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1. Motivation and background

1.1. Introduction

Computer vision is a multi-disciplinary research domain that aims to design sys-
tems capable of realising automatic, robust and intelligent image enhancement
and interpretation. The intrinsic and unpredictable complexity of observed
natural images means that | lots of e�ort and progress notwithstanding | we
have barely begun to explore the tremendous potentials of this emerging tech-
nology. In this paper we will review some longstanding challenges in computer
vision that have given rise to a particular set of mathematical problems in the
theory of �lter design and (non-linear) partial di�erential equations (PDE's).

Our aim is to give a avour of the current research direction in this area of
computer vision. Given the vast amount of available material and the limited
size of this paper, emphasis will be on intuition rather than formal or rigorous
derivations. As it is impossible to give a complete overview of this �eld, this
presentation will necessarily be somewhat eclectic, the choice of topics often
reecting our own preferences. However, we have tried to provide su�cient
pointers to the literature so that the interested reader can follow up strands
that capture his attention.

1.2. The role of scale-spaces in computer vision

For the ease of discourse, computer vision is traditionally (and slightly arti�-
cially) divided into three main research areas:

1. Low-level vision focuses on operations at the pixel level. Examples
that spring to mind are edge detection or morphology-based image restora-
tion. What characterises these operations as low-level is their very limited

1 The author gratefully acknowledges partial support by the Belgian Fund for Scienti�c
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spatial range: Typically, processing only depends on a small connected
neighbourhood of each pixel at the time. Although the limitations of this
myopic approach are obvious, it is nevertheless an exceedingly important
�rst step, the main advantages being the high processing speed due to the
restricted connectivity. Indeed, the insistence of low-level vision on small
neighbourhoods means that local information exchange su�ces to compute
the output. In terms of implementation (e.g. on VLSI-chips) this is of
paramount importance as it entails that each processor only needs to be
connected to its immediate neighbours, thus ensuring easy scalability (com-
pare this with the global connectivity in neural networks which is a major
limiting factor for up-sizing them). But also from a mathematical point of
view this has important consequences. For one thing, it motivates the re-
quirement for a recursivity condition on the operators (see Subsection 1.4),
allowing large-scale operators to be generated by successive applications of
operators that have a much smaller support. Yet another albeit related
issue linked to this restricted connectivity, is the central role played by dif-
ferential equations as they too can be evaluated by comparing neighbouring
values only.

2. Intermediate-level vision concerns itself with segmenting larger image
regions and grouping them together based on features such as colour, tex-
ture, shape, etc . . . . Typical problems that are addressed comprise �gure-
ground separation, detection of regions-of-interest, object detection and
shape recognition. Given the current state of technology, it looks as if the
main role for this sort of processing is to be found at an intermediate triage
level. At this stage one tries to �gure out where in the image interesting or
salient regions can be found. Once these regions have been delineated they
can be passed on to more dedicated modules that are specialised in par-
ticular forms of processing or reasoning. Without this intermediate triage
stage these higher levels algorithms would get bogged down by the huge
amount of raw and diverse data.

3. High-level vision �nally tries to combine all the strands of information to
come up with a semantically correct interpretation of the image. Obviously,
at this stage a lot of additional expertise often with more of an AI-avour,
needs to be brought to bear on the problem. Needless to say that algorithms
addressing this level of processing are still very rudimentary.

Scale-space theories �t mainly into the category of low-level vision and can
be situated in the broader context of multi-scale analysis, other examples of
which are pyramids, wavelets, . . . . In the case of scale-space, the reasoning
is as follows. Instead of linking up individual pixels at large distances (thus
sacri�cing the cherished local connectivity), the idea is to look at \king-sized"
pixels by lumping together the information stored at individual pixels. Succes-
sive iterations of this process result in an image that is summarised at di�erent
scales, where all of the image-details are still present at the �nest scale, while
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they start disappearing at increasingly coarser scales. The rationale behind
this is twofold:

{ Creations of a natural visual hierarchy: the importance of structures is
reected in their survival time under these \summarisation"-operations.
The motivation at the heart of this approach is that progressively increased
processing will cause unimportant details to blend in with the background,
thus focusing attention on the structure and their interrelations of the more
prominent features.

{ Combining descriptions across scales yields additional information: the
information at high levels can be used to re-interpret information that might
be ambivalent at the myopic pixel-level. E.g. local edge enhancement might
be steered by the detection of an edge at a higher level. In the words of
Witkin [31]: \Coarse scale may be used to identify structures [extrema],
and �ne scale to localise them."

The importance of these points had long been recognised in computer vision
and early attempts in this direction had resulted in constructions such as pyra-
mids and quad-trees. In fact, most of the early work in scale-space theory was
driven by the desire to come up with a principled (read \axiomatic") way to un-
derpin some of the work going on in Gaussian pyramids. Although interesting
in its own right, it has turned out that the main merit of this development was
the introduction of the di�usion equation which provided an alternative way of
looking at convolutions. Indeed, later on the emphasis shifted away from the
�lter-paradigm to take full advantage of the extra exibility provided by the
partial di�erential equations (PDE) framework. Researchers then took a more
pragmatic stance and started looking at extensions of the di�usion equation
that were designed with particular applications in mind.

In this paper we will retrace and highlight some of these developments.
First, we will concentrate on an axiomatic approach to scale-space, where we
will explore two sets of slightly di�erent assumptions on �lter families. The
concept of the in�nitesimal generator provides a natural stepping-stone to the
corresponding evolution equation, of which the heat equation is the prototype
associated with Gaussian �lters. Further re�nement of the PDE paradigm
naturally leads to the seminal work of Perona and Malik that was the starting
point for later contributions on geometry-driven di�usion.

1.3. Some de�nitions and notation

Let us begin by �xing some notation that will be used throughout the rest of this
paper. An image u is de�ned to be a bounded function u : D � IRn �! IR on
some open domain D (for reasons of convenience we will usually take D = IRn).
The function u is called the grey-value function and in most cases n = 2, but
especially in medical imaging, 3-dimensional images are becoming increasingly
common-place. A point in the image domain D is often referred to as a pixel.
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Starting from the original image u on IRn we want to construct a one-parameter
family of derived functions u(x; t) (where t � 0) which are meant to represent
the image at increasingly larger scales. Mathematically speaking this amounts
to the determination of a family of scale-space operators fKt; t � 0g which will
map the image u to a unique function of two arguments u : IRn � IR+ �! IR,
such that for each t � 0 �xed,

u(x; t) = Kt(u(x)) and u(x; 0) = u(x):

Each of the derived images u(x; t) can be thought of as a \blurred" version of the
original, with tmeasuring the amount of blurring. The function u on the (n+1)-
dimensional half-space IRn�IR+ will be called scale-space associated with u(x)
and generated by the family of scale-space operators fKt; t � 0g. Moreover,
we will hereafter no longer distinguish between u and u; this should pose no
problems. Also, adopting common engineering terminology, the operators Kt

are often referred to as a �lter family.

