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THE CONVERGENCE RATE OF MULTI-LEVEL ALGORITHMS APPLIED TO 
THE CONVECTION-DIFFUSION EQUATION* 

P. M. DE ZEEUWt AND E. J. VAN ASSELTt 

Abstract. We consider the solution of the convection-diffusion equation in two dimensions by various 
multi-level algorithms (MLAs). We study the convergence rate of the MLAs and the stability of the coarse-grid 
operators, depending on the choice of artificial viscosity at the different levels. Four strategies are formulated 
and examined. A method to determine the convergence rate is described and applied to the MLAs, both 
in a problem with constant and in one with variable coefficients. As relaxation procedures the 7-point ILU 
and symmetric point Gauss-Seidel (SGS) methods are used. 

Key words. artificial viscosity, convection-diffusion equation, multi-level algorithm, asymptotic stability, 
Galerkin approximation 

1. Introduction. We consider the convection-diffusion equation 

au au 
L,u = -e~u + b1(x, y)-+ b2(x, y)-= f(x, y) 

ax ay 
( 1.1) 

for (x, y) Enc IR 2, e > 0, with Dirichlet and Neumann boundary conditions on different 
parts of 80. 

When the diffusion coefficient e is small in comparison with the mesh-width h, the 
stability of discretizations of (1.1) by central differences (CD) or the finite element 
method (FEM) can be improved by augmenting e with an artificial viscosity of O(h ). 
This rather crude way of stabilizing the discrete problem may form part of more subtle 
iterative methods for solving ( 1.1) with small e, for instance the mixed defect correction 
process (cf. Hemker [4]) or the double discretization process (cf. Brandt [3]). 

In§ 2 we introduce four strategies for choosing the artificial viscosity on the coarse 
grids in the multi-level algorithm (MLA) (cf. Van Asselt [!]). In § 3 we describe the 
method which is used to determine the convergence behaviour of the multi-level 
algorithm for these strategies. In § 4 we compare the convergence rates as measured 
by the method described in § 3. Finally, some conclusions are formulated in § 5. 

2. Artificial viscosity, strategies, stability and asymptotic convergence rate. In this 
section we derive all theoretical results for the constant coefficient case by local mode 
analysis neglecting the boundaries. We introduce various strategies for choosing the 
coarse-grid operators in the MLA. We give a motivation for the choice of these 
strategies, and analyze their stability ( cf. Theorem 2.14, Corollary 2.18, Theorem 2.19, 
Corollary 2.24). Further we formulate some important properties of the different 
strategies ( cf. Conjectures 2.25-2.27). In the case of FEM discretization we also consider 
the Galerkin coarse-grid approximation. In this paper we only consider the FEM based 
on a uniform triangulation of n with right-angled triangles. 

The trial and test space is spanned by the set of piecewise-linear "hat-functions" 
</>ij which take the value I at xij and 0 at all other vertices of triangles. 

We consider the MLA (cf. Hemker [5]) with l+ 1 levels: 0, ···,land uniform 
square meshes on each level with meshwidths h0 and hk = hk_ 1/2 for k =I,· · ·,I. 

Let { L~,1} k=O ... 1 be a sequence of discretizations of Ls. For the constant-coefficient 
equation we de~ote by £, ( w ), w E IR 2 the symbol (or characteristic form) of the 
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Ak,1 
continuous operator L,. By L, (w ), w E Tk = [-7T/ hk, 7r/ hd2, we mean the symbol of 
the discrete operator L~ 1 • 

When a symbol is small the corresponding operator is unstable in the sense that 
small changes in the right-hand side cause great changes in the solution. Depending 
on the boundary conditions the continuous problem can be well posed. Therefore we 
allow the symbol of the discrete operator to be small only for those frequencies for 
which the symbol of the continuous operator is small. This idea is formalized in the 
following definitions. 

DEFINITION 2.l. The 6-asymptotic stability degree of L, with respect to the mode 
e1wx is the quantity lim.,i0Jf,(w )[. 

DEFINITION 2.2. The 8-domain of L,is the set ofall w E rr:e for which lim,io[f,(w )J > 
8>0. 

DEFINITION 2.3. The 6-asymptotic stability degree of L~1 with respect to the mode 
e1wx is the quantity limdo[L~ 1 (w)J. 

