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We are considering the problem of random image modeling, key to stochastic

regularization techniques for image recovery. Our approach treats images as re-

alizations of Gibbs random �elds whose energy function takes into consideration

geometric information by means of multiresolution morphological constraints.

First, morphological operators are used to provide a multiresolution image de-

composition. This allows e�cient image representation by means of detail error

signals. By appropriately constraining these signals, a Gibbs energy function is

obtained whose ground states satisfy relevant geometric properties. A few ex-

amples illustrate the potential of the proposed approach in image modeling and

analysis.

1. Introduction

During the last decade, we have been witnessing a dramatic explosion in visual
information. Visual data are acquired in many scienti�c disciplines, like remote

1 This work was supported by the O�ce of Naval Research, Mathematical, Computer, and

Information Sciences Division, under ONR Grant N00014-90-1345.
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sensing, biology, medicine, geology, and mining. To e�ectively handle image
data, it is important to automate their processing, analysis, and interpretation.
In an e�ort to build \intelligent" devices, capable of automatically performing
such tasks, it is necessary to develop algorithms for accurate image manipula-
tion and evaluation. This is the main subject of image processing and analysis
[10] which typically employs computers (or special purpose hardware) to ma-
nipulate visual data in a discrete form. Abundance of inexpensive computing
hardware is mainly responsible for rapid advancements in image processing and
analysis software and further advancements in image processing and analysis
research.

A large class of image processing and analysis problems involves recovering
information about a scene or object of interest from partial or imperfect data.
The observed image Y is typically the output of an imaging system applied
on an unobserved or hidden image X . As such, Y is a \corrupted version" of
X . Our task is to design a suitable algorithm which transforms the observed
image Y into a desired image X̂ that is as \close" as possible to X . Data Y
may be partial due to occlusion or limitations in data collection, and imperfect
due to the e�ect of sensor noise and other artifacts in the imaging system. The
inverse problem of recoveringX from Y is often ill-posed [8] and requires proper
regularization.

Regularization is usually done by incorporating a-priori information about
image X into the problem. A popular approach to regularization, known as
stochastic regularization [14], uses knowledge about X to mathematically rep-
resent images by an appropriately designed probability measure. In particular,
a parametric random �eld model is assumed for X . The success of stochastic
regularization obviously depends on available a-priori information and on how
well the random �eld model represents this knowledge [4]. In this framework,
statistical techniques are employed to recover X from Y . Stochastic regular-
ization frequently leads to robust and highly e�ective algorithms for image
recovery.

A useful random model for images is a Gibbs random �eld [5]. Gibbs ran-
dom �elds have been extensively used in inverse image processing and analysis
problems (e.g., image smoothing, segmentation, restoration, etc.). They are
particularly suited for image modeling, since global image characteristics can
be conveniently speci�ed by means of a few parameters that control local inter-
actions. Most Gibbs random �elds proposed in the literature however do not
explicitly incorporate geometric information in image modeling. Since, success
of an image processing algorithm depends on how well an image model rep-
resents known constraints (which are most frequently available in the form of
geometric constraints), it would be bene�cial to explicitly incorporate struc-
tural constraints in random image modeling.

A popular tool for image processing and analysis that considers geomet-
ric structure in images is mathematical morphology [9, 18]. In mathematical
morphology, structuring elements (i.e., small templates with given shape and
size) interact with images in order to extract shape/size information. This in-
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teraction produces geometric information typical to the shape and size of the
underlying structuring elements. Since mathematical morphology is a powerful
image analysis tool for extracting and summarizing shape/size information, it
is natural to express structural image constraints in terms of morphological
operators. This leads to the idea of designing random �eld models that take
into consideration geometric information using morphological constraints.

To accomplish this goal, a class of Gibbs random �eld models has been
proposed in the literature [1, 2, 20, 22, 23] whose most probable realizations
satisfy useful morphological constraints. In this paper, we provide a tutorial
exposition that reveals the multiresolution nature of these models. We �rst
provide reasons for why Gibbs random �elds are good models for images. We
then review morphological operators used to provide a multiresolution image
decomposition. These operators allow e�cient image representation by means
of detail error signals. By appropriately constraining these signals, we obtain
a Gibbs energy function with ground states that satisfy relevant geometric
properties. We �nally illustrate the potential of the proposed models with few
examples.