1.4. Connection with semi-group theory

In the remainder of this paper a number of conditions will be spelled out that to
a large extent will determine the structure of the scale-space operators. These
conditions will vary depending on the particular point of view of what the
�rst stages in visual processing (the so-called \front-end") should accomplish.
However, one condition that crops up in all scale-spaces is the recursivity prin-

ciple (see e.g. [1]). This �nds its origin in the fact that it seems reasonable to
assume that the blurring-process should have an additive property: using an
already slightly blurred picture and adding more blurring should yield the same
result as subjecting the original image to the cumulated amount of blurring.
Recall that this ties in with the underlying philosophy of low-level vision that
operations at larger scales can be obtained by concatenating �lters at smaller
scales.

In terms of the operators Kt this amounts to the semi-group property :

KtKs = Kt+s for all t; s � 0; (1)

which (in conjunction with K0 = I) turns the operator family fKt; t � 0g
into an (additive) semi-group. This semi-group property is extremely useful as
it allows the introduction of the important concept of an in�nitesimal gener-

ator which links the operators to an evolution equation, a link that has been
the inspiration for much of the more recent work on image enhancement (see
Sections 4 and 5).

We remind the reader that the in�nitesimal generator is obtained by \dif-
ferentiating" the semi-group with respect to its parameter t. More precisely,
we notice that since the semi-group condition implies that u(t) = Kt(u0) =
Kt�sKs(u0) = Kt�su(s); it follows that (for h > 0)

u(t+ h)� u(t) = (Kt+h �Kt)u0 = (Kh � I)Ktu0 = (Kh � I)u(t):
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If we now divide by h and let h! 0+ we get

@u

@t
= Lu with initial condition u(0) = u0 (2)

where (at least formally)

L := lim
h!0+

Kh � I

h
(3)

is de�ned to be the in�nitesimal generator of the semi-group Kt (t � 0). If this
limit exists, it is possible to give a precise meaning to the formal exponential
relation Kt = exp(tL) between the two operators. In its turn this can be used
to con�rm that

@u

@t
=

@

@t
(Ktu0) =

@

@t
(etLu0) = LetLu0 = Lu;

whence we can conclude that (2) is indeed the appropriate evolution equation
for the transformation u(t) = Ktu0.

The di�culty of course, is to �nd an appropriate topology and correspond-
ing conditions under which the above operator limit (3) is well-de�ned. This is
by no means a trivial problem and has been extensively studied in the literature
on functional analysis (see e.g. Yosida [33] or Hille & Phillips [9]). Suf-
�ce it to say that as far as linear scale-spaces are concerned, the operators are
su�ciently well-behaved so that the relevant evolution equation can be worked
out (also see [1]).

2. Linear Gaussian scale-spaces

2.1. Zero-crossings as edge-detectors

Witkin was the �rst to forge a link between the well-behaved evolution of
inection points and convolution with a Gaussian kernel. His original con-
tribution [31], which was further elaborated in Babaud et.al [3], focused on
1-dimensional signals u0(x) for which he created a multi-scale representation
by convolution with a Gaussian kernel:

u(x; t) = Gt � u0(x) where Gt(x) =
1p
2�t

e�x
2=2t:

He was especially interested in zero-crossings of the second derivative @2u=@x2

and observed that in this scale-space representation the number of zero-crossings
never increased.

To explain this longstanding pre-occupation of the computer vision commu-
nity with zero-crossings and scale-spaces, consider the simplest version of the
problem of edge-detection, arguably the most elementary problem in image-
processing. Let the function u : IR �! IR represent a 1-dimensional image (see
Fig. 1). If u is a simple step-function (dashed curve), localising the edge is
trivial. If the edge is blurred (left panel), localisation can still be achieved by
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determining the inection point (i.e. solving u00(x) = 0). However, in realistic
cases, edges are both blurred and corrupted by noise (right panel), which means
that the number of inection points increases dramatically, complicating the
edge-search. One way to distinguish inection points due to genuine edges from
those induced by noise, is to look at their stability under smoothing. Clearly,
if the inection point is persistent under increasing amounts of smoothing, the
chances are that it represents a real image structure.
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Figure 1. Left: Simple 1-dimensional step edge u(x) (dashed) and blurred
version (solid). Right: Typical edge pro�le (solid) after signal corruption due
to blurring and noise.

Extension to two dimensions is straightforward if we realise that (if neces-
sary, after an appropriate coordinate transformation) an edge can locally be
modelled by a function u(x; y) that has a 1-D edge in the x-direction while
it is constant in the y-direction. Clearly, the edge locus of such a function is
still determined by the vanishing of the Laplacian (a condition invariant under
Euclidean transformations):

@2u

@x2
+
@2u

@y2
= 0

or equivalently, for Gaussian smoothed edge:

�(G� � u) = 0:

It is for this reason that much of the early research in scale-space theory focused
on the structure of the zero-crossings for the Laplacian under various smoothing
operators.

2.2. Selecting Gaussian kernels

As mentioned above, the link between the Gaussian convolution-kernels and the
well-behaved evolution of inection points was originally spotted by Witkin.
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He proved that for 1-dimensional signals, the Gaussian convolution kernel is
the only kernel (under mild additional restrictions) for which zero-crossings (of
any order of derivative) are never created as scale increases. In terms of the
underlying signal, this means that Gaussian smoothing never creates extrema
(u0(x) = 0) or edges (u00(x) = 0) that are \spurious" in the sense that they
are artifacts of the convolution-process rather than features of the underlying
signal. Furthermore, as the scale-parameter increases these extrema tend to
collapse and annihilate each other, creating a tree in scale-space that captures
the structure of the image in terms of edges and bright or dark blobs. As the
connection between the input image and the scale-space tree is a canonical
one, his work suggested an e�cient and natural way to summarise the prim-
itive semantics underlying an image. However, when this line of thought was
extended to arbitrary dimensions by Yuille and Poggio [32], it turned out
that for these more realistic cases the results were far less satisfactory. We will
discuss these issues in more detail below.

