
A percolation process on the binary tree where large �nite

clusters are frozen

Jacob van den Berg∗, Demeter Kiss†and Pierre Nolin‡

May 16, 2011

Abstract

We study a percolation process on the planted binary tree, where clusters freeze as soon as they
become larger than some �xed parameter N. We show that as N goes to in�nity, the process converges
in some sense to the frozen percolation process introduced by Aldous in [1].

In particular, our results show that the asymptotic behaviour di�ers substantially from that on the
square lattice, on which a similar process has been studied recently by van den Berg, de Lima and Nolin
[8].
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1 Introduction and statement of results

Aldous [1] introduced a percolation process where clusters are frozen when they get in�nite, which can be
described as follows. Let G = (V,E) be an arbitrary simple graph with vertex set V, and edge set E. On
every edge e ∈ E, there is a clock which rings at a random time τe with uniform distribution on [0, 1] , these
random times τe, e ∈ E, being independent of each other. At time 0, all the edges are closed, and then each
edge e = (u, v) ∈ E becomes open at time τe if the open clusters of u and v at that time are both �nite �
otherwise, e stays closed. In other words, an open cluster stops growing as soon as it becomes in�nite: it
freezes, hence the name frozen percolation for this process.

The above description is informal � it is not clear that such a process exists. In [1], Aldous studies
the special cases where G is the in�nite binary tree (where every vertex has degree three), or the planted
binary tree (where one vertex, the root vertex, has degree one, and all other vertices have degree three). He
showed that the frozen percolation process exists for these choices of G. However, Benjamini and Schramm
[2] showed that for G = Z2, there is no process satisfying the aforementioned evolution. For more details
see Remark (i) after Theorem 1 of [9]. It seems that no simple condition on the graph G is known that
guarantees the existence of the frozen percolation process.

To get more insight in the non-existence for Z2, a modi�cation of the process was studied in [8]. In the
modi�ed process, an open cluster freezes as soon as it reaches size at least N, where N (a positive integer)
is the parameter of the model. See De�nition 2 below for the meaning of `size`. Formally, the evolution of a
frozen percolation process with parameter N is the following.

At time 0, every edge is closed. At time t, an edge e = (u, v) ∈ E becomes open if τ(u,v) = t and the
open clusters of u and v at time t have size strictly smaller than N � otherwise, e stays closed. We call
this modi�ed process the N -parameter frozen percolation process. Note that replacing N by ∞ corresponds
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formally to Aldous' in�nite frozen percolation process, therefore we sometimes refer to it as the∞-parameter
frozen percolation process.

The N -parameter frozen percolation process does exist on Z2 (and on many other other graphs including
the binary tree), since it can be described as a �nite-range interacting particle system. For general existence
results of interacting particle systems, see for example Chapter 1 of [6]. Van den Berg, de Lima and Nolin
[8] study the distribution of the �nal cluster size (i.e. the size of the cluster of a given vertex at time 1).
They show that, for Z2, the �nal cluster size is smaller than N , but still of order of N , with probability
bounded away from 0. In the light of the earlier mentioned fundamental di�erence (the existence versus
the non-existence of the ∞-parameter frozen percolation process), it is natural to ask if the N -parameter
process for the planted binary behaves, for large N, very di�erently from that on Z2. It turns out that this
is indeed the case: We show that the N -parameter frozen percolation process for the planted binary tree
converges (in some sense, see Theorem 1) to Aldous' process as the parameter goes to in�nity. In particular,
the probability that the �nal cluster has size less than N, but of order N, converges to 0 (see (1.1) below).

Before stating our main result, let us give some notation. We distinguish between di�erent frozen perco-
lation processes by using subscripts for the probability measures. We thus use PN to denote the probability
measure for the N -parameter frozen percolation process where the size of a cluster is measured by its volume,
while for the ∞-parameter frozen percolation process, we use the notation P∞. We denote the open cluster
of the root vertex at time t by Ct. For a connected sub-graph (cluster) C of the graph G, the volume of C,
i.e. the number of edges of C, will be denoted by |C|. Our main result is the following.