2. Why Gibbs random fields?

As we mentioned in the introduction, Gibbs random �elds are important sta-
tistical models for images. We now give a few reasons why this is so.

(a) Gibbs random �elds are natural choices in image modeling.

Let us consider a two-dimensional discrete observation window W = fw 2
ZZ
2 j w = (m;n); 0 � m � M � 1; 0 � n � N � 1g, 1 � M;N < 1, of

M � N sites in ZZ
2. Let X(w) be a random variable assigned at site w 2 W

which takes values in a (discrete) state-space R = f0; 1; : : : ; Rg. The collection
X = fX(w); w 2 Wg is a two-dimensional random �eld on W which assumes
realizations X = fX(w); w 2 Wg in the Cartesian product S = RMN . X can
serve as a statistical model for discrete random images speci�ed over a �nite
observation window W (which is the case in practice). If the probability mass
function �T (X) of X is strictly positive, i.e., if

�T (X) > 0; 8X 2 S; (1)

then it is not di�cult to show that

�T (X) =
1

ZT
expf�

1

T
U(X)g; 8X 2 S; (2)

where

ZT =
X
X2S

expf�
1

T
U(X)g (3)

(set U(X) = �T ln(�T (X)=�T (Xo)), where Xo is the zero realization). In (2)
and (3), U is a real-valued functional on S, known as the energy function, such
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that U(Xo) = 0, T is a real-valued positive constant, known as the tempera-

ture, whereas ZT is a normalizing constant, which depends on the temperature
T , known as the partition function. A probability mass function of the expo-
nential form (2) is known as a Gibbs distribution. Any random �eld X whose
probability mass function is of the form (2), (3) is known as a Gibbs random

�eld (GRF).
It is now clear that, if we are interested in a stochastic image model with

strictly positive probability distribution, then a Gibbs random �eld is the nat-
ural choice. The requirement that the positivity condition (1) is satis�ed is
usually not restrictive. This is a natural condition satis�ed by all practical
imaging systems. It simply states that any image in the state-space S may be
a candidate realization forX. However, this requirement may not be so natural
when constraints are to be incorporated as forbidden states [16].

(b) Gibbs random �elds allow modeling a wide spectrum of probability distribu-

tions.

It can be shown that, in the limit as T !1, a GRF X becomes i.i.d.; i.e.,

lim
T!1

�T (X) =
1

jSj
; 8X 2 S ; (4)

where jAj denotes the area or cardinality of A. On the other hand, if

U = fXg 2 S j U(Xg) � U(X); 8X 2 Sg ; (5)

then

lim
T!0+

�T (X) =

�
1=jUj; for X 2 U
0; otherwise

: (6)

Therefore, the probability mass function of a GRF becomes uniform, over all
global minima of its energy function (known as the ground states of X), in
the limit as the temperature decreases to zero. This demonstrates the fact
that, although a GRF is speci�ed by means of a simple exponential probability
mass function of the form (2), (3), this function is capable of modeling a wide
spectrum of random �elds, ranging from purely random to purely deterministic,
depending on the particular value of the temperature T .

We should point out here that it is the ground states of a Gibbs random
�eld that are most important in image processing and analysis applications.
This can be best explained by noticing that, at high temperatures, only short
range pixel interactions are possible, as is clear from (4), where a typical GRF
realization will be dominated by �ne structure. However, at low enough tem-
peratures and for large enough window W , long range pixel interactions are
possible and a typical GRF realization will be dominated by large structures.
This is nicely explained in [26]. Since at low enough temperatures the most
probable states are the ground states, these will be the most interesting states
from an image modeling point of view.
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(c) Gibbs random �elds can be easily used to incorporate constraints into image

modeling.

Searching for a solution to an inverse problem may become easier by reducing
the size of the search space. This may be accomplished by constraining can-
didate solutions to satisfy prespeci�ed constraints. For example, given some
a-priori knowledge about a candidate solution X , we may formalize this knowl-
edge by requiring that X satis�es a constraint of the form U(X) = 0, for some
well de�ned real-valued functional U on S. In this case, instead of looking for
a solution in space S, we may look for a solution in the smaller space S 0 =
fX 2 S j U(X) = 0g. A Gibbs random �eld model, with energy function U(X)
can now be used to model X. If U(X) � 0, for every X 2 S, it is not di�cult
to see that an image X satis�es the constraint U(X) = 0 if and only if it is a
ground state. The problem of �nding an X such that U(X) = 0 then reduces
to the problem of �nding one of the ground states of X, a problem that can be
solved by means of simulated annealing [5].