Koenderink [14] too argued that the Gaussian convolution kernel and its
associated di�usion equation took up a central role in the creation of scale-
spaces for images. He introduced the concept of causality which expresses that
any grey-level at a coarser level can be traced back to a (not necessarily unique)
\cause" at a �ner resolution (although the reverse need not be true). In Koen-
derink's words: \no spurious detail should be generated when the resolution is
diminished". Hummel [11] observed that this is equivalent to a version of the
maximum principle for parabolic partial di�erential equations (PDEs). There-
fore, apart from the heat- or di�usion-equation which represents the simplest
of all possibilities, a number of (possibly non-linear) parabolic PDEs will sat-
isfy Koenderink's criterion and might give rise to interesting computer vision
algorithms. In sections 4 and 5 some likely candidates will be explored in more
detail.

Let us now return to Yuille and Poggio's paper [32] and sketch a brief
outline of their exposition to give the reader a avour of the sort of arguments
used to single out Gaussian kernels. For reasons of simplicity we restrict our-
selves to the 1-dimensional case, but the extensions to higher dimensions run
along similar lines.

Consider the initial signal u0(x) that through convolution with a kernel
kt(x) � k(t; x) creates the scale-space signal u(�; t) = Kt(u0) � k(t; �) � u0.
Since we are interested in the evolution of the inection-points, we introduce

E =
@2u

@x2
=
@2kt

@x2
� u0:

Yuille and Poggio now proceed by imposing a number of straightforward con-
ditions on the kernel kt:

1. YP-1: The �lter at di�erent scales is a simple rescaling of a �xed pro�le:

kt(x) =
1

t
�(x=t) (4)
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(for an extension of this, see the principle of scale-invariance in section 3).

2. YP-2: The kernel is symmetric about its centre which is independent of t.
Otherwise, zero-crossings of a step edge would change their position with
changes in scale.

3. YP-3: The �lter vanishes at in�nity (jxj �! 1) and recovers the whole
image at su�ciently small scales:

lim
t!0+

Kt = I or equivalently, lim
t!0+

kt(x) = �(x):

These are rather technical assumptions and not very stringent. However, as
Yuille and Poggio pointed out, what really clinches the argument is the condi-
tion that zero-contours of E should never be \created" as t increases (see also
Fig.2). More precisely, at points (x0; t0) on such contours for which

E(x0; t0) = 0 and
@E

@x
(x0; t0) = 0

holds, the following monotonicity condition should be satis�ed:

@E

@t
� @

2E

@x2
> 0: (5)

+

+
-

-

-

+

t

x
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b c

Figure 2. Behaviour of zero-crossings of E in scale-space. Observe that due
to the signs of the regions bounded by the zero-crossings we can conclude that
in a (b) both Et and Exx are negative (positive), whereas the con�guration in
c is excluded by the monotonicity condition.

As this condition must hold for any integrable input function u0, the con-
ditions on E can be pushed through to yield conditions on kt. More precisely,
the authors show that a judicious choice of the \test-function" u0 reveals that
there is a functional dependence between the derivatives of k:

�1k + �2
@k

@x
+ �3

@2k

@x2
+ �4

@k

@t
= 0;
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where the coe�cients �i possibly depend on both x and t, and furthermore, �3
and �4 are of opposite signs. However, as the operator is shift-invariant, so is
the PDE and therefore one can conclude that the coe�cients cannot depend
on the space variable x. Moreover, since t and x have the same dimensions (see
condition YP-1), a straightforward dimensional analysis speci�es the functional
dependence of the coe�cients in t:

�t
@k

@t
= t2

@2k

@x2
+ �t

@k

@x
+ �k; (6)

where �; �; ; � are numerical constants such that =� > 0. So it transpires
that one can construct a counter-example unless the �lter kt(x) satis�es the
PDE (6). The rest of the proof hinges on the fact that straightforward changes
of variables compatible with the above-mentioned conditions, can reduce the
PDE (6) to the standard di�usion equation. Indeed, rescaling kt �! e��=�kt
will remove the term in k, while we can conclude that � = 0 since it only adds
a shift-term (which is excluded by condition YP-2). We therefore end up with

1

t

@k

@t
=


�

@2k

@x2

which upon the introduction of � = t2=2 and �2 = 2=� > 0 reduces to the
standard di�usion equation:

@k

@�
=
�2

2

@2k

@x2
: (7)

The only solution to this equation that vanishes at in�nity (cfr. YP-3) is indeed
the Gaussian kernel:

kt(x) =
1p

2��2�
e�x

2=2�2� =
1p
� �t

e�(x=�t)2 :

Extending this reasoning to two or more dimensions the results by Yuille and
Poggio can be summarised in the following theorem (for more details see [32]):

Proposition 1. For �lters obeying conditions 1{3 and the monotonicity con-
dition detailed above,

1. In one dimension, the Gaussian is the only �lter which never creates zero-

crossings of the second derivative as the scale increases;

2. In two dimensions, the Gaussian is the only �lter which never creates zero-

crossings of the Laplacian as the scale increases;

3. More generally, if L is a di�erential operator (in any dimension) that com-

mutes with the di�usion equation, then solutions of

L(kt � u0) = const
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will not be created if and only if the �lter is Gaussian. In particular, ridges

or ravines (characterised by a@xu+ b@yu = 0) which correspond to salient

features in the image, are among those protected structures. However, in

two or more dimensions local extrema such as peaks don't enjoy this prop-

erty (see remark below).

Some remarks are in order here:

{ Unfortunately, zero-crossings in 2 dimensions lack the simple tree-like be-
haviour that they exhibit in 1D. Although new zero-crossings cannot be
created as t grows, they can both split and merge so that the number of
zero-contours can both increase and decrease. For instance, consider the
initial function

u0(x; y) = (x4 � x2) + 2y2 � �

(for � > 0 su�ciently small). This function has a saddle point at the origin.
Therefore u0 has only a single zero-contour. However, time evolution under
the di�usion equation at the origin and at time t = 0 yields

@u

@t

����
(0;0;0)

= 2

which will push the value at the origin up su�ciently so that zero-contour
splits into two separated contours.

