore (2.7) can be

suitable for the computation of {£i}, if {Ei} is not dominated by {¢i} or

{wi}.

3.3.3. General linear recursions; estimating the growth of solutions

The three—term recursion of the previous section can also elegantly

be described using some linear algebra. Define

£.
(3.1) x, = ( + )
£

i+l
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and

0 1
ca a-(C )
b a

Then (2.1) can be written as
(3.3) X, = AX

Using this relation, we see that (2.1) is mathematicallv equivalent to powér
iteration with the matrix A and initial wector *5- It is known that X, will
asymptotically have the direction of the subdominant eigenvector; the latter
problem, however, is known toc be numerically unstable. Now if the coeffi-

cients are varying (cf. (1.1)) then we can define

0 1
(3.4) A, = ( ) .

Py 2y
It will not be surprising perhaps that if the coefficients are only mildly
varying, there also exists a solution of which the iterands are direction-.
ally close to successive dominant eigenvectors of the Ai and likewise a
solution clese to successive subdominant eigenvectors, cf. MATTHEY (1975),
VAN DER SLUIS (1976).

The special form of the A - viz. the companion matrix - is of no im—
portance of course. More generally, if the Ai are slowly varying n-th order
matrices then it can be shown that under some conditions there exist solu-
tions whose directions are close to successive eigenvectors corresponding
to a certain eigenvalue of the A;; cf. MATTHEIJ(1976), VAN DER SLUIS (1976),
SCHAFKE (1965). We give a gualitative formulation below. Consider the re-

cursion
(3.5) X4 = aix ' iz 0.

PROPERTY 3.6. For each i let li(l),...,ki(n) denote the eigenvalues of Ai
with |li(1}1>...>|hi(n)] and e; (1),...,e,(n) the corresponding eigenvectors.
If for each j and all i, li(j) is close to Ri+1(j) and sufficiently separ-
ated from li+1(£), £ # j, and a similar statement holds for the directions
of the eigenvectors, then there exists solutions {xitl)},...,{xi(n)}with
x,(3) =~ li(j)...lo(j)ei(j)-
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For the solutions {xi(j)} of (3.5) we have

PROPERTY 3.7. For each j and £ for which 1 £ j < £ £ n we have

s, (&)l
1im r_i___r.= 0,
i %4 (3)

i.e., {xi(j)} dominates {xi(ﬁ)}.

The solutions {xi(l)}....,{xi(n)} in 3.6 constitute a basis of the
solution space, and are called a fundamental system. It is often convenient
to think of such a basis in terms of eigenvalues and eigenvectors. The re-
quirements of 3.6 may be weakened such that only a separation between
ii(l),...,li(k) on one hand and Ai(k+1),...,li(n) on the other hand, and
likewise of the corresponding invariant subspaces of Rn,is assumed. The
solution space can then be divided in a subspace whose elements dominate
the elements of the complementary subspace (cf. MATTHEIJ(1980)).

For the inhomogeneocus recursion
(3.8) X, =AX +7r,,

the general solution is lying in a linear variety to be found from a fun-
damental system of the homogeneous part, in matrix notation {¢i} (i.e.,
successive columns of the Qi constitute a solution of (3.5)) on one hand

and some particular solution of (3.8), {Yi} say, on the other hand, so
(3.9) x5 = in + ¥t v € Igl a constant vector.

By considering all possible v in (3.9) we can try to find out if there
is any particular sclution which has a growth character different from
any complementary solution (i.e. of the homogeneous part). Of course this
depends on the ri. We give a simple first order example.

Consider

1 o
(3.10) X = T X + T i=0,1,... .

1.1
The solution of the homogeneous part equals {(50 }, apart from a constant

factor being the initial value. The general solution of (3.10) is given by
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i .
_ 1,i-3 1.1

(3.11) x; = ‘z (P ryy v %3

i=1
If e.g. ri = 1, then the homogeneous solution is dominated by an particu-

i 9
lar solution. But if e.g. r, = (1—)l then with x. = - =, X. will be egqual to
9 1.1 i 9 0 2 i

- 5(g)"+ which is therefore dominated by [(;—)i}.

In order to find out what the growth character is of such a more or less
"pure" particular solution the following trick may be helpful in cases where
solutions can be expected with an exponential growth type (as in the slowly

varying case above) (cf. MATTHEIJ (1977,54))-. In relation to (3.8) define

TAE
0

(3.12) g = Te T ¢

. 1 xo
(3.13) (_1) =(- - —
"1
¢ 0
R
1
i : T | rj'_ /x]_
(*i+1 il
(3.14) \__,") - Y -
Mi+1

The recursion (3.13), (3.14) is of order n+l. The corresponding matrices
have the eigenvalues of Ai plus an eigenvalue egqualling the factor to which
||riﬂ increases with respect to l!ri_1|. If this recursion is slowly varying
then there certainly are solutions corresponding to the eigenvalues as in-
dicated in the beginning of this section. Note that the additional eigen-
value in the examples above equals 1 and %- respectively, which nicely cor-
responds to the results above.

So far we have tried to bring some ordering in the seclution space.
Generally it will be very difficult for a certain solution of which e.g.
only Xq is given, to find out whether it is a dominated solution or not,
at least theoretically. For computational methods cf. MATTHEIJ (1982, §6).
However even though a certain solution may be classifiable from purely ma-
thematical point of view, as a dominant one, it may have a subdominant

character if one just locks at the first few iterands (cf. (3.9) with such
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a choice of v, having only very small coordinates corresponding to the do-
minant solutions). Although such situations may seem pathological one should
be warned since any numerical procedure that is only suitable either foxr

dominant or for dominated solutions, will fail then.

REMARK. With respect to special functions one often knows the behaviour of

the solutions of the related recurrence relations.

3.2.4. The effect of errors made during the recursion

We saw in §3.2.2 for the second order scalar recursion that (rounding) er-
rors are propagated as solutions of the homogeneous part of the recursion,
in first order. In the general case the situation is the same. For the sta-
bility of the recursion we may distinguish between absolute and relative
stability, by which we mean that the effects of small perturbations are
not large or not large with respect to the solution respectively. A more
precise definition would require a specification of "small" and "large".
However, it is not unusual to have such a more or less qualitative notion
only, and it is quite suited for our (limited) purposes. In order to find
out whether or not the recursion is good natured we either have to investi-—
gate the solutions of the homogeneous part absolutelv, or in relation to
the desired solution. Rbsolute stability then means that the solutions of
the homogeneous part are bounded (have growth factors not exceeding 1), cf.
stability theory for discretizations of 0.D.E. Relative stability then im-
plies that no complementary solution dominates the desired solution, or ewven
nicer, any complementary solution is dominated so that errors are damped

out relatively. We shall give some examples.

EXAMPLE 4.1. The recursion (3.10) is absolutely stable since the solutions

of the homogeneous part damp out. If r, = 1, then it is also relatively

stable for any particular sclution. Hoéever, if r, = (éﬂi, then ?he recur-
sion is not relatively stable for the dominated solution {- %{éﬁl}.
EXAMPLE 4.2. "Summation of a strongly decaying series." Let S = E; a i
assume that S is of order unity. We are interested in S(N) = Eg a;, which
is a sufficient approximation to S (both in absolute and relative sense).
Consider the following two algorithms

(4.3) SO = 0, Si+1 = Si + a; S(N) = SN+1
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= = = T -
(4.4) Ty =0, T, ., =T, +ag 5(w) N1
N
For the desired solution of (4.3), viz. {Si}iﬁo' we have s, ~ 1, whereas
for the soluticon of (4.4), viz. {T,}l?l , we see that T, is strongly increasing.

i"i=0 i
In both cases the solutions of the homogeneous part are {1}. Hence the sta-

bility properties of (4.3) make it preferable to use (4.4). This once more
explains why one should sum up such a series with the smallest term (cf.
also IIX.3.1).

For a more quantitative analysis one has to add up all effects of the
rounding errors and their contaminations. This may be a laborious job. How-—
ever, the order of the error (and this is usually sufficient for a practical
user) is often predictable. If we denote the relative computer accuracy by
£, then the r?lative error in the computed xi (for the stable case) is of
the order £ E;=0 max(ﬂhj",ﬂrjl) . If the A, and r, resp. do not differ toco
much in norm for i wvarying we therefore may say that the rounding error

is realistically estimated by max{ﬂl\j“ ,Hrjﬂlig.
J

3.2.5. Methods to approximate solutions for which the initial value problem

is not stable

We shall restrict ourselves, for shortness sake, to relative stability
questions from now on. Those who are interested in absolute stability can
easily adapt the subsequent results using the remarks made about this sub-
ject in §3.2.4. Another reason for considering the relative case especially
is that the slowly varying recursions that we introduced in §3.2.3 have solu-
tions of exponential type, which makes relative precision in the approxima-
tions to a more natural guestion.

Now assume that a solution {xi} satisfying

(5.1) i = Aixi + r

il
and xo given, is dominated by complementary solutions (i.e. of the homo-
geneous part) . We shall consider several algorithms for the computing (or

rather approximating) such a solution.
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3.2.5.1. Miller's algorithm

We return to the tree term recursion, cf. §3.2.2. As is known many spe-
cial functions obey such a relation, which however often is unstable for
increasing index. An extensive study can be found in GAUTSCHI (1967). The
classical approach to overcome this is Miller's algorithm, named after
MILLER (1952), who first introduced backward recursion for the computation
of Bessel functions. The basic idea can easily be demonstrated with the

help of the constant recursion of §3.2.2. From (2.1) we obtain (if b # 0)

a 1
(5.2 58 tp Eianr

or in matrix notation

(fi-1\ _ _-1(%
(5.3) \&, l) - A \aiﬂ) :

For N suitably large and

(§:+1) # K(;); (¢ € R)

£o
we would find a (g ) which has almost the direction of the subdominant
. . 1 . . . . .
eigenvectors of A, viz. (a). Mathematically this inverse iteration is equi-
valent to backward recursion. Again we have a counter part for the variable

case by considering dominated and dominant solutions rather than sequences
(N)
N

a nonzero component of the dominated solution then backward recursion im-

of iterates of the eigenvectors. If some suitable "end" wvector x _ ,say, has

plies a relative decrease of the undesired component as i + 0. Historically

one used to take xéN) = (é). We shall write out the results for the recur-
sion in (2.1) (cf.§3.2.2) and {¢i} the solution to be determined. So assume
that a sequence {EiN)}T:é is computed satisfying

o™ _ m)
(5.4) Eger = 07 &y = 1.

We find (cf. (2.3))

Vo bo—b W
(N) _ N+174UN#1TE -
-9 T V1 O P 1V Pty T dylys sav.
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. (M)
it follows that, at least for large (N-i), F’i

Since ]qN/pN| = l¢N+1/¢N+1| ()
is almost proportional to ¢i' Hence Ei /pN would be a nice approximant for
¢i (the better the larger (N-i) is). The quantity Py itself is hard to

determine. But if a relation of the form

(5.6) 1 owé, =1,

is given (possibly pu, = 0 for i > 0, so ¢O is given), then a satisfactory ap-—

i
proximant for Py is given by

N
(5.7) DRI
i=0
For more detailed analysis of the error see GAUTSCHI (1967), MATTHEIJ &
VAN DER SLUIS (1976), OLVER (1967a), ZAHAR (1977). From the geometrical in-
terpretation of this algorithm as inverse iteration, it is immediately
clear that one can often fasten the convergence by choosing a better approxi-
mation for the direction of (xﬂ_'_l) than just (é} (cf. MATTHEIJ & VAN DER
SLUIS (1976), OLVER & SOOKNE (1972)); therefore one needs estimates for
this dominated solution. For more general situations than this triwvial
constant case one can consult the cited literature. From §3.2.3 it follows
that a good guess will also be (éN) where %y is the absolutely smallest
eigenvalue of AN.

The generalization of this algorithm for the matrix vector and/or high-
er dimensional cases is similar. Success is only assured if the desired
solution is dominated by all solutions of a well determined (n-1) dimension-
al solution space (i.e., loosely speaking, where no dominant solutions are
directionally close to the dominated one). The computed sequence has to be
normalized and this may be done with a similar relation as (5.6) (cf. MATTHEIJ
& VAN DER SLUIS, (1976)). The algorithm can also fruitfully be apnlied to in-
homogeneous recursions if all solutions of the homogeneous part are dominant.
Since the desired particular solution is unique then, no normalization of
the computed sequence is necessary.

The choice of N depends on the accuracy required. We shall investigate

: N
the relative error, -rj(_ ) say, in our example. Suppose uo = =0, i >0.

L, H
$o" i
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We obtain:
_ o (N} (N) . N
(5.8) B I S S L TS Ve WA - (“’Nn)/(“‘uﬂ)
. ¢ Une1/One1 V0 40 b5 by
The last estimate in (5.8) equals (gﬂN—i.

Hence we see - in agreement with power method theory - that the rela-

tive error almost decreases with a factor E-at each iteration step. For

B
slowly varying recursions (§3.2.3) we have a similar error behaviour, viz.
N AL (n)
TSN) = . J

i 7 og=i Rj(nﬂl) -

Again, knowledge of the order of magnitude of the solutions of the recur-

sion is very useful to estimate the error cf. (5.8).

As far as rounding errors concerns it has been shown in MATTHEIT &
VAN DER SLUIS (1976) that the relative error in x;, is almost proportional
to i and not to (N-i) or N, cf. §3.2.4. In the inhomogeneous case the error
even is independent of the number of steps. Anyway the actual choice of N

has no influence on the accuracy of x5 with respect to rounding errors.

3.2.5.2. Olver's algorithm

If the recursion is third order or second order inhomogeneous or even
higher order there may be a situation where both forward recursion and
backward recursion (Miller's algorithm) will be unstable. Viz. if the de-
sired (possibly particular) solution is dominated by some solution of the
homogeneous part and dominates some other complementary solution in turn.
A well-known scalar example is given by the recursion for the Struve func-

tion Hi(x) (cf. ABRAMOWITZ & STEGUN (1964, p.496))

2i (‘zx)i
(5.9) H, ,(x) = —=—H,(x) - H (x) + ——————
i+1 x i i-1 - |
fw“1+ﬂ

The homogeneous part of (5.9) is also satisfied by the Bessel functions of
the first and second kind, viz. {Ji(X)} and {Yi(x)} respectively.

An efficient algorithm for stable computation of "intermediate" solu-
tions like {Hi(x)} was developed by OLVER (1967b);we shall deduce it in

such a way that generalizations may be easily understood, (cf. MATTHEIJ(1977)).
Consider the general second order scalar recursion
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a t +b E. + e

(5.10) Bie1 = 8 *BE i

Define a solution {pi] of the homogeneous part of (5.10) by

(5.11)

By substituting

(5.12) EiPie1 T E541Py T Ny

we find a first order recursion for {ni}:

(5.13) ni = _bini-l - uipi.

This recursion can be derived using Abel's transformation trick (NORLUND (
1924 p.289)); in his paper Olver employs a somewhat unconventional elimina-
tion method for a system of equations that was found by considering recur-—
rences for EO""’EN and imposing boundary values. The recursion (5.13) is
used in forward direction whereas after choosing an end value séfi as ap-
proximation to £y’ @ sequence of approximating values {E;N)} (to {Ei}) is
computed by

(N) (N)

(5.14) g = {ni-+£.+1 piJ/p

i i+l’

(ef. (5.12)), i.e., in backward direction.

In order to understand why this is a fruitful approach it may be help-
ful to remark that the substitution (5.12) and the result (5.13) in fact
are equivalent to reducing the order of a recursion when some solution (of
the homogeneous part) is known. If this reduétion solution was a dominant
one, then there is hope that after the order reduction the transformed sub-
dominant solution will become dominant, in particular the desired solution
{ni}; hence forward recursion for {ni} is expected to be stable. We shall
work this out later. Assume that {pi} is a dominant solution (this is true,
except for the singular case that the direction of the first iterand of the
dominated solution (of the companion matrix vector recursion) has the direc-
tion of (?)) and let {Ui} be a solution of the homogeneous part dominated

by {Ei}. Let the solution of the homogeneous part of (5.13) be defined by
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(5.15) Ci = cipi+1 - ci+1pi .

Then

(5.16) fg_z Ei [ i+1/P5” +1/Ui]l
n £ :i+1/lo 1+1/Ei

The factor between brackets in (5.16) will be bounded if for all i the

growth factors p, /p_ are larger than £, /E. (which is reasonable since

i+1 i+l
{p } dominates {E }) . Hence {n } dominates {c }.

For the approximant {E(N)} we find

E(N) (N)
(5.17) i _ i+t _ i
Py Piv1 PiPisr
Hence
(N}
N n. p.E
N 1
(5.18) g = T+ i
i P4P541 N+1

which also holds without the superscript (N). On account of the dominance

we therefore have by a limit argument

e n
(5.19) E ___1__
i

Qj j+1
If the solutions are of exponential type (e.g. growing like eigenvalues of
a suitable associated matrix cf. §3.2.3), then (5.19) will be of gecmetrical

type and thus has fast convergence. In fact we then have

n. £,
(5.20) p—ls-l—f:-p-licj.
j i+l 3

where Kj is almost independent of j.

Comparing (5.18) and (5.19) we find for the relative error
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E(N)
o 3 N+l )
(N) I
Ei-Ei N+l pjpj+1 Pu+1! En+1Pi _ Cne1 Py
(5.21) = ~
£ o EiPne1 i Panr
1 pjpj+:|.

On the other hand if Et&f’l = 0 we can simply estimate (5.21) using computed

values of {ni} and {pi} by

(M)
(5.22) 151'51 | ~ ‘ Tt l I 4 l
’ g | Pa+1Pr+2 PiPis1

If one wishes to approximate EO,...,EP say, then (5.22) provides for an
easily accessible criterion to estimate the value of N, viz. by recurring
forwards with (5.13) until for a certain N > p and all i £ p, (5.22) is
smalller than the required tolerance. Note that the algorithm can also be
used to approximate the dominated solution of a homogeneous three term re-

currence relation.

3.2.5.3. More general algorithms for approximating "intermediate" solutions

Rbove we have remarked that Olver's method was basically equivalent to
classical order reduction. Hence a generalization to higher order recur-
sions is straightforward. However, repeated use of such order reduction
might deteriorate the conditioning of the problem, whereas possible con-
vergence is hard to prove. On account of Olver's derivation, viz. via
a kind of LU decomposition of an associated large (and sparse!) system,
some authors (cf. OLIVER (1968b)) have proposed generalizations based on
linear algebraic methods. A less attractive feature of such an approach is
that a fairly simple problem is translated into a usually more complicated
algebraic problem, with gquestions like pivotting, equilibration and loosing
sparseness.

A more general methed, in some way also a generalization of Olver's,
was proposed by MATTHEIJ (1977, 1982).It deals with matrix vector recur-
sions: Suppose the solution {xi} of (1.2) is dominated by solutions of the
homogeneous recursion, that constitute a well defined k-dimensional sub-

space 31, say whereas {¢i} is not dominated by the solutions in the
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complementary space SZ say. Let 'I'O be an n-th order nonsingular matrix,
such that its first k columns span a subspace of R" that has an empty in-

tersection with the subspace spanned by initial values of elements of 32.

(this is a harmless assumption and is comparable to the condition necessary

for successful use of the QR algorithm). Given the recurrence (1.2) i.e.

we can obtain a transformed decoupled recursion
(5.23) Y. =Vy. +58

with {Ti} a sequence of nonsingular matrices chosen such that

-1

5. vV, = :
(5.24) i Ti+1 AT is block triangular
and
(5.25) s, =7 ! »
) i i+1 ~if
(5.26) =t
- Yi i xi.

Partitioning the vectors into the first k and the last (n-k) coordinates

and the matrices Vi correspondingly, we find

1 111 . 122 1 1k
(5.27a) Yig = Vi vy + Vi vy + s, I

2 22 2 (n-k)
(5.270)  yi, =viyl +sl ! .

It can now be shown (cf. MATTHEIJ (1980)) that the solutions of the homo-

geneous part of (5.27a), viz. the recursion
(5.28) z =V. z,,
i i

have a growth character corresponding to the solutions ¢ 51, whereas the

solutions of the homogeneous part of (5.27b), wviz. the recursion

(5.29) u, =V, u,,
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grow like sclutions € 52
Thus it turns out that a stable computation of {Yi} has to be done in
forward direction, whereas {y } has to be computed in backward direction;
the latter can be performed after {y } has been calculated. Of course we
have to find some approximation to Yy Say for N large enough, before we
can start the backward algorithm (cf. Miller's and Olver's algorithm). We
shall give an idea of the thus introduced truncation error for the case of
a slowly varying homogeneous recursion (cf.8§3.2.3); so let “xi ll/ux I =~

1
4 (k*+1) . Denote the sequence of approximants of {y } by {y (N) }. Then the

relat:.ve truncation error in Yi is given by

1 N -1 1 1 1 1
"yi(m—yi“ T By (0-y | N-1 2y k+1) | Dy (0 -y, I

5-30 = : .
( ) “Yil !yiﬂ j =i j (k) “YN“

If we know a good approximation of y; then this should be used of course.

If we do not have such an approximation at our disposal we may choose

Y:I{N) = 0. We remark that the error found in (5.30) again resembles the
power methcd like results in §§3.2.5.1-2., As in Olver's algorithm we may

use computed quantities to estimate the error and thus equip the algorithm
with a self search device for determining an N necessary to obtain a cer-
tain relative precision: indeed, a good estimator for ﬂ(n]: :1- B ) in is given
by the inverse of the product of the absolutely smallest eigenvalues of the
Bj, whereas Yy and yi can be estimated by yf. For refinements see MATTHEILJ
(1982,8§5) .

It can be shown that the relative rounding error in the computed re-
sult is proportional to i - as was also found in Miller's algorithm - and
even independent of i for inhomogeneous recursions with solutions of the
homogeneous part, that are sufficiently dominant and dominated resp.

A straightforward way to determine these {Ti} and {Vi} is by using
orthogonal matrices. The factorization step (5.23) is then performed via
QOR-decomposition, which can be performed by Householder's or Given's
method (cf. WILKINSON (1965)). As a by-product the matrices Vil will be upper
triangular, which means that their eigenvalues are known (necessary to esti-
mate their norms) and moreowver that inversion of the Bi = which is neces-
sary for the backward recursion - is simple and stable alike. Finally back-
transformation of the computed seguence {yi(N)/Yﬁ} is simple, because in-
version of an orthogonal matrix is equivalent to transposing.

The algorithm of Olver in §3.2.5.2 can be considered as a special kind of
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triangularizing the corresponding companion matrix vector recursion, but
not via orthogonal matrices. For the general scalar problem the application
of the triangularization method to the companion matrix recursion using
orthogonal matrices, is likely to disturb the sparseness. Hence it is worth-

while to investigate whether there are special choices for the T, which pre-

i
serve the scalar character of the recursion. A more detailed description is

still under construction.
3.2.6 Conclusion

In the previous sections we have tried to give a survey of problems
and methods involved with recursion. We did not go too much into details;
the interested reader can consult the papers indicated in the references.
There are many more related subjects, some of them are treated elsewhere
in this tract. Examples are the summation of series of dominated solution
(see the excellent method given in the papers by DEUFLHARD (1976,1977)) or
the problems encountered when there is no dominance phenomenon, and the

rounding errors may become important.
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3.3. Three-term recursions; some practical points of view

In this section we again consider three-term recursions. In the pre-
vious section general aspects of these recursions were considered. For
applications, especially for special functions, it is worth-while to have

information how to use the algorithms for practical problems.

3.3.1. On the growth of solutions of three-term difference equations

Let us consider the recursion

{1.1) Yo + a v, + hnyn—l =0, n=1,2,...,
where a s bn are given sequences of real or complex numbers, bn # 0. The
general solution of (1.1) can be written as a linear combination of any

pair fn,gn linearly independent solutions, that is

(1.2) ¥, = Afn + Bg
where A and B are complex numbers not depending on n. We are interested

in the special case that the pair fn,gn has the property

(1.3) lim fn/gn = 0.

Any solution (1.2) with B # 0 then satisfies fn/yn + 0, n=+ e, IfB =20 in
(1.2) Yn is called a minimal solution of (1.1), if B # 0 it is called a

dominant solution. If we have two initial values Yoi¥y of (1.1) and EO, fl'

go, gi are known, then we can compute A and B, viz.

_ 91¥0 T 9% _¥ofy — v4%y

£091 ~ £19 9% ~ 915

The denominators are non-zero if fn,qn are linearly independent. When we
prescribe that the initial wvalues Yqry, are intended for a minimal solu-
tion, then B = 0. It follows that in that case just one initial value can
be prescribed, the remaining one follows from the relation yofl = YifO'
In computations this leads to well known instabilities for the evaluation

of minimal solutions. If our initial conditions Yor¥y do not fulfil
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exactly the condition B = 0, then the computed solution (1.2) behaves

ultimately as a dominant solution (even when computing with infinite preci-

sion), although we intended to compute a minimal one.

For applications it is important to know whether a given recursion
(1.1) has dominant and minimal solutions. Sometimes this can be concluded
from the asymptotic behaviour of the numbers an'bn in (1.1). The fecllowing
theorem is quoted from GAUTSCHI (1967). For a proof the reader may consult

the references given there.

THEOREM. Let an'bn have the asymptotic behaviour
1 ]
an ~ an , bn ~ bn", ab #¥ 0, a,B real, n -+ «

and let tl.t2 be the zeros of the characteristic polynomial

d(t) =t?+at+b,|tﬂ thzL
(i) If a > 3B then the difference equation (1.1) has two linearly

independent solutions Yo 1 and Yo g7 for which
’ r

yn+1.1 o Yn+1,2 b B-a
—= ~ -~an", - -~ -3 . n + @,
Yn,l yn,2
(i1) If @ = }B then (1.1) has two linearly independent solutions
Yn,l'yn,2 for which
¥ ¥
n+l,1 e, n+1,2 e, N
Yn,l yn,2
provided Itll > ItZI‘ If Itll = |t2| then
—n 1/n
lim sup [ly I(n!)~*] = |t1|
n-o n

for all nontrivial solutions of (1.1).

(iii) If a < 3B then

_ 1/n
Lim sup Cly | () #2177 = |p)/2
oo

for all nontrivial solutions of (1.1).

In both case (i) and the first part of case (ii) fn = yn,2 is a min—

imal solution of (1.1). Furthermore, in the first part of case (ii)
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Yn+ 1

lim
e n yn

=t , r=1, or r = 2,
r

where r = 2 for the minimal solution, and r = 1 for any other solution. To

see this we remark that from (i) we derive

Yn+1,2//5’n,2 .b 820

Y.1'1+1,1 yn,l a?’

which tends to zero since B-2a < 0. Hence the sequence {Yn,2’lyn 1} tends

to zero. In the first part of (ii) we have

Y Y
n+l:2// n,2 _ e/t n .
Yoe1,1/ ¥n,1

Since itl1 > Itzi, we again conclude that {yn 2/yn 1] tends to zero.
The second part of case (ii) of the theorem and case (iii) give no
information about dominant and/or minimal solutions. As will become clear

from the examples below, we need extra information of the sclutions of

(1.1) in these cases.

Some insight in the above theorem can be obtained from the companion
matrix vector recursion:

(Yk+1

\¥, )” a{

The eigensystem of :Lk is given by

o, Ak=('ak “bk>_

Ye-1/

+
, AT
eigenvectors: Ek = (e; ; e;) = ( k x\

\ A

A+
ei lues: = [K )
genvalues: )‘H( = -

The quotients of the elements of each eigenvector behave as A: and J\,;, re-
spectively. The eigenvalues with a = ak® and bk. = ka are given by

+ a a/.ﬁ
A = (-ax®rax® -gB20,2) /)

and behave, for k large, as depicted in the following table.
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T—.__roots + _
situation !Ak| ]Rk|
B < 20 [b/a[kﬁ‘“ lalx®
_ +. 0 - 0
B = 2a |3\1|k8/2 | 2 Ikﬁ/z
B > 20 Y|blk Vb |k

If we assume
gt ~ I
k+15

which is the case with the above specified coefficients then two independent

solutions of the matrix vector recursion are given by the eigenvectors
+

e and e;. The quotient of successive elements of the independent solutions

behave as given in the above table for the eigenvalues as a function of the

relation between B and 2Za.

Ex les

1. Bessel functions.
Recursion: v
Solutions: fn = Jn(z), 9, = Yn(z), z # 0.

Case of theorem: (i),

Conclusion of theorem:

Known asymptotic behaviour: fn ~ (2ﬂn)_§(§§4n;

—— -3 ez~
g, (™Tn/2) (Zn)

2. Legendre functions.

a) Recursion with respect to the order
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b)

Recursion: v

+ m:(zz-l)_é}’m + (mta) (uravl)ym_l

Solutions: f = P:(z), 9, = Qz(z]' ’ Re z > 0,

a €T, a #=-1,-2,... z £ (0,1].

L}
[

Case of theorem: (ii), a = 22(22_1)_if o

b =1, B =2
e, = [/ (=112, ¢ = 7t
1 = z r 2 1
ltii > 1> |t2[.
£ Im+1
Conclusion of theorem: lim mtl = t., lim = t,.
mf 2 mg 1
e m mres m
Recursion with respect to the degree
2n+2a+1 nt+a+m _
Recursion: Yn +1° z n+a-m+1 ‘n n+a-m+1 Yn—l = 0.
Solutions: £ =9" (2) =" (2) Re z > 0
utions: n” %@ 9y a+n 2’r -
Case of theorem: (ii), a = -2z, o =0
b=1, B=20
- 2_,,3 = 1
ti—z+(z 1)<, t2—-t1
[t1| > 1> |t21.
Conclusion of theorem: lim fn+1',fn =ty lim gn+1/gn =t
e
Coulomb wave functions
2, 2.3
Recursion: Ll (L+1)“+n“] Vi1~ (2L+1)En+L(L+1)/p]yL
2. 2.3 _ _
+ (L+1)[L%n ]YL—i =0, L =
Solutions: £, = F (n,p), 9 = S,(nsp)r n e R,
Case of theorem: (i), a = - E, o =1
=1, B=1.
Conclusion of theorem: g _ /g ~ 2L £ /£ £ L >
L+1" L p ' L+1""L 2L’

:O_

1,2,.

p > 0.
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Known asymptotic behaviour: fL s CL(n)pL+1

Lo-1
9, szcL(n)p ]

— a—% =mn/2 e L+1
CL(n} 2 ‘e [m] .
Incomplete beta functions
R _ n+p+q-1 n+ -1 _

Recursion: Y41 (1+ ntp X) v, t nip XY, 4 0.
Solutions: frl = Ix[p+n,q), 9, = 1, 0 £ x <1,
Case of theorem: (ii) a = -(1+x), a =0

b =x ’ B =0

t1 =1, t.2 = X.
Conclusion of theo : lim fﬂ =

us o rem: noe E, = x,

Known asymptotic behaviour: £~ (1-x) q—lnq-ixp+n/r (q).

