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The solution of the Kolmogorov differential equations for the transition probabil-
ities of a finite state-space Markov process can be represented by a product-
integral. For statistical applications it is useful to extend this representation to
the general case when the transition probabilities are not absolutely continu-
ous, indeed not even continuous. The correct definition of product integral for
this purpose is given here, and some of its properties derived.

1. INTRODUCTION
One of the most widely used mathematical models for describing stochastic
processes with dependence is that of a Markov chain.

An example where such models are applied is in the study of diseases, where
a person can be in one of three states: healthy, sick or dead. The history of a
patient is then described as a sequence of time points where transitions or
Jumps between the states healthy and sick occurs, possibly terminating with a
transition to the state death.

The Markov assumption is that once the patient is healthy, say, the waiting
time in that state is independent of the past history of the patient and only
depends on the state he is in.

These models and some of their generalisations form the mathematical sub-
stance of the topic Survival Analysis which, briefly described, is the study of
the life history of patients with respect to the occurence of certain events, see
ANDERSEN and BORGAN [2] for a comprehensive review.

For another example from a totally different area take the following typical
chemical reaction

A + B=C.

If A(¢) denotes the number of molecules of type A in a solution, then if
A(t) = n, a transition to n—1 means that an 4 molecule and a B molecule
have collided in the solution and formed a C molecule. Similarly the transition
to n + 1 means that a C molecule has split into an 4 molecule and a B
molecule. For a survey of the theory of Markov chains in physics and chemis-
try see VAN KAMPEN [11].

A finite state Markov chain is then a model for a stochastic process
X(#), t=0 with values in the finite state space E. The probability measure P,



which describes the probabilistic properties of X, satisfies the Markov property
PX(tn+ )= ln 11| X )= 110, X (1) =10) =
PX (ty+ ) ln 41| X (t) =)

for any states iy, . . . ,ini,+; in E and time points ¢, <...<t,<,. This pro-
perty is the mathematical formulation of the intuitive property that the process
only remembers its immediate past.

This condition ensures that the probability measure is completely described
by the initial distribution p(i) = P(X(0) = /) and the transition probabilities

pij(s.t) = P(X(t) = j|X(s) = i), i€E, jeE, s<t

It is not difficult to see that the matrix P(s,) with elements p;;(s,?) satisfies the
Chapman-Kolmogorov equation

P(s,t) = P(s,u)P(u,t) O0<s<u<r<oo

which under smoothness conditions gives rise to the Kolmogorov equations
PG, = Ps.0Q0)
and
i -
gp(sﬂ) - = Q(S)P(S,t)

which together with the initial condition P(s,s) = I (the identity matrix) deter-
mine the function P(s,) uniquely. The function Q(¢) is determined as

_ 9 -9
Q(t) - ot P(s,t)ls =t = s P(s’t)ls =1

From the relation

1—pi(t,t +h)=~ h(—q(t))

we see that h-(—g;;(¢)) is the probability that in a short time interval a transi-
tion from state i will take place, thus —g;(¢) is the intensity with which the
process leaves the state i at time 1.

Similarly ¢;;(t) / (—gi(?)) is the probability that the transition from i which
takes place at time ¢ goes to state j.

Note that whereas P(s,t) is a stochastic matrix, i.e. satisfies

P,I(S,t)>0, &lj(S,t) = 1,
i

Q(?) is an intensity matrix, i.e.

gi;(t) =0, i), qu(t) <0, Xgy(t) = 0.
J

Thus the study of the stochastic process X(t) is reduced to the study of the
bilinear differential equation for the matrix valued function P(s,7). The solu-
tion to the Kolmogorov equations can be given by the subject of this note, the
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product integral
t
P(s,t) = II(1+Q(u)du).

For reference to this, see SCHLESINGER [13] and DOBRUSIN [3] or the mono-
graph by DOLLARD and FRIEDMAN [4]).

In the study of the estimation problem for a nonhomogeneous Markov Pro-
cess (AALEN and JOHANSEN [I]) it turned out that we needed the product-
integral representation of a transition probability which is piecewise constant
between discrete jumps. This note contains a definition of the product integral,

where the measure f Q(u)du is replaced by an arbitrary matrix valued measure
» on [0,1]. M

The monograph by DoLLARD and FRIEDMAN [4] gives a survey of various
definitions and applications of product integrals but does not contain the
definition that allows the Kolmogorov equations to describe the transition pro-
babilities when these are only assumed to be right continuous and of bounded
variation. In order to get a simple exposition of the basic properties of the pro-
duct integral we shall define it by the Peano series, see Definition 2.1. This
exploits the usual measure theory for matrix valued measures, in particular
Fubini’s theorem, and thus gives the existence and basic properties easily.