(d) Gibbs random �elds may allow speci�cation of global image characteristics

by means of local interactions.

If, in addition to the positivity condition (4), the conditional probability of
X(w), given the values of X at all sites in W r fwg (A r B = A \ Bc is the
set di�erence of B from A), depends only on the values of X at sites in N (w),
i.e., if

Pr[X(w) = X(w) j X(v) = X(v); v 2W r fwg]

= Pr[X(w) = X(w) j X(v) = X(v); v 2 N (w)]; (7)

for every w 2W , where N (w) is a neighborhood of site w such that w =2 N (w)
and w 2 N (v) , v 2 N (w), then X is a Markov random �eld (MRF) on
W with neighborhood N . It can be shown that, in this case, X is a Gibbs
random �eld whose energy function is speci�ed by means of local interactions.
It is however typical that, at low enough temperatures and large window W , a
MRF experiences long range interactions. Therefore, a GRF that satis�es the
Markovian condition (7) may allow speci�cation of global image characteristics
by means of local interactions.

Unfortunately, ground states obtained by means of traditional energy func-
tions only satisfy simple geometrical constraints. In Section 4, a Gibbs random
�eld is proposed whose ground states satisfy more complicated geometrical
constraints, and in particular morphological constraints. These constraints are
speci�ed by means of a very useful multiresolution concept of mathematical
morphology known as granulometry [3, 15].

3. Morphological Multiresolution Image Decomposition

In 1975, a seminal book by George Matheron, entitled Random Sets and In-

tegral Geometry, appeared in the literature [15]. This book laid down the
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foundations of a novel technique for shape processing and analysis known as
mathematical morphology. It was subsequently popularized by the highly in-
spiring book Image Analysis and Mathematical Morphology by Jean Serra [18].
Today, mathematical morphology is considered to be a powerful tool for shape
analysis. The main idea is to analyze shape by \probing" images with a small
geometric template (e.g., line segment, disc, square) known as the structuring

element. Choosing the appropriate structuring element strongly depends on
the particular application at hand. This however should not be viewed as a
limitation, since it usually leads to additional exibility in algorithm design.

Although the original work on mathematical morphology was limited to
binary images (shapes), it has been recently recognized (e.g., see [9]) that
mathematical morphology can be extended to grayscale and other kinds of
images. This can be done by considering mathematical morphology as a general
algebraic tool that deals with operators on complete lattices (i.e., nonempty
sets furnished with a partial order relationship � for which every subset has
an in�mum and a supremum). In the following, we limit our interest to the
complete lattice X = Fun(ZZ2;R) of functions mapping ZZ

2 into R, furnished
with the component-wise partial order relationship X1 � X2 , X1(w) �
X2(w), for every w 2 ZZ

2, X1; X2 2 X , where X1 = fX1(w); w 2 ZZ
2g and

X2 = fX2(w); w 2 ZZ
2g. In this case, the supremum and in�mum are de�ned

by [
W
i2 I Xi](w) =

W
i2 I Xi(w) and [

V
i2 I Xi](w) =

V
i2 I Xi(w), for every

w 2 ZZ
2, respectively. This however should not lead to the false conclusion that

our discussion is limited to this case, since it can be easily extended to other
situations as well. It is clear that S = Fun(W;R) � X .

An operator �: X ! X is called an erosion if it satis�es �(
V
i2 I Xi) =V

i2 I �(Xi), for every collection fXi 2 X ; i 2 Ig of elements in X (i.e., an
operator on X that distributes over in�ma). On the other hand, an operator
�: X ! X is called a dilation if it satis�es �(

W
i2 I Xi) =

W
i2 I �(Xi), for

every collection fXi 2 X ; i 2 Ig of elements in X (i.e., an operator on X that
distributes over suprema). Two operators � and � are said to be an adjunction if
�(X1) � X2 , X1 � �(X2), for every X1; X2 2 X . In this case, � is an erosion
and � is a dilation. An operator  is called an opening if it is increasing (i.e.,
X1 � X2 ) (X1) � (X2)), anti-extensive (i.e., (X) � X), and idempotent

(i.e., ((X)) = (X)). Dually, any operator � that is increasing, idempotent,
and extensive (i.e., X � �(X)) is called a closing. It is easy to show that, for an
adjunction (�; �), the composition �� (i.e., an erosion followed by a dilation) is
an opening, whereas the composition �� (i.e., a dilation followed by an erosion)
is a closing.