Repeated integrals of the error function

z 1

Recursion: Yner ¥ 0a1 Yo T TmeD) Yoot T O
2 2
Solutions: fn = e2%Perfe z, 9, = (-1)PeZ inerfc(—-z) ’
.n n-1 .0
i erfcz = i erfct dt, i'erfcz = erfcz
Z
-1 -3 -2
i "erfcz = 2m “e r Z € C.
Case of theorxem: (iii) a = z, o = ~1
1
b =-3 B =-1.
1 -
Conclusion of theorem: lim sup[[ynl En!)li] /n =2 B

n -+« w«=

for both ¥y, = fn and Y, = gn

P }zz—zv‘Z

Known asymptotic behaviour: i'erfecz ~ r (%1- 1) hence

n ‘_f_ll - e—22r’2n
n

(-1)

n -+ «

.

69
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6. Confluent hypergeometric functions U(a,b,z), M(a,b,2)

a) Recursion with respect to a

Recursion: (n+a+1-b) Y41 + (b-z-2a-2n) Yot (a+n-1) Y1~ 0.
. +
Solutions: fn = r—;i—';}rﬂ- U(a+n,b,z),
I'{a+n)

In = T(Trasn-b) M(BMD.2).

Case of theorem: (ii) a = -2, a =20
b=1, B=20
ti = t2 =1
. . 1/n
Conclusion of theorem: lim sup |y | =1
n =+ . n

for both Y, = fn and Y, = 9,-

. . Yb-% ~2vnz
Known asymptotic behaviour: fn ~ coyn e '
N n’:b-%e+2/rE
9n €2 '
fn e—4r’nz

hence g_ ~ cq
¢y not depending on n.

b) Recursion with respect to b

Recursion: zyn+1 + (1-b-n-z) Yy + (k:a-!~r)—<'=\—1}ryn_1 =0.
. T (b+n-a)
s H = ———
olutions fn T (bin) M(a,b+n,z),
g, = Ula,b+n,z).
Case of theorem: (i), a = -1/z, o =1
b =1/z, B =1,
g £
Conclusion of theorem: nt+l n/z, 1;'1 ~ 1.
n n
-a

Known asymptotic behaviour: fn ~n

g, ~ 2" ™0 bin-1) /T (a) .
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7. Jacobi polynomials

Recursion: (2n+2)(n+c¢+B+1)(2n+a+8)yn+1 =
(2n+o+B+1) { (2n+o+B8+2) (2n+a+pB) x + cr.2 - 62 }yn

—2(n+a)(n+3)(2n+u+8+2)yn_1

. (o, B) (e,
Solutions: 9, = Pn (=), fn = Qnu B)(x), x € C.
Case of theorem: (ii) a = -2x, a=20
b=1, B =0
t1 = x-bfxz—l, t2 = x-vvxzﬂl
legl = 1,1 =1 if x e [-1,1]
e 1> 1, Ity <1 if x ¢ [-1,1]
Conclusion of theorem: x € [-1,1]: lim sup lynll"’rl =1
n > o
_ (x,B)
for both v, = Pn (x) and
_ (e, B)
yn - Qn (x);
(G,B)(x) Q(“’B)(x)
n+1 n+1
A e e L S B
P (x) 0T (%)
n n
Known asymptotic behaviour: x € (-1,1), x = cos 8, 0<8 <
(%8 ) ~ [2/(msine) 1cosl (n+ 1)6 - /4]
x ¢ [-1,1], »*® o ~ n‘%tx)ti‘,
(e,B) _ -3 n
Qn n w(x)t2

where ¢ and | are independent of n.

Examples 1 through 5 are extensively treated in GAUTSCHI (1967). For
ALGOL 60 implementations of the algorithms see Gautschi's references.
Examole 6 is considered (with ALGOL 60 algorithm) in TEMME (1983).
(G,B)(x) and of‘gia’s)(x).

n
Jacobi's function of the second kind, can be found in SZEGO (1974). The

Information on the Jacobi polynomials P

Jacobi polynomials contain as special cases the important Chebyshev and

Legendre polynomials. It follows that for x not lying in the interval of
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(a,8) (x) can be safely recurred from initial
n
() =5 (@,B) +3 (a+B+2)x. For x € [-1,1]

orthogonality the polynomials P

(e, B) (a,B)
0 1

values P (x) =1 and P

(for numerical applications the most important case) the theorem is incon-

clusive and also our formulas give no information. The point is that
Qéu,ﬂ) (x) is usually not considered for x ¢ [-1,1]. It is a manv-valued func-
tion of x and it can be made single-valued and regular in the complex plane

by cutting the plane along the segment [-1,1]. If x € [-1,1], the values
Q]:G'B) (x+1i0) are not egual.

For the case a = B =0, SZEGO (1974, p. 224) gives the result

Qéo,m (cosd + 10) ~ (T dtil (+h) 04m/ad

n -+ oo,
2nsin @

where O < 6§ < 7. It follows from his analysis that the result for the gen-

eral case can be obtained using the same method. It gives the same behaviour

r(IO,O} (cos 8 £10) except for a constant factor depending on «, B and

8, but not on n. Thence we conclude that the asymptotic behaviour of

(o, B) (e, B)
Pn (x) and Qn

the oscillatory part of the functions. It follows that for x € [-1,1] the

Jacobi polynomial Péa,B)

in Example 7. Rounding errors become important in this case when using the

(x*i0) is the same, apart from a shift in the phase of
(x) is not a minimal solution of the recursion given

recursion relation for computing successive Jacobi polynomials.

Other examples for the use of backward recurrence relations can be
found in CLENSHAW (1962) and CLENSHAW & PICKEN (1966) , where the method is
used to generate coefficients for the expansion of many special functions
in series of Chebyshev polynomials of the first kind (in these cases higher

order recursions are involved).

3.3.2. The Miller algorithm

Let us suppose we want to compute the minimal solution {fn} of the
recursion (1.1) with the normalizing relation

o
(2.1) 1 Mf =s, s#0
n=0 "7
where s and Jln are given numbers. Of course a finite number, wviz.

fO""’fN' will be considered where N 2 0. As mentioned in earlier
tions,

sec-—
Miller's algorithm is based on choosing v > N and computing a solu-

tion [yr(lv}} of (1.1) with initial values
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(v) (w)
Yoer = 0. ¥y =1
(where the numbers O and 1 may be replaced by any other pair if at least
one of the numbers is not equal to zero: in some cases a different choice
may speed up the convergence). It follows (cf. (5.5) on P.55) that for

0= n = vw=-1

q f -f£ a
{v) “v+1l"n Tw+1l°n
(2.2) b4 =9 f-fF o = pP,f +qg , say.
n gv+1fv f\J+1gv v von

Hence y;w/p\J = fn"fv+1/gv+1 = and from (1.3) we derive that for
0 =<ns<sN

. (v)
lim y /p.,. = f_.
vow D v n

(v)
n
The latter is not known, in general, and we proceed using (2.1). We com-

It follows that, if v is large enough, fn can be computed from y and p,,-

pute
v
(v) _ (v) (v} _ s
(2.3 s - nEO Rnyn ! fn - S(u) Yo s

then we have for the relative error in fn (1€ fn # 0)

(v) (v) (v) (v)
(2.4) fn fa _ s/s ¥y fn _ s(pu+qugn/fn) s
. £ - £ B (v)
n n s
_ 9y Pus1/P*T,
B 1-0_-1
v v
with
= %] W
_ 1 _ _ v+l
(2.5) o, =5 1 Mf. o =f/q, TS e L M-
m=v+1 m=0

On account of (1.3) and the convergence of (2.1) it follows that the
left-hand side of (2.4) tends to zero (for v + =) if and only if Ty tends
to zero. Also, (2.4) gives information on the relative error when the
quantities cv, pn, pv and Tv can be estimated.

To facilitate the error analysis, the quantities GV and T,r represent-

ing sums, are replaced by the possibly most relevant terms in these sums, viz.
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1
% s )‘v+1fv+1' v s vov

Then the relative error (2.4) is written as

(v)
(2.6) fn h T foe1 N _ foe1 In
fn s "v+lTvu+l 9yp1 S yt1 fn
£ g
1 v+l “n
== .f - —_—, (n =0,...,N).
s v+lTu+l i1 fn

For obtaining an a priori estimate of v, which makes the right-hand
side of (2.6) smaller than a given quantity e > O, GAUTSCHI (1967) consider-
ed only the case n = N (taking into account (1.3) this is a reasonable

step). In the examples in his paper he replaced the values £ £

vit’ Jue1’ Tn
and 9. by asymptotic approximations. Then, using an inversion process, he

obtained a first estimate of v. By computing successive values

féu) .fr(l\H‘S) p+e+ (n=20,1,...,N) the values of f;\”s” are accented if they

agree with E:;u+5 3-1)

ant feature of this procedure is that computing time is wasted if either

the first estimate of v is much tooc low or much too high. Another Aiffi-

within the prescribed relative accuracy. An unpleas-

culty is a slight uncertainty associated with the acceptance criterion:
mere numerical agreement of solutions computed with two different values

of v(v and v+5) does not guarantee their accuracy. In §3.3.4 we describe a

different procedure for obtaining estimates of v.

3.3.3. Gautschi's modification of the Miller algorithm

(v)
n
different scheme. It is based on the ratios (we suppose throughout that

fn#OJ

In GAUTSCHI (1967) the computation of £ , n=0,...,N, follows a

(3.1) xr, = fn+!./£n
and it originates from continued fractions for these ratios of minimal
solutions of three term recursions. From (1.1) it follows that the x satis-

fyv the non-linear recursion

(3.2) x ==, nxt
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and substituting for r,a similar equation a continued fraction arises.
For the partial sums of (2.1) we introduce
w0

1
(3.3) S,=F L ApEp e
n m=n+1

hence for sn we have the recursion

.4 =

(3.4) She1 T Ty (TS nz1,
If x, and s, are known for some v > N the ratios T and the partial

sums can be obtained from (3.2) and (3.4) respectively, applying these re-

cursions for n = v,v-1,...,1. In particular we have

m m

v 1
s, = T A E == (s=x.f.)
0 ) £, 00

and so

(3.5) £, s/(lo+so).

This gives the initial value of the desired solution. The remaining wvalues
follow from fn = rn—lfnhl' n=1,...,N.

In the actual algorithm the guantities x, and s, for starting the re-
cursions (3.2) and (3.4) are taken equal to zero. The infinite continued
fractions r, and the infinite series s, are thus replaced by truncated
fractions and truncated series (n < v). In fact two sequences {réu)}, {séu)}

(0 = n £ v) are defined according to the recursion scheme

(v) _ vy _ _ (v)
r\) =0, n—1 = bn/ (an+rn )
n=v,...,1
(v) _ (v) _ _(v) (v)
(3.6) s =0, S 1= rn_l(kn+sn )
(v) _ (v) (v) (v} _(w) _
£ =s/Ogtsg '), £ 7 =x T\ 0, n=1,...,N

(v}
n
same (mathematically, perhaps not numerically) as those in (2.3) and, as a

It can be verified that the quantities f obtained in this way are the

consequence, the relative errors are as in (2.4).

While algorithm (3.6) and Miller's algorithm (resulting in the compu-—

tation of (2.3)) are mathematically eguivalent, they have different
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computational characteristics. In many cases, e.g., the quantities y;v) of
(2.2) grow rapidly as v increases (especially those for small n), and may
cause "overflow" on a digital computer. In contrast with this, the quanti-
ties rév) in (3.6) converge to a finite limit as v + =, and so does siv)
if the algorithm converges at all.

When applying the Miller algorithm or Gautschi's version (3.6) of it,
one should take care of two points. The first is (it is important for both
versions) to take a normalization (2.1) in which no cancellation of leading
digits occurs when summing it numerically. Sometimes one has some choice
in the selection of (2.1). Consider, for instance, for the computation of
the modified Bessel functions the two series

e = Io(z) + 2I,(z) + 2I,(2) + ...

e “ = Ig(z) = 21 (2) + 2I,(2) - ...
for z € €. For Rez + = we have In(z) ~ ez/(Zﬂz)i. It follows that the con-
dition function (see §II.1.2) of the first series is much smaller than that
of the second one (1 and ezz, respectively, for real positive z).
A second point is that we assumed fn # 0. In Gautschi's algorithm this
assumption is very important, in Miller's original algorithm it can be drop-
ped. Zero-values of fn can occur, for instance, in the case of ordinary

Bessel functions with

Although exact wvalues of zeros of Jn(z) are not representable on the com—
puter (except for z = 0) the algorithm may break down in this event. Con-

sider the first elements riv) computed according to (3.6):

(v) (v) z (v) 2vz
Iy =0, L= oo r, = ——
w=1 2v v=-2 4v(v—1)—22

The number v, the starting value of Miller's algorithm, is (for this case)
larger than |z| (GAUTSCHI (1967, p. 51). Hence, the value of r(v; is well-
(v) . Lo

defined. Values of r (n < v-2) may become undefined, owing to a vanish-
ing denominator. Computer programs must be protected against this phenomenon.

According to Gautschi (see the discussion on p. 42 of his paper) the
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(w)

presence of zeros need be of no great concern for the computed values fn

in the final step of algorithm (3.6).

3.3.4. Olver's algorithm

This algorithm is already mentioned on p.57 in the previous subsection
IT.3.2. Here we consider a few practical aspects of it and we will indicate
how it can be used in combination with Gautschi's algorithm. In the latter

the estimate of vV, see our remarks at the end of §3.3.2, is not very satisfact-

ory, whereas Olver's version is rather attractive for the estimation of v.
We only consider the homogeneous recursion (1.1); in OLVER (1967b) also the
inhomogeneous case is treated. The combination of the algorithms of Gautschi
and Olver is discussed in OLVER & SOOKNE (1972), where it is applied to the
well-used example of the Bessel functions. For the sake of completeness we
summarize Olver's algorithm.

Let the given difference equation be denoted by (1.1). We compute a

solution {pn} defined by

Pp =0, py =1, p 4 =-ap-bp . (n21).

Furthermore we introduce sequences {en} and {En} with e, = s (see (2.1))

0
and e, = bnen~1 (n =z 1), and En defined as the (necessarily convergent)
series
o e
m
(4.1) E = ] —— n = 1;

r
m=n pm m+1

the process fails if, and only if, one of the numbers Pn vanishes. The
above given quantities are used to compute a minimal solution {yn} of (1.1)

with initial value Yo = S.

PROPOSITION. The sequence {yn} given by

E_._...El___’ n?O,

(4.2) y =p E =0p
m=r Pmp

m+1

where for n = 0 (4.2) -is to be interpreted as Yo = s, 1s a minimal solu-

tion of (1.1).
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PROOF. Substituting (4.2) in (1.1) gives (for n = 1)

E
Pn+1 lE:r'ﬁ-l * an‘ann + bnpn-—l n-1
E!n en 1 en
=p E + ap (E +——) + b p I +—-—+E+1).
n+l n+l nn n+l pnpn+1 nn-1 pn-lpn pnpn+l n

Since {pn} is a solution of (1.1) it is easily verified that this expression
vanishes identically. From its construction it follows that ¥y is a minimal
solution. ([

In Olver's algorithm the wanted solution {yn} is approximated by a

finite part of the series in (4.2), viz.

) v=1 e

(4.3) yn =Pn E -L, 0 =sn = v-1,
m=n Pmpm+1

(v)

v
with, again, the assumption Yo = s. It is easily verified that {Yr(x )} is

also a solution of (1.1) (for 0 <= n £ v) with "boundary values"

(4.4) yé"’ - s, v <o

The truncation errors and the relative errors are given by

_y(v)
(v) n-n

4.5 - =pE —
( ) Yn " ¥, Pp®yr v

]

v
=E_'

n n
both defined for n £ v, but only of interest for 0 = n £ N.

The value of v plays the same role as in Miller's algorithm and in
Gautschi's wversion of it, i.e., it is used for starting the backward pro-
cess for computing the solution {yr(iv)} of which the values for n = 0,v are
given in (4.4) and the remaining follow from

(4.6) (v) (v)

pn-i-iyn - I""'n}'Ir =€

n+l ~ “n
applied successively for n = v-1,v-2,...,1. Here the quantities Ei are used
to decide whether the error is satisfactorily small. If the infinite series

(4.1) are replaced by their first terms then the second of (4.5)
to

reduces

(v)
PP

(4.7)

f_\_:_ n+i
e

' 0 =n £ N.
n n PuPus1
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Thus, the relative error is easily computed (approximately) by the gquanti-
ties pi and ei. The right-hand side of (4.7) is computed for v = N+1 ,N+2,...
until they fall below the desired relative accuracy. Since the Ei in (4.5)
are replaced by approximations it is not proved that a value of v accepted
in this way is a correct value. To make the choice more rigorous one may

use bounds for the solution {pn} in order to obtain upper bounds for

|Ev/En

nection.

- Theorems and examples in OLVER (1967c) may be useful in this con-

For a full understanding of Olver's method we remark that (4.6) can be
(v)
n

previous subsection II.3.2 the original recursion (1.1) is reduced in order:

conceived as a first order recursion for y . As observed on p.58 in the

the difficult problem for the second order recursion is reduced to a per—
haps less difficult problem for first order recursion. Tn this connection

the theory of subsection II.3.1 may be important.
(v)
n

ed. This may be analysed by using the results of II.3.l. In some cases in-

The algorithm for the computation of y is not always well-condition-
stabilities occur due to a loss in accuracy in the formation of the se-
quence {pn} (initially P, may be like a multiple of the minimal solution,
although it increases ultimately in proportion to the dominant solution).
Therefore we remark that the two values (4.4) can also be used to compute

y(vj with the help of Gautschi's algorithm (3.6) with the simple normaliza-

tion v\ = s (i.e., Ao =1, A =0, m>1). In OLVER & SOOKNE (1972) this
device is followed for the computation of ordinary Bessel functions.

It remains to give information for the computation of a minimal solu-
tion of (1.1) in the case of a general normalization (2.1).

One could reason as follows (however it will be a false reasoning) .
Suppose we have computed (within a given accuracy) a minimal solution {yn}
of (1.1) with initial condition Yo = s as a simple normalization. As men-
tioned in §3.3.1 any other minimal solution {fn} (satisfying f.i. a general
normalization relation (2.1)) is a multiple of Y- That is, by using (2.1),

we infer that

s
(4.8) £ =2y, t= ] Ay.
n t "n n=0 n'n
For computations we suppose that in this series and in (2.1) the symbol «
is replaced by v. Then, for v we have two conditions

(i) to make the second of (4.5) or (4.7) small enough,
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(ii) to make both infinite series

- @

I vy and I af
m=v+1 wm m=v+]1 mm
small enough.
V) .
Moreover we suppose that the y, are replaced by yrE , of which the computa-

tion is described earlier in this part.

This reasoning is used in OLVER & SOOKNE (1972, p.- 945) (in fact only
condition (i) is mentioned) and we will show, as is done properly in OLVER
(19670, §11), how to obtain a correct condition on v. The point is that the
computed Yo (i.e., 1;1_(lu)) is not an exact minimal solution, since it is com-
puted with two conditions given in (4.4). In §3.3.1 we remarked that for a
minimal solution one and only one value can be prescribed.

Let {fn} be the wanted minimal solution of (1.1) (to be computed for
n=0,1,...,N) with normalization (2.1). Let {yr(l“)} be computed as above
with condition (4.4), and {y,} the exact minimal solution of (1.1) with
YO = 8. Then we have (compare (4.5))

(4.9) v, - y;“} = pE, 0 < v,

1A
=]

Using (4.8) we obtain

_ 5, (v - _>s (v)
(4.10) T Wn YRE) =T G, +PE)
A ]
with
v v el
(v)
to= 7 ay™V, T,=E ] ip + J oy
v n=0 nn v vn=0 n n=u+1 n'n*

(v)

In (4.10), tu and ¥,  are known whenever a choice of v is made. The small

quantities T o and P E, are not known. We approximate fn of (4.10) by fr(lv)
defined by

{v) s _(v)
L11 = = =
(4.11) fn el AN n=20,1,...,N.

Then the relative error in this approximation is o

btained by using (4.10)
and (4.11), that is,
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(v) (v)
fn fn “SYq Tv/tv+SPnEv

(v) e
n n

£ ( t\.!+T\J)

To the first order of small guantities we have t + T = t , p E /ytu) =
v v v n v n

anv/Yn - Ev/En (see (4.2)). We obtain for the relative error approximately

(4.12) = Ev/En - Tu/t , 0<ns=N< v,

The first part corresponds with condition (i) on page 79. The second part,
which does not depend on n, is connected with condition (ii). It is clear
that it contains more than the series mentioned there. Actually we have

@

v
(4.13) T/t = 0= n=v

A y(\J)

n n

n=0

If more information on P, and En and the remaining quantities is available
this expression can be estimated further. For the present discussion the
only possible step is to replace the series by their most relevant terms,
iz. T /t = (A p E +

v u/ v ( vPu®y A

{
u+1pv+1Eu+1)/(A05)‘ Using the first term of (4.1)

we cbtain

(4.14) T/t 2 (e /P, + A

v vi1Sus1/Pyin)/ (gS)

and this expression is easily computed.

CONCLUSICN

Although Olver's algorithm gives a better control on error analysis
than the Miller algorithm, in the final stage of the above analysis approxi-
mations are used. In general one has to use such approximations for obtain-
ing the starting value v of the backward approximation process. For special

cases bounds for p; and E, may be constructed in order to obtain more rigor-

i
ous and possibly strict error bounds. We believe, however, that the choice
of v based on testing the smallness of (4.7) and (4.14) is more reliable
than the estimations based on asymptotic expressions (as mentioned in

§3.3.2), whenever these are available.
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4. CONTINUED FRACTIONS

In this chapter we discuss continued fractions. In section 4.1 through
4.4 some basic theory about continued fractions is introduced. In sections
4.5 through 4.7 we treat the approximation of (infinite) continued fractions
and the evaluation of theseé approximations. This material can be found scat-
tered in the literature. New is an estimation for the condition in section

4.8. In section 4.9 we give some examples.
4.1. Introduction

In this section we introduce continued fractions and establish some

notations and definitions.

A mathematical function can often be represented by a continued frac-
tion. A continued fraction is defined as an ordered pair (({an},{b h,lc b,
where 2, 85, -«» and bl' b, ... are complex numbers with all a, ; 0 ang
where {cn} is a sequence in the extended complex plane defined as follows:

ck=sk(01, k=1,2,... where
(4.1.1) so(w} =W, Sk(w) = Sk__lbk(w)) k=1,2,... and
sk(w) = aﬁ(/(ka). k=1,2,... .

The continued-fraction algorithm is the function ¢ which assigns to each
pair ({an},{bn]} the seguence {cn}.

The prescriptions to perform the operations may be denoted by

typographically this is not convenient, so we write

a a a a a a
1

+ + s ... or —b1+—~2+ = ..
F1 F’z 3 1T byt byt
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We also use

a,

1
1b, '
1

(4.1.2) @

1

in analogy to series and the Z-symbol. From this continued fraction we call

ak the k-th partial numerator,
bk the k-th partial denominator,
k &
ck = 121 5 the k-th convergent.
i

A continued fraction is said to converge if the seguence {cn} converges.
The value, c, of the continued fraction is the limit of {cn}.

The analytic behaviour of continued fractions is treated in WALL (1948),
in PERRON (1950) and KHOVANSKII (1956). More recent views on the matter and
the applications of continued fractions in numerical analysis are found in
HENRICI (1977a)and JONES & THRON (1980). This chapter leans heavily upon

the last book. Recent conference proceedings are JONES, THRON & WAADELAND
(1982) .

4.2. Some examples

In this section we demonstrate some methods to construct a continued

fraction.

In order to construct a simple example, which will be useful further

on, we lock at the guadratic egquation
2
(4.2.1) z - bz -a=20,

where the roots, z and Zge satisfy the two equations

Eliminating =z, we get

2

z, = —a/(b—zll.
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It is easily verified that, if we take in (4.1.1)
s, (W) = s(w) = a/(b+w),
the continued fraction, thus defined, has the convergents
¢ = s(s(...(s(M)...)
and the limit, ¢, (if existing) of {cn} has the property
c = sic).
This enables us to write
(4.2.2) 2 = -c= - i§1 a/b .
As an illustration we take a = b = 1 and find for the golden ratio, r,
(4.2.3) 2= 5D/2=x= 8 1/1

In a similar way, due to Gauss, we find for the quotient of two hyper-

geometric series a continued fraction

F(a,b+tl;c+l;z) _ 1

= or
F(a,b;c;z) _ale-b)z _ F(b+l,a+l;c+2;z)
c(c+l) F(b+l,a;c+l;z)
_Fladiciz) e %%
Fla,b+1l;c+l;z) i=1 1
(4.2.4) a. = (b+k) (c-a+k)

2k (c+2k) (c+2k-1)
R __(atk) (c-b+k) k=0,1,...
2k+1  (c+2k+1) (c+2k)

A more formal treatment of the convergence of this continued fraction and
various applications is given in JONES & THRON (1980, §6.1.1).
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4.3. Some relations

In this section we investigate the connection between continued frac-
tions and other parts of mathematical analysis, in order to be able to use

the theory developed elsewhere.

A well known and useful part of elementary continued fraction theory

is that if we introduce two segquences {pk} and {ak}, which are defined by

Py =1 Py=0i p =Dbep 4 +ap ,
(4.3.1) k=1,2,... ,
Ay =0 9=l g =B taq

it can be proved that for Cyr the k-th convergent of iEI ai/bi. holds

(4.3.2) ¢, = P/q, k=1,2,... .

For the continued fraction (4.2.3) we get e = Fk—I/Fk' where {Fn} are the
Fibonacci numbers.

More important is that we have connected continued fractions with re-
currence relations, see also JONES & THRON (1980, §5.2). Three-term recur-
rence relations (like (4.3.1)) are surveyed by GAUTSCHI (1967).

In order to link continued fractions with series we take (4.3.1) and
(4.3.2) and we get

nzk

¢, - ¢, , = )”1-1—1
i i-1 q 1q

From this and ¢ = E? (c.,-c., ,) we get
n 3 j 3-1

i

n o a, n +1 ﬂ
(4.3.3) ¢ == 1 - ) =%
i=1 °i i=1 9951

Conversely, there is the identity of Euler

dO
n (d /da.
1+ ¢

i=1

(4.3.4) Z a; x5 =
i=0

i- i-1)x
1+ (4, /d )x
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A very much related and fertile part of the mathematical theory is
touched upon when we consider a continued fraction as a function, ¢, of
i .
a parameter, x, with (formal) power series expansion Eyix . We approximate

c{x) by a rational function
Pn(x)/Qm(xJ ’

where Pn is a polynomial in x of degree at most n and Qm of degree at most

m. We can choose the approximation so that
+
c{x}Qm(x) Pn(x)

has a (formal) power series expansion I Gix_, in which Gi =0, 0= i = n+m,

(™

If we impose a normalization condition and if we require that Pn and Qm
have no common factors, we can prove that Pn and Qm are unigue.
Frobenius conceived Pn/Qm as an element of matrix and Padé developed

the theory; we say that Pn/Qm occupies the position (n,m) of the Padé table.
It can be proved (see JONES & THRON (1980, Theorem 5.19)) that the conver-

gents of a continued fraction c(x) occupy the stair step sequence
PO/QO' PI/QO' Pl/er P2/Ql: P2/QZ' e

of the Padé table of the power series L Yixi of c(x). Theory about Padé
tables can be found in BRKER (1975), GILEWICZ (1978) and JONES, THRON &
WAADELAND (1982, §5.5). Recent conference proceedings are CABANNES (1976)
and WUYTACK (1979). Connections between Padé tables and numerical analysis
are surveyed in WUYTACK (1976). A bibliography of Padé approximations and

related matters like continued fractions is BREZINSKI (1976) .

4.4. Some transformations

In this section we point cut some ways to simplify a continued frac-

tion, without changing its value.

Different sequences {an} and {bn} can lead to the same sequence of
convergents. To establish some transformations of {an} and {bn} we conceive

{c_ ] as
n
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G = Tk(O), k=1,2,... where

(4.4.1)
To(w} =W, Tk{w} =

Tkﬁl(tk(W))' k=1,2,... .

In order to confirm (4.1.1) tn must have the form

-1

T 1(6) + xw ‘ -1
Tryw e Te-1(G) <=
(4.4.2) t, (W) = Yy
zk/w + xk else,

where {xn}, {yn} and {zn] can be arbitrarily chosen.

Also it can be shown that if we take for tk the transform

uk4-yk(w)

t (W) = ————, k=1,2,...,
k 3k4-6k(w)

we can construct a continued fraction in such a way that ¢ = Tk(O). For
proof and details see JONES & THRON (1980, §2.4) or THRON & WAADELAND (1982) .
These two theoretical results have the practical implication (especially
because the arbitrary construction of tk) that we have a certain degree of
freedom in the choice of {an} and {bn}. In fact we see immediately that we

can safely write instead of (4.1.2)

alrll . 323.'1252] . 331?21'3’
‘b1r1 szrz [b3r3

+ ...,

which leads, with a suitable choice for {ri}, to a continued fraction like

o

1/8, or .§

12 i i2 #4371

1

Bernoulli found for the problem to construct a continued fraction with

known convergents

a, =¢ ; bl =1 and (supposing cy = 0)
“n-1"% °n"“n-2

a_n = —-——————_c ; b = _—'—'—""-'—c _2 for n = 2:3f--- ¥
“n-1"%n-2 n n-1 n-2
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which is, essentially, the simplest form of (4.4.2).

In order to obtain another practical result we take for tk

= s .
e (w} Sop-1t 2k(w))
Evaluating this and constructing a new continued fraction we get two new
* :
sequences {an*} and {bn } with convergents {CZn}' This continued fraction
is called an even contraction of the original one. Of course many other con-—
tractions are possible, for example odd contractions.

w* *
The theory gives for the sequences {an } and {bn }

1= 3P 1= 3 *byby
*
a = (may o 8y Py /Por o
k=2,3,...,
x 2ox-1Poxt ¥ Pok 2Py 2Pk 1Pk
b = b

2k-2

which applied to (4.2.3) gives
r= (5-1)/2 = 1/ 2+ 8,-1/3) .