DEFINITION 2.4. The a-domain of L~1 is the set of all w E Tk for which 
Ak,/ 

lim,i0[L, (w)J>8>0. 
DEFINITION 2.5. A strategy for coarse-grid operators is a set {L~, L~, · · ·, L~, · · ·} 

with L~ = {L~· 1 , • • • , L~ 1 }. 
DEFINITION 2.6. Let S be a strategy for coarse-grid operators, then S is 6-

asymptotically stable with respect to L, if for every 80 > 0 there exists a 81 > 0 such that 
for all 0 ~ k ~ I, we have the 81-domain of L~· 1 ::::i 80 -domain of L, n Tk. 

Remark 2.7. In order to avoid residual transfers in the MLA that are useless due 
to oscillating solutions, we require that a strategy is c:-asymptotically stable with respect 
to L" Moreover we need a relaxation method for which the smoothing factors on all 
grids are less than l. We then expect rapid convergence of the MLA. 

Another approach would be to admit c:-asymptotically unstable strategies and to 
require that the relaxation method is such that bad components in the residuals are 
sufficiently smoothed. This poses very strong demands upon the relaxation method. If 
a strategy is not s-asymptotically stable with respect to L,, and the relaxation method 
can not sufficiently damp the oscillations we may expect divergence if the number of 

levels increases. 
By L,+J3Lhk we denote a discretization of (I.I) with artificial viscosity ,B~ and 

meshwidth hk, and for fixed h0 and y > 0 (independent of s, k and I) we will consider 
the following four strategies for coarse-grid operators: 

Strategy 1 (S1): 

(2.8) L k,l_L I d {3 1 h 
e - e+/3.,hk an k = 'Y J, k=O, ···,I. 

Strategy 2 (S2): 

(2.9) 

Strategy 3 (S3 ): 

(2.1 O) 

Strategy 4 (S4 ): 

(2.11) with ,B: = yh1, k,l _ R Lk+I,lp L. = k,k+i , k+1,k, k=l-1, .. ·,O. 

( Rk,k+ 1 and Pk+ 1, k are the restriction and the prolongation which are consistent with 

the FEM used.) 
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Remark 2.12. The choice of L~1 according to S4 is called Galerkin coarse-grid 
approximation. If we consider a constant-coefficient problem and neglect the bound
aries, then a coarse-grid operator constructed with the FEM according to S 1, is identical 
with the Galerkin coarse-grid approximation as in S4 • The molecule is given by 

Le+/3l.h.=e:f~[-~ -: -lJ+ 6~ [=~ ~ 
k -1 0 k -1 

2J+~[-~ 1 6hk 

Remark 2.13. It follows from (2.8)-(2.10) that 

l-+00 l-+00 

for S2 : f3U hk 6 -y /2 uniformly for all k, l, 

for S3 : {3 V hk = -y uniformly for all k, I. 

2 J 0 1 . 
-2 -1 

In Theorem 2.14, Corollary 2.18 and Corollary 2.24 we will prove that S1 and S4 are 
not e-asymptotically stable and S2 and S3 are. Further we will point out that the 
convergence rate of the MLA with S2 is better than with S3• 

THEOREM 2.14. Consider the CD- or FEM-discretizations of (1.1) with artificial 
viscosity {3~ and constant coefficients; then 8 1 is not e-asymptotically stable with respect 
to Le. 

Proof. We give the proof only for the CD-discretizations; the proof for the 
FEM-discretizations is similar. The CD-discretization of ( 1.1) with artificial viscosity 
.B ~ and constant coefficients b1 and b2, bi+ b~ = 1, reads 

(2.15) ( e+{3~ bi) h ( e+f3~ b1) h + ----;;r-- 2hk U;.':1,j+ ----;;r-+ 2hk U/i-1,j 

+4( e:f t)u~j = f~J. 
Its characteristic form reads 

The characteristic form of Le reads 
A 2 2 ° 

(2.17) Le(w) = e(w1 + Wz) + l(b1W1 + b2w2), 

hence the 80-domain of Le is the set of all w E ~2 for which I b1 w2 + b2w 2 [ > 80 > 0. We 
have to show that a 80 > 0 exists such that for all 81 > 0 there exist k, I E Z, 0 :;;£ k ~ l, 
such that for an w E ~2 with w E (80-domain of Le) n Tk we have w .e 81-domain of 
L,+/3Lh,. For that purpose we proceed as follows. Take 80 = O.l 7T/ h0 and let 81>0 be 
arbitrary. Take k = 0 and l > log2( 4')' I h081); then for either w = ( 7T / h0 , 0) E T0 or w = 
(0,7T/ho)ETo both Jb1w1+b2w2J>80 and limdo!L.+13J,ho(w)[=4y/(h0i)<81 hold. 
Hence S 1 is not e-asymptotically stable with respect to L •. 

