
Volume 12 (2) 1999, pp. 133 � 146

Digital Document Handling with WebPack

László Kovács, András Micsik

MTA SZTAKI

Computer and Automation Research Institute

of the Hungarian Academy of Sciences

Department of Distributed Systems

H-1111 Budapest XI. Lgymnyosi u. 11. Hungary

{laszlo.kovacs, micsik}@sztaki.hu

Current practice and shortcomings of handling digital hypermedia documents on

the Internet are investigated. The WebPack format is de�ned to eliminate some

of these shortcomings. The structure and operations of this new container format

are discussed, and the use of WebPack in document management is explained.

1. Introduction

As the World Wide Web [1] spread the world from the beginning of this decade,

it incorporated more and more powerful tools and formats, and the contents

served via WWW became more and more complex. The content and layout of

WWW pages became competitive with printed material, and in other aspects

WWW pages have far more potential than printed documents. The meaning of

document in case of the WWW is changing. WWW documents are sometimes

more similar to a piece of software than to printed material. They may contain

animations or may have an annotation facility, and what is most important,

they are linked together.

The Dublin Metadata Workshop [12] investigated this new kind of infor-

mation source, and tried to set the �oor for descriptive techniques for WWW

documents which were termed Document-like Objects (DLOs) [11]. A DLO

can be characterized like this:

� it may contain �les in lots of di�erent formats: text, graphics, animation,

video, audio and 3D models;
� its parts are interconnected with links;

133



� it may contain active parts (e.g. scripts, applets) that respond to user

interaction by executing programs embedded into the document.

For simplicity, DLOs are called digital documents in this paper. First the

nature of digital documents is examined and their shortcomings are listed in

Section 2. Next a new format called WebPack1 is proposed (Section 3) for

handling digital documents. A tool for management of the WebPack format is

introduced in Section 4.

2. Digital documents: current usage and shortcomings

Some digital documents are just simple digital representations of printed mate-

rial, o�ering the same content and layout as the printed version. On the other

hand there exist digital documents hardly comparable to printed material, and

some features of these documents, such as interactive or animated parts, make

it impossible to reproduce them in print.

The most signi�cant feature of digital documents is remote accessibility

which gave momentum to various digital library e�orts. The basic functionality

of a digital library is to maintain a collection of digital documents and to

make these documents accessible for its user community. Of course there are

also more advanced services which a digital library can implement, but even

this basic task introduced new problems, and some of those problems are still

unsolved.

2.1. Serving and maintaining documents

The �rst area of problems is the consequence of the fact that digital documents

may contain several �les and may rely upon other external services, programs

and �les. The functionality of a document is therefore distributed over several

�les, directories and hosts, and this creates di�culties in serving, maintaining

and preserving digital documents.

Figure 1 shows the basic components in a scenario when a user accesses a

digital document. The user environment is speci�c to the actual user of the

document, while the server environment is speci�c to the accessed document.

The user environment provides browsing and viewing capability for the user.

This usually includes an operating system, aWWW browser, additional viewers

(e.g. Postscript, VRML), personal settings in the WWW browser and other

non-standard features (e.g. JavaScript, plugins). The server environment o�ers

the general document access services. It contains the operating system on the

server side, a WWW server and several additional services inside or outside

the Web server (e.g. access control, servlets, URL redirection or aliasing). A

server environment usually serves several documents.

The correct operation of a digital document means that all of its function-

ality (hyperlinks, images, interactive parts, etc.) is available for the user in the

same way as the author has implemented them. This relies on both the user

1 In previous articles it is mentioned as Portable Hypermedia (PHM) format [22].

134



Server
Environment

Documents

User
Environment

User Internet

Figure 1. Accessing WWW documents

and server environments, and may rely on other digital documents or external

data as well. Those dependencies that can hold up the correct operation of a

document may fall into three categories: hyperlinks, �le dependencies and the

so-called service dependencies.

Hyperlinks Hyperlinks are the glue that hold parts of digital documents to-

gether, and also place documents into the globally linked network of the Inter-

net. Hyperlinks are formulated as URIs [4], and most commonly as URLs, a

subclass of URIs [5]. URL can refer to an object on the same host, or to an

object on a di�erent host, or to a part of an HTML page, or to dynamically

created objects.