Theorem 1. For the N -parameter frozen percolation process on the planted binary tree, where the size of a
cluster is measured by its volume, we have

PN (Ct = C)→ P∞ (Ct = C) as N →∞

for all �nite clusters C. Moreover

lim
k→∞

lim sup
N→∞

PN (k ≤ |Ct| < N) = 0, (1.1)

and hence the probability that the open cluster of the root vertex is frozen also converges:

PN (N ≤ |Ct|)→ P∞ (|Ct| =∞) as N →∞.

The theorem above considers the case where size is measured by the volume. It can be extended to other
notions of size. To state our more general result, we need to introduce some additional de�nitions. We
denote the planted binary tree by T, and by C the set of �nite clusters (�nite connected components) of T.

De�nition 1. We say that a function h on the set of vertices of T into itself is a homomorphism if it maps
any edge (s, t), with s closer to the root than t, to an edge (h(s), h(t)), with h(s) closer to the root than h(t).

De�nition 2. A good size function of clusters is a function s : C → N, which satis�es the following
conditions:

1. Compatibility with homomorphisms. For all C ∈ C and injective homomorphisms h we have s(h(C)) =
s(C).

2. Finiteness. For all N ∈ N and for any vertex v, the set {C ∈ C | v ∈ C, s(C) ≤ N } is �nite.

3. Monotonicity. If C,C ′ ∈ C with C ⊆ C ′, then s (C) ≤ s (C ′) .

4. Boundedness above by the volume. For all C ∈ C , we have s(C) ≤ |C|.

The conditions of De�nition 2 are satis�ed for most of the usual size functions such as the diameter (the
length of the longest self-avoiding path in the cluster) or the depth (the length of the longest self-avoiding
path starting from the root).

We indicate the dependence on the size function with an additional superscript: P(s)
N denotes the proba-

bility measure for the N -parameter frozen percolation process with size function s. With this notation, the
following generalization of Theorem 1 holds.

2



Theorem 2. Let s be a good size function for the planted binary tree. Then we have

P(s)
N (Ct = C)→ P∞ (Ct = C) as N →∞ (1.2)

for all �nite clusters C. Moreover

lim
k→∞

lim sup
N→∞

P(s)
N (k ≤ s (Ct) < N) = 0, (1.3)

and hence the probability that the open cluster of the root vertex is frozen also converges:

P(s)
N (N ≤ s (Ct))→ P∞ (|Ct| =∞) .

Remark 1. Equation (1.2) is valid even without condition 4 of De�nition 2.

Remark 2. The behaviour described in Theorem 2 is very di�erent from that of the square lattice: In [8] it
is showed that for G = Z2, and for any �xed a, b ∈ R with 0 < a < b < 1

lim inf
N→∞

P(diam)
N (aN < diam (Ct) < bN) > 0, (1.4)

where diam denotes the diameter, while this probability tends to 0 when G is the planted binary tree, thanks
to Eq.(1.3).

Let us �nally mention that since Aldous' seminal paper [1], several related questions were studied. For
example, Chapter 4 of [4] considers frozen percolation on Z, and variants of that model are investigated in
[7] and [3], respectively on the complete graph and on the binary tree.

The paper is organized as follows. In Section 2 we prove Theorem 1. The proof relies on a careful study
of the probability that the root edge is closed at time t, which we denote by βN (t). In Sections 2.1 and 2.2
we show that βN satis�es a �rst order di�erential equation which involves the generating function of the
Catalan numbers. In Section 2.3, we give an implicit solution of the aforementioned di�erential equation,
and we use this in Sections 2.4 and 2.5 to prove the convergence of βN as N → ∞. We �nish the proof of
Theorem 1 in Section 2.6. In Section 3 we point out the changes in the proof of Theorem 1 required to prove
Theorem 2.

2 Proof of Theorem 1

2.1 Setting

In this section, we consider the N -parameter frozen percolation process where the size of a cluster is measured
by its number of edges � we recall the notation PN . We denote by At the set of open edges at time t.

Let e0 = (v0, v1) be the root edge, where v0 is the root vertex. The central quantity of our analysis is
the following probability:

βN (t) := PN (e0 /∈ At) = PN (e0 is closed at time t) (2.1)

(note that βN (t) = PN (|Ct| = 0)).

Remark 3. >From the de�nition, it is easy to see that βN (t) is decreasing in t. Moreover, from the equality

βN (t) = 1− t+ PN (τe0 < t but e0 is closed at time t) , (2.2)

we can see that (βN (t)− 1 + t) is increasing in t.