This leads us to 
COROLLARY 2.18. Consider L. with constant coefficients bi and b2; then s4 is not 

e-asymptotically stable with respect to L,. 
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Proof The proof follows immediately from (2.12) and (2.14). 

THEOREM 2.19. Consider the CD-discretizations of ( 1.1) with artificial viscosity f3 i 
and constant coefficients. Let S be a strategy with f3 U hk ~ C > 0 uniformly for all 

k, I ( k ~ /) E "l.. ; then S is s-asymptotically stable. 

Proof Again we use (2.15)-(2.17). We have to prove: 

\i B0 > 0 3B1 > 0 \i k, l, 0 ~ k ~ l 

~ 80-domain of Len Tk c 81-domain of Le+J3Lhk· 

Take D 1 == min et 2 c I 5) Bo. In the case Do> 2112 7T I hk the inclusion is trivially satisfied 

because Do-domain of L, n Tk = 0. If 0< Do~ 2112 7r/ hk then w E D0 -domain of L, n Tk 

implies 

Dohk < lb1w1hk + b2w2hkl· 

The normalization bf+ b~ = 1 and the inequality Jsin x - xl ~ Jx3J/ 4 for all x E ~ yield 

(2.20) 

We distinguish the two complementary cases: 

(i) lw1 hkl 3 ~ Dohk and lw2hkl 3 ~ Dohk; 

(ii) lw1 hkl 3 > Bohk or lw2hkl3 > Bohk. 
Because of (2.16) and (2.20) case (i) implies: 

(2.21) r ILA I ( )l>lb1sinw1hk+b2sinw2hkl Do> 
1m e+Jlk,hk W = h > = D1. 
dO k 2 

To complete the proof we now consider case (ii). It follows from (2.16) and f3 U hk ~ C 

that 

(2.22) 

and from (ii) and 0 < 80 hk ~ 2112 7T it follows that the right-hand side of (2.22) is greater 

than or equal to 

hence 

(2.23) 

2C80 (1-cos ((Dohk) 113)) 

Bohk 

Both (2.21) and (2.23) hold uniformly for all k, I so S is s-asymptotically stable with 

respect to L .. 
Note that the condition of Theorem 2.19 is satisfied by taking on coarser grids 

the artificial viscosity proportional to the current meshwidth. 
COROLLARY 2.24. Consider the CD-discretizations of (1.1) with artificial viscosity 

/3 i and constant coefficients; then S2 and S3 are s-asymptotically stable with respect to L,. 

Proof The proof follows immediately from Remark 2.13 and Theorem 2.19. 

It is obvious that the s-asymptotic stability degree of the individual grid-operators 

belonging to S2 is larger than in the case of S1. Moreover for decreasing 'Y the smoothing 

factors for S1 become worse (cf. Table 2). We formulate this in the following 
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Conjecture 2.25. For a fixed number of levels the set of y-values for which the 
MLA with S2 converges, is larger than that for which the MLA with 8 1 converges. 

In case of a two-level algorithm (TLA), I= 1, and a constant-coefficient problem, 
a two-level analysis shows that the asymptotic rate of convergence for 8 1 or 82, for 
which the artificial viscosity is equal on both levels is better than for 83 , where the 
artificial viscosity corresponds to the meshwidth. (cf. Van Asselt [I]). Therefore in 8 1 

we take an equal artificial viscosity on all levels. For this strategy, however, stability 
problems may occur on coarser grids (cf. Theorem 2.14). 83 is s-asymptotically stable 
( cf. Corollary 2.24 ), but the two-level analysis indicates that the convergence rate is 
slower. S2 is an intermediate strategy where on levels l and l - 1 the artificial viscosity 
is the same, and it is also s-asymptotically stable (cf. Corollary 2.24). These arguments 
lead to the following 

Conjecture 2.26. 82 combines the rapid convergence rate of S1 with the stability 
of S3• 