The advantage of contractions is of course the possibility to get better

approximations from the same computing effort.

4.5. Convergence of continued fractions

In this section we investigate the convergence of c the k-th conver-

k!
gent of a continued fraction.

To cbtain an easy-to-use result we suppose that in (4.1.2) a, > 0 and
bi >0 for i =1,2,... . Then the convergents show the following pattern:
(4.5.1) 0<¢c, = ... 5¢C < .

ve =v. S £ ... 2 C, .

Cok+1

This alternating behaviour is illustrated by the convergents of (4.2.3):
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€, = 1

c, = -5

¢y = .B6.. .

c, = .6

cg = .625

06 = .615...

e, = .619...
r=c=.61803... = (/5-1)/2 .

In this case we see that convergence means that both

lim Con and lim ¢
n—boo n-)-ﬂ

2n+1

exist and are finite and equal.
Convergence theory is a fascinating topic in continued fractions but the
reader has to turn to the theoretical works mentioned in §4.1. A survey of
recent results is given in THRON (1974). We will just mention three im-
portant theorems.
Worpitzky's theorem states that
n oo
c_ = 2 '?"

n i=1

converges to a value ¢ for n + = if
Iai| < 1/4 for i = 2,3,...

moreover we have

1

|e] < 1/2 ana ]cn-c| < Erysg

This convergence region can be generalized to a parabolic one. See also
JONES & THRON (1980, §4.4).
The well-known theorem of Seidel states that (4.1.2) with a; > 0 and

hi >0 for i = 1,2,... converges iff at least one of the series
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i g ﬁ H
E Kk 2kl b and °E° k=1 22k .
LT 2i LT 2i+1
i= na = n

k=1 2% k=0 %2k+1

is divergent. Note how easily this is applied to the continued frq“
b i N e
(4.2.3).

One of the theorems of Van Vleck states that

a a,z| a,z a_z
0 1 2 n
= + + ...+
“n |_1J+ll I 1
converges to a function f(z) if

lim a_ = a < =,
n—)ﬂn n

if a = 0 this convergence is at any closed region that contains ne,

Pl
of £.
If a # O this convergence is for all z outside a cut {z | |zl > |3, P,
arg(z) = arg(-%a)} from -ha to « in the direction of -%a and outsi 3. ¢
poles of f.

Figure 1.

Having ensured the convergence of <, to ¢, one is, for pract:j,créll
sons, interested in the speed of this convergence. For a survey paP< X
FIELD (1977). In order to use results about the convergence of sexries
construct a seguence {Ui}, so that

n a n i
i 1
(4.5.2) 8 == ] I (o.~-1) .
=1 b, =1 j
* bl i=1 3 d
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From (4.3.3) we develop this sequence as follows

1 71 1

1 b 2 1+a2/b1b2

(4.5.3)

o, = for k = 2,3,...
kooavla /bbby )0y

GAUTSCHI & SLAVIK (1978) apply this to compose the speed of convergence of
two continued fraction with the same value.

For a simple theorem we look at a continued fraction like (4.1.2) with

llmnﬁm a, =a and llmn+w bn = b. We can prove that for a certain N
3
18y 33705
converges to z, with a geometric convergence rate |z2/21| (|z11>]zzl), where

z1 and z2 are the roots of (4.2.1), see alsoc SAUER & SZABO (1968). For a
brief explanation and more examples of the geometric convergence rate see
GAUTSCHI (1983).

To consider an example we look at

In(1+x)
x

(4.5.4)

and we construct a continued fraction of it, using (4.2.4)

In{l+x) _ In(l4x)/x _F(1,1;2;-x%) .
x - 1 T OF(1,0;1;-%)

So we have

ln(1+x) _ !ll + x/2] . o kx/(4k-2)] L kx/(4k+2)] .
x Nt 1 | 1 | 1

and a = x/4; b = 1. The continued fraction converges for x > -1 like a geo-

metric series with gquotients

1-v14x
T+/i+x °

The Taylor-series for (4.5.4) is

1 - x/2 + x2/3 - x3/4 + oeee
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which converges for |x| < 1 with a geometric convergence rate x.
So we see that the continued fraction has a greater region of convergence
and since |1-Y1+x|/|1+/1+x] < |x|, (x complex, |xl<1,x#0), it converges
faster that the Taylor series (for |x|<1).

Moreover we can accelerate the convergence if we calculate the sequence
{C;} with ¢ * = § (£ ), with t (instead of zero as in 4.1.1) a suitable
approximation of the "tail", see JACOBSEN & WAADELAND (1982). In THRON &
WAADELAND (1980) there is taken tn = ¢:'_°=n a/b, which is minus a root of
equation (4.2.1). It is shown there and in JONES, THRON & WAADELAND (1982,
§8.4) that limn_mlc;ﬁcnl = 0 and an upperbound for Ic;-—cnf is given. All

these approximations and the function itself are displayed in Figure 2.

M continued fraction {Brdoonvergent‘\
@ Taylor series (3 terms)
a 379 convergent (accelerated)

¢ In(l+x)/x

.60 .20 1.50 2.00 R.4D zfuu

Figure 2. Approximations of £n(1+x) /x
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4.6. Truncation errors

In this section we estimate the "errors" made while approximating the

value of a continued fraction.

An easy case to find an estimation or bound for the difference between
the value of a (convergent) continued fraction and a convergent is (4.1.2)
with a, > 0 and bi >0 for i = 1,2,... . Here it is clear from (4.5.1) that
the truncation error is smaller than the difference between two consecutive
convergents. In general this is, however, not true.

To get further insight we look at a simple example

(4.6.1) é—l-é—é}— cae .

This continued fraction has, see (4.2.1) and (4.2.2), the value 1, being a

root of

2

z +z-2=20

k .
For the convergents of (4.6.1) we get C = e So the truncation error is
now
1

L= S

however
S S
“n n-1 n(n+1) °

It should be noted that in this example the difference between two consecu-
tive convergents is of a lower order of magnitude than the truncation error.
This remark can be generalized as follows:

Consider the continued fraction iEI ai/l and i§1 l/Bi and let

| = 1/4 - € and [B,| =2 2(14e) , € > 0, for i =1,2,...

| n

i

(So both are convergent). For these continued fractions we can prove
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1-2/e

0 < le—ey | = 57 loop |

for the first one and

0 < lomel s (Vg +go-7 le-ey |
for the second one.

For the proof itself and more details see BLANCH (1964) or JONES & THRON
(1971) or JONES & THRON (1980, §8.3).

For more specialized results see FIELD & JONES (1972), GRAGG (1968),
HENRICI & PFLUGER (1966), JEFFERSON (1969), JONES & SNELL (1969) and GILL

(1982) .

4.7. B special type of continued fractions

In this section we treat Stieltjes fractions and the way to construct

them.

Frequently one considers continued fractions with partial numerators
and denominators of a special form (g-fractions or T-fractions, for example).
For the representation of functions the z-fraction can be usefull. This is

a continued fraction of the form

e £ | e I £
1 1
7.1 - - - - eea
EEAEL PY Fu E
and is, of course, a function of z. The partial numerators and denominators

are complex numbers different from zero. To every z-fraction, there cor-—

responds exactly one formal power series in 2_1

© 4
(4.7.2) I 44
i=0 =z

-1
such that the expansion of the n-th approximant of (4.7.1) in powers of =z

agrees with (4.7.2) through the term dn—l z 0 for n=1,2,... .

Theory about existence and convergence can be found in JONES & THRON
(1980, §7.1). A more detailed review can also be found in SAUER & SZABO
(1968) . Inclusion regions (depending on the convergents) for the value of a

Stisltjes fraction and bounds for the truncation error are given in
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HENRICI & PFLUGER (1966) .

Now we look at the problem of calculating {fi} and {ei}, given the se-
guence {di}, i.e., how to determine (4.7.1) from (4.7.2). The following al-
gorithm, called the Q(uotient) D(ifference) algorithm is due to Rutishauser.

It is cbvious that eO = dO' then let us introduce the formal series

di+k
0 zJ.+1

F _(z) =
k i

Il ~18

and suppose that Fk{zJ and
e (2) = el £ _ 91,1:[_ f2,k‘_ e2,k|_
k z |1 [z 1 [z

are corresponding (often denoted as Fk(z) ~ ck(z]). From contractions we

get continued fractions for sz(Z) - dk and F 1(2), which must be equal

k+
and so we get the recursion relations

®-1,k+1 T Foxe1 T fox T2k %0,k = ©

{this is used for the calculation of {ei . H

’

and

A1
ox+1%, ket T %0k w1 frx T a

(this is used for the calculation of {fi j}).
It can be shown that no zero divisors can occur. So the scheme is well de-
fined. However the numerical stability can be poor. GARGANTINI & HENRICI
(1967) explain this and they construct a stable form of the algorithm.

4.8. Evaluation

In this section we discuss methods for calculating a convergent of

a continued fraction and their consequences.

A convergent can be numerically evaluated in basicly three ways.
n .
The backward computation of, say,igfL E% can be done as follows:
= i

dn+1 1= 0; di 1= ai/(bi+di+l) for i = n,n-1,...,1.
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This can be conceived as a Miller algorithm and yields one convergent,
cn = dl' A recursive operator for this method is programmed in VAN
WIJNGAARDEN (1976).

As can be seen from (4.3.1) and (4.3.2) one can use two three-term
recurrence relations to construct a sequence of convergents. A relation like
{4.3.1) can be considered as a triangular system of n equations and n un-—
knows. In MIKLngo (1977) this is used to speed up the computation. A third

method can be derived from (4.3.3) as follows (see also (4.5.2) and (4.5.3)):

u, =1 vy oi= ¢, = al/b1
1
ket 7T ol
bkbk+1 k
- - £ =1,2,... .
Vigp G vk(uk+1 1) or k
Skt 7T %t Viay

While evaluating a continued fraction we have to deal with two types
of errors. If we don't have an exact value for the tail, we have to cope

with the truncation error. Besides that, there can be errors due to finite
arithmethic. For bounds of these errors see BLANCH (1964) , JONES & THRON
(1974) , MrxLo¥ko (1976) or JONES & THRON (1980, §10.1). The work of Blanch
seems to indicate that the backward algorithm is numerically more stable

than the forward algorithm.

We will look at the condition (see section ITI.1). Suppose we want to

. L5 . .
approximate the wvalue of ¢i=1 1£, this can only make sense if the continued

fraction converges. In this case, see section 4.5, convergence is ensured if
Ini| <% fori=1,2,... . For establishing the condition of the n-th con-—

vergent, c 1 we need to evaluate the expression
_— i=0,1,...,n-1,

and for notation purposes we will write for a certain fixed n:

2

1 %iv1
Cn:;—-, r121+__'r_ for i= 1,2,...,11—1; Z'n=1-
1 i+1

We now hawve
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acn . acn ( i-2 Brk ) Bri_l _ oy (1;2 ) %sq } 1
da,  Ar k=1 ar o, 2 k=1 2 r., '
i 1 k+1 i T, r i
k+1
hich, it = - i
whic with ai+l ri+1(ri 1) gives
%% e A
c_ da. k=1 r
n i k

To establish a bound for the condition, we have to estimate |(rk—1)/rk!.

Therefore suppose
(4.8.1) lr ~11 < (n-k)/(2(n-k)+2) ,

which is trivial for k = n. We then have

o
lr 1] = K| < 1/4 _ _n-k+l
k-1 Ty - 1- (n-k) 2(n-k+1)+2 *
2(n-k)+2

because we have imposed |ai! < 1/4 for i = 1,2,...,n. So (4.8.1) is true by

induction and can be used to derive

Using this we get

a, 3c X .
l_i"_il < An=i+2) (n-itl) for i=1,2,...,n
Cn aui n(n+1)

and the estimation for the condition of Cn is now

n

7 k(x+1)
n] k=1
i nin+1)

n o, dc
e

L c 9o = (n+2)/3 .
i=1 n

This can be considered small. To illustrate this the condition of three re-

presentations of 1n(l+x)/x (this function is plotted in section 4.5) is

plotted in PFigure 3.



98

B power series (& te
=1 B8 Chebychev Series (
= ® continued fraction
R
o

.40

CONDITION
2.10

1.80

1,50

ms)
6 terms)
(67 convergent)

Figure 3. Condition of approximations for £n(l+x)/x

4.9, Examples of special functions

In this section we construct a continued fraction for the error func-

tion, the gamma function and for confluent hypergeometric functions.

The complementary error function

@

2
exfc(z) = é%—{ e_t at

z
can be written as a Stieltjes fraction,
ceed as follows:

From the asymptotic expansion

see section 4.7. To do this we pro-
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2
%ferfc-(z)'“ze_z (—L—v -1l b 13 P |

and the QD algorithm we get

2
z -
e _ez erfc(z) = rlél + ’—Il‘;‘? + l__‘2/221 + 3‘;2 + 4/22 ool .
z z z

See also ABRAMOWITZ & STEGUN (1964) formula 7.1.14.

The error function itself
2 7 -t2
erf(z) = 717,[ e dt
0
can be written as

Lerf(z) =z E d. (22)
2 .
i=0

with

i
_ (=1
9 = (2i+1) ¢ °

According to (4.3.3) we get

Ju _exf(z) _ rg . 22/3E _ 22/30| . 3922/74 B 739:2/163d .
2z 1 [ 1 |1 [ 1 | 1

To get a continued fraction for the I'-function we lock at ABRAMOWITZ &
STEGUN (1964), formula 6.1.40, which is

Inl(z) - (2-1/2)1nz + z - Y1n(2®) ~

b B
z z SR—— ; {Bi] are the Bernoulli numbers.

m=1 2m(2m-1) (z2) ™

Using the methods described in section 4.7 we get the corresponding Stieltjes

e I Y B VI I
20 i 2 T [1 T )
z Z

fraction
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Using the QD algorithm we get (compare ABRAMOWITZ & STEGUN (1964), formula
6.1.48 and see also CHAR (1980))

(£} =

{-1/30, -195/371, -29944523/19733142,

~-294045 27905795295658/97692 14287853155785,

-2637081256939 77190019319929 45645578779349/

527124426791 79808019665536 49147604697542,.,.}

and

{e;} =

{-53/210, -22999/22737, -109535241009/48264275462,

-45 53770304201134 32210116914702/11 30841289236750 14537885725485,
~152537490709 05480988163889 74729859908667 53853122697839/
24274291553 10512843829739 81089021953653 73879212227720,...}.

For the confluent hypergeometric function we consider the function

- -]
(x) = J eV (14 Par;
0

U\’:p

Re x > 0; Rev > 0; p e €.

In terms of confluent hypergeometric functions we have {in the notation of
ABRAMOWITZ & STEGUN (1964)):

VP (x) = T (WU(v,v+i-p,x) .

By specifying v and p we obtain error functions, incomplete gamma functions,

etc. Taking in the above integral v+l instead of v, a partial integration
yields

xU\J+1,p V,p v+l ,p+1

(x) = wU (x) - pU (x)
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from which follows

o () - v
e +UU+l'p(x)/Us+1'p+l(x)
Furthermore, writing in the integral
e TP 2 Ve P - e P,
we obtain
UV+2'0+1(X) _ Uu+1,p(x) _ Uu+1,p+1(x)

Combining the above relations we obtain finally

ﬁv+1,p(x) ) v
u” P (x oVt
Uv+1,u+1(x)

VLR VP (k) . 1E

which yields a continued fraction for the quotient U
x is positive and p and v are real, then, from a certain index i we have

positive numerators and denominators. If p = 1 we have
v,1
u?t(x) = r(werii-v,x),

where I'(a,x) is the incomplete gamma function.

Hence

.1
v’ (x) _ (v-1)T(1-v,x)
Uu—l,l(x) r'{2-v,x)

From the well-known relation

I'{a+l,x) = al(a,x) + xae“x
we thus cbtain
v - -
u ,l(x) - e xxl v
Uu-l,ltx) r(2-v,x)

which gives, using the above continued fraction
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=X
Iia,x) ='ﬁ+’1;a[+lj+2—_il+...
x 1 < |1

The case a = 4% gives the complementary error function, the case a = 1-n,
n=20,1,..., gives exponential integrals. The expansion for ['(a,x) converges
for all a e é and for all x # 0, larg(x)| < m. In GAUTSCHI & SLAVIK (1978)
a different approach for functions like Uu'p(x) is used, based upon the

methods described in section 4.7.
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5. HYPERGEOMETRIC FUNCTIONS

It is nearly impossible to study special functions without the notion
of hypergeometric functions. In this section we give a short introduction
to this subject, in order to be able to describe interrelations between
special functions considered in later chapters. For a more complete and
more rigorous introduction the reader should consult the literature, for
instance RAINVILLE (1960) (a very readable book on special functions) or
LUKE (19€9) (with much more information, especially on expansions which are
useful for numerical computations).

The usual definition is through power series, giving the qu—functions.
This is done in section 5.1 (Gauss-functions 2F1). These classes can be ex-
tended considerably by using a Mellin-Barnes contour integral; this approach
is described in section 5.3. In section 5.4 we give some useful expansions,
for instance, in terms of Chebyshev polynomials.

OQur attitude is to be careful with general forms of special functions.
From our own experience and from the good examples in the literature, we
know that a basic knowledge of these functions can be very convenient. For
computations, the general setting of qu and Meijer's G-function is rather
useless when too many parameters are involved. Already the well-studied

case of Bessel functions (belonging to the -functions) with two complex

o1
parameters may yield serious problems for certain combinations of these
parameters.

Not all interesting special functions are of hypergeometric type. A
completely different class, with as prototype Mathieu's functions, is
described by ARSCOTT (1981) as the Land beyond Bessel, or as "higher"
special functicons. They can not be defined by simple power series or inte-
grals.

5.1. Gauss' hypergeometric function 2F1

Here we introduce the best-known hypergeometric function
2Fl(a.b:c;z) by means of its power series expansion. We give the relevant
properties and some relations with other special functions, for instance

with orthogonal polynomials.
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The usual definition for Gauss' hypergecmetric function is

_ ° (a)n(b)n n
(1.1) 2F1(a,b;c;z) = nig -TET;;T— z,
where |z| <1, ¢ #0, -1,-2,... . In (1.1) Pochhammer's symbol is used for
the shifted factorial
(u)0 =1, (u)n = afa+l)...(a+n-1), n=1

or (u)n = I'(a+n) /T(a), where ' is Euler's gamma function.
From the ratio test it follows that (1.1) has the disc |z| < 1 as its
domain of convergence. From well-known properties of the gamma function,

for instance

(1.2) [ (a+n) /T (B+n) ~ n® B n o+

’

it follows that

(a)n(b)n a+b-c-1
(e) n! !
n

(1.3)
so long as none of a,b,c is zero or a negative integer. Hence, a sufficient

condition for absolute convergence of (1.1) on |z| = 1 is Re(c-a-b) > O.

For a =1, b = ¢, (1.1) reduces to 1/(1-2), which explains the name

hypergeometric. Other examples in terms of elementary functions are

=3

’

2F1(a,b:b;z} = (1-z)
(1.4)
1

._1 -
2F1(1.1:2;z) =z 1ln(l-2z)

A more extensive list is given in ABRAMOWITZ & STEGUN (1964, p.556).

The 2F1—function is symmetric in a and b. When one of these parame ters

is a negative integer, say a = -m, then (1.1) is a polynomial. This follows
from :

(-1)"m(m-1) . .. (m-n+1) nsm

(-m) =
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or (—m}rl = (—l)nmE/F(m—n+1). Some particular cases are
Name polynomial
SF (-nunikix) = T (1-2x) Chebyshev
2F1(—n,n+1;1;x) = P_(1-2x) Legendre
- ot x) = Dt (@)
oFy (Fn,n+2a;a+h;x) = o) Cn  (1-2%) Gegenbauer
2F1(—n,n+a+3+1;0+1;x) = TE%ET;-PAG'B){IHZx) Jacobi

An extensive theory is based on the differential equation
(1.5) z(1-z)y" (z)+[c-(a+b+1) 2]y’ (z) - aby(z) = 0,

resulting into the well-known transformation formulas. They express func-
tions of argument z into combinations of functions with argument ztl.(l—z)ilr
[2/(2-1)]i1, giving interesting relations for numerical computations. See
ABRAMOWITZ & STEGUN (1964, p.559). The convergence of the series (1.1) is
rather poor when |z| is close to unity. The transformation formulas can
always give a reduction to |z| < %, although some combinations of parameters

may yield rather complicated expressions.

The 2F1—functions include as further special cases

Legendre functions
incomplete beta functions

elliptic integrals.

The last two cases easily follow from the integral representation

1

_ I'(e) b-1 ., _ c-b-1 _ -a

(1.6) ZFl(a,b,C,z} = T T (eB) J t (1-t) (1-tz) “dt,
0

which is valid when Re ¢ > Re b > 0. The integral gives a cne valued

analytic function in the z-plane cut along the real axis from 1 to +=.
Hence, (1.6) gives the analytic continuation of (1.1) in the case that
Re ¢ > Re b » 0. The relation between the right-hand sides of (1.1) and
(1.6) is easily verified by expanding (1-tz) " in a binomial series and
using the integral representation for the beta function B(x,y) =
'(x)T(y) /T (x+y), that is,
1
(1.7 B(x,y) = J ¥ 1og
0

Y"lat, Re x > 0, Re y > 0.
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When Re(c-a-b) > 0, (1.7) gives the limiting form for (1.6)

I'ic)T'{c-a-hb)

(1.8) 2Fl(a.b:C;1) - Tlo—a)T (o-b)’

c #0,-1,-2,...

There is an extensive list of contiguous relations for 2F1~functions,
expressing .F, (a,bjc;z) in terms of oF, (at+a,b+B;c+y;z), where o,B8,y equal
0,1,-1 (in all possible combinations). Also, derivatives can play a role

here. A simple example obtained from (1.1) is
d ab
az oFq(arbiciz) = :;—2F1(a+1.b+1;c+1:z)-

For more examples we refer to ABRAMOWITZ & STEGUN (1964, p.557,558) .

5.2. A generalization of the 2F1

We introduce the generalization ng by means of the power series. A

compact notation is used and examples are given for special functions.

We consider a generalization of Gauss® hypergeometric function by
writing '

P k
(2.1 F (o jp ;2) = [a ), /( 1 &,
) prq%p7Pqi? REO e/ Py i

; £
1 hzl(ah)k. the same for

pq and (Dq)k. To distinguish between nominator and denominator parameters,
a notation is used of the form

where o is interpreted as a,,...,a and (a ). as T
P js] Pk

o
qu(pplz)-
q

No denominator parameter p. is allowed to be zero or a negative integer.
h eq

If any numerator parameter o in (2.1) is zero or a negative integer, the
series terminates.

With respect to convergence we have the following possibilities

(a) if p = q, the series-converges for all finite z;
(b) if p = g+1, the series converges for |z| < 1, and diverges for
lz] > 1;

(c) if p > g+1, the series diverges for z # 0.
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If the series terminates the conclusions in (b) and (c) do not apply. 1If

p = q+l, the series is absolutely convergent on the circle |z| = 1 if

P

Re ( E ph - E qh) > 0.
h=1 h=1

When the series is not convergent it may have a meaning as an asymptotic

expansion.

We permit p or g, or both, to be zero. Then the parameters «_ or Py

h
are absent. For example, the first of (1.4) is

-a
lFo(a;;z) = {1-2)

An important class of functions, with many examples as special func-
tions of mathematical physics, is governed by the case p = g = 1. It gives
the Kummer or Whittaker functions, which are known as degenerate or con-
fluent hypergeometric functions. See Chapter 13 in ABRAMOWITZ & STEGUN
(1964) or Chapter IV in LUKE (1969). This class includes Bessel functions,
incomplete gamma functions (and the special cases the exponential integrals,
sine- and cosine-integrals, error functions and Fresnel integrals), Laguerre
polynomials, Hermite polynomials, Coulomb wave functions and parabolic

cylinder functions.

The adjective "confluent" originates from the limiting process

(2.2) lim 2F1(a,b;c;z/b).

oo

The limit is 1Fl(a;c;z), as follows from elementary analysis. The 2F1—
function with wvariable z/b ras a differential equation (see (1.5)) with
singular points 0,b,®; the limiting form defines an entire function with

a singularity at z = =, which is a confluence with those at b and «.

In LUKE (1969, Chapter VI) a lot of named special functions are ex-

pressed as qu's, including the examples mentioned above with p =g = 1.
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5.3. The G-function

Only the basic ideas behind the role of the G-function are considered
here. For a good understanding of the theory of hypergeometric functions
it is important te know about it. Interested readers should consult the

literature.

As mentioned in the previous section, the definition (2.1) is useless
for the case p > g+l. In that case the series diverges except when z = 0.
It may be interpreted as an asymptotic expansion, however. Which function
is a natural candidate to have that expansion as an asymptotic series?

When p = g+1, (2.1) defines a function for |z| < 1; what is the
analytic continuation of this function beyond |z| = 1?

These, and many more, questions can be answered when we introduce the
G-function. It appears that representations in terms of series may be rather
restrictive in defining special functions, whereas a definition in terms of

a contour integral in the complex plane may be much more flexible.

To introduce the G-function let us first consider the integral

c+ie '
(3.1) I(z) := 5_:__—{ J zsr(1+s)r(-s)ds, -1 <c¢cc<o0,

c-iw
where the many-valued function z° is defined by z° = exp(s(ln|z|+i arg z)),
with Iarg z| < 7. The product of gamma functions can be replaced by
I'{i+s)T(-s) = -n/sin(ns), from which information on convergence and other
analytical aspects (residues, for instance) can be obtained. The contour of
integration can be shifted to the right, across the poles at s = 0,1,2,... .
It easily follows that the infinite series of residues converges when
lz] < 1 and that

=

(3.2) I(z) = § (-n7" = L lz] < 1.
n=0 2

On the other hand, by shifting the contour to the left and picking up the

residues at s = -1,-2,-3,..., we obtain
-]

(3.3) I(z) = - D I R T
z nzi (-1) 'z 1az lz] > 1.

Hence, the contour integral (3.1) contains both series representations in



II.5 HYPERGEOMETRIC FUNCTIONS 109

(3.2) and (3.3), the first for |z| < 1, the latter for lz| > 1. Observe that
the series are examples of hypergeometric series. (In this example there is
a lot of symmetry between the cases |z| < 1, |z| > 1 since we have the
eguation I(z_l) =1 - I(z), which easily follows from (3.1) without know-

ledge of I(z) = 1/(1+2).)
A second example is governed by

_ I'(c)
3.4 Fl2) = T @arm [

L

I'(a+s)T (b+s) ' (-s) Sq
I'(c+s) zas

which contains (3.1) as a special case (b=c,a=1). The contour runs from
-i® to +ie and separates the peles of '{a+s)I'(b+s) (at s = -a-n, s = -b-m,
n,m =0,1,...) from those of I'(-s) (at s = 0,1,...). We suppose that

larg z| < 7 and a,b,c are not equal to 0,-1,-2,... . In general, the con-
tour cannot be a vertical line, but it meanders in order to separate the
roles of the gamma functions. Shifting it to the right we cbtain an in-

finite series of residues, which converges to

(3.5) F(z) = 2Fl(a,b;c;—z), lz] < 1.
A shift to the left will result in two series of hypergeometric type; when

a-b is not equal to an integer we obtain one of the transformation formulas

F{c)T'(b-a) -a

1
T(b)T (c-a) z 2F1(a,l—c+a,1—b+a,—- ;)

2F1(a;b:c;—2) =

%%g%%%%{%%-z_b 2F1(b,1—c+b;1—a+b;— %J,
larg z| < m; the two residue series converge of course when |z| > 1. Again
it follows that the contour integral (3.4) contains series expansions for
lz] <1 as well as for |z| > 1.
We could write down a similar representation for the PFq, just be ex-
tension of numerator and denominator parameters in (3.4). Such an integral
has a meaning when p = g, for a restricted domain of arg =z.

The G-function includes the Fq as a special case and is defined as

a
m,n Py, _ 1 s
(3.7) Gplq(z]b ) EEI’I 2z~ B(s)ds
L

F(bl—S)...F(bm—s)T(l—a1+s)...F(I—an+s)
“T(-b__.+s)...T(1-b +s)T(a__.-s)...T(a -s) '
m q n+l1 P

B(s)
+1
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0<m<gqg, 0<n<p.L separates the poles of T‘(bj—s) (3 =1,...,m) from
those of I‘(l—ai+s) (3 =1,...,n); a- and b-poles should not coincide. Further
information oanI.. is found in, for instance, LUKE (1969, Vol. 1, p.144). In
the same reference we find a list with named special functions in terms of
the G-function (p.225). For instance, we have in compact notation as in

(2.1)

1-a
T }
*p Tlegd 1p (. Py
pao l2) = T(a) Sp,ql zlo,l—p /
q P q

forpsq, z¢ €, or p=ag+tl, |z| <1.

The G-function contains also functions related to the generalized hyper-—
geometric function qu. For instance, the second solution of the differen-
tial equation for lFl(a;c;z) + which, in general, is singular at z = o,

whereas 1F‘1 is entire in z.

Although the definition of the G-function is quite complicated when
many parameters are involved, the basic idea is rather simple and well under-—
stood via the trivial example (3.1), or via (3.4) and (3.5). Observe that
(3.7) has the form of the inversion of the Mellin transform; hence the
Mellin transform of the G-function is (under several conditions) a combi-
nation of gamma functions. Other integral transforms for many special func-:
tions follow also from those for the G-function. Generally speaking, re-
presentation (3.7) is a convenient starting point for manipulations with
special functions of hypergeometric type. The recent monograph of MARICHEV
(1983) may be very helpful for obtaining transforms of special functions.

5.4. Expansions for hypergeometric functions

We give the construction of a continued fraction for the 2F1—funct.ions

and some Chebyshev expansions for the ZFl—fmction and a confluent hyper-

geometric function.

The power series gives a good starting point for computing the pF -

functions in the neighborhood of z = 0. For the 2F1-functions several trans-

formation formulas are available in order to reduce computation to lz| < %.

The coefficients are easily generated during computations, so no pretabulated

coefficients are needed. Still there is a need for other types of expan-

sions. In the continued fraction approach, the coefficients are, again,

easily constructed; in the Chebyshev expansions a more ingenious algorithm
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based on recursions can be used.