The problem with URLs is that they are location speci�c. The referred

object is identi�ed by the combination of the host machine name and a local

descriptor of the object, most usually a �le path. This means that moving a

part of a document to another location in the �le system or to another host can

make that part inaccessible. The URI schema de�nes a highly customizable

reference methodology for the Internet which would allow location transparent

naming facilities, but currently a widely used and location transparent naming

facility for the Internet is missing.

A digital document has two inner structures: a link and a storage structure.

The storage structure is a directory hierarchy where document parts are stored

as �les. Without signi�cant, loss of generality this structure can be represented

as an abstract tree.

The link structure can be represented as a directed graph, where vertices

are parts of the document and edges are hyperlinks between parts (potentially

labelled with the anchor of the hyperlink). Hyperlinks in a document can be

classi�ed in two ways: �rst, as external or internal links, pointing outside or

inside the document. Secondly, as static links stored statically in �les, and

generated links which are generated by an executable part during the access of

135



the document.

The problem is that hyperlink targets are de�ned as paths in the storage

structure. The storage structure of the document changes whenever the docu-

ment is moved in the �le system of the server. If the storage structure itself or

the position of the storage structure changes in the �le system, then the link

structure has to be checked and corrected. This can be a fairly simple task in

case of static links, and there are many freeware tools that detect and correct

URLs in a set of HTML pages. In this case the only question that remains to

answer is that if the URL is incorrect how the correct link target can be found.

If the spoilt link is an external one, there is no universal method to �nd the

target again (e.g. the server host name has changed). This is discussed in the

next subsection in connection with general document identi�cation issues. It

has to be mentioned that more and more �le formats start to use URLs (e.g.

VRML, PDF), so the URL detecting algorithms have to be adapted to these

new �le formats as well.

URLs can also be generated by CGI scripts or Javascript. Detection of

such generated links during a link integrity check is not always possible. CGI

scripts can be written in various programming languages (C, Visual Basic, Perl,

Python, etc.), and scripts may concatenate URLs from short text strings. One

can imagine a very sophisticated software analysis tool that is able to identify

how URLs are assembled in the code, but even that tool fails if the source code

is not available.

File dependencies The simplest example for �le dependencies is inline images

in HTML. As inline images are kept in separate �les, they can easily be lost.

A more complex example is a CGI script that requires di�erent Perl modules.

Perl modules are usually installed in a central location on the server, but this

location may di�er from server to server. So the CGI script may stop working

if the required Perl module cannot be found.

Generally two major classes of �le dependencies can be distinguished: de-

pendencies on data �les and dependencies on executables. In the �rst case,

the location of the data �le is needed only. In the second case not only the

location of the executable is needed, but also proper access rights and version

compatibility. Possible solutions for data �le dependency problems are similar

to solutions for hyperlink problems.

Service dependencies Digital documents may utilize various services and fea-

tures of both the user and server environments. Some examples: access restric-

tions (based on client host address or user authentication), enabling CGI scripts

and setting the name of the so-called index �les (�index.html�, �default.htm�,

etc.) that are loaded when the URL references a directory instead of a �le.

These are supported by most of the WWW servers, but with di�erent con-

�guration syntax. If the WWW server changes in the server environment of

136



the digital document, then these service dependencies may break the correct

operation of the document.

A complex case of service dependencies is viewer con�guration. In order

to enjoy a document fully the user needs to have viewers for all formats used

in that document. This needs some cooperation between the user and server

environments, as the viewer on the user side is selected according to the MIME

type of the document part, and the MIME type is determined by the WWW

server (usually based on a translation table that maps �lename extensions to

MIME types).

Maintenance If any of the above mentioned dependencies remains unful�lled,

the digital document is not fully operational. This can happen very easily

as a consequence of changes in the operating system, changes in the WWW

server, changes in auxiliary programs or when the document is moved to an-

other server. Generally in the maintenance of a digital document collection the

following tasks can be identi�ed:

� installation/removal of digital documents;
� reorganizing the collection (moving documents);
� checking correct operation of digital documents;
� archiving documents;
� maintenance of catalogue.

In case of simple document formats these are relatively easy tasks (e.g.

single �le Postscript format), and can be done by scripts as in the Dienst

distributed digital library system [19]. Given the possible complexity of digital

documents it can be seen that some of the above tasks can only be done by hand,

and these tasks need a person with deep knowledge of the server environment

[23].