At level l the discrete operators Le+f3l,h, using SI> S2, 83 are equal. 
At level l - 1 the discrete operators Le+f3:_,,h,_, using Si. S2 are equal (83 is not), 

and the relative order of consistency of the 8 1 and S2 operators on level l and 1-1 is 
the same and higher than that of 83• Furthermore, consider the part of Ti where the 
smoothing effect of a relaxation method applied to S2 and S3 is the same as in the 
case of S1 in terms of local mode analysis. For S2 this part is larger than for 83 (cf. 
Fig. 1). For S4 the same arguments hold as for 8 1 (cf. Remark 2.12). This leads us to 
formulate the following 

Conjecture 2.27. For a finite number oflevels and 'Y sufficiently large the difference 
between the asymptotic rate of convergence of the MLAs using 8 1 or S4 and S2 is 
smaller than that between 83 and 82• The properties stated in Theorem 2.14, Corollary 
2.18, Corollary 2.24 and Conjectures 2.25-2.27 will be confirmed by numerical experi
ments in§ 4. 

-1T -1T 1T 

h1 h1-1 0 I h/-2 
I 

S,; S4 

1T 

h, 

FIG I. Parts of T1 where for S2 and S3 the smoothing effect is the same as for S, and S4• 
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~· ~umerical approximation of the convergence rate. In this section we give a 

descnptlon of the method used to determine the asymptotic rate of convergence of 
the M LA. Let . 

(3.1) Ahvh = fh be a discretization of ( 1.1 ). 

The MLA used to solve (3.1) can be described as a defect correction process cf. 

Hemker [5]): 

(3.2) 
v~ given start approximation, 

i+t M i+B-1+ . 01 vh = hvh h Jh, 1 = , , · · · 

with amplification matrix Mh = Ih - B"j; 1 Ah. Ih is the identity matrix, and Bh 1 is an 

approximate inverse of Ah, determined by coarse-grid and smoothing operators, pro

longation and restriction. We suppose Ah and Bh to be nonsingular. For the error 

e~ = vh - v~, i = 0, 1, · · · the following relation holds: 

The convergence behavior of the MLA is determined by the spectral radius of 

This motivates the following: 
DEFINITION 3.3. The asymptotic rate of convergence of the MLA (3.2) is 

-log 10 p( Mh) where p(Mh) = maxilAi\ is the spectral radius of Mh; Ai are the eigenvalues 

of Mh. 
THEOREM 3.4. 

. (llM~xll) 11 k sup hm -
11 

-
11
- = p(Mh), 

x;OO k~co X 

with II· I\ an arbitrary norm. 
Proof See Stoer and Bulirsch [7, (8.2.4)], Varga [8, Thm. (3.2)]. Because of 

Theorem 3.4 we can compute an approximation Pm,k(Mh, e~) of p(Mh) defined by 

(3.5) 
0 -(llM;:'+keilb) 11 k 

Pm,dMh, eh)= \IM;:'e~l\i ' 

where 11-11 2 is the Euclidean norm. Note that 

(3.6) sup Jim Pm k(Mh, ei) = p(Mh). 
e~#O m,k-'>-OO ' 

In numerical computations vt j = m, ... , m + k are obtained by the iterative method 

under consideration. When for increasing m and. k, \I e), Iii reaches values near the 

square root of the machine accuracy, we replace e), by ei..11: 

(3.7) e~~ = 17dh( 11 » l ), 

and replace v), by v~. 11 : 

(3.8) 
j -v + ej vh. 11 = h h,11· 

Thus 
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and as 

(3.9) 

in this way values of Pm,k(Mh, e~) can be computed for large m and k. By this method 
ultimately the eigenfunctions of Mh corresponding to nondominant eigenvalues will 
decrease exponentially relative to the dominant eigenfunctions. Note that for small m 
and k, Pm,k depends strongly on fh while p does not. There are more refined methods 
to determine the spectral radius. (cf. Wilkinson [11]). However for our purpose the 
method describ,ed is sufficiently accurate. 

4. Numerical results. In this section we give the results of numerical experiments 
to compare the strategies Si. S2, S3 and S4 and to verify the properties stated in Theorem 
2.14 Corollaries 2.18 and 2.24 and Conjectures 2.25-2.27. We take three test problems. 
Test problem l with constant coefficients closely resembles the problem analysed by 
two-level analysis in Van Asselt [I]. Test problem 2 has variable coefficients. Although 
a strict application of Fourier analysis arguments does not hold for these variable 
coefficient problems, the experiments for the latter test problem show that globally the 
same properties hold as for the constant-coefficient case. For the second problem we 
also show to what extent the strategies S., · · · , S4 are better than relaxation alone (i.e., 
without coarse-grid correction). Test problem 3 differs from Test problem 1 by discretiz
ation (FEM), relaxation (ILU) and number of levels. 