5.4.1. Continued fraction for 2F1[a,1;c+l;z)

Gauss first showed that one can construct a continued fraction for a

ratio of 2F1—s: when b=1 it results into a fraction for a single 2F1. One

can easily verify for the terms in (1.1) that

{a)n(bﬂ)n (a}n(b)n a(c-b) (a+1)n_1(b+1)n_l

[ [ 1) '
(c+1)nn- (c)nn. cle+l) (c+2)n_l(n 1)!

from which we conclude that

cetlsz) - .e:z) = Zale=b) ot s
(4.1) 2F1(a.b+1,c+1,zj zFl(a,b,c,z) c(erD) 2F1(a+1,b+1.c+2,z).
This can be rewritten as
Fla,b+1l,c+l) = 1/1- za(c-hb) F(a+1,b+1,c+2)]
F{a,b,c) cl{c+l) F(a,b+l,c+1)

where we used an obvious short-hand notation for the 2F1. Similarly, by an
interchange of symbols (recall the symmetry in a and b)

F(a+l,b+l,c+2) _ 1/01- z(b+l) (c+1-a) F(a+1,b+2, c+3)

F(a,b+1l,c+l) (c+1) (c+2) F(a+1,b+1,c+2)T

and replacing this in the former we find a relation between the ratio
F(a,b+l,c+1)/F(a,b,c) and the ratio with a,b,c replaced by a+l,b+1,c+2,

respectively. The case b=0 is of particular interest since in that case

2F‘l(a,o;c;z} = 1. Then the set up of the continued fraction reads
1
zFl(acla'C"‘l;Z) -
1- za/ (c+l)
_ z(c-atl) 2F1(a+1,2;c+3:z)

(c+1) (c+2) _F, (a+1;1;c+2;2)

271

with an obvious extension to the general form. Note that for a = c = 1 we
have the second of (1.4). The incomplete beta function can also be written
in terms of _F, with second parameter equal to unity (consider, for instance,

21
in (1.6) the transformation t = (z-1)/[z(1-1)]).
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5.4.2. Chebyshev expansions

We give a few examples of Chebyshev expansions of hypergeometric func-
tions. In LUKE (1969) a considerable collection of expansions is included;
in LUKE (1977) algorithms are found in order to obtain coefficients of the
(Chebyshev) expansions.

Luke's general approach is to expand wide classes of hypergecmetric
functions in terms of other hypergeometric functions (polynomials, Bessel
functions) which are rather easily computed. The coefficients again are of
hypergeometric type, and the numerical problem to compute the coefficients
is not always trivial. A general approach here is to use a recursion rela-
tion for the coefficients. A special algorithm (based on Miller's algorithm,
see III.3) is needed, since forward recursion is not stable. An example is

=

(4.2) ,F,(a/bsesz) = nZO cn(w)T;(z/w), z/w e [0,1],

where T: is the shifted Chebyshev polynomial. The coefficients are

.

* e (a)_(b) w"
n n

22

a+n,b+n,%+n
372" c4n,1+2n

(4.3) cn(w) = w)

n(c) nt
n

and cn satisfies the recursion

(4.4) c =ucn+l + B + v

n n n°n+2 nn+3’
where an'sn'Yn are given in LUKE (1977,Ch.4). The factor € equals % (when
n=0) and 1 (when n > 0). Luke gives a detailed analysis on the computation

of the coefficients cn. Observe that each coefficient is more complicated

than the wanted 2F1 in (4.2). The backward recursion scheme does not use
any accurate initial cn-value, however.

A second, and more interesting example is the expansicon of the Kummer

U function in LUKE (1969, II, p.25). The U function is related to the 1F1-

It is the irregular (at z=0) solution of Kummer's equation

zy" + (c-z)y'-ay = 0, of which y(iz) = 1F1(a.:c;z) is a regular, entire solu-—

tion (ABRAMOWITZ & STEGUN (1964, Ch.13). 1t includes many named functions
as special cases. The expansion reads

function.

(4.5) w2) W (aseiuz) = § e @) (1/w),
n=0 ©° n
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w 2 1, and the parameter z can be used to cover a wide range of complex
values, but it should be bounded away from zero. In fact, (4.5) is an ex-
pansion "around infinity", whereas (4.2) is useful near the origin. The
coefficients c, obey a recursion as in (4.4). In this case a representa-

tion in terms of the G-function is possible.

5.4.3. Representations for |z| > 1

It follows from (3.7) that

n,m, -1 1-=b
q’p(z |1_an .
’ P

a

m,n
(4.6) Gp,q(zibz) -c
This important relation can be used to obtain representations for |z| > 1,
for instance for the 2F1—f1..r:m:t'..1'.::.tns. The representation (3.6) is a special
case, although some combinations of the parameters must be excluded:
a-b not an integer. When a-b ¢ Z a more complicated relation holds, in-
volving logarithms of z. In the case of 2F1—functions, convergent expansions
result from (4.6). In general, i.e., for general p,q, the functional equa-

tion (4.6) may yield series which have a meaning as asymptotic expansions.
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III. THE GAMMA FUNCTION AND RELATED FUNCTIONS

0. HISTORY

The gamma function is the most plausible generalization of the fac—
torial function. Euler was confronted with this matter when an apparently
simple problem was proposed to him. It was expected that n! (this notation
was not yet used then), was expressible in elementary algebraic quantities.
Just as the triangular numbers Tn = 1+2+...+n can be expressed as Tn = 4n(n+1).
In Euler's days, one paid much attention to these questions. First, because
such a formula enables one to compute Tn or n! immediately, secondly be-
cause it gives the possibility for interpolating: Tn = 4%n(n+1) also has a
sense for non-integer values of n.

In 1729, Euler proved that for n! such a simple formula did not exist;
or, there was no formula with a finite number of algebraic evaluations. At
the same time he turned up with the formula

1
(0.0) n! = I (-1n x)" ax,
0
of which indeed the right hand is defined for real positive values of n.

Nowadays, the above integral is often presented differently, and in

Legendre's notation I'(n+l) = n!, the gamma function is defined as follows
(0.1) r(z) = J e ¢* 1 at, Rez>o.
0

Immediately we have the fundamental property
(0.2) I'(z+1l) = zl'(=z).

It is easily understood that in several ways the factorial function

can be generalized to a function defined for positive real numbers. What
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makes Euler's choice such a plausible one? After the event it appeared
that (0.1) frequently occurs and, in a "natural" way emerges in many
problems. But this does not answer the question. However, it is possible
to formulate criteria into which Euler's choice fits exactly. In this way,
the gamma function is accepted and incorporated in the Bourbaki-works.

There the definition is:

the gamma function I': rY > R+ is the function f with £(1) = 1 and
that satisfies for x > 0:
- f(x) >0

- f(x+1) = xf(x)

- £ is logarithmic convex (i.e., ln f is convex).

For the equivalence between this definition and those of section 1
the reader is referred to BOURBAKI (1951) or ARTIN (1964).

A striking property is that the gamma function cannot satisfy a dif-
ferential equation with algebraic coefficients (Hdlder's result). This
makes the gamma function a function of completely different type of tran-
scendency than other special functions, such as Bessel functions, Legendre
functions, etc.. While the difference equation (0.2) is so simple!

More elaborate information on the functions of this chapter can be
found in LUKE (1975), WHITTAKER & WATSON (1927) (an important book for
classical results and methods in analysis and special functions), ARTIN (1964)
(a little monograph with emphasis on convexity properties and elementary
analysis; a classic), HOCHSTADT (1971) (recommended for lessons on special

functions), and NG (1975) (a survey and evaluation of software for the
complex gamma function).

1. DEFINITIONS AND ANALYTICAL BEHAVIOUR

In section 1.1, we give the Euler and Weierstrass representations of

the gamma function as well as a graph of |1"(z) ] . In section 1.2 we in-
troduce the Y and polygamma functions by series representations.

In section 1.3 some integral representations of the beta function and

its relation to the gamma function are given. In sections 1.3 and 1.4 the

occurrence of the gamma function in other special functions is mentioned.
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1.1 Gamma function

Apart from the definition given in section 0 the following three
definitions are usually considered.

(1.1)  (Euler) r(z =/e®t®?! at, re z > 0.
o]
n! n®
(1.2} (Euler) I'iz) = %ﬁ m, z #0,-1,-2,... .
(1.3) (Weierstrass) 1/l(z) = z e'~ nil (1+z/n) e-z/n'

with y = 0.57721..., Euler's constant. The equivalence of these definitions
is proved in HOCHSTADT (1971).

From (1.3) many other results follow. It is the most manageable defi-
nition. It readily follows from (1.3) that 1/T has zeros for z = 0,-1,-2,...
and that it is nowhere singular. In an analytical sense, 1/T is easier to
cope with than T itself; the latter does have singularities. This difference
is reflected in numerical approximations. For 1/T approximations are usually
more favourable (less terms in a series for obtaining a given precision).

Of course (1.3) is useless for direct computations, although it is so power-
ful from an analytical point of view. (A simple numerical consideration
learns us that for a relative accuracy of e, about Bzz/a factors in (1.3)

are needed.)

The decomposition (Prym) into incomplete gamma functions

1 @
rz) =fet ¥ ac+ [T e? ! ae =
4] 1
w n )
= 7 ;é%i%;r + [ 271 ae
n=0 "~ 1

gives insight in analytical aspects of I'. The last integral is an entire
function of z, while the series gives information about the singularities
of I'. It follows that
n
. _ (-1)
aim (z+n) T(z) = ——=—
That is to say, I has in -n, n = 0,1,2,..., a pole of the first order with
residue (—1)n/n!.
After this introductory matter the graph of I' is easily drawn. See
Figure 1. We also give the landscape of |I'(z)| for complex values of z.
See Figure 2 (from JAHNKE & EMDE (1945)).
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Figure 1. Graph of T'(x), x real

Pigure 2. |T(z)| for complex =z
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An important relation for range reduction is

1 sinnz

(1.4) F(l+z) T (1-z) 7z

T

which is called the reflection formula. It is easily proved by using (1.3),
which vields at the right-hand of (1.4): ﬁ{l-z2/n2}. This is connected with
the factorization of the sine function.

We conclude this subsection with some integral representations which
follow immediately from the above results. With the methods of function
theory we obtain Hankel's formula

i -z z-1
T = e— - -
(1.5) r'(z) 3 sin Tz J e “(-z) dg, =z ¢ Z
where the contour of integration is drawn in Figure 3. By using (1.4) one

obtains

_ 1 t -z
(1.6) 1/T (=) = Zui Je t dt,

1 -
and t 2 in (1.5) and

with contour as in Figure 4. The branch cuts of (—;)Z_
(1.6), run as usually from O to = and from O to -=, respectively. The in-
tegral in (1.86) is valid for all z ¢ € and is very useful for analytic

manipulations.

T
(= — D

Figure 3 Figure 4

Contour for (1.5) Contour for (1.6)

1.2 pPsi function and polygamma functions

From (1.3) we derive

-5
dz

In T(z41) = -y + —2— + —2=—— & ...

(1.7) T(z+) | 2(z+2)

r z#_lf_gg-—o -
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The y-function is defined by
(1.8) Y(z) = é% 1n I'(z) = I'*(2)/F(2).

From (1.7) we obtain the well-known series representation

@

1 z
(1.9) y(z) = -y - —+ e
z ne1 n(z+n)

(k
The higher order derivatives of (1.8) are the polygamma functions ).
Repeated differentiation of (1.9) leads to ever better converging series

o« -]
I e, y® e o )" ha T (gen)”

n=0 n=0

(1.10) Y'(z) k-l’

The integral

z-1
-y + ([ 1‘1t_t-dt, Re z > -1,

(1.11) Y (z)

is verified by expanding the denominator of the integrand and by comparing
the result with (1.9). The series in (1.9) and (1.10) converge for all
zeC, z#0,-1,-2,... . By using (0.2) and the corresponding recursion

y(z+l) = ¢(z) + 1/z, w(k} can be examined in these exceptional points.
1.3. Beta function

The beta function is for Re P > 0, Re g > 0 defined by
1 -1 -1 T
(1.12) B(p,q) = J’ tP (l—t)q at = (pIT( )-
0 I'(p+q)
We have B(p,q) = B(g,p). Other forms are

1 o0
Blp,q) = [ (1+t) P I (P a1y o0 ST (14) PTD g,
0 0

Integrals with circular functions expressing beta functions are

n 2p-1 2q-1
(1.13) [ (sin ©)F  cos ©)°T! gt = % B(p,q),
0
ks . -a_ inBR/2
(1.14) [ (sin )% *BE g¢ - 2__we ,Re a > - 1.
0 (a+1)B[Y (a+B) +1,%(a=B) +1]
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With hyperbolic functions one encounters

oo

(1.15) [ cosh(2yt) cosh ¥ (t) at = 22%72 B(x-y,x+y), Re x > |Re y/,
0
o

(1.16) [ sinn®(t) cosh™®(t) at = B[ (1+a)/2, (B-a) /2],
0

Re(B-a) > 0, Re a > -1.

1.4 Coulomb phase shift

The Coulomb functions FL(n,p) and GL(n,p), with p as argqument, n as
parameter and L the order (integer), are solutions of the differential

equation

2
dw . oy 20 _ L)
o 2

0.
2
dp P

This equation is used in the description of physical problems involving

collisions and scattering of charged particles. The gamma function appears

in the formulas for the asymptotic behaviour of F and G as p » =:
FL(n,p) ~ sin ¥, GL(n,p} ~ cos ¥,

with ¥ = p - n 1ln 2p - &1L + cL(n), containing the Coulomb phase shift

o (n) = arg [T(L+1+in)] = Im [1n T(L+1+in) .

1.5 Relation with other special functions

The gamma function is frequently used in formulas for many other
special functions, especially those of hypergeometric type, cf. Ch.II.5.
As an example we give the series expansion of the Bessel function

22/4 ( 22/4)2

(2/2)" .
(v+1) 21 (v+l) (v+2)

= Tivl)

- + ...
J,(z) (1 )
In the ALGOL 60 procedures for the computation of the Bessel functions,
GAUTSCHI (1964b) used a gamma function algorithm; it was not used for

summing the above series, but for an algorithm based on recursion relations.
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2. FUNDAMENTAL FORMULAS

In section 2.1 we discuss asymptotic expansions for the gamma function
and the psi function; rational expressions are mentioned in section 2.1.3.
In section 2.2 we give Chebyshev expansions. In section 2.3 formulas for

analytic continuation are given.
2.1 Expansions

2.1.1 Asymptotic expansions of the gamma function

The following representation of 1n T'(z) is of fundamental importance
for deriving expansions for large values of |z]:

(2.1) In I'(z) = (z=%) 1ln z -z + % 1In (27) + S(=z).

S(z) (for large |z|) gives a small correction with respect to the remaining
terms of the right-hand side. These terms yield the well-known Stirling
formala

(2.2) T(z) ~ z% 2 (21*:/’2)1'1 ; Z e,

S(z) can be written as a Laplace integral

zt

rae -1
(2.3) S(z) = [ e £(t) at , £(8) = [(e"-1)
0

+ % - 1/tl/t.

For an elementary and elegant proof of this representation see LAUWERIER
(1974, p.30). A different representation is

o

(2.4) S(z) = 2. J arctan(t/z) 4, .
2nt
o e -1

(2.3) and (2.4) are called Binet's integrals. In both equations we assume

that Re z > 0. The proof of (2.4) (ana
& WATSON (1927).

of (2.3)) can be found in WHITTAKER

More information on S is obtained by,

for instance, expanding f of
(2.3) in powers of t. This well

~known technigue for the asymptotic expan-—
sion of Laplace integrals is outlined in LAUWERIER (1974).
even function, and we write

Here f is an

No1 2n 2N
(2.5) £e) = 7 at"+ Mgy, n= 1,2,...,
n=0 n N
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with a, = an+2/(2n+2):_Bm are the Bernoulli numbers, which are special

cases of the Bernoulli polynomials Bn(x) appearing in the expansion

text v £
—_— —_ < 2m.
(2.6) s I B ) 7, e[ <o2r
e -1 n=0
The Bernoulli numbers Bn are given by Bn = Bn(O). The first few are BO =1,
_ 1 _ 1 _ 1 _ 1 _ _
B, = 51 B, = gr By = - T B6 = a3 (33 =Bg = ... = 0). For more infor-

mation see ABRAMOWITZ & STEGUN (1964, p.804) and LUKE (1975, ch.1).
From the definition of £ it is concluded that EN is bounded on [0,=);
that is, there are assignable numbers Mg = 358 IfN(t)I. So, we can write
N-1
B
2n+2

(2.7) S(z) = L —— 202
n=0 (5111) (2n+3) 2201

+ EN(z}

and for EN we have for every z with Re z > 0 the estimation

(2m) !
| )] < | JtZN £(8) 2t at| < _M”w
0 (Re z)

This bound for EN tells us the following: for given € > 0 and N(= 1,2,...),

oo

we can choose z, Re z > 0, such that |EN(Z)]-€ £. For fixed N, IEN(ZY[ be-

comes smaller according as Re z increases.

REMARK. It is not concluded that for fixed =z, |EN(z)! becomes smaller

according as N increases.

The numbers MN are not easily evaluated, and so, this method does not
give much information for numerical application. From (2.4) more insight is
gained in this respect. The interested reader is referred to WHITTAKER &
WATSON (1927, p. 251). The result is

B ¥K(z)
2N+2 . -2N-1
(2.8) |EN(Z)! = mm—- |z| B
where
K(z) = sug 122/(22+u2)[.
u= _
If larg z]| < %m, then K(z) = 1. For real positive z, EN(Z) is less in

absolute value than the first term neglected in (2.7) and it has the same
sign. These results are used in numerical algorithms. For the use of error

bounds for complex z see NG (1975) and also LUKE (1975, p.7).



124

-2N-1
From (2.8) it follows that EN(z) =0tz ) for Re z + += . In the terminol-
ogy of asymptotic analysis we call (2.7) an asymptotic expansion. Inserting

the values of the first Bernoulli numbers we arrive at the representation

(Stirling's series)

1 1

.9 In T'(z) = (2=%) Inz - z + % 1In (27) + —5— - ——x +
22 no 122 35023
-9
+ 1 = - 1 5 + 0tz 7).

1260z 1680z

For numerical applications (2.9) is very important. The error bound in
(2.8) gives a good criterion for selecting N and the range of z, especially
when larg z| < n/4.

Stirling's series is valid, however, for |arg.zf < m, but for Re z < 0
its usefulness detoriates as z approaches the negative reals.

By exponentiation of (2.9) we cbtain expansions for I' or 1/I'. The

result is

- 1 139
r(2) ~ e 227 (2n/2)* (1+ 1;—2 + 5 - 3 )
288z 51840=z
219 139
z -z by 1 1
1/T(z) ~ e’z (2n/z) (1- ozt 5 + 7+ N I

288z 51840z

again for Iarg z| < 7w, z + =, We remark that the series in (2.10) contain
powers of z_l, whereas (2.9) is essentially in powers of z_z; thus (2.9)
is more efficient than (2.10). Of course, expansions for I' and 1/T can be
obtained directly from their integral representation. Numerical values of
more coefficients in (2.10) are given in WRENCH (1968) and SPIRA (1971),
together with more useful information on numerical aspects of the gamma
function.

Writing in (2.3) for z the value z+a and expanding f (t) e ot
powers of t, we obtain (with (2.6)) the expansion

in

(2.11) In T'(z+a) = (z+a-%) ln z - z + & 1ln (27) +
N B . .(a) e
§oo(en®t =m0 (7N,
m=1 m{m+l)z

for z + », |arg z| < w/2. Combining expansions of this type yields
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; (z+a) _ a-b (a-b) (a+b-1) -2
(2.12) T(z40) = 2 1+ == ——=+ 029 L

From LUKE (1975) it follows that, again, the general term in this expansion
is a Bernoulli polynomial. Luke also considers an interesting modification
of (2.12) due to Fields but details will not be given here. See LUKE (1975,
p.11).

In applications we are often confronted with quotients of gamma func-
tions: I'(x)/T(y). If x and y are both large it is recommended not to com-
pute T(x) and T(y) separately, for the computer's range of the reals is
(especially for this function) rather limited. It is better to use repre-
sentations such as (2.12). On the other hand, it is possible to avoid over-
flow by writing T'(x)/T(y) = exp(ln T'(x)- 1In T(y)), but the subtraction may

cause a loss of significant digits. Here (5.1) on p.136 may be useful.

2.1.2 Expansions for the psi and polygamma functions

By formal differenmtiation of (2.11) we cbtain asymptotic expansions

(withm 2 0; ¢y ==1n 2, ¢ = (m-1) 1/2" (m=1))
N-1
(m) m—1 m! {(2k+m-1) ! =~2N-m
(2.13) Y (z) = (~1) [c + + ] B, ity 0(z J],
m 2_zm+1 k=1 2k t2k)!zzk+m

N=1,2,..., z+ = in |arg z| < 7. On the other hand we have (1.9) and
(1.10). Direct application of these formulas is not efficient for computa-
tions, but they may be transformed, e.g. by using the Euler-MacLaurin sum-
mation formula. But asymptotic methods based on (2.13) and range reduction
(see section 2.3) may result in more efficient algorithms.

In order to demonstrate the Euler-MacLaurin method we give more details.
The theory can be found in, for instance, LAUWERIER (1974) and KNOPP (1964).
Suppose, we want to evaluate series of the form Z:=D £(i), where f is a
function defined for non-negative real numbers, The Euler-MacLaurin method
can be used by choosing a positive integer n and by computing the partial

sum Iz;é f(i) directly. The remainder is written as follows. For k= 1,2,3,...

we have
o o k B
i 2i-1
(2.14) Y O£(i) =% £(n) + [ £(x) ax - } Tz—i—-}rf‘ Yn) + R,/
i=n n i=1 -
1T _(ek+1)
R = et £ (x) L (x) dax,

(2k+1)-n
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where P2k+1 (x) is the periodic continuation of the Bernoulli polynomials
Bn(x) with respect to [0,1]. That is, Pk(x) = Bk(x) for x € [0,1] ana
Pk(x+j) = P (x) for all integers j. For the validity of (2.14) we suppose
that the first 2k+1 derivatives of £ exist on [0,®), that £ (w) = o,

j =0,1,...,2k+1 and that the integrals occurring in (2.14) exist.
For the polygamma functions ¢<m) with series expansions (1.10) we
take f(x) = (z+x)-m_l, and we suppose that m =z 1. The integral fn f(x) dax

is easily evaluated (this is of importance for the applicability of the
method). Moreover the derivatives of f are available. Let us give the
result for k = 3:
2.5 y® g = )™ nil (z+1) ™71 4
i=0
m! (1)t (m3)r m+s)t ]
2(240) © 15 )2 720(z4m)? 30240 (z4n) &4

+ (-1)m+1(z+n)“m[(m—11 '+

+ (-1 g Ry

By using well-known estimates for the Bernoulli polynomials (see ABRAMOWITZ
& STEGUN (1964, p.805)), viz. '

2(2n+1) ! 1

[2W12n+1 1_2—2n

(2.16) Py g )] < x 20,

we obtain a bound for R.. For z = 1, m=1and n = 10 we cbtain

3
-10
IRBI < 3.56 x 10 - (Observe that a check can be made by using I,Ll(l) (1}=1T2/5-)

2.1.3 Rational approximation of v

LUKE (1975) gives a rational approximation of the form

A (z)
2 {z=
(2.17) v(z) +T=_(‘z'jz_1)-' Bl(-z—-)-+sn(z), Re z > 0,
n

where An and Bn are polynomials. They satisfy a fourth order recursion
relation. From estimations of S,(2) given by Luke we expect that (2.17)
gives an efficient algorithm.

2.2 Chebyshev series
——¥SNEV serles

An expansion of ¥ in terms of Chebyshev polynomials is

given by Wimp
(see HART c.s. (1968, section 6.6)).
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Vixta) =2 J' o (T, (x), -1<xs1, a>1,
k=0
with
([ (5+a) %117 (3+a) 1

(a) = -
j=0 [ (3+a)2-11"

’ k =z 1.

Integration with respect to a will give a Chebyshev series for 1ln I'(x).
See alsoc in this connection NEMETH (1967), of which the results are quoted
in LUKE (1975, p.4).

2.3 Range reduction

Important relations are

(2.18) I'(z+1) = zI'(z) (recursion),
(2.19) I'(z) = I'(z) (conjugation),
1 _ sin 12 .
(2.20) T(1-2) T (132) ~ P (reflection), see (1.4).

Straightforward application of (2.20) may involve some pitfalls, which can
be avoided by a proper representation of the quantities, as indicated by

KUKI (1972). For example, if z = x+iy, x < 0, y < 0, he writes

log T'(z) = log(2w) + wy - imlx-%] - log H(z) - log T(i-2),

with
(2.21) H(z) = ~(1+e2ny)tanh Yy + ezwy(2 sinzw; +1isin21%), X = x-[x+4].
By using (1.2), Gauss' duplication relation can be proved. It is given
by
(2.22)  T(22) = T'(2)T (z+9)2°%7! 777,
with generalization
-1 - 1—
Fmz) = T(2)T(z + 3) T(z + 2) ...T(z + B2hy pP27% oy 2 (1-m)
m m m

where m = 2,3,4,... .
For the psi and polygamma functions analogous formulas exist (see
ABRAMOWITZ & STEGUN (1964)).
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3. ALGORITHMS AND IMPLEMENTATIONS

In this section we give information on available algorithms and soft-
ware for the gamma function and the related functions. We discuss nearly
maximum precision implementations in section 3.1 and variable precision

implementations in section 3.2. Finally, known implementations are listed.

3.1. Nearly maximum precision

The computation of the logarithm of the gamma function may be done
by computation of (2.7), for some strip parallel to the imaginary axis,
followed by (2.18), (2.19) or (2.20) or some combination. A survey of the
approaches and activities is given by NG(1975); we select the approach of
KUKI(1972) as an illustration. He partioned the first quadrant of the com-—
plex plane by the curve

(3.1) x = t(y) = max{.1,min(10,10v2-1y|)}
where z = x + iy, X,y € R,. The used algorithm for Af({ak}:Z)' reads
13.2) AlnT(z) , for x > t(y), v> 0O

(3.3) Alnl (z+k) = 1n §ﬁé(z+]) ' for x <t(y), x> 0, vy> 0

with t(y) £ x+k =< tiy)+1

(3.4) InT=- In sinmz - Alnl'(1-z), for x <0, y< 0
(3.5) AlnT(z)

' for x <0, y>0
or x>0, y< 0,

where Alnl is the following approximation of In I':

(3.6} Alnl (z) = (z-l;)lnz—. Z + Nln 27 + SN(z)

with SN(z) the first series of (2.7), i.e.,
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=2k+1

szz

702k (2k-1) 1.

Il 12

(3.7) Sy(z) =

k=1

In order to make the subtraction in (3.3) harmless, Kuki considered

(3.8) (ALnT (z+k) - kln(z+k)) - 1n{ 5At
j=

0 (z+3)/(z+k) }.

To avoid cancellations the subtraction in the first term of (3.8) is done
analytically by combining kln(z+k) with other terms in (3.6). The contin-

uous branch of the second term is chosen; because the imaginary part is be-
tween 0 and 4.7 the principle value of the logarithm is augmented by 2mi when

appropriate. In (3.4) the reflection formula (2.20) is used. When the gamma
function is desired, the reflection formula may be used more directly by
writing

I (1-z) = (sinmx coshTy +i cosmx sinhmy)T (1-z) /7

(3.9) 1 - sinmz
I

r'(z)

where the sinh function, with good relative precision, is to be used, and
I'(1-z) may be obtained from the log gamma by exponentiation. The use of the
reflection formula may be minimized by using a complex sine and, for log
gamma, a complex logarithm (Spira's approach, see NG(1975,p.64)). The be-
haviour near the poles must be considered during the computation of

log H(z) (see (2.21)); if the perturbation of the argument

is such that

|H(z) | — exp(2ny)2mAz < O,

then z is considered as a singularity. Ng proposed to deliver the largest
positive number representable in the machine in this case; Kuki assigned
this value to the imaginary part as well.

In IMSL the implementation for the log gamma is based on the work of
CODY & HILLSTROM (1967) and the reflection formula. Cody c.s. approximated
the approximation: from the Stirling series and the recurrence relation
they provided minimax approximations. The used algorithm for the log gamma,

Alnl, reads
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~n x + R (x+1) ’ 0 <x < .5
n,m

-1)Rr! , .5s5x< 1.5
(x 1]Rn,m(X)
x=2)R> (%) , 1.5sx<4

n,m

3 =
R. _(x) , 4< x <12
n,m

-1 4 2

{(x-%)Inx- x + %ln 27+ x Rn m(l/x ), x> 12,

r

where Ri m(X) = P;(x)/Q;(x). a ratio of polynomials. The partitioning of

r
the interval has been chosen such that for modest values of n and m the
maximal errors in each subinterval are nearly the same. The reflection for-

mula is used in the form
Aln|T(x)| = Inm- In|sinmx| - 1n|r(1-x)].

The computaticnal problem for the gamma function, Al', is for the IMSL im-
plementation based on HART c.s. (1968) as follows:

m/(sinmx Al (1-x)), % < 0

AT (x+k) / ];Eé (xtj) , 0 <x <2, ke IN, 2 < x+k <3

5
Rh’m(xj ' 2<x 23
kﬁl .
AT (x=k) 300 (x+j=k), 3 <x =12, ke IN, 2 < xk < 3

exp (Alnl (x)) r 12 < x.

Attention has been paid to the argument reduction of the sine.

3.2. Variable precision

CLENSHAW c.s.(1963) considered a variable precision implementation

based on the Chebyshev expansion of 1/T(1+x) as follows.
problem is

The computational
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(3.10) Al/T (x); for 0 = x =1,

with recursion for the remaining x-values, where

Al/T(x) = cka(Ex—l)

Il ~12

k=0

and N £ 14 such that for the desired precision &

I < § < ]c

]CN+1 N|‘

The first neglected term in the Chebyshev series represents the approximation
error. The poles are handled by an error jump. ANTONINO & SCHWACHHEIM(1967)
published an implementation with arbitrary precision; this must be under-—
stood in the sense of nearly machine independent. On every machine they ob-
tain nearly maximum precision. The algorithm is based on the observation
that the first neglected term in the Stirling series for the log gamma
majorates the approximation error for [argz[ < m/4 (LUCAS & TERRIL(1971)).
LUCAS ¢.s.(1971) used a similar approach for evaluation of the gamma
function for complex arguments. The implementation S14HAA/F (NAG) is based
on (3.10) with fixed N and |x| <50, in order to prevent overflow for a
CD CYBER.

Without giving any further details we give a selection of implementations
known to us.