From complete lattice-theoretic generalizations, it follows that any transla-
tion invariant erosion � and any translation invariant dilation � on X are of the
form [9]

�(X)(w) = (X 	B)(w) =
V
v2ZZ2 [X(w + v)�B(v)]; 8w 2 ZZ

2

�(X)(w) = (X �B)(w) =
W
v2ZZ2 [X(w � v) +B(v)]; 8w 2 ZZ

2;

for some B 2 X , known as a structuring function. Moreover, erosion and
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dilation by a structuring function B are duals of each other, in the sense that
X �B = (X�	 �B)�, where X�(w) = R�X(w) and �B(w) = B(�w), for every
w 2 ZZ

2, and form an adjunction; i.e., X � B � Y , X � Y 	 B. Finally, if
B((0; 0)) = 0, then dilation is extensive, whereas erosion is anti-extensive.

Operators

(X) = ��(X) = (X 	B)�B = X�B

�(X) = ��(X) = (X �B)	B = X�B ;

are the translation invariant opening and closing by a structuring function B,
respectively. Opening and closing are duals of each other, in the sense that
X�B = (X�

�
�B)�. Furthermore, they are nonlinear smoothing operators, in

the sense that they eliminate signal variation in X and X�, respectively, of
\size" smaller than the \size" of the structuring function (e.g., see [13]).

One usually takes B to be constant over a bounded subset of ZZ2 with value
�1 elsewhere. In such cases, the previous operators are known as at erosion,
at dilation, at opening, and at closing, respectively, and the structuring
function B is known as a at structuring function (or structuring element).
In this paper, we only deal with at operators and at structuring functions
which take value 0 over bounded subsets of ZZ2.

In [3], [15], Del�ner and Matheron introduced a set of morphological op-
erators known as granulometry. This is a parameterized family fsgs=0;1;::: of
mappings, from X into itself, that satisfy the following four properties:

1. 0 is the identity mapping on X , i.e., 0(X) = X , for every X 2 X .

2. s is increasing, i.e., X1 � X2 ) s(X1) � s(X2), s = 1; 2; :::,X1; X2 2 X .

3. s is anti-extensive, i.e., s(X) � X , s = 1; 2; :::, for every X 2 X .

4. sr = rs = max(s;r), s; r = 1; 2; :::.

It can be shown that fsgs=0;1;::: is a granulometry if and only if 0 is
the identity mapping on X and fsgs=1;2;::: is a family of openings such that
r � s ) r � s. Granulometries are important since they can be used to
generalize the concept of size. This can be easily seen in the binary case, when
R = f0; 1g (in which case �, ^, _, X� should be replaced by �, \, [, Xc,
respectively). Notice that, as a direct consequence of Properties 1, 3 and 4
above, given a binary image X , f0; 1; :::g is a decreasing sequence, in the
sense that

X = 0(X) � 1(X) � 2(X) � � � � � s(X) � � � � :

When X consists of particles, s(X) can be viewed as a sieve of mesh width
s that allows only particles of \size" less than s to pass through. In this
case, we may say that a particle P of X is of \size" s if P \ s(X) 6= ; but
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P \ s+1(X) = ;. This leads to the observation that fs(X); s = 0; 1; :::g
is a multiresolution image decomposition scheme which reduces \resolution"
as s increases. However, the term \resolution" is not associated here to the
frequency content of X , as is customary in linear multiresolution techniques
(e.g., see [25]), but to its \size" content (see also [13]). Of course, the notion
of \size" is vague at this point and strongly depends on the particular form of
s. In the following, however, we consider examples where the notion of \size"
becomes speci�c.