Test problem I. We consider the following convection-diffusion equation (see 
Fig· 2) 

(4.1) 

a 
-(e+yh)Llu+-u=O onO=[O, l]x[-1, l], 

ay 

6 = 10-6, 

The boundary conditions are: 

h =ft,. 

(4.2) { 
l, O~x<!-I0-6, 

u\a,o= -106(x-!), !-10-6 ~x~!+l0-6, 

-1, !+ 10-6 <x~ l, 

(0,-1) 
s.n 

L.i 
(O, 1) 

@ 
y,j 

IJ,O 
convection- • c530 

direction (ih,jh) 

(1,-1) 
ll20 

(I, I) 

FIG. 2. The domain 0. 

Equation ( 4.1) is discretized by CD on levels k = 0, · · · , l = 3 with meshsize 
hk = l/2k+t. The boundary conditions are not substituted. The Dirichlet boundary 
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conditions are implemented with a large number on the main diagonal to avoid 
unwanted coarse-grid corrections at the boundary. The Neumann boundary conditions 
are discretized as follows: 

-l<y~l, 

830: u(x, 1)-u(x, 1-hk)=O, O<x<l, 

040: u(O,y)-u(hk,y)=O, -I <y~l, k=O, · · ·, l=3. 

For various values of y the discretized equation is solved with the W-cycle MLA (i.e., 
the application of 2 multi-level-iteration steps to approximate the solution of the 
coarse-grid equation). 

We perform one pre- and one post-relaxation step consisting of symmetric point 
Gauss-Seidel relaxation (SGS) in the y-direction. We use 7-point prolongation and 
7-point restriction (cf. Hemker [6], Wesseling [9]). On the coarsest level we solve 
exactly. A random initial approximation of the solution is used. The values for m and 
kin (3.9) are 30 and 10 respectively. 

Test problem 2. We consider the following convection-diffusion equation (see 
Fig. 3) 

(4.3) 

a a 
-(s+ yh)llu+b 1 -u+b2 - u =0 onfl=[O, l]X[-1, l], 

ax ay 

s=l0-6, h=ft, b1 =y(1-x2 ), b2 =-x(l-y2 ). 

The boundary conditions are 

uls,o = l +tanh (10+20x), 
(4.4) 

-1;2ix~0, 

au I au I au I au I 
an 8;,0 =an o,O =an 840 =on 550 =O. 

(-!,I) 
84!1 

( l, I) 

convection direction 

8,11 • 83!1 

~ 
(ih,jh) 

(-1, O) (I, 0) 
810 x, i 8,fl 

FIG. 3. The domain n. 

Equations (4.3) and (4.4) are discretized by the FEM on levels k = 0, · · ·, l = 4 with 
mesh-size hk = (l/2)k. The boundary conditions are not substituted and the Dirichlet 
boundary conditions are implemented with a large number on the main diagonal. For 
different values of y, and S 1-S4 the discretized equation is solved with the W-cycle 
MLA. We perform one pre- and one post-relaxation step by means of 7-point ILU 
relaxation, (cf. Wesseling and Sonneveld [10]). The !LU-decomposition is ordered 
lexicographically (cf. Fig. 3). On the coarsest level we solve exactly. Again we use 
7-point prolongation and 7-point restriction (that are consistent with the FEM discretiz
ation), and a random initial approximation. In (3.9) m and k are again 30 and 10. 

Test problem 3. For l = 4, 5, 6, we consider ( 4.1) with different h, and ( 4.2) discret
ized by the FEM on levels k = 0, · · · , I, with mesh size hk = (!)k+i, y = !. The boundary 
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conditions are not substituted and the Dirichlet boundary conditions are implemented 
with a large number on the main diagonal. 

The discretized equation is solved with the W-cycle MLA. We perform one pre
and post-relaxation step by means of 7-point-ILU relaxation (on the coarsest level we 
do not solve directly, but perform 2 relaxation sweeps). The !LU-decomposition is 
ordered lexicographically (cf. Fig. 3). We use 7-point prolongation and 7-point restric
tion. A random initial approximation of the solution is used. The values for m and k 
in (3.9) are 20 and 10 respectively. 