Gamma function and log gamma function for real argument:

MGAMMA /MLGAMA IMSL

S14ABL/F NAG

GRMMA CALGO 309, ANTONINO c.s(1967)
GAMMA/LOG GAMMA NUMAL

GRMMA/LOG GAM MSL

GAMMA /ALOGAM /DGAMMA CERN

GAMMA CALGO 221, GAUTSCHI (1964a)
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Gamma function and log gamma function for complex argument:

CDLGAM CALGO 421, KUKI(1972)
CGAMMA CALGO 404, LUCAS c.s.(1971)
CGAMMA/CLOGRM CERN , KOLBIG(1972).

Psi function:

psi FUNPACK
CDIGAM CERN , KOLBIG(1972)
POLYGAMMA CALGO 349, MEDEIROS c.s.(1969).
PSIFN/DPSIFN CALGO 610, BAMOS (1983)

Ratio of complex gamma functions:
CRAGAM CERN.

Coulomb phase shift:
COULOMB CALGO 300, GUNN(1967).

REMARKS ,

1.

We have omitted the early publications in CALGO because we consider them
overruled.

The reader may not conclude that we agree with the methods in the above
implementations. It falls outside the scope of this tract %o give full

certifications for all algorithms.

The CERN algorithm for the computation of the ratioc of two gamma func-
tions is based on straightforward application of
F'(x)/T(y) = explInl(x) - InT(y)]. As mentioned earlier, for large x and

¥ we recommend to use (2.12) or modifications of this expansion (see
LUKE (1975,p.11)).

- For applications an implementation of the "tamed" function F(z)ezz_‘z

and of S(z) defined in (2.1) would be useful.
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4. SOME ASPECTS OF ERROR ANALYSIS

In this section we consider some aspects of error analysis in con-

nection with the concepts introduced in section II.1.

For large and intermediate values of |z| the error caused by pertur-
bation of the argument is significant in the evaluation of T'(z). For

the relative error in =z, Ez. we have the estimate

(4.1) |[[r(Z) - I'(z2)/T(=2)] = |czz|]w(z1|

with ¢(z) ~ 1In z, z > =, [argz] < m. For z = 100, zy(z) = 460.0.... so that
2 or 3 figures may be lost. For small z, for instance in the interval [1,2]1,
the relative error is slightly damped.

The amplification factor for the relative error, viz. zf'(z)/f(z), for
Inl(z) and ¢(z) approaches 1 and 0, respectively, for |z| = =. Hence, the
relative error in the computations is not larger than in z (for large !z[).

For 1n I'(z) the intrinsic (absolute) error is given by

(4.2) [1nT(2) - InT(z2)| = |z-z|v (2).

In order to obtain an estimate of the intrinsic error, KUKI (1972) used a
practical variant of (4.2) during the computation cf the logarithm of the
gamma function. This estimate is composed of quantities available during

the calculation.

The intrinsic error estimate !¢(z)[$z is approximated for

x > tly), v> 0 as Iln(z)fﬁz
1
x < t(y), x >0, >0 as 2+ Az, z| small
o ¥ l lz| - Az [ i
|1n(z+n) | &z . lz| large
exp(2my) 2nAz
x <0 P ¥ <0 as lH(z) | - exp(2my)2nAz

with Az = |Z-z|, 2z = x + iy and H(z) defined by (2.21).
For real parameters some examples will be given on condition numbers

as introduced in section II.1.
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EXAMPLE 1. (Condition of part of the truncated Stirling series)
When computing the gamma function the Stirling series is commonly used,

say on [a,»], where a is appropriately chosen. From (2.9) we select the

sum

1 1
(4.3) Sx) = 4+ - L _ 4 - = x e [a,®

12 360x2 12601(4I 1680x

with representations

2 3

k

Py = Lo W Wy,
12 360 1260 1680 k

(4.4)

2 2 2
= z cka(2a w-1) , we [0,1/a7).
k=0
The condition numbers of (4.3) and (4.4) are equal; for a = 10 we obtain

x = 1. So we prefer the power sum representation.

EXAMPLE 2. (Condition of polynomials in rational approximation of 1n T')

CODY c.s. (1967) gives for .5 < x < 1.5, among others, the approximation
(4.5) InT(x) = (x—l){(2.02x2—2.74x-2.61)/(x2+3.9’?x—-80)}.

2

Representation of the numerator as 5 kak(2(x—1)) vields a slightly bet-
k=0

ter conditioned representation; the denominator is better conditioned as a

power sum.

EXAMPLE 3.
KUKI(1972) estimated for log gamma the rounding error by the value of the
dominant term of the Stirling series, to be multiplied by a factor because

of neglected smaller contributions, as

(4.6) | z=%) 1n(z+k) | & in case of (3.2)
i k=1 .

(4.7) (3.15) + |Re 1n s (z+3) /(z+k) | € in case of (3.3)

(4.8) {|(n2r + my) - inlx-%1| + |Re(lnH(2))|}e in case of (3.4).

To (4.8) the effect of evaluation of InT(1-z) must be added by appropriate

use of either (4.6) or (4.7); € is of the order of machine accuracy. We can
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understand this, because an error bound of a sum is proportional to the
sum of the moduli of the terms, as is well known. In our approach we con-
sider each term of the Stirling series as a parameter a;;
number K represents the sum of the moduli of the terms.

the condition

5. TABULATED COEFFICIENTS

In this section we summarize approximations with published coefficients.

For more information see LUKE (1975,p.21).

LUKE (1975}
1/T(z+1) fa 2" 20 @ |z] < =
n
T (z+3) la z 20 4 |z] <3
* 2 < <
T (x+1) {anTnm 04 0<x <1
*
1/T (x+1) fa T (x) a, 20 @ 0<x <1
*
T (x+3) Ja T_(x) a 20 d 0sx <1
*
In T(x+3) Ja T (x) a 20 4 0<xs1
0™ (x43) Za:]m}T*(x) afim) 20 d 0<x <1
(m=0,1,...,6)
S(x) (see (2.7)) anTZn(I/x) a, 15 4 x z 1
HART c.s. (1968)
T'(x) rational approximations up to 22 d on [2,3]
8 (x) rational approximationsup to22 don [8,1000]and [12,1000]
COoDY c.s. (1967)
1n T'(x) rational approximations up to 22 d on [0,12]

CODY c.s. (1970)

Uo(n)(see(1.4}) rational approximations up to 22 4 on (-w=,«).

REMARKS .

1. The approximations for T in HART c.s.(1968) are not on [0,1] (as stated
there) but on [2,3].
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2. T_ and T* dencte the Chebyshev polynomials of the first kind usually con-
n n
*
sidered on [-1,17] and [0,1]; Tn(x) = Tn(zx—IL

3. In CODY c.s.(1967) 1n T(x) is represented as

(x-1) * rational function on [%,1%]

(x-2) * rational function on [1%,4]

in order to preserve accuracy near the zeros 1 and 2. We favour the ap-

proximation
x * rational function on [-%,%]

for 1n T'(1+x); the computation near x = 2 is reduced to the problem

near 1 by

In T(2+4y) = In T (1+y) + 1ln(l+y)

with y = x - 2. An algorithm for accurate avaluation of 1ln(l+x) for
small x is needed; no known library provides this function (see, however,

KAHAN (1983)). An efficient algorithm for 1n(l+x) may be based on the expan-

sion
w  2k+1 2
- P___ 1+p" x
1n(i+x) = 4 kzl Tkl T2k+1 C2p 24’
.(5.1)
0< p<t, -492 < x < —2B 3
(p+1) (p—-1)

(cf£. LYUSTERNIK c.s.(1965)). From some analysis it follows that we can
take p = 1/7, yielding the x-interval [-7/16,7/9] for safe evaluation
of In(l+x). In order to obtain relative accuracy near x = 0, the odd
Chebyshev series should be evaluated, for instance, by using Clenshaw's

algorithm given in CLENSHAW (1962).

6. TESTING

When testing one can think of verification of the coding and an accurate

performance profile. In both cases one needs:
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known values (tables, previous or multiple precision programs),

mathematical relationships.

We agree with NG(1975) to use for testing the duplication formula (2.22),
because the algorithms do not use it; we do not agree with HART c.s.
(1968) because the recurrence relation is generally used in the algorithms.
Arguments may be selected in different ways; arguments near singularities
or other difficult values must be incorporated in the test set.

Known values of the gamma and related functions are published by
LUKE (1970) and ABRAMOWITZ & STEGUN(1964). The latter contains references
to published tables; in this connection see also FLETCHER c.s5.(1962). For
automatic table comparison NG(1975) constructed a reference subprogram
which computed the complex gamma function in extended precision using a
package of subroutines in 70-bit (about 21 decimal) arithmetic, composed
by Lawson c.s. of JPL. SCHONFELDER(1976) used a package MLARITHA (ALGOL 68)
to produce multi-length function values with which the multi-machine li-
brary routines are compared. Background information about testing of func-
tions is given in NEWBERY & LEIGH(1971) and CODY (1969). The NATS approach
is discussed in CODY(1975a); the NAG approach in SCHONFELDER(1976). Fur—
ther we mention CODY(1973).

7. APPLICATIONS

In this section we mention some analytical applications of the func-

tions of this chapter.

7.1. Summation of rational series by means of polygamma functions

An infinite series whose general term is a rational function in the in-
dex may always be reduced to a finite series of psi and polygamma functions.
EXAMPLE. (ABRAMOWITZ & STEGUN (1964,p.265))

oo [--]

1
s—_—z =Eu’
n=1 (n+1) (2n+1) (4n+1) n=1

with

/3 1, 2/3 _
n n+1 n+l/2 n+1/4

[y
-
-
[3&]
-
—

i o~ Swi2 TR Y3 Geizm TR
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Application of (1.9) yields
1 2
S = - ‘é-w(Z) + P(1%) - 3 Y(lk).

For alternating series we can use the relation

P R C e
Z = 54’(—27—) lﬂf-'(z).

7.2. Substitution of factorials by their integral representations

Scmetimes it is useful to replace in series factorials or expressions

of gamma functions by their integral representations.

EXAMPLE.

For |xE < 4 let

E (n‘)2 n
f(x) = —_— X .
n=0 (Zn+1)!

Then by use of (1,12) we obtain
1

-]

- n _ n _ dt _
£(x) = Z x J {t(1-0)}at [——-—-1 — (15T =
n=0 0 0

. - arctan (

X N 4
f4x=x2 f4x—x2 /g;:;?

This result could also have been obtained by use of hypergeometric func-

arcsin(vx/4).

tions.

In order to facilitate the use of this technique we enumerate the
integral representations of some expressions of factorials; for more re-—
lations see DINGLE(1973). For notational convenience we use n!, (n-%)!,..

instead of T(n+l1), T'(n+%),....

n! IE e trlar

1/n! 1/(21i) S et ™ lat  (see(1.6))
(4n) ! 25y t“*le*tzdt

n!/ (&n)! 217"’3‘; (2t)ne_t2c1t

(n=%) ! /n! 2n‘1’.rg“ sin’"tat = 2n'l’fg” cos?Pt at
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N _ m n
n!/(n-m)! (d/e) 77| _
(n-%)!/n'n 4n'5fé (1-t5)" ¢ arc sin t at
(n+a) ! (n+B) ! 4Ig t2n+u+8+1xa_8(2t} dt (Bessel function)

. ' 1 o nva o B-a-1 _
(n+a) !/ (n+8)! BT ‘ot (-t at =

2% (a-p)! (2_n at
- ‘ B+1 a-B+1
™ 1+it  (14it) " (1-it)

[n-)12%/n: 2777 (hsin t)%ae = 2 /% — 8¢

2 1 n (2 cosh t)n+1
(n!)"/(2n+1)! ID [t(1-t)] at

n!/l (4n) 172 an ! fgﬂ (2 cos t)Mat

(2n)t/mn? 2l 2 4P 8t

! t(t2-1)"
REMARK .

Observe that a factorial form is transformed into a power form; the

validity of interchanging summation and integration must be verified.

7.3. Laplace transforms as psi functions

Laplace transforms of the functions

cosh Bt sinh Bt sinh Bt
cosh yt’ sinh yt’ cosh yt

are representuble in terms of psi functions; see OBERHETTINGER & BADIT

(1973) for an extensive table of Laplace transforms.

139
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IV. EXPONENTIAL INTEGRALS AND RELATED FUNCTIONS

In section 1 we give the definitions and some relations between the
functions of this chapter. In section 2 attention is paid to expansions of
these functions. Taylor and asymptotic expansions are derived in section
2.1. Chebyshev expansions and continued fractions are mentioned in 2.2 and

2.3, with reference to earlier given results for hypergecmetric functions.
1. DEFINITIONS and ANALYTICAL BEHAVIOUR

Many results for the functions in this chapter follow from the more
general hypergeometric functions, of which some results are given in II.5.
Especially, results for Chebyshev expansions follow easily from the expan-
sions of confluent hypergeometric functions. For a first introduction, how-
ever, some specific properties and results of the exponential integrals are
easier understood by considering special cases instead of the wider class of
hypergeometric functions. At the end of this section we give the relations

with these functions.

1.1. The exponential integrals

The function we start with is the well-known exponential integral

-

(1.1) Elix} =JE-{:—Edt,

X
which we consider temporarily for x > 0. We cannot express it in a finite
number of elementary functions. For x = 0 it is not defined and we first
give a representation from which the behaviour near x = 0 is easily under-
stood.

Let us consider the auxiliary function
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-t
f(x}=J5-—dt. x>0, vsi,
v &

H

which for v = 1 coincides with El' If v < 1 we can write

Ll X
£,00) = J e ft 7V ae - J e TV at
0 0
x -t
=T (l-v) - 1 xl_v + I e dt.
1-vw tv
0

If we now try to substitute v = | we must carry out a limiting process. The

integral is well-defined for v = 1, but, however, the remaining terms are
not. By writing

-V

1
- 1 1-v _ I'(2-v)-x
g(v) =T(l-v) - -5 = - , v < 1
and applying 1'HSpital's rule we obtain
limg(v) =T'(1) - 1lnx = -y - 1n x

v+l

(see (1.7) of Chapter III). Hence, it follows that

x —_—

_ l-e

(1.2) E (%) = ‘y—lnx+J =
0

This formula enables us to consider E1 for complex values of its argument.

t

dt, x > 0.

It appears that the singularity of E1 at 0 is described by the logarithm,
which is a many-valued function. The integral in (1.2) represents an entire

function of x. Hence, E1 is a many-valued function of which the principal
branch can be defined by

z
-t
(1.3) Ej(2) =-y-1lnz+ J 1_: dt, z #0, |arg z| < =,
0

where the logarithm has its principal branch (real for positive z). The ana-
lytic continuation for other values of the phase of z is given by

=X

$o -t
(1.4) Eltxe'"l) =-Y ~-1ln x 3 mi + J 1-e dat, x > 0,
0
El(zeznﬂl) = B, (2) - 2nmi, n=%1,%2, ..., z # 0.
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REMARK. Using Cauchy's theorem and (1.1) for complex values of z, viz.

o
(1.5) E (2) = J EEE at, z # 0, |larg z| < =

z
the relations in (l1.4) can alsoc be understood. (The path in (1.5) should
avoid the negative reals and the origin.) Increasing the phase of z in (1.5)
beyond the range (-m,m) gives an integral of the type (1.5) plus an integral
over a closed circuit around t = 0, which can be evaluated by computing the
residue at t = 0.

The following exponential integral is also used:

© X
e—t et
(1.6) Ei(x) = - l — d4dt = { — dt, xe R, x #0,
H t
—x —C

where the symbol { is used to mean the Cauchy principal value of the integral,

e.g.,
“F ot ot
Ei(x) -_-lJ'.IIl{I ?dt‘l’[—t—dt}, x > 0.
ev0 e

(If x < 0 then the integrals in (l1.6) need not to be interpreted as princi-
pal value integrals). Ei is real for real x and it is usually not considered
for complex values of its argument.

From the first integral in (1.6) it easily follows that
(1.7) Ei(-x) = —Eltx), x > 0.
For negative x this relation does not hold, as Ei is real for x < 0 whereas

El is not (this follows from the first of (1.4)). For x > 0 we have from

(1.6)

x X
e_t e_t—
Ei(x) = - { —z—-dt - Ei(x) = - [ dt - EI{x) =
-x -x
x -x
= -t
_ l-e l-e _
= J T dt - El(x) - J T dt =
0 o]
*ri .
=y + 1lnx - v - 1ln x - El(xe ) F oTi,
x dt

where we use 0, (1.2) and the first of (1.4). Hence, for x > 0 we

-x t
have
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t
(1.8) Ei(x) = -E, (xe ™y s oni
or
X _ _'J_,_ i -mi
(1.9) Ei(x) = 2[El{xe )+E1(xe )1,

which are the modifications of (1.7) for x < 0. Combining the above results,
we obtain
x
(1.10) Ei(x) = v + 1ln|x| + J
0

t-»1
g—u—-dt, xe IR, x # 0.

In Figure 1 the graphs of El and Ei are shown.

Figure 1. Graphs of Ei(x) and El(x)

Generalizations of E1 are defined by

< otz
(1.11) E (2) = J — at, Re z > 0,
R

where v may be any complex number. Generally one encounters Ev for integer
values of v, especially v=n = 1,2,... . For arbitrarily v-values Ev is

rather considered as an incomplete gamma function. En has, just as E a

1!
logarithmic singularity at z = 0. There is also a branch point at infinity.
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One may thlnk it peculiar, this definition of E . From (1.5) one should

-V
expect f e dt The present definition, however, deflnes E as a re-
peated Lntegral of El‘ as follows from E;(z) = n 1(z). Hence
=1 =] oo
e n
E (z) = = —_—
at®) IEn_ltt)dt J J T (@t)
-1 z t

from which follows (the proof is left to the reader)
= 1

-7 - -

e J e St

(1.12) En(z) =(—r:1—')—!

——E:E——-dt, n=1,2,...
0
In this formula we can take |arg z| < m.
By partial integration in (1.11), or writing tn_l = tn_z[(t+z)—Z] in
(1.12) we obtain the recursion

-Z
(1.13) nEn+1(z) = e - zEn(z), n=1,2,... .

For numerical computations this relation is very important. See GAUTSCHI
(1961a) and GAUTSCHI (1973). For stability aspects of this recursion see
also II.3. A variant recursion is given by iCTON (1974) .

The logarithmic integral 1li(x) is defined by

x
(1.14) li(x) = J—‘}E—=Ei(1n x), x> 0.
ln t
0
The functions an(z), defined by
an(z) = J tne-tht, Re z » 0, n=20,1,2,...,
1

are special cases of Ev(Z)' We have the recursion

-z
zan(z) = e + nun_ltz). n=1,2,3,... .

+ A
For stability aspects see again II.3. For z € R this is a positive recur-

sion and therefore stable.

1.2. The sine and cosine integrals

imi

real z, the real and imaginary parts we obtain functions connected with the

If we consider (1.3) with z replaced by ze and if we separate, for

sine and cosine integrals:
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iz
B (zel™) = oy - Lni - 1nz 4 1“;tat=
1'% T3 t
o]
1 1
- - i t
= -y -1lngz+ | IZS0S EZE g0 gr Loy | SIREE i,
t 2 t
0 0
The definitions for the sine and cosine integrals are
z
. _ sin t
Si(z) = J r— dt
0
(1.15) z
Ci(z) =y + 1n z + [ SQQEE:L dt, larg z| < m.
0
On the other hand, we have using (1.5)
) ot Te-izt
(1.16) E, (iz) = J & at =J T dt
iz 1
L=< -]
={Mdt_ijﬂ_ﬂﬁﬂdt_
z+t z+t
0 0

Hence, combining the above results we obtain

1

si(z) = 5T - f(z) cos z - g(z) sin =z
(1.17)
Ci(z) = £(z) sin z - g(z) cos =z,
where,
k-]
_ sin t
f(z) = { iz Gt
o]
(1.18) ® z # 0, laxg z| < 7.
cos t
glz) = J “td-_zdt

0
REMARK. In the second integral of (1.16) we integrate from 1 to + =. The
integral exists for Re iz > 0. In the first integral we integrate from iz
to + <, avoiding the non-positive real t-values. By using the principle of

analytic continuation the restriction Re iz > 0 may be dropped; we proceed



IV. EXPONENTIAL INTEGRALS 147

with the z-values indicated in (1.18).

In Figure 2 the graphs of Si and Ci are shown.

Cilx)

N .

Figure 2. Graphs of Si(x} and Ci(x)

For large |z|, the functions in (1.18) are slowly varying. The oscilla-
tory or exponential behaviour of Si and Ci is fully described by the be-
haviour of the circular functions in (1.17). We give another representation
of £ and g.

Writing
=3
eit
(1.19) glz) + if(z) = J T dt
. 0
elt
d int t f — dr =
and integrating JLR Tiz around the contour LR AR u BR u CR' where

A, = (t] 0stsR}, B, = {it| 0=t <R},
1
CR = {t| |tl =R, 0% arg 1 = 7 )

for positive R, and letting R + », we obtain for Re z > 0

oo

o
-t )
glz) + if(z) = i ie at = E’e—zt L
e c 241
0 0

Hence, we have by writing £(z) = £, (x,y) + ilex,y). glz) = gl(xfy) +
igz(x,y), z = x + iy and by separating the real and imaginary parts in the
last integral
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T -xt
g, (x,y) = £, (x,¥) = [ e2 (t cos yt + sin yt)dt
! : oob+l
0
% -xt
g,(xy) + £ (y) = J °2 (cos yt - t sin yt)dt.
£+l
0
Since 9y and f1 are even functions of y, whereas 9, and f, are odd (use
(1.18) in order to verify this) we can solve the above equations for f1'f2'

91 ,qz and we obtain

T -zt 5 ce-2t
(1.20) £z) = I S5—at, g2 = {2__‘“' Rez > 0
b e o B H1

Remark that if Re z > O the above integrals exist and the point T = -z lies

outside the contour LR'

Apart from the function Si defined in (1.15) the function si, given by

ac
“‘“-Jn?tdt

z

(1.21) 8i(z) = si(z) -%

is used. Furthermore we have the representation

=

(1.22) ci(z) = -jg‘?-g—tdt, larg z| < m,
z

where t avoids the non-positive reals.

Finally, we mention the "hyperbolic analogues" of (1.15)

z
Shi(z) = J ?i_:h.._.t_' dt
Q

(1.23) z
Chi(z) "‘f"‘lnz"‘JSE‘“_:‘*_—I larg z| < =.
0

1.3. Relations with hypergeometric functions

The confluent hypergeometric function U (ABRAMOWITZ & STEGUN (1964,

Ch. 13)) can be used for these functions. We have



IV. EXPONENTIAL INTEGRALS 149

E (2) = e %u(1,1,2)
(1.24) EI(Z) + Yy +1lnz =z 2F2(1,1;2,2:z),
E (2) = e 22" Yy(n,n,z) = e ?u(1,2-n,2) .

In terms of incomplete gamma functions we have

-1
(1.25) E (2) = 2V ' (1-v,2), v e C.

The functions f and g of section 1.2 follow from
(1.26) U1,1,ze 2™ = g2+ 1£(2).

2. FUNDAMENTAL FORMULAS

2.1. Expansions based on Taylor series and asymptotic series

2.1.1. Taylor expansions

By expanding the exponential function in the integrals of (1.3) and

(1.10) we obtain the representations

© n
E1(2)=-"(—lnz—z-‘1:-§-)—',—, z #0, larg z| <«
noq Bat
(2.1)
Bi(x) = vy + ln|x| + E ant x #0, x € IR,

n=1

in which the series converge for all finite values of z and x. Similar
expansions can be obtained for the functions si, Ci, Shi, Chi.

With induction with respect to n we obtain, using (1.13), for n = 1,2,...

(-2 R e
(2.2) E (2) = —?E:TTF'[— In z + ¢(n)] - mZO (m-n+1)m! '
m#n-1

where z # 0, larg z| < w. For y(n) see III.1.9.

As remarked earlier these expansions converge for all finite values of
the argument x or z. However, the applicability for numerical purposes is
rather limited. This will become clear when we have considered the behaviour

of El and Ei for large values of their argument.
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2.1.2, Asymptotic expansions

By repeatedly using (1.13) we obtain

-z -z

e z _ e _1__ _2_ z
E (2) = T[l - e Ez(z)3 = [1 - Stse E3(z)],

and so for n = 0,1,2,...

e 12 3 nnt
(2.3) El(z)=-?—[1-—+-—2—-—3+...+(—1) =t R (2)]
z z z
where
n+l y Joh oz _
(2.4) Rn(z) = (-1) (n+l1)! z "e En+2(z) =

For real z = x we have

« PeXp (x) = X J t~—n—2e-xtdt < x—nex J e-xtdt _ x—n-1-
n+2
1 1
Hence,
(2.5) R () = (1) (ne1) 1™ g (9, 08 (x) <1,
n n n

which says that the remainder in (2.3) is less in absolute value than the
first term neglected and has the same sign.

For complex values of z = x + iy it easily follows that R (z) =

= G{Rn(x)) = 0x""Y ¢+ ¥ > . Hence, we can conclude that (2.3) gives an

asymptotic expansion of El(z) for z + =, |arg z| < % T. By using other

representations of Rn(z), more information can be cbtained.

Let us write (2.4) in the form
-u

(2.6) R (2) = D™ a1y 1 ze? I & __ au.

n+2
u

Z

If weput u=2+p=x+ iy + p, where x,y,p are real, then

- n+2 '

o
-p
(2.7 R (z) = (-1)™ Y (ne1)r 2 I — & dp
n o Lix+p)+iy]
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which can be estimated as

2 2}-i(n+2}

IR (z)| =8 = (n+l1)! (x"+y if x =z O,
n n

(2.8)

IR (2)] 5T = (n+D): Iyl ™2 if x < 0.

From these estimates the asymptotic character of the expansion (2.3)
follows for z + =, larg z| < n, with |y| - « for x < 0. It can be shown that
the domain of arg z can be extended beyond the bounds fn to % 3n/2. However,
numerical bounds for the remainder are not easily obtained outside (-m,7).
The way of constructing the asymptotic expansion (2.3) seems rather
ad hoc. By using (1.12) and expanding 1/(t+z) in powers of t we can use a
general method from asymptotic analysis for integrals of the Laplace trans-
form type. (See III.2.1 how this is applied in relation with the gamma function),
The asymptotic expansion (2.3) can be used for the computation of Eltz)
for large values of |z|. In order to obtain information for the range of
applicability we reason as follows. For a given z = x + iy the remainder
Rn(z) in (2.3) is considered for n = 0,1,2,... . we remark that iRn(z)[
decreases until n reaches a certain value no (depending on z). From (we

suppose x > 0)

sn+1 _ n+2

s

n (x2+y2) !

we infer that Sn decreases until n exceeds the value (x2+y2)i. Hence to
obtain the least wvalue of |Rn(z)1, it is plausible to take n % (x2+y2ji =
= |z|. For this value of n, we find, using Stirling's formula that Sn is
about (21/n) 2™ = (2n/1z]) fe~ 12!

accuracy, the given value of |z| is large enough in order to use (2.3),

If this value is smaller than the desired

otherwise |z| is too small.

Other techniques from analysis may be used for (2.3) if |z| is too small.
We mention the Euler transformation (see LAUWERIER (1974) or OLVER (1974))
or techniques for a further expansion of the remainder in an asymptotic
expansion. For this last aspect, the asymptotic expansion of El{z} is often
used as an example in the literature (see, for instance, BERG (1977) or OLVER
(1974, p. 523)).

For small values of |[z| the first expansion in (2.1) can be considered.
However, the condition function (see II.2.1) is exponentially increasing

for increasing x = Re z. Intuitively one can verify this immediately. For
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large x, El(x) behaves as e_x/x. In order to obtain such small function
values, serious cancellation takes place in summing the guantities in the
first formula of (2.1).

For Ei the asymptotic expansion for x -+ -« and for x -+ += can be given.
The first case follows from (1.7) and (2.3). For x - = we have for

N=0,1,2,...
x ' A
(2.9) B =S 0] 2yoahi,

Remark that it results from formal substitution of z = -x in (2.3) and using
(1.7) for x < 0. A proof of (2.9) follows from (1.9) and the fact that (2.3)
holds for arg z = ¥ mi (which is not proved here). A direct proof may be
obtained by observing that

ot

Ei(x}=Jert+0(1), X + 4o

1
which follows from (1.10). By partial integration of this integral we arrive
at (2.9).

For En we have for n = 1,2,...

-2 N m
(2.10) E (2) =2 y (=1) " T(ntm) O(z_N'i)]
n z m I'(n)
m=0 =
forn=1,2,..., N=0,1,2,..., z > », |larg z| < 37/2. The remainder in

(2.10) can be expressed in terms of the exponential integral En+N+1(ZJ' In
this expansion n is fixed, i.e., it is not supposed that n grows with z. An
expansion of En(x) valid for x + n + = is given in Gautschi (1959), together
with numerical bounds for the remainder.

The asymptotic behaviour of Si and Ci is well described by (1.17) and
the expansions of f and g, which follow. We use (1.20).

Let us write

12 _ “Il 37 4 N t2N2 )
1+t n=0 1+t

Then for IRe z > 0

N-1 , -zt 2N
f(z) =% ) —(21‘2)'n+ (—1)NJ-—---—e t2 dt
n=0 (-z7) o 1+t

(2.11)
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N-1

gl(z) = J; )

(2n+1): N [ e
z” n=0 (-

22)n b 1+t

Bounds for the remainders in these expansions follow from replacing

1/(1+t21 by 1.

2.2. Chebyshev expansions

2.2.1. Expansions near the origin

Coefficients in the Chebyshev series for small argument values can be

expressed in terms of Bessel functions. From LUKE (1969, Vol. II, p. 41-42)

we obtain (with EO =1, Ek =2, k 2 1)
ax o
J t e nat = ¥ ET (0, -1 <x<1,
nn
5 n=0
- _ r
EO 2 Z (=) vr12r(a),
r=1
1 r-1
v, =%, v_= )} (1/k) + (1/2r), xrz 2,
1 2 r
k=1
- x
E = (2/n) ] g ()T o (@), nzi.
k=0
ax -
J £ (1 Hae = A_(2)T) (x), 0O<x<1,
n=0
0
_ o, —a/2 °
AD(a) = 2e 2 uka+l(a/2).
k=0
k
u. =1, u =2 § (1/r) + 1/(k+1), k=1,
0 k
r=1
n+l -a/2 @
2(-) . a a, -
A_(a) - (1 (3 + 2 kEO e P40
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n+l n-1
2(-) -a/2 a a a
A (a) = ==—1[1-e "H1 (5 + 2 E L3 + 1 (5},
ax .
-1
{ t (l-cost)dt = Z AnTzn(x), -l =x=1,
o n=0
3 =2 1 v, ),
r=1
1 r-1
v. =3, v = ] (1/k) + (1/2¢), rz 2,
1 2 r
k=1
(_)n—l ©
= - =
An n kEO EkJ2n+2k(a)' nz1,
ax ©
-1 _ _
J t sintadt= J BT, . (%), 1<xs1,
0 n=0
n o
_ 2(=)
Bn T 2n+1 E E—'kJ21:1+2k.+1 (a).
k=0
ax o
J £ (1-e1%)ar - T ¢ (a)T;(x), 0<xcs1,
0 n=0 "
Cn(a) = An(ia}, An(a) as in (*).