{ It is also interesting to note how contrary to the situation in 1 dimension,
di�usion in two dimensions can create new extrema. At �rst sight, this
seems odd as di�usion is usually taken to be synonymous with smoothing,
and creating a new extremum seems to run against the grain. The geometric
intuition however, is quite straightforward. Consider two Gaussian-like
peaks which are well-separated and of which the �rst (centred at A) is
slightly higher than the second (centred at B). Now, further assume that
the peaks of both Gaussian are connected by a narrow ridge. Clearly,
this means that the peak at B is no longer an extrema, so that the only
maximum of this structure is situated at A. Now we start di�usion on this
initial con�guration. Due to the slender structure of the ridge, erosion at
C is far more drastic than at the other points of the structure, resulting in
the creation of a saddle-point at C and an emerging maximum at B!

From an image processing point of view this last remark is particularly
disappointing as it was originally thought that a stable image-structure could
be built based on dark and bright \blobs", corresponding to regions around
local extrema. As the above results show, the early expectations based on
promising 1-dimensional results, failed to generalise to higher dimensions. For
this reason, other avenues of research were explored some of which we will
briey discuss in the next sections. However, due to their attractive simplicity,
Gaussian scale-spaces remain an area of active interest and the interested reader
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is referred to e.g. Florack et.al. [7, 8], and especially Lindeberg [18] and
Sporring et.al. [26] where he will �nd an excellent and comprehensive overview
of both continuous and discrete Gaussian scale-spaces, along with numerous
applications.

3. Non-Gaussian receptive fields for linear scale-spaces

Since convolution with a Gaussian kernel in more than one dimension cannot
guarantee that new extrema will not be created, we will in this section re-
evaluate the conditions imposed on the front-end. In particular, if we assume
(as we did in the previous section) scale-space �lters to be linear, isotropic

convolution �lters, then two conditions (viz. recursivity and scale-invariance,
see below) su�ce to narrow down the collection of possible �lters to a family
that essentially depends on one parameter which determines the qualitative

shape of the �lter.
Gaussian �lters correspond to one particular value of this shape-parameter.

For other values the �lters exhibit a more complicated pattern of positive (\ex-
citatory") and negative (\inhibitory") regions. Intriguingly, this ties in with
data from neurophysiology which show that receptive �elds (read \�lters")
along the �rst stages of the visual pathway act as convolution operators, the
kernels of which exhibit a centre-surround structure: an excitatory (inhibitory)
centre is bordered by an inhibitory (excitatory) surround. Furthermore, in some
cases additional concentric regions of alternating sensitivity have been observed
[15, 16]. So it seems that a set of simple and straightforward axioms predicts
the qualitative shape of �lters that actually occur in the front-end of biological
vision systems. (For more information on the neurophysiology of mammalian
visual systems we refer to the excellent books by Hubel [10] and Zeki [34]).

Let us now retrace our steps and give a systematic overview of the condi-
tions. We will concentrate on the one-dimensional case only, as the extension to
more variables is straightforward. We will assume as before that at each scale
t the corresponding operator Kt is a convolution-operator, the kernel of which
will be denoted by kt(x). Following Yuille and Poggio's lead in the previous
section, the following straightforward conditions are imposed on kt:

A0: kt is mass-preserving : kt � 1 = 1 or equivalently
R
IR
kt(x)dx = 1, other-

wise the �lter would change a constant signal;

A1: kt is even (the 1D-equivalent of rotation-invariance): kt(�x) = kt(x);

A2: kt is integrable (kt 2 L1), otherwise the convolution would not be well-
de�ned;

A3: kt is a continuous function of both x and t (but not necessarily as a
function of (x; t)).

An important consequence of the second condition is the existence of the
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Fourier-transform of the kernel kt:

~kt(!) � F(kt(x)) :=
Z
IR

e�ix!kt(x) dx:

Condition A1 implies that the Fourier transform is actually a cosine-transform
of a real-valued function and therefore both even and real-valued:

~kt(!) =

Z
IR

cos(!x)kt(x) dx:

To pin down the form of the kernel we introduce two further conditions which
capture the notion that blurring needs to be additive and scale-invariant.

1. The Recursivity Principle

It seems reasonable to assume that the blurring-process should have an
additive property: using an already slightly blurred picture and adding
more blurring should yield the same result as subjecting the original image
to the cumulated amount of blurring. As pointed out in the introduction,
this is known in the literature as the recursivity principle (see e.g. [1]) and
it turns the operator family into an additive semi-group:

8 t; s � 0 : KtKs = Kt+s or equivalently, kt � ks = kt+s: (8)

Translated in terms of Fourier-transforms, the recursivity principle be-
comes:

~kt � ~ks = ~kt+s: (9)

Since we assumed continuity of kt as a function of t, the same holds for
~kt and it therefore follows that the functional equation (9) has only one
possible solution (see e.g. Rudin [25] p.207-8):

~kt(!) = e�g(!)t (10)

where g(!) is both real-valued and even (since ~kt(!) is). Moreover, since we
postulated that kt(x) 2 L1 it follows that ~kt(!) is continuous and vanishes
at in�nity (i.e. ~kt(!) 2 C0) (cfr. Rudin [25] p. 197). This implies that
g(!) is continuous and g(!)!1 as j!j ! 1.

If we could prove that g(!) increases su�ciently rapidly to allow us to
conclude that ~kt is in fact integrable (~kt 2 L1), then we could invert the
Fourier transform and the assumption that kt(x) is a continuous function
of x entails that the inverse Fourier-transform of ~kt reproduces kt(x). We
would then obtain the following (quite explicit) representation of the kernel:

kt(x) =
1

2�

Z
IR

ei!xe�g(!)t d! =
1

2�

Z
IR

cos(!x)e�g(!)t d!: (11)

The second equality is due to the \even-ness" of g(!). At this stage however
such conclusions cannot yet be drawn as we still have an enormous amount
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of leeway in the choice of the function g: basically, every even function of !
would do. The principle of scale invariance which is discussed in the next
paragraph will further narrow down the possible choices for g.