Figures 4 and 5 show the properties in Conjectures (2.25)-(2.27) for Test problems 
l and 2, respectively. Figure 5 also shows that all strategies S1-S4 are better than 
relaxations without coarse-grid corrections. In Table 1 for Si. S2 and S3 the smoothing 
factors of SGS are given at different levels and for different 'Y· We notice that for 
log2 y > 0 the big difference in the asymptotic rate of convergence of S2 and S3 ( cf. 
Fig. 4) is mainly caused by the order of consistency and to a small extent by the 
relaxation m~thod, because the smoothing factors are almost the same. 

In order to demonstrate Theorem 2.14, Corollaries 2.18 and 2.24 in connection 
with Remark 2.7 we take Test problem 3. Table 2 shows the convergence rates as 
measured (cf. Definition 3.3). Note that S 1 and S4 show similar stability and convergence 
behavior (cf. Remark 2.12). 

Remark 4.5. With respect to Remark 2.7 we notice that in many cases a decreasing 
stability coincides with a worsening smoothing factor (cf. Table I). 

Cl .,., 
0 
L 

(lJ 
(.) 
c 
Cl 
::J"1 
L 
C; 

c.i 

N 

> '-' c . 
0 ..... 
u 
u 

._) ., 
0 ., 
0.. 
E 
:n 
(/) 
0 LEGEND 

'V - 51 
0 - 52 
0 - 53 

0 

D+-~~~·~~.J--~-~L,--~..-'~~-.-~-.----, 

-1.0-'3.'j -'3.0 -2.S -2.0 -1.5 -1.0 -0.~ 0.0 0.'; 1.0 

2 
Lego 

FIG. 4. Asymptotic convergence rates for Test problem I. Only the part of the figure with positive asymptotic 

convergence rate is drawn. (I= 3, h1 = i\;). 
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FIG. 5. Asymptotic convergence rates for Test problem 2. The graph depicted by"+" represents two !LU 

relaxation sweeps in one iteration step without coarse-grid correction. Only the part of the figure with positive 

asymptotic convergence rate is drawn. ( / = 4, h1 = f,;). 

5. Conclusions. In order to solve the convection-diffusion equation in two 
dimensions by a multi-level algorithm (MLA), we consider 4 strategies for coarse-grid 
operators: 

S1: on each coarse grid the same artificial viscosity as on the finest grid; 
53 : on each coarse grid the artificial viscosity corresponding to the mesh width; 
S2 : an intermediate choice, with the same artificial viscosity on the two finest grids; 
S4 : Galerkin approximation for the coarse-grid operators. 
For S 1 and 5 4 the artificial viscosity may become too small on coarse grids, and 

hence stability problems and bad smoothing-factors may occur. 5 1 and S4 are not 
e-asymptotically stable, S2 and S3 are. ( cf. Definition 2.6, Theorem 2.14, Corollaries 
2.18, 2.24 and Table I). 

If the finest-grid artificial viscosity is sufficiently large, the asymptotic rate of 
convergence of the MLA according to S2 is far better than that of S3 (cf. Conjecture 
2.26 and Figs. 4, 5). 
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TABLE I 
Smoothing-factors for one SGS sweep, Test problem l, different y, levels and strategies 

(local mode analysis, cf. Brandt [2]). 

~ s, S2 S3 ~ s, S2 S3 

3 0.36 0.36 0.36 3 0.24 0.24 0.24 

2 4.84 4.84 0.36 2 0.80 0.80 0.24 

186 4.84 0.36 15625 0.80 0.24 

log2 y = -1.5 log2 y = - l.0 

~ s, S2 s, ~ s, S2 S3 

3 0.23 0.23 0.23 3 0.24 0.24 0.24 

2 0.36 0.36 0.23 2 0.24 0.24 0.24 
4.84 0.36 0.23 0.80 0.24 0.24 

log2 y = -0.5 log2 y = 0.0 

~ s, S2 S3 ~ s, S2 S3 

3 
2 

0.24 0.24 0.24 3 0.25 0.25 0.25 
0.23 0.23 0.24 2 0.24 0.24 0.25 

0.36 0.23 0.24 0.24 0.24 0.25 

log2 y = 0.5 log2 'Y = 1.0 

TABLE 2 
Convergence rates for Test problem 3, S1-S4 , and increasing/. 

strategy 

level I h1 s, S2 S3 s4 

4 1/32 2.01 1.78 1.61 2.01 
5 1/64 «O 1.70 1.33 « 0 

6 1/128 « 0 1.17 0.87 «O 
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