These expansions follow from more general expansions for confluent
hypergeometric functions. In order to show the relation with the Bessel
functions we give some information on the construction of the coefficients.

Let us consider the well-known expansion (see ABRAMOWITZ & STEGUN
(1964, p. 361))

W‘ k
cos Ax = 2 kgo (=1) JZk(A)Tzk(x)

where Jzk is a Bessel function. We suppose -1 £ x £ 1 and XA positive real,

although it may be complex. Integrating with respect to A we obtain
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u
=4
sin ux _ 'k
Jcos Ax dA =2 1 (D € Ty (%)
o k=0
with
u
en = J Jn(A] di.
0
F AB OWITZ - i = .
rom RAM! & STEGUN (1964, p. 480) it follows that e e 42 + 2Jn+1(u)
Integrating with respect to x gives
t t
3 Ql k
sin ux _ _
J ——ax = 2 kZD (=17, { T, (x)dx.
0] - 0
Using
t
J TO(x)dx = Tl(t)
4]
& T (8 T ()
1 2k+1 2k-1
J Tox (0% = 5 = = ~ok1 k>0
0
we obtain
t (=<}
sin ux _
J oA Ly T (O
0 n=0
_ (-n"
font1 = nrD) C2n * S2ne2’
In this way the expansion for Si is obtained:
oo
(2.12) Si(x) = nzo f2n+1T2n+1(x/u) -u = x5y,

where f2n+1 depends on u. This free parameter is included in order to choose
an interval for the approximation. The expansions on p. 153-154 all contain a
free parameter a. If a is chosen too large the approximations may become
ill-conditioned. In BULIRSCH (1967) coefficients for Si and Ci are given for
the x-interval [-16,16]. For x near the end points of this interval the

given expansions yield inaccurate results.
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2.2.2. Expansions near infinity

For the sine and cosine integrals it is preferred to obtain expansions
for £ and g. From (1.26) and the expansion (4.5) on p.112 we obtain
o
*
(2.13) iz[g(z) - if(z)] = § C AT (u/2)

n=0

where cn(z) can be obtained from a recurrence relation.
For EI(ZJ = &% U(1,1,z) such an expansion is alsoc available. A direct

approach can be given by observing that
Z
yi{x) = ze E, (2), z = 1/x
satisfies the differential equation
2
Xxy' + (l4+x)y = 1.
Substitution of
pis *
(2.14) y(x) = ] c,()T, (x/A)
i=0 J J
]
gives the following recurrence relation

(2+1)c0(l} + 3he, (M) + (31—2)c2(lj + Ac3(A) = 4

1 ¢
(k—l)lck_E(A) + 2[2-+At2k—1)]ck_1(A) + leck(l) +

+ 2L (2k+1) 2 —2k]ck+1(l} + Alk+1l)c (x) = o0,

k+2
(k 2 2).

For X = 1 this result is al o given in FOX & PARKER (1968). It is a special

case of (4.5) on p.112 and it converges for wide ranges of x and ). Let us re-
write (2.14) as follows:

(2.15) wz eszl wz) =
J

I~ 8

c. (1/2)T" (140), Wz 1.
0 ] J

Then from LUKE (1969,II.p.25) it follows that this expansion converges for
all z # 0, larg z| < 3n/2.

The coefficients ci(l/S), giving an expansion of Eltx) for x 2 5, are
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given in LUKE (1969, Vol. II, p. 322) and LUKE (1975, p. 105).

2.3. Continued fractions

We mention the important fraction

z+ 1+ z+ 1+ z+
for |arg z| < m, which converges better with increasing lz|. This frac-

tion again follows from the results for hypergeometric functions (see (1.24)
and p.100 £f).

From the above fraction the even and odd contraction can be cbtained.
Let

*x

1 b

ezEn(z) = E
k

k

then the coefficients of the contractions are given in the following table.

cefficients]
contracss a, b1 ak,k=2,3,... bk’k =2,3,...
even 1 z+n =(k-1) (n+k-2) | z+n+2k-2
lodd n z¥n+1| (k-1) (n+k-1) | 2+n+2k-1

+ :
For z €¢ R the sequence of convergents of the even contraction is

increasing, and the sequence of convergents of the odd contraction is

decreasing (see I1I.4,5),.
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3. ALGORITHMS AND IMPLEMENTATIONS

Discussed are special cases and known implementations of exponential
type integrals. In contrast with the gamma function no efficient universal
routine is available. In our opinion this is hardly possible because the

class of exponential type integrals contains various special cases.

3.1. Exponential integral for real positive argument and integer order:

En(x)

The computation of En(x) (see (1.11)) can be based on a combination

of the following representations:

(3.1) E () = (0" /-1t fym-lnm ) - § =07/ ((montimt) ;
m=0
m#En-1

(3.2) En(x)

[
]

and the even and odd contractions (see 2.3);

@ .3
(3.3) E_(x+h) = z ¢ ﬁ) E (x) (Taylor expansion);
n . j! n-j
j=0
(3.4) E (x) = (e “-nE (x))/x (recurrence relation);
n n+l
e X 3 X k i
(3.5) E (x) ~ ———+ } (-1) (k+n-1)!/x {asymptotic expansion).
n x(n-1)! %=0

3.1.1. The implementation of Stegun and Zucker (1974)

They implemented in ANSI FORTRAN 66 in double precision the exponen-

tial integral with the parameters

input : xn = the order (eWN)
X - the argument, x 2 0
output: enx - the value of En(xJ

expenx - the value of exEn(x)
ier = the integer error indicator.

In the routine the following machine dependent parameters have to be initial-

ized:
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rinf - the largest number x such that x and -x belong to the system

of real (computer) numbers;

rmaxi - the largest integer i such that all integers in the range

[~-i,i] belong to the system of integer (computer) numbers;
nbm the number of binary digits of the mantissa.

Moreover, the constant of Euler, y, must be initialized for the particular
machine (in the paper 35 digits of y are listed).

The computational problem used for En(x),resp. exEn{x), reads

n=0 rinf , for 0 £ x = 1/rinf;

e ®/x resp. 1/x, , for 1/rinf < x

H

neW|min(1/(n-1), rinf) ;, for x =0
an a posteriori finite

part of the series (3.1) r for 0 < x =1 ;

an a posteriori finite
part of the even contraction

(3.2) » for 1 < x < rinf-n;

0 r for rinf-n < x.

For x € (0,1] the series (3.1) is evaluated in the forward direction where
the (n-1)-st term, apart from a factor, consists of ln(x) and ¥(n); the

evaluation is terminated when
|TM/SUM| < TOLER

with TOLER a tolerance variable and TM the value of the most recent term.
The even contraction of the continued fraction is evaluated in the forward

direction (see II.4.8); the evaluation is terminated if either

- < - <
1 c, _ /ci 0 or 1 ci_l/ci TOLER,

with ¢, the i-th convergent of the even contraction. The error indicator,
i

IERR, is set to

0 : no error detected
1

:n < 0 or x < 0 (the value -rinf is delivered for En(x) resp.

exEn{xJ
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2 : 0 <n< RMAXI and n £ N (the value rinf is delivered for En(x)
resp. exEn(x)).

REMARKS .

In the note on the parameters for transportable numerical software of
IFIP WG-2.5 the parameters RINF, RMAXI and NBM are called SOVFLO, IOFLO
and SDIGIT, respectively.

. The summation of the alternating almost monotonically decreasing series
is handled with care: the (n-1)-st term does not majorate in general the
remainder of the series and therefore the termination test is not applied
to this temm.

+ We consider the used termination criterion of the evaluation of the con-
tinued fraction not correct. The reason why and a counter example is
given below.

The implemented even contraction is a continued fraction of the second

class of BLANCH (1964).

After an equivalence transformation the continued fraction reads

x = (k-1) (n+k-2)
1

(x+n+2k-2) (x+n+2k-4)

[5=3:]

o =

k

1 P o, = 1/(x+n),ak =

The converge behaviour is given by the fraction

K
_o® -5 1 _ -.25 1
CTRUTT T % T3 T T g R/ Uen.

For this continued fraction we have
1 - -
ck-lfck <1 ck/c
and therefore we do not consider the implemented criterion
1 - ck_llek < TOLER
foolproof, because the left hand side is a factor (k+1)/k2 smaller than the

actual truncation error.

The counter example below demonstrates that the truncation error majorates

the prescribed tolerance for x = 1, i.e,

1 - ckallck < TOLER < 1 - ck/c_
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CS = B859580,/1441729
cg = 748420,/1255151
014 = 9591325648580/1608355?845279
i th cz/c - c <0 (!)
Wi 9’ “g 14 -

Because of ¢ > ¢, > CQ/CB‘ which in our case is equivalent to,
- < 1 =
1 cB/cg cgfc,
we have that the tested quantity (left-hand side of inequality) is not an
upper bound for the relative truncation error (right-hand side of inequal-

ity).

3.1.2. The implementation of GAUTSCHI (1973) and AMOS (1980)

Gautschi implemented in ALGOL 60: fn(x) = exEn[x), n=1,2,... N, and

% > 0. The parameters are

input : x - the argument, x > 0;
nmax - the number of exponential integrals:
fl(x),...,fnmax(x);
d - the accuracy requirement: the reguired number of sig-
nificant decimal digits;

output : f - an array for the values of fl(x),...,fnmax(x).

In the implementation no measures against overflow or underflow are taken;
Euler's constant is initialized to 24 digits.

The used computational problem reads

an a posteriori finite part of
the series (3.1) and the for-
ward recurrence relation for

< = 1;
f2(xJ""'fnmax(x) s for O x

an a posteriori finite part of
the even and odd contraction of the continued
fraction (3.2) for fm(x), with

m the integer closest to x,
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and the recurrence relation

in the backward direction for

f1 (x),.. .,fm__l{x) and in the
forward direction for fm+1 (%) ,un.

£ (x) , for 1 < x.
nmax

The series is evaluated in the forward direction; the summation is termi-

nated if either
- = *
s s eps s

or s, or s, cease to behave monotonically, with

s the partial sum with an odd number of terms,
s the partial sum with an even number of terms,
s the arithmetic mean of S, and Sgr

eps the precision 10_d.

The even and odd contraction of (3.2) are evaluated by means of the evalua-
tion of the sum representation of the convergents where the guotient of the
terms obey a nonlinear two-terms recurrence relation (see II-4.5.3); the
evaluation is terminated if either the successive convergents of the even

or the odd contraction cease to behave monotonically (Rutishauser's device) or
- w = eps *
LA A ps (wome)lz

with wo and we the convergents of the odd and even contraction, respective-
ly. The error handling consists of testing for x < 0, nmax < O, and, when
appropriate, calling a procedure RECOVERY (to be supplied by the user)
followed by a return to the user program.

REMARKS .

* No range for the argument is indicated where the implementation is free
of overflow and underflow; so we do not consider it robust.

* In order to prevent infinite loops in cases where 4, the reguired accura-—
CY, is specified unreasonable large for a particular computer, we propose
to test m-d against the machine precision (which is named and callable
in nowadays languages) times a small factor (5 or 10}, instead of using
Rutishauser's device, which is stronger because it requires the monotondic
behaviour of the calculated quantities.
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+ The implementation can be considered as belonging to the variable pre-
cision class. (See II.1).
" An improved FORTRAN variant of the ALGOL 60 implementation is due to
AMOS (1980). Implemented is the computation of

EN+k(x} r x 20, N=21,k=0,1,..., M-1,
The used algorithm reads
recursion starting with En(x), with n, the integer
closest to x within the constraint N € n < N+M-1
En(x) is calculated via
the power series for 0 < x < 2

the confluent hypergeometric function U(n,n,x) for 2 < x < 0.

U(n,n,x) is computed by recurrence relations via the Miller algorithm for
Ul{n+k,n,x), k = 0,1,..., with a normalizing relation derived from the two-
term recurrence relation satisfied by En(x) and En+1(x). Truncation error
bounds are derived and used in error tests in EXPINT. Exponential scaling
is also provided as a subroutine option. The improvement concerns savings
in the recurrence when N is large and x £ 1 or when x is large and N+M-1 is

small.

3.1.3. The implementation in NUMAL

The implementations:

ENX delivers Ek(x), k=n eefi,, X > 0

1"°" 2
NONEXPENX delivers exEk(x}, k = nl,...,nz, x>0
are in ALGOL 60 for a CD CYBER, and are heavily based on Gautschi's; EI is
based on CODY & THACHER (1968,1969).
The computational problem used in ENX and NONEXPENX is:

E = - -
l(x] Ei( x)
and the forward recurrence

for E ,...,E , for 0 = x =1.5
n1 n2

an a posteriori finite part
of the Taylor expansion of
Em(x), with m the integer
closest to x, and the re-
currence relation with Em(x}

as initial value y for 1.5 < x < 10.5



164

an a posteriori finite part
of the even and odd conti-
nued fraction (3.2) for
exEm(x} and the recurrence

relation with Em(x} as initial

value, analogous to Gautschi , for 10.5 = x.
REMAERKS .
. Elix) may efficiently be cbtained from a call to Ei (Ei(X) = —Ei(—x)).

* The disadvantage of the slow convergence of the continued fraction near
x = 1 is replaced by the unproven used termination criterion of the
Taylor series. The termination criterion is to handle an alternating
series and a positive series; for the alternating series we agree with
the used criterion (but use names for the machine precision), while for

the positive case we propose

... while |wl| > 10* machine precision do ...

Namely, for the positive series the first neglected term is a measure
for the relative truncation error.

* The implementation is not portable and not robust.
(machine parameters are not named and there is no error handling).

* The implementation can be considered as belonging to the variable preci-

sion class.

3.1.4. The implementation in NAG

The implementation S13AA delivers Elfx). The computational problem

reads

“a,T.(t) - 1
g aj ]( ) n x

with t = L% - 1 s for 0 < x < 4

%,
e ¥/x ) by, (t)

with t7= (11.25-x)/(3.254+x) , for 4 < x < xhi

0 y for xhi s x

where xhi is machine dependent.

The only parameters are the argument and an error indicator. The latter is
set to

0 - no error detected

1 - x=0 (E1 is set to zero).
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REMARKS .

* The method is based on CLENSHAW c.s. (1963; see I1); the bilinear trans-
formation is modified because of the faster convergence of the Chebyshev
series in this new variable.

The required terms of the Chebyshev sums are a priori converted to a
power sum; the evaluation of the latter is more efficient while the same
accuracy is obtained. (A 'streamlined' form is not considered)

The implementation is available in NAGF (mark 7), NAGA and NAGB (mark 2).
THACHER (1965) obtained experimentally a faster convergent series for

0 < x = 4 by the transformation t = Bx/[1+(B-.25)x], B = .2915

3.1.5. The implementation in NATS

The implementation EONE which calls a poly-algorithm is written in

ANSI FORTRAN 66. The only parameter of EONE is the argument. The computa-—
ticnal problem is

le(x) - 1ln x . for O < x =1

e_leuflfx) . for 1 < x = 4

e F/x {1+ le(I/x)/x}. for 4 < x,

where P,Q,R denote rational functions with 1 the degree of the numerator
and m the degree of the dencminator. The coefficients for the wvarious
domains and a diversity of relative precisions (down to 10_21) are given
in CODY & THACHER (1968).

The error handling is done by a call to the general FUNPACK routine
MONERR; x < 0 is signalized.

REMARK.
. The paper of Cody & Thacher also entailed the software provided by
PACIOREK (1970), IMSL and CERN.

3.2. Exponential integral for imaginary argument: Eltix)

According to (1.14a) and (1.15) we have

El(ix) = -Ci(x) + i(8i(x) - w/2)
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with Ci(x) the cosine integral and Si(x) the sine integral. The computation
of Ci(x) and Si(x) can be based on a combination of the following represen-—
tations as special cases of (3.1) and (3.2):

-

(3.6) Ej(ix) = ~(y#ln x + § (=D %™/ ((2m) (2m) 1)
m=1
+ 1( 5™ ™ (2 (2m+1}!)—11‘/2):
-
. _ o =ix 7 %k
(3.7) B, (ix) = e ¢

where the coefficients are given in the following table.

“~—coefficients
a b a,k=2,3,.../b', k=2,3,...
regrzj;;:;;IEH‘Ha ! 1 x k

cont. fraction 1 ix ki2 ix, k is odd
1, k is even

even contraction | 1 ix+1 -(k—l)2 ix+2k-1
odd contraction 1 ix+2 (k-1)k ix+2k
(3.8) The formulas (1.17).

3.2.1. The implementation of Stegun and Zucker (1976)

They implemented in ANSI FORTRAN 66 in double precision a poly-algo-

rithm for the sine, cosine, exponential integrals and related functions
with the parameters

input: ic - an indicator for the desired integrals

ic | functions to be computed

si, ci
E,, e E , Shi, Chi
i 1

u si, ci, E_, e_in, Shi, chi

X - the argument (> 0 for ic = 2)

1

2 |E., e¥E
1

3

output: the appropriate function values are returned in si,ci,ei,exnei,
shi,chi; moreover, the variables cii,shii are used (they

have sense for negative arguments).
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In the routine the following machine dependent parameters have to be initial-—
ized
rinf - the largest number x such that x and -x belong to the system of
real (computer) numbers;
nbm - the number of binary digits of the mantissa;
ulsc - the maximum value for the argument in order to obtain reliable
results;

Y, /2, T, log 2.

The computational problems used for Ci and Si read

-rinf resp. 0 , for x =0

an a posteriori finite part of

the series (3.6) , for 0 < x = 2

an a posteriori finite part of

the even contraction (3.7) , for 2 < x < ulsc
0 resp. w/2 , for ulsc = x
Ci(-x)-im resp. -Si(-x) , for x < 0.

The matching of the various methods is based on the results of an experi-
mentally obtained efficiency profile; the results of the experiments are
provided in the paper. The series is evaluated in the forward direction;

the evaluation is terminated when

|T™™M/SUM| < TOLER,

with TOLER a tolerance variable, TM the value of the most recent term and
SUM the calculated partial sum of Si or Ci, respectively.
The even contraction of the (complex) continued fraction is evaluated in

the forward direction (see II. 4.8); the evaluation is terminated if either

2 2
- <
I1 ey 4/, | TOLER (

or

2 2
1 - SRV |

_2 = |1 - ¢

! i-17%

with < the i-th convergent of the even contraction. The error indicator,

IERR, is set to
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0 - no error detected

1 - if ic # 1 and x < 0 then ei and exnei contain invalid results.

REMARKS .
* The even contraction of the continued fraction (3.7) can be represented
by
2
2 %k , - (k-1)
CEdy T 4 T VAN, o = e kT3

This fraction is of the third class of BLANCH (1964). We doubt the cor-

rectness of the stopping criterion, because

lim o = -.25

oo
and therefore theorem 8 of Blanch (the remainder is in absolute sense
estimated above by a factor times the difference of successive conver-—
gents) does not apply.

+ The chosen value of the imaginary part of Ci and Chi, for x < 0, is -w.
We should omit the delivery of this value, because it is not universal
to deliver —m (+% could also have been chosen; it can be reflected into
the choice of the value of the logarithm for negative values) and in

absence of the type DOUBLE COMPLEX the parameter list is confusing.
* For the naming of the machine parameters see the earlier remark in 3.1.1.

+ Although in the introduction of the paper the easy-to-modify criterion of
the implementation is explicitly mentioned as an aim, we feel that the
authors did not succeed with respect to this point.

3.2.2. The implementation in NAG

The implementations S13AC and S132D deliver Ci respectively Si.

The computational problem is heavily based on BULIRSCH (1967) and given
in the following table.
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Si(x) Ci(x) argument range

1 L
x % ) aT (t) In(x)+], b T (t) 0 < x £ 16 with
k
oK KoKk t = 2(x/16)2-1

£(t i © € i
m _ f(t)cos x  g(t)sin x| £ (t)cosx _ g (t)sin x 16 < x < xhi with
2 X 2 X 2 2
x x t = 2(16/x)° =1
™
3 0 xhi S x
- 8i(-x) not provided x <0

(Ci(x) = Ci(=x)¥im)

The functions f,g,fc,gc are represented by Chebyshev expansions; xhi is
machine dependent.

The only parameters are the argument and an error indicator. The error in-
dicator is not used in S13AD (Si); in S13AC (Ci) an error return is given
with ifail = 1 when x < 0.

i
3.3. Exponential integral for negative argument: El(xe_ln)

From relation (1.8) we have

+4 —
EI(XE‘”) = - Ei(x) ¥ iTm.

In literature implementations for Ei(x) are provided. The computation of

Ei(x) can be based on a matching of (2.1) and (2.9).

3.3.1. The implementation of Stegun and Zucker (1976)

The general description is giwven in 3.2.1. The used computational

problem reads

the series (2.1) ; for 0 < x S aell
the asymptotic expansion (2.9) , for aell < x,

with aell a machine dependent parameter. The error indicator, IERR, is set

to
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0 - no error detected

1 - negative argument; ei and exnei contain invalid results.

3.3.2. The implementation in NATS

The implementation EI, which calls a poly-algorithm is written in
ANSI FORTRAN 66. The only parameter of EI is the argument. The computational

problem with experimentally chosen representations reads

_El(_x) , for x < 0
*
ln(X/xo)+(x—x0)zkkaE(x/6)/ , for 0 < x £ 6 and % the zero of
L, Ty (x/6) Ei (x)

e® k-1
- {u + % } , for 6 < x = 12

x 0 x+qk

x B!
e—a'+g—k-'-3‘ ,for 12 < x < 24
x 0 x+a£

x : BII
S d1s Liave o k-1, for 24 < x < xmax
x ®x 0 k x+aﬁ ’

xinf for xmax < x.

The error handling is done by a call to the general routine MONERR; x = 0O

and overflow are signalized,

REMARKS .
* The coefficients for the various above mentioned functions and for a

diversity of relative precisions (down to 10_21) are given by CODY &
THACHER (1969) and obtained via rational minimax approximation.

* The paper of CODY & THACHER also entailed the software provided by PACIOREK
(1970), IMSL, NUMAL and CERN.

3.4. Exponential integral for general z: En(z)

The only implementation known to us is BEAM (1960), which is based on
the evaluation of the continued fraction. In relation with (1.24), LUKE
(1977) gives routines for the determination of the Chebyshev coefficients
of the confluent hypergeometric function U for real arguments (see his
ch.VIII) and alsoc routines for the expansion of exponential type integrals
in series of Chebyshev polynomials. When the coefficients bk,ck of the fol-

lowing expansions
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s *
£(x) = Y b T (x/X), 0<x<2\
k=0 k'k

en

F(x) = J ¢ T*(A/x), 0 <A< x
k=0 Xk

are given, the routines yield the coefficients gk,hk in

or

X

glx) = e 3%u1 J e (tyar = ng;(x/l), 0<x<Aa
5 k=0
=]
- -bt u = *
Gx) = X [ et F(Bat = [ R T (M%), 0<)sx
k=0

X

Re b > 0 (see LUKE (1977, Ch.XI)).
These routines may be used as starting point for the complex case.

On the other hand, one can use via (1.24) the expansion (4.5) on p.112,

where the coefficients are functions of the argument z. The coefficients

obey a recurrence relation (p.27 in LUKE (1969)) and asymptotic estimates

are given (p.28 in LUKE (1969)). For the calculation of these coefficients

a proper use of the Miller algorithm should be made. A concise treatment

is given in LUKE (1976).

TODD (1954) recommends the Laguerre quadrature method in preference to

the asymptotic expansion for the terms I_,I. in

with

1772
z .
e 31(2) = I1 - 112

o
I = e_p_._._ﬁp_dp
1 2 2
0 (x+p) +y

I, = e_p —_ dp , z =x + iy,
2 2
(x+p) +y

Bounds for the approximating error are given; their iso-bound curves look

like
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For z outside 'the finger' the approximating error is less than

(1) 2224

Implementations for obtaining the (Laguerre) Gaussian weights and abscissae
are published by GAUTSCHI (1968a,1968b and absorbed in NUMAL) and GOLUB &
WELSCH (1969); the ALGOL 68 library of NAG contains implementations in order
to access tabulated Gaussian weights and abscissae, so a limited number are
direct available. In STROUD & SECREST (1966) FORTRAN-routines are provided.

REMARK. Todd compares the gquadrature method with the asymptotic expansion;
the above given estimate of the error for the quadrature method is smaller
than the error estimate for the asymptotic expansion (2.8). As shown by the
experiments of STEGUN & ZUCKER (1974,1976) - j.e., the continued fraction is
more efficient than the asymptotic expansion along the real and imaginary
axis - it is interesting to compare the Laguerre quadrature method with the
continued fraction for reasonable (large) z. Consider Gautschi's remark in

relation with w(z) on this matter (Chapter V).

4. SOME ASPECT OF ERROR ANALYSIS

In this section we consider: the effect of perturbation of the argu-
ment, the recurrence relation for En(z) and the recurrence relation for

En(x), n > 0 in order to obtain Em(x), m < 0.

4.1. The effect of perturbation of the argument

From
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d
3z B, (2) = -E__ (2)

we have for the relative error amplification (in first order)

z d En*1t2)
== &= 5@ = 2 5%
n n

+
For the special case El{z) we have for x € R

argument Emplification / k| asymptotical amplification for x + =
x e_x/EI(xJ x
-x e*/|Ei (%) | e®
ix 1/1E, (ix) | ' x
REMARKS .

* The error amplification is inversely proportional to the modulus of the
delivered function value.
* The documentation of El(x) in the NAG manual contains a graph of e_x/El(x).
* It is curious, that when the amplification factor is so simple in terms
of the result, as is the case here, it is not even menticned in the docu-

mentation of most program libraries, or used in the routines.

4.2. The recurrence relation for En(z), n >0

In II.3.1 we considered the recurrence relation and derived a guadratic
bound for the condition if we start the recursion for n = [|z|] and recur

down the pn—hill.

REMARK. From (1.11) it follows that x > 0, k > m imply Ek(x) < Em(x). So it
is tempting to conclude that backward recursion is stable. This is no rule
of thumb, as suggested by STEGUN & ABRAMOWITZ (1956): "...However, in the
case of the function yn(x) there will be no loss of accuracy since this
function is an increasing function of n for fixed n...". The point is here
that (1.13) is not positive in the backward form (i.e., the coefficients are
not all positive). A recursion, which is positive in the direction of in-

creasing function values, is stable.
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4.3. The recurrence relation for En(x), n >0

This recurrence is used in NUMAL in order to obtain the derivatives
of E (n), n=2,3,...,10, because for x € (1.5,10.5) the Taylor expansion
n

oo
= ’ = +.5
E_(y+h) E o By () y = [x+.5]
is used, where the En_k(y) are obtained from the recurrence
By @ = ¥-G-DE ) /ys 3= vyl .

For Ej with positive index, we have a recurrence down the p-hill, while
for a negative index we have the recurrence for “n' a positive recurrence,

and so a benign problem. (see II, 3.1 with respect to the recurrence of un).

5. TABULATED COEFFICIENTS

BULIRSCH (1967)
Si(x), Ci(x) coefficients of the Chebyshev expansions up to 17d on
|x|] < 16, 16 < |x].
CLENSHAW, MILLER & WOODGER (1963)
Ei(x) coefficients of the Chebyshev expansions up to 174 on

x2 <16, x = -4,

(In CLENSHAW (1962) the above coefficients are provided for

the same intervals up to 21d).

CODY & THACHER (1968)
E, (x) rational approximations up to 224 on (0,1],[1,4],[4,>); con-

tinued fraction expansion up to 25s for small x.
CODY & THACHER (1969)
Ei(x) rational approximations up to 224 on (0,61,06,12],[12,24],
[24,=);
zero of Ei(x) to 304.
LUKE (1969) (main reference, with much more information; see also LUKE

(1975))
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{El(z}+lnz+y}/z main diagonal Padé approximations for n = 2,...,10 up to 204

and the corresponding approximation errors for z = 1,i,-1

sSi(z)/= main diagonal Padé approximations for n = 2,...,10 up to
204 and the corresponding approximation errors for
z=1,2,...,10

4(Y+lnz-Ci(z))/z2 main diagonal Padé approximations for n = 2,4,...,10 up
to 20d and the corresponding approximation errors for
z=1,2,...,10

{(y+lnz-Ei(z))/z diagonal of rational approxXimation array for n = 0,1,...,10
up to 13d and the corresponding approximation errors for
z = r,ir,-r with r = 1,2,...,10
El(x),x > 5 coefficients of the Chebyshev expansion (p.322),
Ci(x),lxl < 8 coefficients of the Chebyshev expansion (p.325)
Si(x),fxi < B coefficients of the Chebyshev expansion (p.325)

zezEl(z) diagonal of rational approximation array for n = 0,1,...,10
up to 13d and the corresponding approximation errors for a

variety of =z.

6. TESTING

STEGUN & ZUCKER (1974,1976) compared the results of their programs
with published values. Further checks were obtained by comparing with other
(less efficient) methods or algorithms e.g.: overlapping the power series
with either the asymptotic expansion or the continued fraction, using various
forms of the continued fraction, numerical quadrature.
The numerical accuracy was ascertained by comparing multi-precision results
with analogous results of the single and double precision implementations.
Their test argument values are 0,10j(10j) 10j+1, j = -2(1) jend, with jend
appropriately chosen. A driver program was published in the 1974 paper.

REMARK.
* Exrror bounds for the evaluation of the approximation in finite precision
are not provided in the paper; the correct coding as well as the numeri-

cal accuracy are evidenced by experimentation. The implementations belong

to the naive program class.
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* The truncation error is of the order of the machine precision because the

implementation is of the variable precision class.

GAUTSCHI (1973) compared the results of his procedure with results in
40s obtained by Thacher via a desk calculator, by - we assume - the same
algorithm; to be precise: in the latter comparison the 40s results were
taken as yard stick, and compared with the results from a FORTRAN double
precision version of the published ALGOL 60 implementation. So, another

piece of software was tested with respect to accuracy.

The implementation in NUMAL was based on the assumptions: Gautschi's
algorithm and implementation as well as CODY & THACHER (1968,1969) coeffi-
cients are correct. Diverse tests showed that the coding, the algorithms

and the coefficients were correct.