Section 2 contains the product integral and some of its properties and Sec-
tion 3 then applies this integral to the representation of the transition proba-
bilities in terms of its integrated intensities. We thus obtain a different
approach to some of the results of JACOBSEN [9].

The present note was finished in 1977 as a technical report. The recent
interest in the application of product integration in survival analysis and other
areas of statistics justifies its publication now. A more comprehensive review of
the application of product integrals in the statistical analysis of counting
processes is forthcoming, see GILL and JOHANSEN [7].

2. THE PRODUCT INTEGRAL

Let ¥ denote the Borel sets of [0,1] and let » be a o-additive finite signed
measure with values in the set of n X»n matrices, i.e. a matrix of n? real signed
measures. We let ¥ denote product measure on [0,1]" defined by

¥"(B, X...XB,) = WB)...”B,), B

We shall use the notation ||| to denote the matrix norm
A B)ll = supi|v;(B)|, and introduce the real positive measure
1 N
J
v = Dyl
iJ
where |v;| = v +v;.

One easily checks that [li{B)||<wy(B) and that

(B X...XB,)lI< I_Ilvo(B,-).



We shall use the shorthand notation
(uy<uy <..<u,}
for the set
(U1, U5ttty <up <. <ty }.

We now give the basic definition:
DEFINITION 2.1. For B €% we define the product integral

I}(I + dv) = 1+ § PD(BX...XB (M (1) <..<up}).

n=1
Notice that the convergence of the series follows from the inequality

(B X... X B ) {u) <...<u, PI<
1
v (BX...XB (M {u <...<u,,})<7vo(B)".
The following inequalities follow easily from the definition.
PROPOSITION 2.1. For B € B we have

1+wB)l|<e™®
||I}(l+dv)||<e""w)

||I}(I+dv)—III<VO(B)e"°(B)

III;I(I+dv)—l—v(B)IIg—é-vo(B)ze”“w)
Now we can immediately prove the basic multiplicativity property:

THEOREM 2.1. For any t € [0,1] we have

Nad+dvy = II (A+dv) I (I+dv).
B B 0.4 BN

Thus l;[(l+dv) is multiplicative over disjoint intervals, which is the reason for

its name.

ProofF. Fori =1, ---,n—1let
A(B,i,n) = BX..XB (M {u) <..<e<t<uj 11 <...<u )}

with the obvious modification for i = 0 and n. We let

A(B,n) = BX..XB (M {u1<..<u,} = U A(B,i,n).
i=0

Now



¥"(A(B,n)) = i V"M(A(B,i,n))
i=0

= 2 Y4B N [0,11,))#" ~DAB N 11,7 —i)).

i=0

Summing over n gives the result. O

ExampLESs 2.4. If dv = Qdr, where Q is a fixed matrix then

n
YO<u, <..<u,<r) = % ?
ni

and hence

= ¢1Q
[gl(l +dv) = €'~

If dv=Qdr for 0<t<t| and dv = Q,dr for t;<t<I, then using
Theorem 2.1 and the previous example, we get

e o<t<t,

II I+dv) = _
(0,11 ) @l QU1

As a final example we let » = Q¢,, where Q is fixed and ¢, is a one point
measure at ¢, then
| , 0<r<ty,
[(E](I+dv) = I+Q , 1 <i<I1.

Thus we get a piecewise constant function of r.

The following results give a different and perhaps more intuitive definition
of the product integral. The definition we have chosen seems to give the basic
results in a very efficient manner, since we can use existing integration and
measure theory.

THEOREM 2.2. Let 0 = ty<t;<...<t, = 1, then
n~—1
”K}—I”(I'*'d")_,1_-10(1+V]’i’fi+l])”<c max ¥, 4 +1[-
PrOOF. We split the product integral into the corresponding factors and

define
M; = 1II (I+dv), N; = I+v),841]

Ih’l*l
then by Proposition 2.1, we get
Ml <<e™tetnd, N bt

We also get



IM; =Nl = 1l II (I+dv)(l+v[t,+1]) =)t 6 [ =t ]l

]’A ’I+I

< IO (l+dv) I=wlt, (il + 11 IT A+dw) =Tz 4]l

| it
<_ 2 "n]’.-’ul[_*_ woltisdi |
=35 woltiti 11D e voltisti +1le olti 1]
oltoti il
<e™"" ' (max wolti, t; 11 Droltisti 1]
i