Related e�orts Solutions may go into two directions; the �rst is to develop

new ways and tools based on existing standards and usage to help performing

these maintenance tasks. The second direction is to increase the intelligence

of digital documents so that these maintenance tasks are performed by the

document itself.

Distributed object management or agent technology could provide a solution

into the second direction. Several agent frameworks have appeared in the last

years, and some of those support mobile agents. A mobile agent could embed

a digital document, and provide not only viewing [24, 25] but also manage-

ment services for its users. Another example into this direction is DigitalPaper

[10]. It is a single �le document format with enhanced portability options. Its

goal is to ensure equivalent presentation of the document independent of hard-

ware, operating system or installed fonts. DigitalPaper documents are created

by printing the document from any application through a special print device

driver. Documents can be viewed using a plugin with the two most popular

137



WWW browsers, and there is also a stand-alone viewer application. Digital-

Paper can incorporate hyperlinks, highlights, bookmarks and sticky notes. It

has also built-in security features. The main drawback of this approach is that

it applies a totally new document format which needs new software solutions

for viewing and creation.

Taking the �rst direction we can see emerging commercial products (e.g.

Microsoft Frontpage, Macromedia Dreamweaver) and freeware tools that ease

some maintenance tasks in limited situations. With these tools one can move

or copy HTML pages on a Web server, and the URLs in the pages will be

automatically corrected. Other tools check all URLs on a Web server and

report dangling links.

A standardization e�ort of IETF in this area is WebDAV (World Wide

Web Distributed Authoring and Versioning) [18] which aims at �de�ning the

HTTP extensions necessary to enable distributed web authoring tools to be

broadly interoperable, while supporting user needs�. In this respect WebDAV

will support remote management and authoring of WWW pages. WebDAV is

a very promising e�ort that will likely solve some of the problems mentioned

in this section. It supports creating collections from HTML pages, and pages

or collections may have properties (metadata) attached to them. Currently

WebDAV is near the end of the standardization of its basic functionality, and

it lacks software tools that implement its basic and advanced features.

Bene�ts of WebPack In our view the �rst important step would be to list and

store all required functionalities for digital documents in a general way. This

list of dependencies can serve as a checklist for librarians or administrators, but

also it can be a base of building intelligent tools for document maintenance.

As it can be concluded from our previous investigations in some cases it is not

feasible to build intelligent tools for some tasks, for example to automatically

install a new programming language on the server because a digital document

needs it. Similarly the collection of information on document dependencies

cannot be fully automated. Therefore the WebPack tool provides an easy-to-use

visual environment to browse and edit the list of document dependencies, and

in the meantime it is capable to automatically detect some of the dependencies.

The natural place to store this dependency list is the metadata attached to the

document. Unfortunately this kind of structural metadata has no recommended

use up to now. More investigations on the use of metadata are given in the

next subsection.

Finally, it is clear that the user environment is totally under the control of

the user, and librarians cannot change or a�ect directly the user environment.

Librarians or administrators, however, can inform the user about the required

functionalities for viewing a document, and they can also give recommenda-

tions or detailed help for the user about the necessary modi�cations in his/her

system. The list of document dependencies can be a base for providing this

information for the user.

138



2.2. Searching and identi�cation

The second area of problems is about the ways digital documents are found,

identi�ed or reused in the user community. If a user wants to �nd a certain doc-

ument on the Internet, he/she has two possibilities: search using the specialized

search services of digital libraries, or use general Internet search engines (e.g.

Altavista, Infoseek). The �rst possibility means that he/she may have to visit

the specialized search engines for each collection one by one, although these

search engines may give a better quality result than general Internet search

engines. For example the search engine of ETRDL (ERCIM Technical Refer-

ence Digital Library) [20] can search by keyword or by author. Digital library

search engines also have a notion of document as a wanted entity, while general

Internet search engines has only the notion of HTML pages.

If somebody uses a general Internet search engine to �nd a digital document,

he covers the whole Internet in his search, but the result will be generally of

low quality. These search engines cannot use proper bibliographic information

for digital documents, i.e. they cannot tell the author or date of documents.

Moreover they give a set of HTML pages as a query result, so it may occur

that the result contains only one page somewhere inside the desired document

in which case the user might overlook that single item as it may not be very

signi�cant for the whole document. Or the result may contain dozens of pages

from the desired document which does not give a clear overview of the found

documents.

There are further problems with the identi�cation of a digital document.