The NATS-implementations were tested on random arguments: a so called

accuracy profile.

The NAG-implementations were tested with automatic portable test soft-

ware.
7. APPLICATIONS

This paragraph illustrates the paraphrase: pitfalls in computation or
why a math book and even a program library is not enough. Program libraries
will not - and we think will never - be sufficient for solving problems,
because a huge (infinite ) number of problems are thinkable which can be
expressed in basic special functions, and all those problems can't be in-
corporated in the program library. So mathematical skill, numerical insight
and programming technique remain necessary, though on a less extended scale.

ABRAMOWITZ & STEGUN (1964) tabulate from 5.1.28 up to and including
5.1.44 some integrals which are expressible in exponential integrals.

TEMME (1976) mentions the special case (see also ACTON (1970))

k-]

i -
J EE%:%E dat = k{e in(xJ - ein(—x)}, x > 0.
o]

For small x cancellation occurs so another representation is desired, e.qg.
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-x b xn x = (--1)nxn
-sinh(x) (y + In x ) + 4{e = ] = - " § 222 X},
nn! nn!
n=1 n=1
KADLEC (1976) encountered in transport problems through a scattering
medium definite integrals of the type
1
J Rm,n(X)f(x)dx

o]
with Rmn a rational function (m=n) with real coefficients and (known) real
poles, and f(x) one of the functions e_Y/x, Inlrx+s|, lnlrx+s|.e '™, As an
example we mention

T e'Y/X

Ya/b
axib dx = (El(y) - e El(y(1+a/b)))/a, Yy >0, a#0.

0

For small a cancellation occurs and another representation is necessary,
e.g.
ra/b = )
1~ -
E,(D(——) - v/b | (~ya/m)* sk
a k=1

:El_k(y).

The exponential integrals with negative index can be obtained - in a stable
way - via recursion (see 4.2). The subtraction in the first term must be

performed with high relative precision, e.g., via

&
_Ye sinh § -
b & , @ ya/(2b).

REMARK. The above denominator, ax+b, is typical, because the rational func-—

tion can be split into partial fractions.

ACTON (1970,ch.4,ex15) asks for the evaluation of

X
lve_t

J T sin t dt, for x = .2(.1)2.

0

A representation of this integral is (see 5.1.36 ABRAMOWITZ & STEGUN)

Si(x) - (n/4+Im Elf(1+i)xJ).
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For the required argument values we may look in ABRAMOWITZ & STEGUN for tab-
ulated wvalues; in table 5.1 Si is given, while El for complex argument is

not sufficiently given in table 5.7.

LUKE (1969, Ch.XVII, table 64.1) enumerates Padé approximations for
E(z) = {E1(Z) + lnz + v}/=z.

So we could program the rational function and obtain the desired values of
E;» on e.g. a HP. (By the way, HENRICI (1977b) did not publish a program for
E,(z)).

1f we compute Eltz) in an environment where program libraries are available,
then we could cobtain Si via a library; at the moment El(z) is not available
in current program libraries so the programming, testing etc. for this func-
tion remains. Apart from LUKE's approximation one could program the series
(2.1) combined with the continued fraction given in paragraph (2.3). Proper-—
ties such as the monotonic behaviour of the even and odd contraction do not
hold for general z, so GAUTSCHI's implementation can't be transliterated

for complex argument.

BEAM (1960) implemented in ALGOL 60 the Legendre continued fraction
via algorithm (4.5.3) given in II.4. Because of the conciseness of the im-—
plementation and the used algorithm we consider BEAM's implementation use-
ful in absence of faster algorithms. The programming with type complex can
make the implementation more concise.
Another approach could be to integrate the Taylor series of the integrand.
The resulting series can be transformed into a continued fraction. So the
problem is then reduced to the evaluation of a continued fraction.

Finally, we like to remark that this application appeared in the con-

text of numerical integration and that a straightforward application of a

gquadrature routine would easily yield the result provided the subtraction
is handled with care.

As an example of where exponential integrals can be used in the com-
putation of more advanced special functions we mention the implementation in
FORTRAN of the computation of the Bickley functions, repeated integrals of
Kotx} Bessel function, in terms of exponential integrals En(x) due to AMOS
(1983) and published as CALGO 6&09.
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V. ERROR FUNCTIONS AND RELATED FUNCTIONS

In this chapter we consider the error functions erf, erfc and some
related functions as w(z), Dawson's integral and the Fresnel integrals. In
section 1 we give the definitions and interrelations in addition to the
main analytical aspects of these functions. In section 2 important expansions
are considered: power series, Chebyshev series, continued fractions and some
other expansions. In section 3 the algorithms and implementations are dis-
cussed and section 4 is devoted to aspects of error analysis. A selection
of tabulated coefficients for several types of expansions is given in section
5. In section € the testing of some implementations is enumerated. In section

7 some applications are given.

1. DEFINITIONS AND ANATYTIC BEHAVIOUR

The most well-known representations are given. Some less obvious rela-
tions are proved. Especially the relation between Fresnel integrals and the
basic function w(z) is considered, together with relations for the functions
f(z) and g(z) which describe the asymptotic behaviour of the Fresnel inte-

grals.

1.1. The error function

The error function erf(z) is defined for all (finite) complex values

of z by the integral

(1.1) erf(z) = 27 J et at.

(1.2) erfe(z) = 1 - erf(z) = 211_4 J eht dt.

In statistics we often see a slightly different function, P(z), called the
normal or Gaussian probability function, and its complementary function

Q(z) = 1 - P(z), given by
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z
2
P(z) = (2“)_£ [ e-kt dat = &erfc(uz/’i)
(1.3) =
Q(z) = (2“)_& [ e_ét at = lerfe(z/2).
z
This leads to
(1.4) erf(z) = 2P(z/2) - 1, erfc(z) = 20(zv2).

We furthermore introduce the functions

2
wiz) = e 2 erfe(-iz)
(1.5) _22 z tz .
F(z) = e I e dt.
0

The function F is called Dawson's integral and w(z) is known in physics as

the plasma dispersion function.

The Fresnel integrals (with applications in optics) are defined by

z z
(1.6) c(z) = I cosiwtz dt, S(z) = I sin&ﬂtz acs
o} o]

they can be expressed in terms of erfc and of w as will be done in the next

subsection. For representing the Frensel integrals for large values of ]z|
it is useful to introduce, for Re 22 > 0,

1 < e—ﬁﬂzzt -3
fz) = .l I 3 t dt,
0 1+t
(1.7}
1 < e—iﬂzzt
R P
T 1+¢2

0
The relation between these functions and C and S will also be given below.

Finally, we introduce the repeated integrals of the error function, i.e.,
we define

(1.8) i erfe(z) = J i" ! erfe(t) at, n = 0,1,2,...
-
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with

io exrfc(z) = erfc(z).

.n . . .
The operator i can be used with negative values of n, in which case it acts

as a differential operator. For instance, we have
il erfe(z) = 21 %e

These functions often occur in physics and chemistry, notably in problems

involving heat and mass transfer. They are defined for all finite values of
z.

A representation as a single integral is given by

2w_% 2

i" erfc(z) = o7 J (t-z2)" 7% at,

2

from which a recursion formula with respect to n easily follows. For
n=1,2,... we obtain

-1 _n-2
(1.9) i® erfe(z) = -% i erfe(z) + —235:.“ erfc(z).

The functions introduced here are special cases of confluent hypergeo—

metric functions, ABRAMOWITZ & STEGUN (1964, Ch.13). For instance

n -} _-n -z 2
iverfc(z) =7 227"e"% u(in+l,i,z%),

with as special case the error function for n = 0. In terms of parabolic
cylinder functions we have

-4 2 n-1 -4
i erfe(z) = e 2% (2 T D”n_ltz¢5).

The second solution of the difference equation for erfc can be cbtained from
the known solutions of the difference equation for the U-function. The

solutions are useful in order to decide upon how to use the recurrence
relation.
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1.2. Some further relations for the error functions

First we give another integral representation for erfc. We have

zzj 22? ae

e r
2

t 41

(1.10) erfc(z) = ;zr-e‘
0

where we suppose that the integral converges; i.e., we suppose temporarily

that Re 22 2 0. We prove (1.10) by differentiating with respect to z. Thus

we obtain for the-right hand side (denoted by ¢(z))

o
; 4z 2 2t2 - 2 e_zz
p (z) = - - e e = -7
0
Integrating this relation and using ¢(0) = 1, we obtain indeed (1.2).

From (1.10) we obtain furtheérmore

@ 2
2z _22 e“T

(1.11) erfe(z) = - e J ) dr,
0 T +z2

where the domain of arg z2 can be extended to (-m,m). When we introduce
L =iz, with 0 < arg £ < 7, we obtain from (1.11) and (1.5)

2 2 -T
erfc(~-ig) = ec wiLg) = 35 ec € dr.
im 12_;2
0
Writing
T _ *[1 _L}
12-C2 T-%  T+L
we obtain
o 2 -3
-T
_ T e _ 1 -T 1 1
w(zg) = s J 535 dt = T J e [T—C ;:E]dr
Se TL e
from which we obtain
i T e_t2
(1.12) w(z) = 5 s dt, Im z > 0.

-0
This formula tells us that for Im z > O the function w is the Hilbert trans-
form of the Gaussian or normal density function. For Im z < O we can use

one of the relations
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(1.13) erf(-z) = -erf(z), erfc(-z) = 2-erfc(z)

which easily follow from (1.1) and (1.2). In combination with (1.5), (1.1

yields

2

(1.14) w(-z) = 2 % - w(z).

Of course, this relation follows in a more direct way by using residue theory

when z in (1.12) crosses the real axis. Other symmetry relations are
(1.15) erf(z) = exf(z), w(z) = wi-z).

From (1.14) and (1.15) it follows that for the evaluation of w(z) we
can restrict z = x + iy to the quarter planex 2 0, v 2 0. The functionw(z) can

be considered as the basic function. For Dawson's integral of (1.5) we have
i —z2

(1.16) F(z) = 3/ [:e —w(z)]

and the Fresnel integrals introduced in (1.6) satisfy

2

c(z) * i S(=z)

[

Ot

. L 2
eﬂl“t dat = 1—?‘- erf Dﬁ[l::i.)z]

. [«
1xi
3 [1—&

(1.17)

H

w(iﬁi)], T, = IvVT(1ti) 2.

The representations (1.16) and (1.17) are subject to cancellation of leading
digits when they are used in computations for small values of z.
Next we will show how £ and g of (1.7) are related to w, C and S. From

the definitions and (1.11) we obtain for Re z > 0

2

. S P | -imz"t -} at

g(z)xif(z) =7 "2 J e t =y

(1.18) 0
2 2 .
= n'lzi J e 22 T —9l-= 121 witg )
2, 2 +
0 T Fi

with Ci given in (1.17). Combining (1.17) and (1.18) we have (using
2 2
C+ = -z)
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1+i e&iﬂzz

Clz) + is(z) = —= [g(z) + if(z)],

(1.19)

1-i

-iimz
- -e

2
c(z) - iS(z) = [oz) - ie(z)].

from which we cbtain

c(z) = § - cos inzz g(z) + sin éﬂzz £(z)

(1.20)

S(z) = § - sin &wzz g(z) - cos ﬁwzz £(z).

Inverting (1.20) we can express f and g in terms of C and S:

f(z) = [ﬁ - s(z)] cos iﬂzz -0 - C(z}] sin iﬂzz,
(1.21)
glz) = [} - C(z)j cos i‘irz2 + [3 - s(2] sin &ﬂzz.

Since C and S are entire functions, it fnllows that f and g are entire
functions as well.

The oscillatory behaviour of C(z) and S(z) is fully described by the
circular functions in (1.20). For large |z| the functions f and g are slowly
varying. In the next section we give more information on the asymptotic
expansions of f and g, from which the asymptotic representations of S and C
are obtained by using (1.20).

Figure 1. Graphs of S(x) and C(x), x = 0.
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To summarize the relations between the functions introduced here we express

them in terms of the function w(z).

2
erf(z) = ] —219‘z wi(iz)
erfc(z) =e % wiiz) 2
tlerfe(z) = (-5 27 &7 W™ (32 /n:
(1.22) P(z) = 53:22 w(=-iz/v2)
Q(=z) = je w(iz/V2)
F(z) = 4ivr [e_z - w(z)]
Y _1%i g2 . ]
C(z) * iS(z) = = [1-e7* witz,)
£(2) + ig(z) = L weg) Gy = H/m(12i)z
. (n) . a"
In the third line, w (iz) means ——?;w(u) evaluated at u = iz,
du

2. FUNDAMENTAL FORMULAS

2.1. Expansions based on Taylor series and on asymptotic series

2.1.1. Taylor expansions

The expansion

n_2n+l

N B e
(2.1) erf(z) = 27 E m
n=0

is obtained by expanding the exponential function in (1.1). For large values
of z this alternating series may be unsuitable. By transforming the integral

(1.1) via t + zV 1-t we obtain

_ 21
ze © tz dt
erf(z) = 7 e m.
0]

By expanding exp(tzz) we obtain by using the integral representation for the
beta function

2 o
-z
(2.2) erf(z) = e Z YRR
n=0 T(n+3/2)

2n+1
z

a series with positive terms if z > 0.

A Taylor series for w(z) is given by
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E (iz)"

(2.3 w(z) = T(len/2) °
n=0

It is obtained by combining (1.5), (1.2) and (2.3). For C(z), S(z) and F(z)
power series easily follow from the above ones or from their integral

representations.

2.1.2. Asymptotic expansions

The starting point here is the integral for erfec(z) in (1.2). We

transform it into

2 e
(2.4) rfc(z) Te-z I et &
a e = -
z o :’1+'t/z

In this representation we suppose that |arg z[ < /2. For n = 0,1,... we

cbtain by partial integration

2
2 Al m -2m n -2n
(2.5) erfe(z) = —— [} -07 T@+hez ™ + (-1 rn+hz 6 _(2)]
m=0

with -
(2.86) 6 _(z) = J e_1(1+1'/z2)_n—£ dt.

0
Suppose now that z € @ is such that

2

(2.7) |[147/2°] 2 1 for a1l © = 0.

Then !Bn(z)] = 1 and we conclude that for the values of z satisfying (2.7)

the absolute value of the remainder in the asymptotic expansion (2.5), taking
n terms, is not larger than the absolute value of the first neglected term.
For real z, it has the sign of this term.

To describe the values of z satisfying (2.4), we remark that the equation

[1+z] = 1
in the Z-plane is satisfied by the points on the circle (u+1)2 + vz =1,
where L = u + iv. It follows that (2.7) is satisfied by those z-values
. . 2
satisfying |arg z l S /2, z# 0. By using complex values of T in (2.6), we can

give bounds for a wider z-domain. To show this we write
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(2.8) 22 - rei¢, r >0, w=<¢$ < =nf2 or /2 < ¢ < W,

Then we consider the integral

(2.9) J e Tasr/zh) ™l
C
R
where the contour in the complex T-plane is shown in the following picture.

R is a positive number, 6 = ¢-(sign¢)n/2.

R

Figure 2. Contour of integration for (2.9).

From (2.8) it follows that iBI < m/2. The singularity 7 = —22 of the
integrand in (2.9) lies outside the contour Cgr- Hence, by using Cauchy's
theorem, (2.9) vanishes. Purthermore, the contribution along the circulayr
arc of CR vanishes in the limit R + », It follows that (2.6) can be written
as

ig

8,(2) = E_T(Hr/zzj_n—id'r,

O‘—\’g

where on the path of integration arg T = 8. Again we can use (2.7), now for
T = peie. Since arg t/22 = *tn/2, (2.7) holds true for the considered
values of T and 22. The bound for Bn(z) thus beconmes
|ﬁn(zll < J e * oo 6d1 = 1/cos 8 = 1/|sin ¢].
0
Resumé&. The remainder Bn(z) in the expansion (2.5) is bounded as follows:
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1 if |¢] = w/2
(2.10) |9n(3)| 5{1/ | sin ¢ | if -m < ¢ £ -w/2 or /2 < ¢ < 7

2
where ¢ = argz , n=20,1,2,....

Remark. By refining the above methods it can be shown that (2.5) gives an
asymptotic expansion for the range [arg z| < 3m/4. Note that for

|ar9 Z| > 7/2 the reflection formula erfc(-z) = 2 - ertc(z) can be used.

For f and g introduced in (1.7) we can also obtain asymptotic expansions.

By writing

n-1
170467 = T tH® 4 («1)"e2%) (1462

m=0

we obtain upon substituting this in the integrals of (1.7)

® 2
- t, 2n-
f(z) = 1 E D™ r2me)) . (-1)™ J o irz 20 } .
i w0 (fnz?)2m*] w2 142
0
(2.11) o -
g(z) = ~é§ nil (-1JmF(2m+an+ (-1)" j e—sz te n+ 4 N
" w0 2, 2m+; w2 0 1+t2

(inz

where Re 22 > 0. Bounds for the remainders in these expansions follow from
replacing 1/{1+t2} by 1. Bounds for larger z-domains are cbtained by using
more refined estimates. It can be proved that (2.11) gives asymptotic

expansions for z - «,

arg z| < m/2.

2.2. Chebyshev expansions

LUKE (1969) gives several Chebyshev expansions for exrf(x), in which
case the coefficients can be expressed in terms of Bessel functions. For

example

2 2 £2¢o
e® X erf(ax) = /7 22 Z

2
n=0 In+£{£a )T2n+1(x)'

where -1 £ x £ 1 and a ¢ C. Tabulated coefficients are given by LUKE
(1969) for erf(x), erfc(x) and Dawson's integral (p. 323/324, wvol 1Im).
SCHONFELDER (1978) gives for erf(x) and erfc(x) coefficients in Chebyshev
expansions which enable computation with accuracy of about 10_30. A
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modification of SCHONFELDER (1978) is considered in SHEPHERD & LAFRAMBOISE
(1981).

In various Chebyshev expansions the (real) independent variable is
transformed in order to obtain a faster convergent series. (See SCRATON
(1970) , LOCHER (1975) for the choice of the transformation from a theo-
retical point of view, while THACHER (1965) and SCHONFELDER (1978) determined
experimentally the parameters of the transformation).

HUMMER (1964) has given an elegant method for the calculation of the
coefficients of the expansion of Dawson's integral in Chebyshev polynomials.
(The method also applies, with resvect to the Chebyshev series of y(x), to

2 —x2
erf(x) = e y (%)

because y(x) cbeys the differential equation y' (x) = 2xy (x)+1.)

Let oo
F(kx) = } a T,
n=0

n+1(x) x e [-1,1]

]
a_(x) = %J F(k cos 8)cos(2n+1)8 4.
0
Integration by parts and using the differential equation yields

2

k
(a i ®-a 003, n=1,2,...

an(k) = 2(2n+1) n

The formula for the coefficients is given by

n . 2
a (k) = ) O, -2r-1p . rén k0
n r!(n-x)!
r=0
2.3. Continued fractions
The well-known continued fraction
2% -1 S I Y I IR B
(2.12) Vre” z erfe(z) = = + A TSI S RFR
2 2 2
R N

as given in I.4.9 converges for Re z > 0. Contraction gives a more
efficient fraction.
McCABE (1974) discussed continued fractions for Dawson's integral,

which by transforming z can also be used for erf(z) or erfc(z).
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2.4. Other expansions

STRECOK (1968) has given expansions of erf(x) based on the Poisson

summation formula

oo

o 2 2 . 2
z e—xim+T) - ) Z o KT + (KT+inm) /K_

(m/K)

m=—m n=-—=o«

One of his expansions is

37 2
erf(x) = % [x/5+ } n~le=(0/3)

n=1

-24
with accuracy of about 10 2 N

ein(2nx/5) ], |x| = sw/2,

By using the Gauss-Hermite quadrature rule it is easy to derive from
(1.12)
E Hén)
k=1 z—:ﬁin)
(n) (n)

where X and Hk are the zeros and weight factors of the Hermite poly-

i,
(2.13) w(z) = T lig Im z > 0,

n

nomials.
The trapezoidal integration rule applied on (1.12) gives for any h > 0
ih T e_n2h2
Tl St E®@
P if y < 7/h
ip if y = 1/h
0 if v > m/h

(2.14) wi(z)

+

+

2

2,2
where z = x + iy, P = 26 /[1-exp(-2miz/m ] and E (=) = 0" /*),

uniformly for z € €. See for instance LUKE (1969, vol I, p. 214) and

MATTA & REICHEL (1971). When z is close to a multiple of h, say z = noh

for some integer n then a limiting process has to be used in order to

0!
compute

22
ih e

—— + P.
T z—noh

However, by choosing a smaller value of h, it is always possible to avoid

suchcases.Thequadxaturerule(2.13)asksforthevaluescfxén)andﬂén),whereas

(2.14) can be applied without pre-tabulated constants. The error term for



V. ERROR FUNCTIONS 191

(2.14) is satisfactory and the series converges very fast. For complex
values of z,(2.14) is an excellent starting point for a reliable and efficient
algorithm. For application of (2.14) to functions related to the error
function see MATTA & REICHEL (1971). Some expansions in this reference are
subject to loss of accuracy. However by using elementary analytical

operations this always can be settled.

3. ALGORITHMS AND IMPLEMENTATIONS

In this section algorithms and implementations are considered for: the
error tunction (erf), the complementary error function (erfe) and repeated
integrals (inerfc) ., the probability functions (PandQ), wof z (w), Dawson's

integral (F) and the Fresnel integrals (C,S).

3.1, w(z) conéidered as basic module

The functions to be considered can be expressed in terms of w{z) (see
(1.22)) .For the important special case z e m+,it follows that w(z) is
+ +
needed for z € R , 2 = ix with % € Iﬁ_and z = JF/2(1+i)x with x ¢ R .

REMARK. In those cases where a subtraction occurs care has to be taken for

small values of z in order to preserve sufficient relative precision.

3.2. Implementations for w(z)

In order to calculate w(z) for all = € € we only need to consider

z € Q1 with Q1 = {=z [ Re 2z =2 0, Im z 2 0}, because of the symmetry relations
(1.14) and (1.15).

3.2.1. The implementation of GAUTSCHI (1970a,b)

The aim of Gautschi is : To propose a single algorithm which is
uniformly effective for all complex arguments. Current practice attempts
to achieve the desired economy by adopting different methods in different
regions of the complex plane.

The computational procedure is

N
(3.1) oMz = 3 (2h)kU]Eu3(z+ih}

k=0
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with N, u, dependent on Z and h, chosen such that

1w(z) - Ggu](Z,h) | < € (an a priori fixed precision)
where
k-1
[ul _ 2 [ul
U (=) == ngIrj (z)
and

[ul [ul

(] _
r- o o, r_1(@ = .5/(—iz+(k+1)rk

u

z) ).
(h, N and p are chosen empirically, such that the routine is as efficient

as possible).

REMARKS. The source text is given in ALGOL 60 and therefore the complex
arithmetic is handled by real data types and by programming the operations in
real arithmetic. FORTRAN transcriptions of this code should have cleaned up
this unnecessary coding, unless double precision is aimed at in FORTRAN 77;
Several libraries have not done this in their single precision FORTRAN
version. It is desirable and more comprehensive to use complex data types
and complex arithmetic in the FORTRAN code.

The implementation is designed for 10 digits absolute accuracy. For machines
with a different accuracy the implementation should be adapted. For
machines with a higher accuracy, Xyr 9t h0 and N should be increased,
while p should be decreased; the amounts must be determined experimentally.
Furthermore, it is desirable to use names for the constants: 4.29(=y0),
5.33(=xy), 1.6(=hy), 6(=N_), 23(=N,), 9(=ug), 21(=u,), 1.128...(=2/Vm,
and to provide tabulated optimal values for (some of) these parameters for
various (machines) accuracies, in order to facilitate transportability.

In Gautschi's paper it is indicated how to adapt the constants in order
to meet 14 digits accuracy near the origin. Strangely enough several librar-
ies copied just the original version of the algorithm, although they generally
aim at 14 digits accuracy.

A warning in the paper is given when the algorithm is used for w(-z) wvia
the symmetry relations, because of loss of relative precision near the
zeros of w(-2); an expansion is needed for that region.

The programming should have taken into account the representation
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Cul _ 2
9N (z,h) = fﬁ(r_l(1+(2h)ro(1+...+[2h)rN_2(1+(2h)rN_1))...),
for h > 0, as a modification of formula (3.12) as given in the paper.

3.2.2. The recurrence relations of ACTON (1974)

Acton considered a.o. recurrence relations for the integrals,

—ct2 2 \n
-] t
S () e
(1+t7) 1+t

In(C)

I
oY 3

@

2 2 \n
Jn(c) = I e ct (—E—E) at, Re ¢ > 0.
o 1+t

I0 is proportional to erfc (see 1.10); because of the relation between erfc

and w (see (1.22)), we have
2 2
w(z) = ;—Io(hz ),

so the recurrence relations of ACTON can be used to compute w(z) .
In and Jn obey the recurrence relations

(2n-1)I =2nI_+ 2¢ J
n-1 n n

J =1 + J .
n-1 n-1 n

Starting from (EN'EN) = (1,0), N sufficiently large, ID is approximated by

where IO' J0

4.2. an explanation of ACTON's technique as well as improved starting

are obtained from the recursion and J0 = .5¢Ym/c. In section

values are given.
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3.2.3. The approximation of OLDHAM (1968)

OLDHAM provides an approximation aimed at small machines for
x2
x e erfe(x) = xw(ix),

+
which is not robust for x -+ 0 because of overflow.

3.3. The error function and the complementary error function: =rf and erfc

3.3.1. erf and erfc for complex argument

STEGUN and ZUCKER (1981) have provided an implementation for the erro
function of a complex argument, as an extension of their earlier work -
STEGUN and ZUCKER (1970) - where an implementation for real argument is git

Their main concern was to provide accuracy over the entire domain of
definition while the methods employed were selected in order to ensure ef—
ficiency, portability and ease of programming and modification. If one sup-
plies approximate values for the maximum machine value, minimum machine
value, the upper bound of the sine, cosine routine, and the upper bound to
the acceptable relative error and gives the square root of 7 to the reguire
number of significant figures, the detailed methods are designed to work £«
computations ranging from very low precision to multi-precision. The algor:
used in the first quadrant is a combination of: the Taylor series for erf,

the asymptotic expansion and the even contraction of a continued fraction

representation for erfe.

3.3.2. exf and erfc for real argument

3.3.2.1. The implementation of STEGUN & ZUCKER (1970)

They implemented in ANSI FORTRAN 66 in double precision the error

function with parameters:

input : x = the independent variable
output : erf - the wvalue of the error function at x

erfc -.the value of the complementary error function at x.
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In the routine the machine dependent parameters:

NBC - the number of binary digits in the characteristic of a floating
point number;
NBM - accuracy desired or maximum number of binary digits in the

mantissa of a floating point number.
The used computational procedure reads
the series (2.2) for erf x, with 0 < x < 1,

the even contraction of the continued fraction (2.12) for erfc x

with 1 < x < ULCF,
erf x = 1 and erfc x = 0 for x > ULCF,

the symmetry relations for x < o,
where ULCF is a machine dependent constant.
The summation of the series (2.2) is terminated if the next term as

an estimate of the remainder is smaller than E_NBM, the relative truncation

error.

The even contraction of the continued fraction is evaluated in the

forward direction (see II. 4.8); the evaluation is terminated if either

[1 - cy/e;_, | < ToLER

or

with ¢, the i-th convergent of the even contraction.
i

REMARKS .

* In the note on the parameters for transportable numerical software of
IFIP WG-2.5 the parameter NBM is called SDIGIT. For the parameter NBC
SRANGE can be used.

* We doubt the used termination criterion of the evaluation of the contin-
ued fraction because of the following. After an equivalence transforma-

tion the continued fraction reads

- (2k-3) (2k-4)
i’ 9 = 22x R " : 2 :
1 L ox?as (2x°+4 (k=1) =3) (2x°+4k-3)
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The convergence behaviour resembles the continued fraction

ce= § ISl e -5 with the k-th convergent c,_ = -.5k/(k+1),

k

For the last fraction we have

|1 - ¢ /e | = l/tkz-l), the estimated truncation error,
k' k-1

|1 - Ck/c | = 1/(k+1), the truncation error;

2O

- < - -
I 1 /Sy l< |1 /¢ |
From the above, we consider the implemented criterion

|1 /€y | < ToLER

not correct, because it is possible that the actual truncation error
exceeds TOLER:

1 - e/e, | < rouer < |1 -e /el
(We expect that again a counter example can be obtained for the actual
continued fraction as was the case for the exponential integral, where we
demonstrated for the used continued fraction

i1 "Ck-lfcu!( TOLER < | 1 -ck/cl.
Furthermore, it is remarkable that here the Quantity

1 - ck/ck_l
is considered, while in their publication about exponential integrals
1 - %.;""‘k is considered. However, for practical purposes the stopping

criterion may be sufficient; by introducing a factor it can become robust).

3.3.2.2. Some implementations from CALGO
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CALGO 180, 181 (THACHER) for erf and erfc

These ALGOL 60 implementations are intended for large arguments. The
algorithm used is the evaluation of the (Lagrange) continued fraction (2.12)
for the complementary error function via a method due to Maehly.

This method for the evaluation of the even convexgents of a continued

fraction is a variant of (4.33 in o. 4).

Given the continued fraction

ak

1 bk

L--]
4

k

and the recursion

Y TPy ARG pray =0, g =1

then the even convergents, c2k, are given by

k 2£-1

¢, = ) ( I a)b,,/(a,,q ).
2k, j=1 3 287 23202

For the case of erf and erfc overflow was reported near x = 1, and because
the use was intended for large x no attention was paid to scaling.
Because scaling, in the method due to Maehly, can be of general impor-

tance, one can introduce scaling factors {fk}, as follows.

k  28-1
* *
Cop = ££1 ( j21 aj)b2£
with

*=£, . f b: = £.b
a, = . . a - = .
3 3-173%57 3 i3’
f3 T MRgE ) 3= 2, £ =

This representation can be derived from the representation of the even

convergents of the equivalent continued fraction

e
® Tfon
k=1 k k

*
where fk is chosen such that qj =1, i.e. the partial denominators equal one.
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CALGO 209 (IBBETSON) for normal distribution function erfc
The used algorithm in ALGOL 60 is Horner's rule for the evaluation of

some peculiar polynomial approximation, while for ix | 2 6 the value 1 is
taken. The number of decimals in the coefficients suggest a more accurate
approximation, which is misleading.