For e ∈ E, e 6= e0, T \ {e} has two connected components, one which contains e0, and one which does
not. Let Te denote the component which does not contain e0, together with the edge e: Te is a subtree of
T , isomorphic to T .
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For any edge e1, we de�ne the frozen percolation process on Te1 in the following way. We consider the
set of random variables τe, e ∈ Te1 , and de�ne the frozen percolation process on Te1 in the same way as we
did for T. We denote the set of open edges at time t by At (e1) . Note that the process At (e1) has the same
law as At. Moreover, At (e1) and At are coupled via the random variables τe, e ∈ Te1 .

In the following, we think of clusters as sets of edges. The outer boundary of a cluster C ⊆ E, denoted
by ∂C, is the set of edges in E \ C that have a common endpoint with one of the edges of C.

2.2 Di�erential equation for βN

Let us denote the kth Catalan number by ck =
(
2k
k

)
/ (k + 1) , and recall that the generating function of the

Catalan numbers is (see for example Section 2.1 of [5])

C (x) =
∞∑
k=0

ckx
k =

1−
√

1− 4x
2x

=
2

1 +
√

1− 4x
,

which converges for |x| ≤ 1
4 . If we denote by CN the Nth partial sum, that is

CN (x) =
N∑
k=0

ckx
k,

we have:

Lemma 1. βN is di�erentiable, and its derivative satis�es

β′N (t) = −βN (t)
t

[
CN (tβN (t))− 1

]
. (2.3)

Remark 4. Since CN (x) = 1 + x + . . . , Eq.(2.3) is well de�ned for t = 0. In the introduction we pointed
out that the model exists, in particular the di�erential equation (2.3) with initial condition βN (0) = 1 has
a solution. On the other hand, the general theory of ordinary di�erential equations provides uniqueness.

Proof. Let us denote the open cluster of v1 without the edge e0 at time s by C̃s.
We use the de�ning evolution of the N -parameter frozen percolation process as follows: At time s, if

τe0 = s, then e0 tries to become open, and it succeeds if and only if
∣∣∣C̃s∣∣∣ ≤ N − 1. By conditioning on τe0 ,

we get that

βN (t) = 1−
∫ t

0

PN
(∣∣∣C̃s∣∣∣ < N |τe0 = s

)
ds

= 1−
∫ t

0

N−1∑
k=0

PN
(∣∣∣C̃s∣∣∣ = k | τe0 = s

)
ds. (2.4)

First we compute the probability PN
(
C̃s = C | τe0 = s

)
for |C| ≤ N − 1. If C̃s = C, |C| ≤ N − 1, then for

all e ∈ C, e is open at time s. Moreover, for all e′ ∈ ∂C \ {e0} , e′ is closed at time s. The latter event can
happen in two ways: e′ is closed at time s in its own frozen percolation process on Te′ , or there is a big

cluster at time s in T \ Te′ touching e′. Since |C| < N, on the event
{
C̃s = C, τe0 = s

}
, the latter cannot

happen. Hence {
C̃s = C, τe0 = s

}
⊆

⋂
e′∈∂C\{e0}

{e′ /∈ As (e′)} =: A.

Note that the event A and the random variables τe, e ∈ C are independent. Moreover, conditionally on A,
the events e ∈ As, e ∈ C are independent, and each of them has probability s, so that

PN
(
C̃s = C

∣∣∣ e ′ /∈ As (e′) for e′ ∈ ∂C \ {e0} , τe0 = s
)

= s|C|. (2.5)
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Recall that the processes As (e′) , e′ ∈ ∂C \ {e0} are independent and have the same law as As. Hence the
events e′ /∈ As (e′) , e′ ∈ ∂C \ {e0} are independent, and each of them has probability βN (s) . This together
with (2.5) gives that

PN
(
C̃s = C | τe0 = s

)
= s|C|βN (s)|∂C\{e0}| .

Using that
∣∣∣∂C̃s \ {e0}∣∣∣ = ∣∣∣C̃s∣∣∣+ 2, we get

PN
(
C̃s = C | τe0 = s

)
= βN (s)2 (sβN (s))|C| . (2.6)

It is well known that the number of clusters C ⊆ T having k edges which contain the vertex v1 but not the
edge e0 is ck+1, the (k + 1)th Catalan number (see for example Theorem 2.1 of [5]). By this and (2.6) we
can rewrite (2.4) as follows:

βN (t) = 1−
∫ t

0

βN (s)2
N−1∑
k=0

ck+1 (sβN (s))k ds.