Currently there is no guarantee that if we �nd a document we will be able

to �nd it again. The URL of the document can change, and the URL we

bookmarked for that document will point to nowhere. It would also be useful for

librarians and users to know the boundaries of digital documents, to know which

pages belong to that document, and to know when they leave that document

while browsing through hyperlinks. Identi�cation could also mean that certain

relations between documents are known (e.g. this is the Hungarian translation

of that document, these documents are the same, etc.).

Related e�orts There is no general and widely used method for identi�cation

of digital documents except URLs [5]. As URLs identify merely locations on

the Internet, and have nothing to do with content, they do not implement a

location transparent naming method. Emerging solutions for location transpar-

ent naming are the Persistent URL Servers [9], and the CNRI Handle System

[8]. However these e�orts provide only a location transparent identi�er for

registered HTML pages, and they do not work with the notion of document

either.

For a long time there was no standard way of compiling, formatting and

attaching the bibliographic data to a digital document. The Dublin Metadata

Workshop [12] de�ned the Dublin Core metadata set which is appropriate to

hold bibliographic data. Later the Warwick Framework [14] de�ned packaging

139



rules for metadata sets. Since then metadata issues has been constantly evolv-

ing [15]. There is a draft RFC on encoding Dublin Core metadata in HTML

�les. Several new metadata schemata have appeared to handle rating (PICS),

distributed authoring (WebDAV), and digital signatures (DSig). The Resource

Description Framework (RDF) [17] gathers these e�orts into a general frame-

work, but the emphasis is on assigning metadata to individual �les instead

of �le collections. There is no general practice or recommendation on how to

attach metadata to digital documents containing tens or hundreds of HTML

pages.

New search engines are soon to appear on the Internet that will utilize

Dublin Core Metadata attached to HTML pages (e.g. MetaWeb tools [16]).

This will enhance the quality of search results only if large number of HTML

pages will have attached metadata.

Bene�ts of WebPack As the WebPack format aggregates HTML pages and

other �les into a digital document, it can be a natural target for persistent and

location transparent naming. The WebPack format also supports semantical

relations between documents. Boundaries of a WebPack container are clear,

and it is always possible to �nd the title page of a document automatically if

the URL of an internal page is given in the same document. Search engines

could contract several result items belonging to the same WebPack into a single

hit making the search result more compact and practical.

3. The WebPack format

The WebPack format is an e�ort to create a digital document format suitable

for wide use on the present Internet. This is a container format for collect-

ing the pieces of digital documents which are currently managed individually.

Considering the current usage, and the large amount of widely used software

on present-day Internet, the following requirements can be set for the WebPack

format:

� URIs are used as existing syntax and semantics for hyperlinks;
� presentation formats widely used on the Internet can be integrated;
� supports portability and manageability in a wide range of servers and op-

erating systems;
� contains metadata for cataloging and management purposes;
� extensible.

With these requirements present-day �le formats and tools remain usable,

while semantical relations within and between digital documents can be en-

hanced.

3.1. WebPack architecture

A WebPack is a container for the parts of the digital documents (Figure 2).

The container has an additional metadata repository to store various meta-

140



Metadata

Title page

Table of
contents

Dublin Core

formats

executables

entry points

...

Figure 2. A WebPack container

information about the document. The following statements must be true for

any WebPack:

� A WebPack is maintained in a way that present-day Web browsers can

show its contents without the knowledge of the WebPack format.

� For any part its WebPack container can be determined unambiguously,

even during a remote access.

� Files in the WebPack may be changed during WebPack management opera-

tions, but these changes cannot a�ect the correct operation of the WebPack.

In the �le system a WebPack container is represented as a directory subtree

containing �les belonging to the digital document. A WebPack can be viewed

as a well-de�ned part of a WWW server supplemented with metainformation.

The repository for metadata is placed into the root container directory inside

a subdirectory with a prede�ned name.

The architecture contains a WebPack Interface which mediates management

information between the server environment and the WebPack container and

executes management commands (Figure 3). The server environment includes

the operating system, the WWW server and any other con�gurable options

or software needed for the correct operation of digital documents. When the

WebPack is in use, its parts can obtain appropriate information about the server

environment via the WebPack Interface. An example is a script which needs

access to a con�guration �le of the WWW server. Management is the other

case when WebPack Interface is used. Management tools query all environment

dependent information through the WebPack Interface.