Using these evaluations we get

n—1 n—1
Il TI M, — HN||<2||M0 M (M= N)N; 4N, ol

i=0

wl0.1]
<e™ U (woltintiz ] max volti bl

i
which gives the result we wanted to prove. [
COROLLARY 2.1. Let t,, satisfy the conditions
a) 0= ton <<t p<io.<tlp, = 1
and

b) lim m?.x l’o]tin,t(i+l)n[ =0,

n—oo

then the product integral can be computed as
n—1
I1 (l+dl’) = lim II (l+l’]t,'".t(,'+])"]).
10.1] n—ooi =10

Notice that condition b) can always be satisfied, since we can make sure that
the atoms of #(i.e. of ») eventually are among the division points.
The next results are about differentiability of the product integral.

THEOREM 2.3. For B € B we have
O@+dv)—1 = [ T (I+dvwdu).
5 BN0.4

ProoF. Using Fubini’s theorem on the (1 +1)-th term we get

WHD(B X XB, 0<u,<..<uy, <1)

= jv("+”(B><...><B, 0<u)<..<up 1 <l|u,+, = w(du)

= [V(BX...XB, 0<u) <...<u, <u)A(du).
B



Summing over n gives the result. O

THEOREM 2.4. For B € B we have
OI+dv)—1 = [Hdu) II (I+dv)
B B 11N B

PROOF. Similar to that of Theorem 2.3.
If we define the function F by

t—>[g](l +dv)

then F is right continuous by Theorem 2.3 and it is of bounded variation. It
thus determines a matrix valued measure, which by Theorem 2.3 is absolutely
continuous with respect to »;. The integral relation can thus be reformulated
as

d¥ = _ . dv
do O = FE2) 0, aein)
If H:t—)}l’{](l+dv), then Theorem 2.4 can be reformulated as
z,

dH . _ _ dv
d_vo(t) i (OH(?), a.e[r)

3. MARKOV PROCESSES

In constructing a Markov Process one can start with the transition probabili-
ties, satisfying the Chapman-Kolmogorov equations, then construct the pro-
cess, 1.e. the measure on a suitable function space, by the Kolmogorov con-
sistency theorem, see DOOB [5], or via a general theorem of extension of con-
tinuous linear functionals, see NELSON [12], or GOODMAN and JOHANSEN [8].
In this case the discussion of the differential equations for the transition proba-
bilities becomes a discussion of when a process is determined by its
infinitesimal properties.

One can also start out with the waiting time distributions and the jump
intensities and then construct the measure very directly and then prove that
certain variables form a Markov Process and define the transition probabilities
in terms of these. The differential equations can now be viewed as a con-
venient and different way of obtaining the transition probabilities, see JACOB-
SEN [9].

We shall here start with the intensities or rather the integrated intensities ,
i.e. we assume that

lli,-SO, Dij>0’ i#j and 2”‘:’ = O.
J
From this measure we construct the transition probabilities by a product
integral and this also gives us the differential equations for P. Thus the

approach is highly non-probabilistic as opposed to that of JACOBSEN [9]. The
solution, however, is the same, as we shall show.
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Thus, we let » be a finite signed measure on [0,1] with values in the set of
intensity matrices, then the following holds:

TueoreM 3.1. If v[t]1+1 is a stochastic matrix, i.e. if v;[t]=— 1, then

P(B) = I;I(l+dv)
is a stochastic matrix.

PROOF. Assume first that p;[t] > —1, i = 1,...,n, ie. no atoms of v are
as large as —1. Then let us choose the partition 7, of [0,1] so fine that
I+ vy, 0+ 1)a] is @ stochastic matrix. By Corollary 2.1 P(B) is the limit of sto-
chastic matrices, hence stochastic.
In general there can only be a finite number of points 7y, ..., 4, such that
some v;[t,] = — 1. By writing
1

k_
P(B) = I+wBN[OD) I an (I+dv)I+uBNO[ti+1])

L

we see that P(B) is stochastic.
For a given » we now define

P(s,t) = P(ls,t]) = l}'I](I+dv), O<s<t<l,
N
P0,1) = P([0,7]) = [P](I+dv), o<r<l,
L1
then it is seen that P(s,?) is right continuous in s and ¢ (except for s = 0, ¢]0),
and that
P(t—,1) = I+t], 0<t<I
Pitr+) =1, 0<zt<l
P(0,0+) = 1+40].