= 1−
∫ t

0

βN (s)
s

(CN (sβN (s))− 1) ds. (2.7)

Recall that CN (x) = 1 + x+ . . . , hence for every �xed positive integer N, the integrand in (2.7) is bounded
(since s, βN (s) ∈ [0, 1] and CN is continuous). Thus we can di�erentiate Eq.(2.7), which completes the proof
of Lemma 1.

2.3 Implicit formula for βN

Lemma 2 gives an implicit solution of (2.3) with initial condition βN (0) = 1. Before stating and proving
the proposition, let us give a heuristic computation to explain where that proposition comes from, without
checking if the operations performed are legal or not.

De�ne the function γN (t) = tβN (t) . It follows from Eq.(2.3) that γN satis�es

γ′N (t)
γN (t) (2− CN (γN (t)))

=
1
t
,

so ∫ γN (t)

a

dx

x (2− CN (x))
= log t+ b

for some constants a, b. Using
∫ γN (t)

a
dx
x = log t+ log (βN (t) /a) , we get∫ γN (t)

a

CN (x)− 1
x (2− CN (x))

dx = − log βN (t) + b′ (2.8)

for another constant b′. Finally, by plugging in βN (0) = 1 and γN (0) = 0, we can evaluate b′, which gives∫ tβN (t)

0

CN (x)− 1
x (2− CN (x))

dx = − log βN (t) .

This suggests the following lemma.

Lemma 2. For t ∈ [0, 1], βN (t) is the unique positive solution of the equation in z∫ tz

0

CN (x)− 1
x (2− CN (x))

dx+ log z = 0, (2.9)

with the constraint tz < xN , where xN is the unique positive solution of CN (x)− 2 = 0.
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Proof. Let us �x N. First, the polynomial CN (x)− 2 has a positive derivative for x > 0, it has thus exactly
one non-negative root xN , and this root has multiplicity one. Note that xN > 1/4, since C(x) > CN (x) for
x ∈ (0, 1/4] , and C (1/4) = 2. (CN (x) and C (x) are close for large N, this also suggests that the root is
close to 1/4 for large N : we will indeed prove that in the following.)

Let us prove that for t ∈ [0, 1] , there is exactly one non-negative solution of (2.9) with tz < xN . The
integrand in (2.9) is positive, and it is well de�ned at 0 since CN (x) = 1 + x+O

(
x2
)
as x→ 0 (N ≥ 1). As

x ↗ xN , this integrand behaves like κ
xN−x for some positive constant κ (using that the positive root xN of

CN (x)− 2 has multiplicity one). Hence,∫ xN

0

CN (x)− 1
x (2− CN (x))

dx =∞. (2.10)

On the other hand, ∫ z

0

CN (x)− 1
x (2− CN (x))

dx <∞

for z ∈ [0, xN ). This shows that for every t ∈ [0, 1], there is exactly one positive real number uN (t) which
satis�es the equation (2.9), and tuN (t) < xN .

To complete the proof of Lemma 2, it is enough to show that uN is di�erentiable, that

u′N (t) = −uN (t)
t

[
CN (tuN (t))− 1

]
(2.11)

for t ∈ [0, 1], and that uN (0) = 1. Indeed, as already noted in Remark 4, the di�erential equation (2.11) has
a unique solution. A substitution into (2.9) shows that uN (0) = 1. It is easy to check the conditions of the
implicit function theorem, and get that uN (t) is a di�erentiable function with derivative satisfying

(tu′N (t) + uN (t))
CN (tuN (t))− 1

tuN (t) (2− CN (tuN (t)))
= −u

′
N (t)
uN (t)

,

from which simple computations give (2.11). This completes the proof of Lemma 2.

2.4 Bounds on βN

We now compare βN with the corresponding function in Aldous' paper [1], where clusters are frozen as soon
as they become in�nite. In Aldous' model, one has

β∞ (t) := P∞ (e0 is closed at time t) =

{
1− t if t ∈ [0, 1/2] ,
1
4t if t ∈ [1/2, 1].