2. The Principle of Scale Invariance

When there is no a priori information as to what structure in an image
we are looking for, it follows that there should be no preferred scale. It
therefore seems imperative that all kernel-functions should be qualitatively
identical. If this wasn't the case, one could select a particular scale t by
specifying that its corresponding kernel kt made it stand out from the rest
of the one-parameter family. This means that in order for the kernel kt
to be scale invariant there should exist a �xed kernel function (or \parent-
kernel") � such that at di�erent levels of the scale-parameter, kt is a simple
rescaling of this parent-kernel by means of a rescaling-funtion  : IR+ �!
IR+,

kt(x) = k(x; t) =
1

 (t)
�

�
x

 (t)

�
: (12)

Two remarks are in order here.

Firstly: The rescaling introduces a new function  , extending the condition
(YP-1) put forward by Yuille and Poggio (see above). This may seem
strange at �rst but on second thoughts it becomes clear that there is no
compelling reason why one should limit oneself to linear rescalings (i.e.
 (t) = t) in which space- and scale-coordinates play an equivalent role.
There are however some mild conditions which we will impose on  :

(a) Since we assumed continuity of kt as a function of t we will also require
 to be continuous;

(b) In view of its interpretation as an indicator of the scale we will assume
that it is strictly increasing with  (0) = 0 and  (t) ! 1 as t ! 1.
In particular, this implies that the inverse function  �1 exists and is a
strictly increasing, continuous function.

Secondly: The global rescaling of the parent-kernel � (i.e. the multiplica-
tion of � by the coe�cient 1= (t)) is necessary to make the integral

Z
IR

k(x; t) dx =

Z
IR

1

 (t)
�

�
x

 (t)

�
dx =

Z
IR

�(x) dx = 1

independent of the scale t. We point out that due to assumption A2 it
follows that � 2 L1 and hence we can conclude that its Fourier-transform
~� is well-de�ned. Notice moreover that the even-ness of kt(x) implies that
of �.
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It is fairly straightforward to work out that scale invariance restricts the
possible form of the function g in (10) to mononomials. More precisely, we
have the following proposition:

Proposition 2. Let us assume that at each scale t � 0 the kernel-function

kt(x) 2 L1(IR; dx) is mass-preserving, even (as a function of x) and continuous

as a function of x and t (separately).

If the family fkt j t � 0g satis�es both the recursivity principle (8) and is scale

invariant (12), then its Fourier transform is equal to

~kt(!) = e�aj!j
�t; (13)

whence,

kt(x) =
1

2�

Z
IR

cos(!x) e�aj!j
�t d!; (14)

where � > 0. This kernel family is in fact a rescaling of a �xed kernel �:

kt(x) =
1

 (t)
�

�
x

 (t)

�
;

where the Fourier transform of � has the form:

~�(!) = e�aj!j
�

(15)

The corresponding rescaling-function is given by  (t) = t1=�.

For a proof we refer to Pauwels et.al [20]. Notice that we can recover the
\unscaled" kernel � by putting t = 1;

�(x) = k1(x) =
1

2�

Z
IR

cos(!x)e�aj!j
�

d! and  (t) = t1=�

The Gaussian kernel is obtained by taking � = 2:

�(x) =
1

2�

Z
IR

cos(!x)e�a!
2

d! =
1p
2��2

e�x
2=2�2 ; where �2 = 1=2a;

and  (t) =
p
t. This last result was also obtained by Yuille and Poggio in the

preceding section and is well-documented in the literature, but from the above
analysis it transpires that, contrary to what one might expect, recursivity and
scale-invariance are not su�cient to single out the Gaussian kernel. In Fig. 3 we
give the graphs (obtained by numerical Fourier inversion of (14) after setting
a = t = 1) of the kernels for di�erent values of the �-parameter. Finally, it
should be mentioned that results based on a similar axiomatics were indepen-
dently derived and published (unfortunately in Japanese) by T. Iijima [12]; a
recent translation of this paper can be found in [30].
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Remarks

1. Apart from � = 2, there are a few other values of the parameter for which
Fourier inversion is possible in an analytically closed form. One such ex-
ample is � = 1, for ~�(!) = e�j!j is the Fourier transform of the Cauchy
density. Hence � and the kernel functions are given by

�(x) =
1

�

1

1 + x2
and kt(x) =

1

�

t

t2 + x2
:

2. Another example for which an analytic result is available, corresponds to
the limiting value � = 1. This transpires from the observation that in
(15)

~�(!) �!
�

1 if j!j < 1
0 if j!j > 1

as � �!1:

Up to a factor 1=�, this is the Fourier transform of the sinc-function
sinc(x) � (sinx)=x.

3. For most values of � however, we have to take recourse to numerical Fourier
inversion to obtain a detailed description of the corresponding �lter kernel.
However, the functional form of the Fourier transform does provide us with
some global information concerning the kernel, since there is a well-known
relation between the (central) moments of a function and the derivatives of
its Fourier-transform at ! = 0:Z

IR

xn�(x) dx = (�i)n ~�(n)(0): (16)

It is straightforward to check that if � > 2, then � is at least twice di�eren-
tiable and �00(0) = 0. In view of (16) this implies that the second moment
of � vanishes and that � therefore cannot be everywhere positive. Hence,
when � > 2 the kernel � has zero-crossings. This is also borne out by the
numerical inversions shown in Fig. 3.

4. Finally, it is worth mentioning that whenever the kernel has regions on
which it becomes negative (as for � > 2), the causality condition pro-
pounded by Koenderink (cfr. Subsection 2.2) is violated: i.e. grey-values
exceeding the original range can be observed. This is most obvious near
sharp discontinuities where a Gibbs-like phenomenon can be observed.
However, a similar e�ect is also observed in experiments on visual percep-
tion: bright regions seem even brighter near boundaries with dark regions
and vice versa. In psychophysics this observation is known as the Mach
e�ect.

As a concluding aside we point out that although for each value of � the

corresponding operator semi-group K
(�)
t has a an in�nitesimal generator L(�)

such that the scale-space can formally be generated by the evolution equation

@u

@t
= L(�)u with u(0) = u0;

399



0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

alpha = 1

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

alpha = 2, Gauss

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

alpha = 3

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

alpha = 6

Figure 3. Graphs (for positive x-values) of the kernel function �(x) for dif-
ferent values of parameter: � = 1; 2 (top) and � = 3; 6 (bottom). (A global
rescaling of the y-axis by a factor 1=� has been discarded.) Notice the gradual
emergence (for values � > 2) of damped oscillations about the zero-level. In
terms of receptive �elds they correspond to \inhibitory" (i.e. negative) and
\disinhibitory" (i.e. positive) regions anking the \excitatory" centre.

only when � 2 2IN0 will this generator be a di�erential operator. In particular
this means that insisting on an evolution equation that is (linear) PDE does
not allow to recover the full gamut of �lters k�t (for more details, see [20]).
Also, it means that when � is not an even integer, the support of the �lter
cannot be restricted to a small neighbourhood which, in view of the remarks
on restricted connectivity (see Section 1), is a serious drawback for a front-end
�lter.