REMARK

This implementation is overruled by the more concise approximation 7.1.26
in Abramowitz and Stegun, which also yields +7 digits accuracy. Furthermore,
one could consult HENRICI (1977b), when an approximation for a pocket

calculator is desired.

CALGO 272 (Mac LAREN) for normal gistriggtion £unctiqp erfc

This ALGOL 60 implementation combines the Taylor series expansion of
erf around suitable points for small x and the asymptotic expansion for
erfc for large x. "Small", "large" and the required precision can be
adapted by a modification of the named variables B, N and EPS, respectively.
REMARKS
Although this implementation is characterized by the parameters B, N and
EPS, we consider it not worthwhile to implement this procedure on a

machine with a larger machine precision than 2. -8, especially in view of

10
IMSL, NAG and published coefficients of rational approximations.

CALGO 304 (HILL & JOYCE) for normal curve integral erfc

The ALGOL 60 implementation combines the series expansion (2.2) of
erf and the (Lagrange) continued fraction (2.12) of erfc. The continued
fraction is evaluated by the forward algorithm (see 4.3.1. in I. 4). In the
remarks the odd contraction of the (Lagrange) continued fraction is
proposed as a faster algorithm. Furthermore intermediate overflow can
occur and so scaling must be introduced, as proposed in a remark by

Holmgren.

3.3.2.3 The representation of MATTA & REICHEL (1971)

For real argument values their series representation reduces to the

trapezoidal integration rule (2.14),
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3.3.2.4. The implementation in IMSL and CERN

The implementations with multiple entry points can deliver either the
value of the error function, or the value of the complemented error
function or the value of the normal distribution function.

The computational problem is

kam(xz). for 0.0 € x < 0.477
—x2

e R (x), for 0.477 < x = 4.0
.2

e Lelr (), for x40,

x v xz“kmxz ’

where ka(x) are rational function of degree k in the numerator and m in
the denominator. For negative values of the argument the problem is reduced
to the above computational problem via the Symmetry relations (1.13). The
approximations and the coefficients for the various domains and a variety

of relative precisions (down to 10_19) are given in CODY (1969b).

The implementations in NUMAL

These implementations are variants of the IMSL and CERN implementations
and also based on the approximations and coefficients given by CODY (1969b).
The difference concerns the language — ALGOL 60 — and that an auxiliary
procedure is provided, which delivers the intermediate result

2
e* erfe(x) .

3.3.2.5. The implementations in NAG

The implementation SI15AE delivers erf(x). The computational problem is

Xy a T (t), t=1T,(x/2), for |x| = 2
k
2
—x .
e x-7 :
- . t = — £ 2 < |x| < xh
sgn x {1 T;T7? E kak(t)] —y or x| i

sgn x, for xhi = |x]|.
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The implementation $15AD delivers erfc(x). The computational problem is

2 '
e™ ] aT (t), t= (x-3.75)/(x+3.75), for 0 < x < xhi
oo Bk k

o, for xhi < =.

For x < 0 the symmetry relations are used.

REMARKS
* xhi is machine dependent. The number of terms of the Chebyshev series, N,
as a function of the number of decimal digits in the machine precision,

d, is given by the following tables, for erf and erfc respectively.

| ers lx] <2 2< |x]| < xni
N 8 12 15 17 8 11 15 18
a '8 12 14 18 8 12 14 18
erfc 0 < xhi

12 18 21 23 26
8 12 14 16 18

The only parameters are the argument and the error indicator; the latter
is included for consistency reasons with other routines and has no

meaning in these routines.

The ALGOL 68 library provides operators apart from the routines.

The coefficients of the Chebyshev approximations are published by
SCHONFELDER (1978) . For the error function for 2 < |x | < xhi, different
coefficients in the MSbius transformation are used in the paper and in

the library up to mark 7.

* The original version of this algorithm as published by CLENSHAW c.s. (1963)
is implemented in the library of the Boeing company, NEWBERY (1971). This

version needs more terms in the Chebyshev approximation.

3.3.2.6. The implementation for the TEXAS INSTRUMENTS 58/59
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Implemented is formula 7.1.26 of ABRAMOWITZ & STEGUN (1964, p. 299).

3.3.2.7. The implementation for the HEWLETT PACKARD 67/97

For x < 3 the series expansion (2.2) is used for erf. For x > 3 erf(x)
is computed via the asymptotic expansion (2.5) for erfc(x). HENRICT (1977b)
used for x £ 2 the series expansion (2.2) and for x > 2 erf(x) is computed

via the continued fraction for erfe(x).

3.4. The repeated integral of the error function: i erfc

For complex values of the argument no implementation is known to us.

In GAUTSCHI (1977a) stability for the recurrence relation is reported in

the forward direction for Re z > 0 and in the backward direction for

Im z < 0.

3.4.1. The implementation of GAUTSCHI (1977a): inerfc X for x e R

For x € I;‘this implementation is an improvement in efficiency over
the algorithms which use backward recurrence, based on relation (1.9),
alone. The repeated integral of the error function is for x > 0 a (weakly)
minimal solution of the recurrence relation in the forward direction, while
for x < 0 it is a dominant solution. The minimal solution is computed for
¥ > 0 whenever this can be done within the desired correct significant
decimal digits specified by the user, because for small x the quotient of
the dominant and minimal solution is not toc large. In order to start the
forward recursion the Taylor series is used. The backward recursion is
elaborated via the continued fraction variant of the Miller algorithm, where
the starting index is first estimated via GAUTSCHI (1961b) and refined, if
necessary, by increasing the index by 10 and comparing the results with

the previous results.

REMARKS

* To the authors opinion the seriesg (2.2) should have been used instead
of the Taylor series. (An experiment on the HP-97 showed that up to
¥ = 5 no more terms are needed while a more accurate answer is obtained.

Furthermore for larger values of x care has to be taken with the
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alternating series with respect to underflow and overflow as well as the

stopping criterion).

The used truncation error criterion for the termination of the summation
of the Taylor series is not robust, because the series is not an
absolutely monotonely decreasing series and therefore the first neglected
term does not majorate in absolute value the remainder. Alternating
series with in absolute value monotonically decreasing terms, can be ob—

tained by the repeated expansion as used in CALGO 123.

The repeated integral of the error function can be expressed as a
confluent hypergeometric function (see below 1.9), and calculated by the
algorithms given in TEMME (1983). For small positive values of the argu-
ment x, efficiency is obtained by the use of asymptotic expansions. The
used backward recurrence relation has a larger domain of stability and is a
modification of (1.9) by introducing the derivative. For the special case
of the repeated integral of the error function this is not necessary.

3.5. The probability functions: P and Q

These functions are strongly related to the error fun~tion. In litera-—
ture Q is also called: normalarea (BERGSON (1966)) and normaltail (ADAMS
(1969)) . These implementations are overruled by respectively HILL & JOYCE
(1967) and CODY's work (1969b) and the entailed implementations e.g. in IMSL,
GAUTSCHI's (1970a) implementation of w(z) and the formula (1.22) provide
a general, modular starting point for an implementation. On the other hand
the algorithms and implementations in TEMME (1983) for the confluent
hypergeometric function could be used as basis.

In NUMAL the relations between P and Q and erf and erfc is indicated
in the documentation, and so the calculation is referred to the implementa—
tion of erf and erfc.

In NAG explicit routine headings are provided for P and Q@ (S15AB and
S15AC) which call erfc (S15AD).

3.6. Dawson's integral: F

The material given below is strongly related to the error function,

—z2
namely,F(z) = je - erf(-z). Although in (1.22) the relation between w
and F is given, it is advised to circumvent 'the subtraction' only once,

while the above formula couples F and erf.
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The computation of F(2) can be based on various series representations

for the error function (see (2.1), (2.2)). Besides these series represen—

tations various continued fractions are used In literature:

the continued fraction associated with the Taylor series:

31_222 422 2
3- 5+

6z
7

._.
+

* the asymptotic series:

2z 2%z 2325

-

the continued fraction associated with the asymptotic series;

1 2 6
2z- 2z- 2z~ 2z- """

* the continued fraction

z 4z2 822 1222

1+2z2— 3+222- 5+222- ?+222—

(The last fraction converges reasonably fast for small as well as large
argument values z € Ff. Truncation error estimates were provided by

MC CRBE (1974); references for the truncation error for the other continued
fractions are mentioned). DIJKSTRA (1977) considered a similar continued
fraction for the generalization of Dawson's integral. (Truncation errors
were derived for z € € and estimated for z e Ic-in the paper; the published
continued fraction restricted to Dawson's integral is equivalent to

Mc Cabe's version).

Furthermore, the following representations are mentioned in literature.
* the recurrence relation of ACTON (1974), see section 3.2.2;

* the series representations of MATTA & REICHEL (1971), see (2.9);

* the Chebyshev expansions of LUKE (1969, chapter IX).

3.6.1. Dawson's integral for complex argument: F(z)

No specific implementation is known to us.
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3.6.1.1. The representation of MATTA & REICHEL (1971)

Matta & Reichel represent F(z), z = x + iy, by

v .—z2 .
5 {ie + K(y,x) - i H(y,x)}

where the series representations of H and K are given in the paper. This
representation is based on (2.14).

3.6.2. Dawson's integral for real arguments: F(x)

3.6.2.1. The implementations in FUNPACK, IMSL and CERNLIB

These implementations are based on CODY c.s.

(1970) . The computa-
tional problem for F(x) is:

2
X R, (x7), Ix] = 2.5

-2
- . = =5
% Rem & ) 2.5 £ |x| £ 3.5 & 3.5 = |x]|

1 -2 -2
5 1+ x R, (x )}, 5= x|,

With R&n rational functions with numerator of degree £ and denominator m.
For an accuracy of 15 digits, the degree of the polynomials in the rational
functions are: (£,m) = (8,8), (7,7), (7,7) and (6,6), respectively.

REMARK

The coefficients of the equivalent Jacobi fraction are published, except

for |x| = 2.5.

3.6.2.2. The implementation in NAG

The computational problem is

x ] a T (t), t =T, (x/4), Ix| < 4

e on®), t= T,(4/%), 4 S |x|.
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For an accuracy of 15 digits the degree of the polynomials are 28 and 24,
respectively. The Chebyshev sums are represented as power sums in the

routines for efficiency reasons.

REMARKS

* The coefficients could have been derived exactly, by the technique of
HUMMER (1964), which comes down to partial integration of the integral
representation of the coefficients and substitution of F'(x) = 1-2%xF(x).

* LUKE (1969) has published coefficients of the expansion in odd degree
Chebyshev polynomials with transition point x = 3.

3.6.2.3. The representation of MATTA & REICHEL (1971)

For real argument values their representations reduce to the

trapezoidal integration rule (2.14).

3.7. The Fresnel integrals: C and S

These functions are closely related to w(z) as indicated in (1.22).

The separate functions can be expressed in terms of w by writing

@)= {0 <6 D) G

A(E) (w(iE)-w(E)) /2
B(E) = (W{iE)+w(£E)) /2

with

and

£ = Va/2(1+1i) z.

(This relation can be derived from (1.22) and the symmetry relations

C(iz) = ic(z}, S(iz) = -is(z)).

REMARK
The subtraction of w(if) and w(£) has to be handled with care.

On the other hand for large values of z the formulas (1.20) can be used,
where f(Z) and g(z) need to be evaluated. These functions can be evaluated

by:
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* the asymptotic expansions (2.11);

* the recurrence relations of ACTON (1974), especially for z € R;

* rational approximations of CODY (1968), for z € R;

* the representation given in MATTA & REICHEL (1971).

3.7.1. The Fresnel integrals for complex argument: C(z) and S(z)

No general implementation is known to us; so far no practical demand

seems to exist.

3.7.2. The Fresnel integrals for real arguments: C(x) and S(x)

3.7.2.1. The implementation in NUMAL

This implementation is based upon CODY (1968). The computational

problem is

C(x):xnh(x‘l). Ixl £ 1.2 and 1.2 < |x| < 1.6

s(x}:x3R£m(x4), |x] £ 1.2 and

1.2 < |x| = 1.6

and for the remaining argument wvalues the reoresentation (1.20) is used,

where the functions f and g are approximated by

£(x) Ry (x_4)/x, for
> (/m+Ry (¢ /x?) /x, for
g(x) :Rzmx"4) /%2, for

~ (1/“2+R£m(xh4)/x4)/x% for

For an accuracy of 15 digits, the degree of

functions are given in the following table

1.6

2.4

1.6

2.4

the

< |x| £ 1.9 and 1.9 = |x] = 2.4
< |xl
< |x| £1.9 and 1.9 = |x| < 2.4

< |x].

polynomials in the rational
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i
3
i
lx] <1212 < [x] < 1.6 1.6 < x| = 1.9[1.9 < |x| = 2.4|2.4 < |x| ﬁ
] | 1
Z 4 5 4 /
al 1% 5 > ;
|m 4 5 ™ 4 5 5 g
le |
5
s| 4 glf. 5 5 6
| m 4 5 |m 5 5 l 6
1 1

3.7.2.2. The implementations in NAG and CERNLIB

These implementations are based upon BULIRSCH (1967), and NEMETH (1965)
for the recurrence relations for the coefficients. The computational problem
2
for x© < 9 is:

2
C(x) =x)e T, (x°/9)

3
S (x) :% ZchZx(xzfm .

For the remaining argument values representation (1.20) is used, with

2
£(x) ~ ECrTzr(Q/" ) /%

1

3 2
gix) =~ (9/x )ZdrTzr(Q/x ).

For an accuracy of 15 digits the degree of the polynomials are
given in the following table.

x? <9 x2>09
degree for C 21 degree for f 14
degree for S 20 degree for g 17

3.7.2.3. The recurrence relations of ACTON (1974) for f and g

Acton considered, among others, recurrence relations for the integrals
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< -ct 2 \n
I (¢) = J 2'""§E'( t 2) dt
n 1+t° M+t
0
< -ct 2 \n
J (c) = J —Jijf-*‘( = 2) dt
n 5 (1+£)7/E M+t
-]
-ct 2 \n
K_(c) = J . ( £ 2) at.
n 5 YE M+t

Because
£(x) = 3 (~n/2 3V /(w/2) »
§(x) = I (172 x)/(1/2) .
the recurrence relations as given by Acton, can be used to compute £ and g,

and hence C and S. In section 4.2 an explanation of Acton's technique ic

given

3.7.2.4. The representation of MATTA & REICHEL (1971) for f and g

Matta & Reichel represent f and g as defined in (1.20) by

£(x) = v2/(2mx) { BH(xV/7/2) + K(x¥7/2)}
gx) = v2/(2mx) { Bx/7/2) - K(xV7/2)}

with series representations for H and K given in their paper.

REMARK

Cancellation occurs if first H and K are evaluated and then their sum and

difference; one must first represent the sum and difference of H and K
analytically as infinite series.

4. SOME ASPECTS OF ERROR ANALYSIS

In this section we consider: the effect of perturbation of the argument,
the reccurence relations of Acton.
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4.1. The effect of perturbation of the argument

The relative error amplification of a function f due to a perturbation

Az of the argument z, is defined by

| £(z+az) - £(2) | /] £(2) |
J Z#O; f(z)?‘O-

| az/z |

In the following the relative error amplification is given for the functions

related to the error function.

function first derivative relative error amplification
erf(z) 2,V e‘z2 |z/(ezzj§ e_tzdt)l
erfc(z) -2/ e_z2 iz/(ez2f: e_tzdt) [
inerfcﬁz) ~inh1erfc(z) |Zin_1erfc(z)/inerfc(z)f
P(2) 1/V2m e'_zz‘/2 [z/(JE_ezz/z(fg/Z e_tzdt+/?73))|
Q(z) -1/V7n 212 [z/(»/z‘ezz"z(fgfz e_tzdt—\/m)H
F(z) 1 - 2z F(z) |z/F(z) - 222[
Cc(z) cos %22 |zcos % 2%/ c(z) |
S(z) sin g-zz |zsin %-22/8(:)|

4.2. The recurrence relations of ACTON (1974)

Acton considered the class of integrals

F(c) = I E—E%—""—th,
0 t (1+Y)

with X = t or t2, Y = t or t2, k =0, *1, ¢ > 0. For the calculation of

these integrals via recursion the class of integrals is extended to

o

n
F (c) = r EXP(—CX) ( Y ) at.
n g tk/2(1+Y) \ 1+y
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Moreover, the sum function (and sometimes repeated sum function)

L]

- exp (-cX) (_Y__\n
Gy (o) I 72 \1+¥) at
4]

is used, with Go(c) known. Note that

Fn(c) Gn(c) - Gn+1 (c)

or
n-1

k=0

G (e) = Gyle) - ) F(c).

From these functions a homogeneous matrix vector recursion
(4.1) yik-1) = AKy(k), vk = (yyk),..., YP(k))

is derived, with A(k) 2= 0. The oxder p equals 2,3 or 4. F(c) equals yi1(0)

(unknown) and ym(O) is given for a certain value of m, 1 €< m < p.

4.2.1. The Miller/Acton algorithm

The M/A algorithm reads:

take n sufficiently large; rule of thumb n = [150/c],

take as starting vector a unit vector as given in the paper of Actomn,

* calculate ;(D} via the recursion,

.

calculate y, (0) = ; (0) v (0)/; (0) for the desired components.
i i m m

In the following we will explain the algorithm where the assumptions will
be stated explicitly.

Suppose,
« the eigensystem of B = IEESK"_IA(]-:) is given by {E,A}, i.e. BE = EA and

each eigenvector is scaled such that the i-th component egquals one,
* y(n) = Ev,

then for every r-th component of the vector y(£) we have

(4.2) yr(!;) = (By(n)) = (BEV) == Erji\j

v, (1+€ )
j r
with

J

e, = (kngrkAkkvk) /(B hy5vy) s

and j free for choice. From (4.2) we obtain
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E..(1+e,)
1 1

(4.3) yiu’.) = ymtz) Emj(l+em) .

Suppose furthermore, that for an arbitrary starting vector w a vector s
exists with the property

w = Es,
then

(Bw)r = Erjnj‘s (1+6r]
with

§ = (JE_A s)/(E_N .s.).

r K3 rk kk' k rj 3ji 3
Substitution of

Eij _ (Bw)i(1+6mj

Emj (Bw)m(1+51)
in (4.3) yields

(1+e ) (146 ) (Bw) .
=y 3t m, with y3) =y () —

(4.4) yi(f.) y; &) e, ) (T8) W v; Yo con

By assuming Ei' €Lt éi, Gm negligible and taking £ = 0 and w a unit vector
the M/A algorithm is obtained from (4.4) with §?0)

Bw, i,e., yi(ﬁ).

REMARKS
* 8 =04if w = Ej' the dominant eigenvector of B.

€ =04if y(n) = Ej’ the dominant eigenvector of B.

4.2.2. Estimating the starting index

If we start with w = Ej then the relative truncation exror of the M/A
algorithm is in first order given by

a
| v; (0) - ¥, (0) |

| v, (0) |

Let for each A(k) the eigensystem be given by {E(k), A(k)} with E(k) non-
singular, and let M(k) be defined by
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E(k)M(k)

]

E(k+1)

then
n

B=E(M) I (AKMK)E " (n+1).
k=1
Furthermore, if M(k) = I in first order (a so-called slowly varying
recursion) then the eigensystem of B is given by {E(p), A(k)}, p ¢ [1,n].
If we furthermore assume that the magnitude of Ei is determined by the

subdominant eigenvector with index s say, and vs/vj =1
then

n
e, = I A(k)ss/!\(k)jj.

k=1

The truncation error is governed by ei and Em: if we concentrate on ey

then the starting index can be estimated, given a desired relative accuracy
eps, by

n n-1
(4.5) {n] ©m | Mklssh\(k)jj | < eps < kgl | A(k)ss/ﬁ(k)jj |},

REMARKS

*+ Although the above theory orginated from the desire to understand and to
apply Acton's recurrence relations for the parameter ¢ € @€, Re ¢ > 0, it
is possibly of use in other matrix vector relations, such as those
which result from three-term recurrence relations by considering the
companion matrix, or the matrix vector recursions for a function and its
derivative, e.g. as used by TEMME (1983) for the calculation of the
confluent hypergeometric function.

Acton proposed to start with a unit vector; we propose to start with
Ej(n) the dominant eigenvector of A(n).

Intermediate scaling must be implemented to circumvent overflow. For a
matrix of order two a direct formulation, with implicit scaling, can be

obtained by the recurrence relation for the quotients yl(k)/yz(k): where
Yl(O) is to be calculated.
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5. TABULATED COEFFICIENTS

For a more complete list, especially through 1969, see LUKE (1969).
BULIRSCH (19&7)

C(x), S(x) coefficients of the Chebyshev expansions up to 174 on

x2 <9, 9= x2.

CLENSHAW, MILLER, WOODGER (1963)

erf (x) coefficients of the Chebyshev expansions up to 164 on
2
x < 16.
erfc(x) coefficients of the Chebyshev expansions up to 194 on
x =z 4.

(In CLENSHAW (1962) the above coefficients are provided
for the same intervals up to 204).
coDY (1968)
C(x), S(x) rational approximations up to 194 on [0,1.2], [1.2,1.6],
[1.6,1.9], [1.9,2.4] and [2.4,«).

CoDY (1969b)

erf(x), erfc(x) rational approximations up to 22d on [0,.5],

[.46875,4.0] and [4,=).
CODY, PACIOREK, THACHER (1970)
F(x) rational approximations up to 224 on [0,2.5],
[2.5,3.5], [3.5,5], [5,=).
HART c.s. (1968)
erfc(x) various rational approximations.
HUMMER (1964)

F(x) coefficients of the Chebyshev expansions up to 164 on
[0,5]; recurrence relations for the coefficients are
also provided.

LUKE (1969)
The Chebyshev expansion of erf(ax) and the Fresnel

integrals is given in chapter IX, 9.3.

Coefficients of the Chebyshev expansion up t0220d are
given for: Vi/2erf(x), x| < 3 (table 22); " F(x),
Ix] < 3 (table 22) and x >2 (table 23); Vmn/2erfc(x),
x 2 3 (table 23); v2r c(¥2/7x), O < x < 8 (table 24);
Var s(V2/mx), 0 < x < 8 (table 24).
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Main diagonal Padé approximations up to 22d and the

approximation errors for z =1, i, - 1, are given for

erf(z), e” F(z), C(z) + iS(2) in table 65.1 and 65.2.
NEMETH (1965)

C(x), S(x) coefficients of the Chebyshev expansions up to 12d on
[0,8]; recurrence relations for the coefficients are
also provided.

SCHONFELDER (1978)

erf(x), erfc(x) coefficients of the Chebyshev expansion up to 30d on

(0,41, [4,«).
SHEPHERD & LAFRAMBOISE (1981)

erf (x) coefficients of the Chebyshev expansion up to 22d on

[0,m).

6. TESTING
.

The testing with respect to accuracy of algorithm 363, w(z)
implemented by GAUTSCHI (1970b) in ALGOL 60, consisted of:
° & comparison with a 14d implementation of the same algorithm,
* a comparison with tabulated values.
In bothcasestheaimed10decimalaccurayhasbeenobtainmi.Inthecertification
of algorithm 363 K61big performed more elaborate tests on a FORTRAN transcrip-
tion of the algorithm extended to the complex plane.

STEGUN & ZUCKER (1970) compared their implementation of erf with those
obtained by using various polynomials or rational approximations. Further—
more, special values were checked by asymptotic expansions and numerical
integration; moreover, single precision results were checked against double
precision results. They reported that in all cases the obtained accuracy
agreed within NBM-(I+3) binary digits, where I is the number of binary
digits representing the integer part of xz. (Because of the reduction of
the argument x“ of the exponential function I binary digits are '"lost').

The correctness of the coefficients for functions related to the error
function as published by CODY (1968,1969b) and CODY, PACIOREK & THACHER (1970)
Was verified by comparison of subroutines based on the coefficients and the
'master routines' using 5000 pseudo-random argquments.



V. ERROR FUNCTIONS 215

The NAG implementations have been tested with automatic portable test

software (see introduction).

GAUTSCHI (1977) compared his FORTRAN implementation with:
* a mixed-precision variant (single and double),
* numerical tables,
* numerical integration,

* results from various asymptotic expansions.
7. APPLICATIONS

We mention a few examples only. Applications in statistics and in
physics are abundant. For a list of integrals of error functions see

NG & GELLER (1969).

7.1. Inverse error function

Implementations are available in IMSL, NUMAL and CERNLIBE. In principle

an implementation for erf, erfc and a zerofinder will do, because
inverf: y + {x|ly = erf x}.

This general approach has the following pitfalls
a. For y away from zero - x large - the problem is sensitive for perturba-

tions in y, because

ax /7 x°
= [=]

dy T2

For large x, change of the dependent variable into y = 1-y yields

erfc x - y = 0. For the relative perturbation we have

idxzerfcxrf? x2~L2,x+oo.
X dy x 2 2 x

Therefore, in terms of y the problem is better conditioned. To circum-

vent underflow one should consider (BLAIR et al. (1976))

£(-£€n erfe x)l’ -1=0, £ = (-!ln:})'l’.
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b.

Efficiency considerations.

. In the zerofinder use of the cheap derivative must be made. Therefore

the Newton-Raphson algorithm or another routine where use is made of
derivatives must be considered. Furthermore, the problem can be approxi-
mated by considering a truncated asymptotic series or continued fraction
approximation of erfc x. On the other hand if erfc is approximated by a

series expansion,a priori inversion of the series can be considered:
-y = — P > x = v
erfe x -y =0 n{x} Qm(Y),

where Qm(§) can be represented in terms of Chebyshev polynomials (see
STRECOK (1968)). In IMSL the inverse function inverf is implemented via
near minimax rational function approximations. BLAIR et al. (1976) have
published the coefficients, in * 234, of the rational approximation and
the algorithm by which these coefficients were obtained

REMARK

The implementation in CERNLIB did not circumvent pitfall a), so for large

x values the algorithm is ill-conditioned.

7.2.

Cornu's spiral

In the theory of Fresnel diffraction in optics the intensity of the

light behind a slit is governed by Cornu's spiral. The coordinates of any

point (x,y) on Cornu's spiral are given by the Fresnel integrals

w
2
x = f cos Tt /2 dt
0
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h'4

(

Yy = } sin nt2/2dt,
o]
where t is the lenght along the spiral. The lenght v determines the width
of the diffraction slit. The intensity of the diffracted light is equal to

2 2 .
x + vy , which needs the evaluation of the integrals.

7.3. Integrals in terms of the error or related functions

Sometimes it needs some skill to recognize integrals. In Abramowitz
and Stegun the integral

J e *fsin(th /rat, x> o0

0
is expressed in C and S as

2 2

T/20(.5-C(y)) " + (.5-S(¥))7), |y = x/V2m.
However, for large values of x cancellation occurs, because C(x) and S(x)
behave as .5 + 0(1/x) for large x. After some manipulation the integral can
be expressed in the function f and g, as given in (1.20), as

1/2(£2 (91 +g(v)) .

If only the function w is available the last expression is easily expressed

in terms of w via (1.22).

7.4. Error integral in computing literature

In FORSYTHE, MALCOLM & MOLER (1977} the exercises of each chapter
start with a problem related to the error function.
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canonical representations
contraction

convergence

(confluent) hypergeometric function
exror function

exponential integrals

evaluation

Stieltjes

transformation

truncation error

145,193,209,210
211

203
186
150
122

121
67
120
120
69

189,213
153,156
188,214
213

130

112

126
169,174,175
189

22

21

82

85

87

88

88
100,111
98

157

95

94

86

93
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cosine integral,

Chebyshev expansion 156,169,174

implementations 165
rational approximations 175
Coulomb functions 68,121
Coulomb phase shift, 121
implementations 132
rational approximations 135
recursion 68
Dawson's integral, 202
Chebyshev expansion 189,213
continued fractions 203
implementations 204
error,
residual i 21
truncation 21, 93
error and complementary error function, 179
Acton recurrence 194
asymptotic expansion ' 186
Chebyshev expansion 188,213
continued fractions 189
implementations 194
integral representations 182
Poisson summation formula 190
rational approximations 213
repeated integrals of 201
tabulated coefficients 213
Taylor expansion 185
exponential integrals, 141
Acton recursion 145
asymptotic expansion 150
Chebyshev expansions 153,156
continued fractions 157
Ei 143
hypergecometric representations 149
implementations 158
incomplete gamma function representation 149

Laguerre quadrature 171



Padé approximations
recurrence relation
tabulated coefficients
Taylor expansions
an'sn

factorials and integral representations

Fresnel integrals,
expansions
recurrence relations
rational approximations
implementations

gamma and log gamma functions
algorithms
asymptotic expansions
Chebyshev expansion
duplication formula
implementations
incomplete
integral representations
error analysis
ratio of
reflection formula
Stirling's series
symmetry relations
tabulated coefficients

GAMS

G-function

hyperbolic sine / cosine integrals

hypergeometric function,
Chebyshev expansion
confluent, Kummer
Gauss

Kummer function

logarithmic integral

Miller algorithm

Olver algorithm

plasma dispersion function

probability functions P and Q,

178
145,174
174

149
43,44,145
138
180,185,205
188,213
207

213

206

115

128

122
130,135
127
128,131
117
117,119
133
125,132
119

124

127

135

18

108

148

103

112
100,107,112
103
107,112
145

55, 72
55, 77
180
180,185

229
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implementations 202
program
naive 21
strict 26
program libraries, 11
Collected ALGOrithms ACM 17
CERN 15
FUNPACK 12
Harwell 1e
IMSL 12
NAG 13
NUMAL 16
PORT 14
SLATEC 14
SFUN 18
psi and polygamma functions, 119,120
asymptotic expansions 125
Chebyshev series 126,135
implementations ) 132
integral representation 120
Laplace transforms 139
rational approximations 126
series representation 120
tabulated coefficients 135
recurrence relation (recursion) 28,47 , 64
absolute 31
Acton 145,193,209,210
backward, forward 30,58
Bessel function 67
Coulomb wave function 68
confluent hypergeometric function 70
dominant solution 48
exponential integrals 41,173
growth of solution 49, 64
incomplete beta function 69
intermediate solution 60
Jacobi polynomials 71

matrix wvector 47, 66



Miller algorithm
minimal solution
Olver's algorithm
order reduction
positive
repeated integral of the error function
second order, three-term
slowly varying
repeated integral of the co-error function,
implementations
sine integral,
Chebyshev expansion
implementations
rational approximation
summation of rational series
w-function,
Acton recursion
symmetry relations
implementations

Whittaker function

55,72
48
57,77
58
173

64

47

50

180

201
146,155,156
169,174
165

175

137
180, 185
193

183

191

107
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