The following bounds hold true:

Lemma 3. We have
0 ≤ βN (t)− β∞ (t) ≤ 2 (xN − 1/4) for all t ∈ [0, 1],

where xN (> 1/4) is the unique positive root of the polynomial CN (x)− 2.

Proof. >From Lemma 2, we know that tβN (t) < xN , which gives the desired upper bound for t ∈
[
1
2 , 1
]
.

We also know (Remark 3) that βN (t)− 1 + t is non-negative and increasing. Hence,

0 ≤ βN (t)− 1 + t ≤ βN (1/2)− 1/2 ≤ 2 (xN − 1/4) (2.12)

for t ∈
[
0, 1

2

]
, by using also the previously proven upper bound at t = 1

2 . We have thus established the

desired lower and upper bounds for t ∈
[
0, 1

2

]
. In particular, for t = 1

2 , we obtain that βN (1/2) ≥ 1/2.
Now, let us note that tβN (t) is increasing: this is an easy consequence of two facts, that βN (t) is decreasing

and that the integrand in the left hand-side of (2.9) is positive. Combined with the bound βN (1/2) ≥ 1/2,
we get

1
4
≤ 1

2
βN (1/2) ≤ tβN (t),

from which the desired lower bound for t ∈
[
1
2 , 1
]
follows readily. This completes the proof of Lemma 3.
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2.5 Convergence to β∞

It follows from Lemma 3 that in order to prove uniform convergence of the functions βN to β∞, it is enough
to prove that xN → 1/4 as N → ∞. We prove a bit more, namely we give an upper bound on the rate of
convergence.

Proposition 1. There exists a constant K such that xN − 1
4 <

K
N . In particular,

0 ≤ βN (t)− β∞ (t) ≤ 2K
N

for all t ∈ [0, 1],

so that βN → β∞ uniformly on [0, 1].

Proposition 1 follows from the following lemma.

Lemma 4. The functions
√
N
(
CN

(
1
4 + x

4N

)
− 2
)
converge locally uniformly in x ∈ R as N → ∞ to the

function

F (x) =
2√
π

(√
x

∫ x

0

ey
√
y
dy − ex

)
.

Proof of Proposition 1. Let us take K ∈ R, K > 0 such that F (K) > 1 (such a K exists, since F (x) ∼
1√
π
ex

x →∞ as x→∞). Then by Lemma 4, we have that for large N ,

√
N

(
CN

(
1
4

+
K

4N

)
− 2
)
≥ F (K)− 1

2
> 1− 1

2
>

1
2
,

and so

CN

(
1
4

+
K

4N

)
− 2 > 0.

For any �xed N, the function x 7→ CN
(

1
4 + x

4N

)
− 2 is increasing on [0,∞). Hence, 1

4 + K
4N > xN , that is

xN − 1
4 <

K
4N .

Proof of Lemma 4. Using that

2 = C(1/4) =
∞∑
k=0

(
2k
k

)
k + 1

4−k,

we get

√
N

(
CN

(
1
4

+
x

4N

)
− 2
)

=
√
N

N∑
k=0

(
2k
k

)
k + 1

4−k
(
(1 + x/N)k − 1

)
−
√
N

∞∑
k=N+1

(
2k
k

)
k + 1

4−k

=: (A)− (B). (2.13)

We will use the following version of Stirling's formula:

k! =
√

2πk
(
k

e

)k
eλk with

1
12k + 1

< λk <
1

12k
. (2.14)

Using this formula, we obtain that

(B) =
1√
π

∞∑
k=N+1

√
N√

k (k + 1)
eλ2k−2λk =

1√
π

1
N

∞∑
k=N+1

1√
k
N
k+1
N

eλ2k−2λk ,
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and thus

(B) =
1√
π

(
1 +O

(
N−1

)) 1
N

∞∑
k=N+1

1√
k
N

k
N

=
1√
π

(
1 +O

(
N−1

))(∫ ∞
1

y−3/2dy +O
(
N−3/2

))
=

2√
π

+O
(
N−1

)
. (2.15)

We now divide (A) into two parts. On the one hand, using Eq.(2.14), we get that for some universal
constants C, C ′,

√
N

∣∣∣∣∣
b
√
Nc∑

k=0

(
2k
k

)
k + 1

4−k
(
(1 + x/N)k − 1

) ∣∣∣∣∣
≤
√
NC

b
√
Nc∑

k=1

1√
k (k + 1)