4. Perona-Malik anisotropic diffusion

One of the most important aspects of the the axiomatic approach to scale-
spaces is the prominent rôle played by the di�usion equation, an equation that
keeps cropping up in all sorts of guises. However, the limitations of this evo-
lution equation are well-known. Surely, the most limiting in terms of practical
usefulness is that although noise is gradually removed and the overall structure
is simpli�ed, edges are irrevocably blurred and displaced | from the point of
view of image enhancement and interpretation a most unwelcome side-e�ect.

In an attempt to remedy some of the shortcomings of scale-spaces based on
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the di�usion equation and other linear operators, Perona and Malik extended
the scope of their investigations to include non-linear evolution equations. They
enunciated three principles which in their view were crucial prerequisites for
any front-end that intends to generate a \semantically meaningful" description
of images:

1. Causality: Preventing the generation of \spurious detail", as described
by Koenderink (see Subsection 2.2);

2. Immediate localisation: at each resolution region boundaries should
coincide with semantically meaningful edges (i.e. edges should not shift
away from the region boundaries to which they semantically belong);

3. Localised smoothing: smoothing should preferentially occur inside

semantically meaningful regions, and not across their boundaries.

In their seminal paper [21] Perona andMalik claimed that a non-linear mod-
i�cation of the di�usion equation could achieve these three objectives. Their
starting point was the observation that, in physics, the di�usion equation

@u

@t
= c�u � c

X
i

@2u

@xi2
;

(with conductance c) is in fact obtained by combining a conservation law re-
lating time-uctuations in u to its (outward) ux J,

@u

@t
= �div J;

with Newton's law, which links the ux to the gradient:

J = �cru: (17)

Large values for this conductance coe�cient c indicate that the ux is highly
sensitive to the gradient values, resulting in a fast di�usion. From this consid-
eration it transpires that the divergence form

@u

@t
= div (cru): (18)

is the most natural way to write the di�usion equation.
Perona and Malik's key insight was that this expression suggested a natural

way to remedy some of the shortcomings that vexed ordinary di�usion. In
particular, as the ux-equation (17) indicates how the speed of di�usion can
be controlled by c they proposed to make c dependent on the gradient of the
underlying image (grey-level function). In e�ect, large values for jjrujj are
indicative of edges, and one wants the di�usion at those locations to slow down
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(c ! 0), whereas in other regions a high c-value helps to iron out the noise.
More concretely, they proposed to use a di�usion of the form

@u

@t
= div (c(jjrujj)ru): (19)

where c(�) is a symmetric, bell-shaped curve such as

c(v) =
1

1 + (v=K)2
or c(v) = e�(v=K)2=2: (20)

Although this looks like an extremely attractive thing to do, the problem with
this approach become obvious when we rewrite (19) as follows (for ease of
notation we switch to the 1-dimensional case and denote ux = @u=@x):

@u

@t
=

@

@x

�
c(ux)

@u

@x

�
=

@

@x
(c(ux)ux)

= c(ux)
@2u

@x2
+ c0(ux)

@2u

@x2
ux

= A(ux)
@2u

@x2
;

where A(p) = c(p)+ pc0(p). The resemblance with the ordinary di�usion equa-
tion is only super�cial as a straightforward computation immediately reveals
that for the conductances in (20), the coe�cient A(ux) becomes negative if
the gradient exceeds the threshold juxj > K. The evolution equation then
turns into the inverse heat equation, rightly notorious for its unstable be-
haviour. In fact, Catt�e et.al. [5] showed that positivity of the coe�cient
A(p) = c(p) + pc0(p) is both necessary and su�cient to prove existence and
uniqueness of a solution for the Perona-Malik equation (19) at all times t > 0.
This, of course, is rather discouraging as it de�es the original intent of the
set-up.

Nevertheless, researchers in computer vision payed little heed to these less
than promising mathematical forebodings and forged ahead anyway, often with
surprisingly good and stable results. This was also explained in [5] where it
was shown that the Perona-Malik equation could be regularised by introducing
an arbitrarily small amount of smoothing with a Gaussian kernel G� of width
� before evaluating the conductance coe�cient:

@u

@t
= div (c(jjrG� � ujj)ru) ; with � > 0 arbitrarily small. (21)

Since discretizing in space implicitly involves some form of averaging, this sug-
gests that the discrete implementations of (19) might intrinsically be more
stable than is to be expected on the basis of theoretical results (a rigorous and
in-depth discussion of the relevant mathematical framework can be found in
Weickert's recent book [29]). However, as pointed out in [2], the hope that
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a canonical weak solution can be obtained by letting � ! 0+ proved to be
erroneous as it turned out that there isn't a su�cient amount of stability to
obtain a well-de�ned limit.

Considerable progress was made when work by a Paris group headed by
Morel and Lions [2] showed how these equations could be modi�ed so that
they allowed so-called viscosity solutions. Unfortunately, a detailed discussion
of this latter concept lies outside the scope of this review paper. Su�ce it to say
that viscosity solutions represent a generalised form of PDE solutions for which
the di�erentiability conditions are relaxed so that merely continuous functions
qualify as candidate solutions. However, in contradistinction to other forms of
generalised solutions (such as distributions), viscosity solutions as a class are
still su�ciently restricted so that in many cases both existence and uniqueness

results can be proven.
In essence, the Paris group concentrated their e�orts on the following basic

model (along with some of its variations):

@u

@t
= g(jjG� � ujj) jjrujj div

� ru
jjrujj

�
: (22)

Although this formulation looks slightly daunting, a closer look reveals the
simple geometric intuition behind it.