The multiplicativity of the product integral now immediately gives that
P(s,?) satisfies the Chapman-Kolmogorov equations

P(s,t) = P(s,u)P(u,t) 0<s<u<i<l,
and in this formulation, Theorem 2.3 gives the forward differential equation

oP(s,1) _ P(s,t—)“'dl(’) a.e.[r]
dl’()

Irg(2)
whereas Theorem 2.4 gives the backward equation
dP(s,1) dv
= - P(s, -,
al'o(S) dVo \S) (S, )’ a.e [Vo]

which shows that P(s,r) does in fact have » as integrated intensity measure.
Using a result similar to Theorem 2.2 one can prove that for
§<tgn<..<tl, = tsuch that max »oJtj,,?(+1a[ = 0 we have
i
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n—1

[I(1+dv;) = lim I pi(tin,t; 41y
]s,l]( Vi) o j=0pu(_/ G+ )
which is nothing but the waiting time distribution in state i, i.e.

P{X, =i s<u<t|X; =i} = }‘H[(l+dv,~,-).
¥

With the notation
Gi[0,7]] = 1—-TI(1+dvy;)
[0,¢]

and
dv

70 = — @), i), ) = 0

we can now prove that the solution provided by JACOBSEN [9], starting with G
and a is in fact the same as the solution provided here starting from ».
We shall now assume that » satisfies the following extra conditions

1) /0] = 0
) wft]>—1.

i.e. P(s,1) becomes right continuous, also at 0, and no atom is as large as — 1.
Notice that » can be recovered from G and ar, by the relations

_ Gt _
) = = [T G 0.0

and

vi(A) = — [m(u)w;(du).
A

It is then seen that G, is continuous at zero, and that
G;[0,t] = 0if »,[0,¢] = 0 and that G;[0,7]<1, since »;[0,1] is finite. In order
to see the last result, where condition 2) is needed, we argue as follows: The
largest atom of |v;| is 1—e say. Now choose 0 = tg<..<t, = | such that

€ €
Iyii]tj9tj+1[|<? then 1+”ii]tj’tj+1]>? and

log(1+w;)t,t 11 )= P viltjstj 1]

1+
2

Summing over j gives
T +9,1t1.0 41 D> >0
i
which again implies that I}(l +dv;)=c>0.

Thus the functions G and @ satisfy the conditions of Jacobsen and his
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solution P(s,) is constructed to satisfy the integral equation:

. B 1-G[0,1] . Gi(du)
p,j(s,t) - 8’./1 8,! 1— G,-[O,S] +k§i ls_/’-]'”ik(u)pkj(uvt) I _G,'[O,s] .

Using the definition of (G,) in terms of » this is

Pyt = §; M(I+dv)— S [pyu) IL(1+dviwildu)  (3.1)
Is.e [ ki Is.11 Jsu]
which is known to have a unique solution, see FELLER [6].
The function P(s,t) = Plﬂ+dv) is known to satisfy the equation
W1

pis.)—=8; = 3 [vuldupy(u0). (3.2)
k st}

In this equation we multiply by ]H[(1+dv,~,~) and integrate with respect to
v;;(ds). If we then use the results: ‘

[ D +dvaywi(ds) = I (1+dv;)—1
lou] Ja.s( la.t]
and

[ I +dvrds) = IL(1+dv;)—1.
] Ja.s] la.ul

then we get after some reduction that P also satisfies equation (3.1.), hence
P=P

In fact the equations (3.1) and (3.2) are equivalent. If (3.1) is integrated with
respect to v;(ds) on la,t], we arrive at (3.2).

It should of course be pointed out that we are only dealing with a finite
number of states, whereas Jacobsen treats the more general situation of a
countable number of states.

Example
The results above are considerably simplified in case we want to describe a
time homogeneous chain. The intuition behind the time homogenity is that the
intensities g;(r) do not depend on 1. Thus in this case the intensity measure
satisfies

nA4) = QoM4)

where X is Lebesgue measure and Qy is an intensity matrix. The transition pro-
babilities are now given by

P(s,t) = TJA+Qodu) = exp((t—5)Qo)

The construction of the process from G and & is as before with the
simplification that

Gi(0,1) = 1—-[J(1+gudu) = 1— exp (¢q:)
[0,r]
12



showing that the waiting time distribution in each state is exponential with a
state dependent parameter —g;;.
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