∣∣∣∣(1 +
x

N

)k
− 1
∣∣∣∣

≤ |x|√
N
C

b
√
Nc∑

k=1

1√
k (k + 1)

(
1 +

(
1 +
|x|
N

)
+ . . .+

(
1 +
|x|
N

)k−1
)

≤ |x|√
N
C

b
√
Nc∑

k=1

1√
k

(
1 +
|x|
N

)k−1

≤ |x|√
N
C

(
1 +
|x|
N

)√N b√Nc∑
k=1

1√
k

≤ C ′ |x| e|x|N−1/4. (2.16)

On the other hand, using again Eq.(2.14),

√
N

N∑
k=b
√
Nc+1

(
2k
k

)
k + 1

4−k
(
(1 + x/N)k − 1

)

=

√
N

π

N∑
k=b
√
Nc+1

1√
k (k + 1)

eλ2k−2λk

((
1 +

x

N

)k
− 1
)

=
1√
π

(
1 +O

(
N−1/2

)) 1
N

N∑
k=b
√
Nc+1

1√
k
N
k+1
N

((
1 +

x

N

)N(k/N)

− 1
)

=
1√
π

(
1 +O

(
N−1/2

))(∫ 1

1/
√
N

y−3/2 (exy − 1) dy + e|x|O
(
N−3/2

))

=
1√
π

∫ 1

0

y−3/2 (exy − 1) dy + e|x|O
(
N−1/4

)
. (2.17)

Substituting (2.15), (2.16) and (2.17) into (2.13), we get

√
N

(
CN

(
1
4

+
x

4N

)
− 2
)

=
1√
π

∫ 1

0

y−3/2 (exy − 1) dy − 2√
π

+ (1 + |x|) e|x|O
(
N−1/4

)
. (2.18)
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Finally, an integration by parts gives∫ 1

0

y−3/2 (exy − 1) dy =
[
y−1/2

−1/2
(exy − 1)

]y=1

y=0

−
∫ 1

0

y−1/2

−1/2
xexydy

= −2 (ex − 1) + 2x
∫ 1

0

exy
√
y
dy, (2.19)

and combining Eqs.(2.18) and (2.19) (and a change of variable) completes the proof of Lemma 4.

2.6 Completion of the proof of Theorem 1

Recall the notation Ct. Let |C| < N be a �xed cluster of the root vertex. By similar arguments as in the
proof of Lemma 1, we have

PN (Ct = C) = t|C|βN (t)|∂C| = βN (t) (tβN (t))|C| . (2.20)

(since |∂C| = |C|+ 1). Hence for any �xed �nite cluster C, we have, as N →∞,

PN (Ct = C) = βN (t) (tβN (t))|C| → β∞ (t) (tβ∞ (t))|C| = P∞ (Ct = C) , (2.21)

which gives the �rst part of Theorem 1.
An argument similar to the beginning of the proof of Lemma 1 gives that

PN (k ≤ |Ct| < N) =
N−1∑
n=k

cnβN (t) (tβN (t))n .

Lemma 2 and Proposition 1 then imply that tβN (t) < xN ≤ 1
4 + K′

4N , hence (using again Eq.(2.14))

PN (k ≤ |Ct| < N) ≤ βN (t)
N−1∑
n=k

(
2n
n

)
n+ 1

(tβN (t))n

≤ K1

N−1∑
n=k

1√
n

1
n+ 1

(
1 +

K ′

N

)n
≤ K2e

K′
∞∑
n=k

1√
n

1
n+ 1

≤ K3

∫ ∞
k

dx

x3/2
=
K4√
k
.

It follows that
lim
k→∞

lim sup
N→∞

PN (k ≤ |Ct| < N) = 0, (2.22)

which completes the second part of Theorem 1.
Now, using the trivial upper bound PN (N ≤ |Ct|) ≤ PN (k ≤ |Ct|) for k ≤ N , we get

lim sup
N→∞

PN (N ≤ |Ct|) ≤ lim
k→∞

lim sup
N→∞

PN (k ≤ |Ct|) = lim
k→∞

P∞ (k ≤ |Ct|) = P∞ (|Ct| =∞) , (2.23)

where we used (2.21) for the �rst equality.
On the other hand, for all k ∈ N, k ≤ N , we have