1. First of all, it is easy to check that introducing a new orthonormal (local)
coordinate system (�; �) where � is oriented along the gradient ru while
� is orthogonal to it, allows us to re-express the di�erential operator in its
simplest form:

jjrujj div
� ru
jjrujj

�
� u2yuxx � 2uxuyuxy + u2xuyy

u2x + u2y
=
@2u

@�2
:

From this it transpires that the evolution (22) in fact represents a degener-
ate di�usion where smoothing occurs along isophotes (lines of equal grey-
value) and not across them. As a consequence, edges delineating salient
regions will be spared.

2. The coe�cient g controls the speed of the di�usion and is chosen to be a
smoothly decreasing positive function such that g(0) = 1 and g(p) �! 0 as
p �! 1. As a consequence di�usion near edges is slowed down, providing
extra protection.

For further elaboration of the mathematical details of this and related models
(in particular, the PDE that generates the scale space of a�ne morphology),
we refer to the original papers [1, 2], as well as to the excellent overview by
Deriche and Faugeras [6]. More in-depth discussions with a number of
applications can also be found in Weickert [29].
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5. SIDE's: Stabilized Inverse Diffusion Equations

5.1. Motivation and de�nition

The seminal work by Perona and Malik resulted in a urry activity with sur-
prisingly good results (see e.g. [27] which gives an overview of some of the more
recent developments in the �eld.) Nevertheless, the nagging questions about
the theoretical underpinnings of these experimental results remained. Most of
the mathematical work that aimed to provide these evolution equations with
sound foundations, used some form of regularisation that shied away from the
reversed heat equation generated by the divergence formulation of the original
Perona-Malik equation.

A recent and promising development that is much closer in spirit to the
original PM-scheme, and that is striking in its simplicity, was proposed by
Pollak, Willsky and Krim [22]. They got their inspiration from the study
of dynamical systems in control theory. Their contribution uses a semi-discrete
version of the PDE (continuous in time, discrete in space) which results in a
system of ordinary di�erential equations (ODE's) with a discontinuous driving
force. For the sake of notational convenience we will expound their theory for a
1-dimensional signal but extensions to higher dimensions are straightforward.

Starting from a signal u(x; t), where as usual t is the time/scale parameter,
we obtain the semi-discrete version by discretizing the space-variable to get a
n-dimensional time-dependent vector (u1(t); u2(t); : : : ; un(t)) which, by abuse
of notation, we will also denote by u(t). The scale-space for the original signal
is now created by the dynamics of the vector u in its n-dimensional state-space
where it is driven by a (still to be speci�ed) force �eld F , giving rise to the
dynamical system:

du

dt
= F(u); and u(0) = u0:

Pollak and his co-authors extended this mechanical analogy even further by
propounding that each of the elements uk in the state-vector behaves like a
small particle of mass mk that is connected to its immediate neighbours only.
More precisely, they assumed that the dynamics for each uk is governed by an
ODE of the form:

duk

dt
=

1

mk

(F (uk+1 � uk)� F (uk � uk�1)) (23)

where the functional form of the coupling force F still needs to be determined.
Two observations can be made:

1. If we take F (v) = v, (23) collapses to _uk = uk+1 � 2uk + uk�1, which
means that we end up with the semi-discrete form of the standard di�u-
sion equation. Similarly, taking F (v) = �v yields the \inverted" di�usion
equation.

2. More generally, recognising that the arguments of F are discrete incre-
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ments, it is obvious that this is the discretisation of a PDE of the form:

@u

@t
=

1

m

@

@x

�
F (
@u

@x
)

�
: (24)

If F is di�erentiable then (24) can be rewritten as (putting m(x) � 1)

@u

@t
= F 0(ux)

@2u

@x2
; (25)

which explains why the authors call F a di�usion force whenever it is
monotonously increasing, while they coin the term inverse di�usion force

for a monotonously decreasing F .

It is obvious that taking F (ux) = uxc(ux) where c is one of the Perona-Malik
coe�cients de�ned in (20), reduces (24) to the the original model proposed by
Perona and Malik.

From this second remark it transpires that (23) is a generalisation very
close in spirit to the original Perona-Malik equation. Notice that for both force
terms in (20), F is increasing (di�usion) for juxj < K while decreasing (inverse
di�usion) for juxj > K. However, what makes this scheme di�erent from the
original one is the speci�c form selected for F . The authors argue that for the
force term to be interesting for its intended purposes, it should incorporate the
following characteristics (see also Fig.4):

1. Since we want to enhance edges, the system should mainly behave as an
inverse di�usion, implying that F should be decreasing over as large a
domain as possible (for the PM-di�usion in (20), this occurs when juxj >
K);

2. However, to get useful results stability of the evolution is of paramount
importance, which implies that the dynamics need to incorporate some
protection against enhancement at local extrema (which amounts to a max-
imum principle). More in detail we see that if for a arbitrary value uk we
denote the left and right increment as

vR = uk+1 � uk and vL = uk � uk�1

then a local (strict) minimum is characterised by vL < 0 and vR > 0. Non-
enhancement of the minimum then implies that the RHS of (23) satis�es
F (vR)� F (vL) � 0, or again

vL < 0 < vR ) F (vL) � F (vR): (26)

An identical conclusion can be drawn for the case of a local maximum.

To optimally combine these two conditions, Pollak et.al propose to take a con-
tinuous inverse di�usion force Fid (i.e. Fid is monotonically decreasing) such
that

Fid(0) = 0 and sup
v2IR

jFid(v)j � C; for some constant C :
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Figure 4. Proposed force term F and its relation to the inverse di�usion force
Fid.

In its turn, the force term is then de�ned to be (see also Fig.4)

F (v) = Fid(v) + C sign(v): (27)

Notice that away from local extrema the dynamics now takes the form

mk
duk

dt
= Fid(vR)� Fid(vL);

emphasising the inverse di�usion character of ODE, whereas in a local minimum
one has

mk
duk

dt
= Fid(vR)� Fid(vL) + 2C;

The �rst two terms in the RHS are dominated by the third, forcing the value
uk to increase (a similar remark holds at a local maximum). For this reason,
the authors coined the name stabilised inverse di�usion equation (SIDE) for
the evolution governed by the combination of (23) and (27).