Given a granulometry fsgs=0;1;::: on X , the dual parameterized family
f�sgs=0;1;::: of mappings on X , with �s(X) = (s(X

�))�, s = 0; 1; :::, is known
as the anti-granulometry associated with fsgs=0;1;:::. This de�nition allows
extension of the concept of \size" to \negative sizes" in order to assure that
both image foregroundX and image backgroundX� are treated equally. Notice
that f�sgs=0;1;::: is an anti-granulometry on X if and only if �0 is the identity
operator and f�sgs=1;2;::: is a family of closings such that r � s) �r � �s. The
concept of multiresolution image decomposition by means of granulometries can
be extended to include anti-granulometries as well. We say that M(X) is a
granulometric multiresolution image decomposition scheme, if

M(X) = f: : : ; �2(X); �1(X); X; 1(X); 2(X); :::g :

Example 3.1. The most widely used granulometry is obtained by setting
s(X) = X�sB, where B is a at structuring function, and sB = (s�1)B�B
with 0B((0; 0)) = 0 and 0B(w) = �1, for w 6= (0; 0). If X is a binary image,
it can be shown that X�B =

S
wfBw j Bw � Xg, where Bw = fb+w j b 2 Bg

is the translation of structuring element B at point w (with slight abuse of
notation, B denotes the support of the at structuring function B(w) as well;
i.e., B = fw 2 ZZ

2 j B(w) = 0g { we call B the structuring element). This
shows that the opening of an image X by a structuring element B consists
of the union of all translated replicas of B that �t inside X . Therefore, the
opening X�B is a geometric �lter that eliminates all components of X that
cannot include a translated replica of structuring element B. In this case, the
notion of \size" is directly related to the structuring element B:

A particle P of X is of \size" s if there exists at least one translated

replica of sB that �ts inside P whereas there is no translated replica of

(s+ 1)B that �ts inside P .

This is illustrated in Figure 1 which depicts a binary image X and the compo-
nents s(X) =X�sB, s = 1; 2; 3; 4, ofM(X), with B being a 7�7 square struc-
turing element. The associated anti-granulometry is given by �s(X) = X�s �B.

2

Example 3.2. An alternative granulometric multiresolution image decomposi-
tion scheme may be obtained by employing reduction in scale, in conformity to
the standard multiresolution decomposition schemes associated with the theory
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X γ1( )X

γ 4 ( )X

γ 2 ( )X

γ 3( )X

Figure 1. The components s(X) = X�sB, s = 0; 1; :::; 4, of a granulomet-
ric multiresolution image decomposition scheme M(X) based on translation
invariant openings. The structuring element B is taken to be a 7� 7 square.

of wavelets and �lter banks [25]. This produces a computationally advantageous
image decomposition scheme. Roughly speaking, the time required for comput-
ing the decompositionM(X) of an N �N image by means of openings X�sB
and closings X�s �B (assuming that B is a 3�3 structuring element) is of order
N4, whereas the time required for computing the decomposition proposed in
this example is of order N2. Let

�(X)(m;n) =
^

(k;l)2B

fX(2m+ k; 2n+ l)g; 8 (m;n) 2 ZZ
2 (8)

�(X)(m;n) =
_

(k;l)2B

fX(
m� k

2
;
n� l

2
)g; 8 (m;n) 2 ZZ

2 ; (9)

where B is a 3 � 3 square structuring element. In (9), m�k
2

, n�l
2

are de�ned

only for those values of m;n; k; l for which (m�k
2

; n�l
2
) 2 ZZ

2. It is not di�cult
to show that � is an erosion, � is a dilation, and (�; �) form an adjunction
(in which case �� is an opening and �� is a closing). Notice that the erosion
�(X) increases the scale of signal X by a factor of 2, whereas the dilation �(X)
decreases scale by a factor of 2.
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γ1( )X γ 2 ( )X γ 3( )X

Figure 2. The components s(X); s = 1; 2; 3, of a granulometric multiresolu-
tion decomposition scheme M(X) of the binary image of Fig. 1, based on the
multiscale erosion and dilation in (8), (9). The structuring element B is taken
to be a 3� 3 square.