The WebPack interface has two parts. A general part helps management

tools to access the metadata stored in the WebPack container, and provides

141



WebPack Interface

Server Environment

Metadata

WebPack

Script

WebPack Interface

Server Environment

Metadata

WebPack WebPack
management

tool

WebPack in use WebPack management

Figure 3. WebPack architecture

comfortable methods for �le path translations. The other part provides meth-

ods to query di�erent settings in the server environment. This part is based

on a server and system dependent module which is selected and con�gured by

the administrator of the site.

3.2. Metadata in WebPack

WebPack metadata is arranged into packages and stored in RDF format. Meta-

data is divided into two parts. One part is meant to help cataloging, identi�-

cation and searching. Dublin Core acts as the basis of this collection of meta-

data. Copyright can be added here as well. The second part is the manage-

ment/technical description, for which own metadata packages are used. This

contains the description of:

Information on formats used in the WebPack: This includes the map-

ping of �le extensions to MIME types, and additional format-dependent

information (format subtypes, character sets, etc.).

File dependencies: This is the list of all �le dependencies for the �les in the

document, containing external and internal hyperlinks, and other necessary

�les.

Information on active parts: These are the parts of the WebPack that are

executed on the server side (e.g. CGI scripts, Java servlets) or on the user

side (e.g. Java applets). Information stored here contains dependencies on

other programs or program versions.

Entry points: Digital documents has distinguished pages which are essential

for navigation or simply very often used. It is very likely that these are

the pages where hyperlinks are pointing from other places in the Internet,

therefore these are called document entry points. Some examples for typical

142



entry points: the homepage or title page, table of contents, index, or search

page.

Other characteristics of �les: This may include for example access restric-

tions, language options, etc.

Relations to other WebPacks: Possible relationships are surveyed in the

next subsection.

3.3. Relations between WebPacks

Relations between WebPacks can be helpful in many ways for the document

user and the document maintainer as well. Because of the semantical meaning

most of these relationships cannot be detected automatically, rather they are

declared by the author or maintainer. Some examples for WebPack relations

are detailed here.

Alternative relationship AWebPack may have alternatives that contain the

same information presented di�erently in language, in formats or in links.

For example an English language HTML document may have a German

alternative or an alternative in PDF or an alternative which keeps sections

in one HTML �le, not in separate HTML �les.

Equivalence relationship WebPacks are equivalent if they appear/work iden-

tically for each user (in a semantical way), though they may have di�erent

�le names or di�erent formats. For example if all GIF images in one docu-

ment are replaced with equivalent PNG images in the other (and there are

no other di�erences), then those documents are equivalent.

Master/Replica relationship A digital document is often replicated to dif-

ferent servers to enhance its availability. In this case there is a master

(original) version of the document which is periodically copied to the replica

sites.

4. The WebPack tool

As a part of the prototype for the WebPack architecture, the WebPack tool is

being implemented at SZTAKI. It is written entirely in Java, and o�ers a graph-

ical user interface for the management of WebPacks. After opening a WebPack

container the tool shows the contents of the attached metadata packages (Fig-

ure 4). Metadata can be easily changed, so this tool is both appropriate for

the author of the document to enter metadata about the document, and for

the maintainer of the document to browse attached metadata.

It is very easy to wrap an existing digital document into a WebPack with

this tool. The user de�nes the directory where �les of the document reside

and the possible entry points. After this the tool automatically explores the

document and creates initial metadata for the WebPack container which the

user can later re�ne.

143



Figure 4. WebPack tool

The menu o�ers some basic operations on the WebPack (e.g. move, copy,

verify). In case of moving the WebPack to another location the tool not only

moves the �les of the document to their new locations but also tries to ad-

just hyperlinks and other settings according to the knowledge in the metadata

repository.

Some immediate uses of WebPack include Web server maintenance and mir-

roring. A WWW server can be logically split into WebPack containers, creating

a modular document space which is manageable by the WebPack tool. Doc-

uments are often mirrored (replicated) to several locations. This task can be

automated based on the WebPack architecture and its master/replica relation-

ship. Several scenarios for intelligent mirroring are given in [26]. A prototype

of a simple mirroring tool based on WebPack can be found in [27].

In the future we would like to merge the WebPack architecture with Web-

DAV, and apply the powerful primitives of WebDAV to enhance the function-

ality of WebPack.