PN (N ≤ |Ct|) = PN (k ≤ |Ct|)− PN (k ≤ |Ct| < N) . (2.24)
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Hence, taking �rst the limit in�mum as N →∞, and then the limit as k →∞, we get

lim inf
N→∞

PN (N ≤ |Ct|) ≥ lim
k→∞

lim inf
N→∞

PN (k ≤ |Ct|)− lim
k→∞

lim sup
N→∞

PN (k ≤ |Ct| < N)

= P∞ (|Ct| =∞)− 0, (2.25)

where for the last equality we used, respectively, (2.21) � as in (2.23) � and (2.22).
Combining (2.23) and (2.25) provides the �nal part of Theorem 1.

�

3 Proof of Theorem 2

In this section we give a brief outline of the changes required to deduce Theorem 2 from the arguments in
Section 2.

First, for any good size function s, the corresponding N -parameter frozen percolation process does exist.
Indeed, conditions 1 and 2 of De�nition 2 ensure that the process is still a �nite-range interacting particle
system, and the general theory of such systems [6] provides existence, as in the case of volume.

In that previous case, the function CN (x)−1
x played an important role. It is the generating function of the

number of clusters of v1 which do not contain the edge e0 and have volume at most N − 1. For other good
size functions s, the following generating function plays the role of CN (x)−1

x :

G
(s)
N (x) =

∞∑
k=0

a
(s)
k,N−1x

k,

where a
(s)
k,N−1 denotes the number of clusters C of v1 for which e0 /∈ C, |C| = k and s(C) ≤ N − 1.

Keeping this in mind, one can easily modify the proof of Theorem 1. We de�ne the function β
(s)
N : [0, 1]→

R as
β

(s)
N (t) := P(s)

N (e0 /∈ At) .

Using the conditions 1, 2 and 3 of De�nition 2, by simple adjustments of the proof of Lemma 1 we deduce

that β
(s)
N is di�erentiable, and that its derivative satis�es

(β(s)
N )′ (t) = −

(
β

(s)
N (t)

)2
G

(s)
N

(
tβ

(s)
N (t)

)
.

Moreover, it follows from the de�nition of β
(s)
N that β

(s)
N (0) = 1.

Recall that xN , the unique positive root of CN (x) = 2, was another important quantity. Since in our

present general setup G
(s)
N (x) plays the role of CN (x)−1

x , the analogue of xN is the unique positive root of

the equation xG
(s)
N (x) = 1, which we denote by x

(s)
N . Using the arguments of Section 2.3, we deduce that for

each �xed t, β
(s)
N (t) is equal to the unique positive root of the equation in z∫ tz

0

G
(s)
N (x)

1− xG(s)
N (x)

dx+ log z = 0

with the constraint tz < x
(s)
N .

By simple modi�cations of Section 2.4, we get that 0 ≤ β(s)
N (t)− β∞ (t) ≤ 2

(
x

(s)
N −

1
4

)
for all t ∈ [0, 1] ,

which is the analogue of Lemma 3 in this general setting. By condition 3 of De�nition 2, a
(s)
k,N−1 is an

increasing function of N for each �xed k. Moreover, since s(C) is �nite for all �nite clusters C, a(s)
k,N−1 ↑ ck+1

as N → ∞. Hence G(s)
N (x) ↑ C(x)−1

x for all x ∈
[
0, 1

4

]
, and G

(s)
N (x) ↑ ∞ for x > 1

4 . Thus x
(s)
N → 1

4 as
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N → ∞. By the aforementioned analogue of Lemma 3, we get that β
(s)
N → β∞ point-wise. This concludes

the proof of the �rst part (Eq.(1.2)) of Theorem 2.
Note that up to now we did not use that s satis�es Condition 4 of De�nition 2. We use this condition to

prove a rate of convergence for x
(s)
N , which was the key ingredient in the proof of (1.1). Condition 4 implies

that a
(s)
k,N−1 ≥ ck+1 for k ≤ N − 1, hence

G
(s)
N (x) ≥ CN (x)− 1

x
for x ≥ 0,

and thus 1
4 ≤ x

(s)
N ≤ xN = x

(|.|)
N . Proposition 1 then implies that 0 ≤ x(s)

N −
1
4 ≤

K
N , from which a computation

similar to Section 2.6 completes the proof of Theorem 2.
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