However, the dynamics is still ill-de�ned at the point of discontinuity v = 0
of F . Here again, the choice is guided by a mechanical analogy: as soon as
uk = uk+1 the two particles at those positions are linked together and for the
further evolution are considered as one particle with a mass mk +mk+1. The
higher mass imparts a greater stability to this newly formed region as is it will
evolve more sluggishly. In terms of the original image, this means that image
regions start coalescing as grey-values at neighbouring pixels become locked.
From the point of view of image processing this make sense: large regions
formed by coalescing contiguous pixels with similar grey-values should remain
relatively stable in an image, whereas isolated pixels harbouring aberrant values
are most probably due noise and should feel the full brunt of the evolution.

5.2. Properties of SIDE's

The introduction of discontinuities means that the dynamics of the system
is changed abruptly as it hits lower-dimensional submanifolds characterised by
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(sets of) equations of the form uk = uk+1; once it hits one of these submanifolds,
it is forced to \slide" along its surface.

Comparing the form of the forcing term F , one notices that in a sense
SIDE's are form of PM-di�usion for K �! 0. However, SIDE's are decidedly
well-behaved as borne out by the following properties (for more details we refer
to [22]).

Proposition 3.

1. Unique solution and �nite evolution time: For any u0 2 IRn, a SIDE

started at u0 has a unique solution and a unique equilibrium point u (with

u1 = : : : = u1 =
P

i u0;i=n) which it reaches in �nite time.

2. Maximum principle: Local maxima (minima) are decreased (increased) by

SIDE's, whence

juk(t)j < maxpjup(0)j for t > 0:

In terms of image processing, this corresponds to Koenderink's original

causality requirement (see Subsection 2.2).

3. Well-posedness for one spatial dimension: The solution of a SIDE de-

pends continuously on the initial condition, in the sense that for any � > 0,

there is a � > 0 such that jju(1)0 � u
(2)

0 jj < � implies that jju(1)(t)� u(2)(t)jj < �

for t > 0.

4. Stability of hitting times for one spatial dimension : If u(t) is a typical

solution (i.e. it never hits two di�erent sliding hyperplanes simultaneously),

then all solutions with initial data su�ciently close to u(0) will have the

same ordering of hitting times for the sliding hyperplanes. In terms of the

underlying scale-space, this means that the structure of the scale-space is

stable under su�ciently small perturbations.

It is important to realise that the last two properties cannot be proven when
u(x; t) depends on more than one spatial dimension. Nevertheless, numerical
experiments indicate that deviations are slight and segmentation results don't
seem to diverge perceptually. From the point of view of multi-scale analysis this
is interesting as it suggest a natural way to construct a scale-space based on the
hitting times. Indeed, at each hitting time two neighbouring regions coalesce,
thus reducing the complexity of the image while de�ning an intrinsic hierarchy
on the di�erent regions. This evolution continues, merging ever larger and
more salient parts of the image until (in a �nite number of steps) it converges
to a uniformly grey image. Examples of this can be seen in Figs. 5 and 6.

6. Conclusion and Outlook

In this paper we have tried to explain the rationale behind the concept of
scale-space in computer vision and outlined the evolution of the ideas from
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Figure 5. Top left: The original step-edge is corrupted by both blur and
noise. Bottom right: Resulting scale-space signal (solid) when only two regions
remain. Top to bottom, left to right: Some intermediate results (solid) during
the scale-space processing.
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Figure 6. Left: Original grey-value input image. Right: The edge-preserving
smoothing done by the SIDE has drastically reduced the number of regions
while keeping the salient edges crisp. Segmentation of this processed image is
now straightforward.

408



their axiomatic and rather rigid beginnings to the more pragmatic but very
versatile PDE-approach. Given the limited space available it is only fair to
say that we have barely scratched the surface, but we hope that we have given
the reader some feel for the challenging problems that computer vision can
suggest in areas such as non-linear operator theory and PDE's. Before signing
o� we would like to mention a few avenues of research in this area which we
think hold much promise for future investigations. The interested reader is
also invited to have a look at some of the more recent publications listed in
the bibliography that reect a wide and healthy variety of research activity (we
especially recommend [4, 26, 13, 6, 28, 29]!).

{ Experimental evidence shows that neither the bottom-up (working from
pixel-level to interpretation) nor the top-down (checking interpretation by
returning to the pixel-level) approach are on their own su�ciently perfor-
mant. Combining evidence from both sides of the spectrum through some
sort of feedback and input of prior information or believes, is almost al-
ways necessary to arrive at reliable results in an acceptable time. Given its
dependence on local operations, the PDE-approach clearly lives near the
pixel-level of the processing-domain. We are convinced that considerable
progress is to be expected from the study of integro-di�erential equations
of the form

@u

@t
= L(u) +

Z
F (u) dx

(where L is one of di�usion operators discussed above), as this sort of
generalised evolution equation combines both local interactions (via the
di�erential operator L) and global information (via the integral operator).

{ In the same vein, we expect that considerable progress can be made if
we extend the SIDE-philosophy to include not one but several functions
u that evolve simultaneously. In this way di�erent image features (such
as measures for grey-value, edge-ness, texture, etc.. . . ) can be coupled
to interact in a non-linear way to counterbalance or reinforce one another.
This idea has already been partially explored in e.g. Proesmans et.al. [23]
and Richardson & Mitter [24], with very promising results, and these
models stand to gain from the additional stability provided by SIDE's.

{ An exciting area we haven't touched upon is the connection between dif-
ferential equations and minimisation of energy functionals. In a number of
cases, solutions of evolution equations can be interpreted as paths of steep-
est descent for an appropriate functional (see e.g. the work of Nordstr�om
[19] orWeickert [29]). Conversely, some problems are most naturally for-
mulated as energy minimisations (e.g. segmentation) and quite frequently
anisotropic and geometry-driven di�usion can be used to e�ciently produce
an excellent �rst approximation of the global minimum that then can be
re�ned using more computationally expensive methods.
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{ Finally, it needs to be said that little is known about how consistent and
unbiased all these di�usion schemes are with respect to recovering the
\ground-truth". Put di�erently, if we have a known signal and we corrupt
it with di�erent sorts of noise, will these evolution equations on average

converge to the correct underlying signal (recall the principle of immediate

localisation propounded by Perona and Malik in section 4)? And if so,
how quickly? Answers to these questions are very important if we want
to use this methodology in sensitive application areas such as medicine or
forensics.

Based on the vigorous research activity that can be witnessed in this partic-
ular area of computer vision, we are convinced that it will provide us with
challenging and stimulating mathematical problems for many years to come.
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