5. Summary

The WebPack format and architecture were proposed to reduce the problems

with handling Document Like Objects on the Internet. WebPack is a container

format, and does not obsolete current Internet usage and �le formats, but

enhances manageability and portability aspects. This approach can serve as a

middle-term solution in the trend of making network information services more

and more intelligent based on object and agent technology.

Acknowledgment We would like to thank Róbert László for his work in the

implementation of the WebPack toolkit.

144



References

1. About the World Wide Web,

URL: http://www.w3.org/pub/WWW/WWW/

2. Hypertext Markup Language,

URL: http://www.w3.org/hypertext/WWW/MarkUp/MarkUp.html

3. Hypertext Transfer Protocol,

URL: http://www.w3.org/hypertext/WWW/Protocols/Overview.html

4. WWW Names and Addresses, URIs, URLs, URNs,

URL: http://www.w3.org/hypertext/WWW/Addressing/Addressing.html

5. Berners-Lee, T., Masinter, L., and M. McCahill, Uniform

Resource Locators (URL), RFC 1738

6. Rob McCool, The CGI Speci�cation,

URL: http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

7. The Virtual Reality Modeling Language Speci�cation, Version 2.0,

URL: http://vrml.sgi.com/moving-worlds/index.html

8. The CNRI Handle System, URL: http://www.handle.net/

9. Persistent URLs, URL: http://purl.oclc.org/

10. Common Ground Digital Paper, URL: http://www.hummingbird.com/cg/

11. Reginald Ferber, Hypermedia and Metadata, 2nd DELOS Workshop,

October 1996, Bad Honne�, Germany,

URL: http://www.darmstadt.gmd.de/�ferber/delos/ws2/frame/frame.html
12. Stuart Weibel, Jean Godby, Eric Miller and Ron Daniel:

OCLC/NCSA Metadata Workshop Report,
http://www.oclc.org:5046/oclc/research/conferences/metadata/

dublin_core_report.html

13. Dublin Core Metadata Initiative, URL: http://www.purl.org/DC

14. Carl Lagoze, Clifford A. Lynch, Ron Daniel Jr., The Warwick

Framework - A Container Architecture for Aggregating Sets of Metadata,

Cornell Computer Science Technical Report TR95-1558

15. Metadata activity at the World Wide Web Consortium,

URL: http://www.w3.org/Metadata/

16. MetaWeb Project, URL: http://www.dstc.edu.au/RDU/MetaWeb/

17. Resource Description Framework, URL: http://www.w3.org/Metadata/rdf

18. IETF WebDAV Working Group,

URL: http://www.ics.uci.edu/∼ejw/authoring
19. C. Lagoze, J. R. Davis, Dienst: an Architecture for Distributed

Document Libraries, Communications of the ACM, 38 (4) April 1995

20. S. Biagioni, J. Borbinha, R. Ferber, P. Hansen, S. Kapidakis, L.

Kovács, F.A. Roos, A. M. Vercoustre, The ERCIM Technical

Reference Digital Library, Second European Conference on Digital

Libraries (ECDL'98), Heraklion, Greece, September 1998, Lecture Notes

in Computer Science 1513. Springer 1998

21. L. Kovács, Discovery of Resources within a Distributed Library System,

Communications of the ACM, Vol. 41. No. 4. April 1998

22. L. Kovács, A. Micsik, Portable Hypermedia: a New Format for WWW

145



Documents, SZTAKI Technical Report TR97-1

23. A. Micsik, A study of portability in the deployment of WWW, to appear

in: Acta Cybernetica Vol. 14. (1999) No. 2.

24. L. Gulyás, L. Kovács, A. Micsik, L. Tersztenyák, Personalized

Home Pages - A Working Environment on the World Wide Web,

Telecooperation Proc. of the XV. IFIP World Computer Congress 1998,

Vienna-Budapest

25. L. Gulyás, L. Kovács, A. Micsik, L. Tersztenyák, Agent Based

Internet (WWW) Services, SZTAKI Technical Report TR97-2, March

1997

26. L. Kovács, A. Micsik, Replication within Distributed Digital Document

Libraries. Proceedings of the 8th ERCIM Database Research Group

Workshop on Database Issues and Infrastructure in Cooperative

Information Systems, Trondheim, Norway, 1995

27. L. Kovács, A. Micsik, G. Schermann, An Environment for Mirroring

Hypermedia Documents, JENC 7, Budapest, May 13-16 1996.

146