Set 0(X) = �0(X) = X and

s(X) = �� � � � �| {z }
s times

s timesz }| {
�� � � � �(X); for s = 1; 2; :::

�s(X) = �� � � � �| {z }
s times

s timesz }| {
�� � � � �(X); for s = 1; 2; ::: :

It can be shown that fsgs=0;1;::: is a family of openings such that r � s)
r � s; therefore, it is a granulometry. The associated anti-granulometry is
f�sgs=0;1;:::. Notice that both s(X) and �s(X) preserve the scale of signal X .
The opening s is now a multiscale �lter that eliminates all components of X
that cannot include a replica of structuring element (2s � 1)B translated at a
point (2sm; 2sn) of ZZ2. In this case, the notion of \size" is directly related to
scale:

A particle P of X is of \size" s if there exists at least one replica

of (2s � 1)B translated at a point (2sm; 2sn) of ZZ2 that �ts inside P

whereas there is no translated replica of (2s+1 � 1)B that �ts inside P .

This is illustrated in Figure 2 which depicts the components s(X), s = 1; 2; 3,
of M(X), with X being the binary image of Figure 1. 2

Example 3.3. Another granulometry can be constructed by gradually �ltering
out components of a binary image X with increasing area (see also [9]). Let
conn(X) denote the connected components of X (based on an assumed type of
connectivity { for example, 4- connectivity). De�ne

s(X) =
[
fC 2 conn(X) j jCj > �(s)g ; s � 0 ; (10)

where �(s) is a nonnegative increasing function of s, such that �(0) = 0.
It is not di�cult to show that fsgs=0;1;::: is a family of openings such that
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r � s ) r � s; therefore, fsgs=0;1;::: is a granulometry. Operator s is
known as an area opening. In this case, the notion of \size" is directly related
to the area:

A particle P of X is of \size" s if �(s) < jCj � �(s+ 1).

This is illustrated in Figure 3 which depicts the components s(X), s =
1; 2; :::; 5, of M(X), with X being the binary image of Figure 1. We have
assumed 4-connectivity and set �(s) = 30s2 in (10). 2

γ1( )X

γ 4 ( )X

γ 3( )Xγ 2 ( )X

γ 5( )X

Figure 3. The components s(X), s = 1; 2; :::; 5, of a granulometric multires-
olution decomposition scheme M(X) of the binary image of Fig. 1, based on
area openings. A 4-connectivity is assumed and �(s) = 30s2 in (10).

Most often, instead of representing an image X by means of its multires-
olution decomposition M(X), it is desirable to represent it by means of a
decomposition

E(X) = f: : : ; �2(X)� �1(X); �1(X)�X;X � 1(X); 1(X)� 2(X); :::g

in terms of the detail error images �s+1(X) � �s(X), s(X) � s+1(X), for
s = 0; 1; :::. The detail error image s(X) � s+1(X) contains only par-
ticles that are of \size" s. Given fX � 1(X); 1(X) � 2(X); :::g, image
X can be exactly reconstructed by a simple summation of the components
s(X) � s+1(X), s = 0; 1; :::. Therefore, fX � 1(X); 1(X) � 2(X); :::g
is an invertible decomposition of X . Furthermore, and in the binary case,
(s(X) r s+1(X)) \ (s+1(X) r s+2(X)) = ;, for every s = 0; 1; :::; there-
fore, fX r 1(X); 1(X)r 2(X); :::g is an orthogonal decomposition of X , in
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addition to being invertible. By duality, similar remarks hold for the decompo-
sition f: : : ; �2(X)��1(X); �1(X)�Xg. Figures 4{ 6 depict the decomposition
fXr1(X); 1(X)r2(X); :::g associated with the granulometries in Examples
3.1{3.3. Notice that union of all images in a given �gure produces X .

X Xrγ1( ) γ γ1 2( ) ( )X Xr

γ 5( )X

γ γ2 3( ) ( )X Xr

γ γ3 4( ) ( )X Xr γ γ4 5( ) ( )X Xr

Figure 4. The decomposition fX r 1(X); 1(X)r 2(X); :::g of image X in
Fig. 1 associated with the granulometry in Example 3.1 (see also Fig. 1). The
union of all these images produces X .

E(X) is frequently referred to as the (discrete) size transform of X . It can
be thought of as a nonlinear analogue of the Fourier transform. One di�erence
is that E(X) decomposes an image X in terms of its \size" content, whereas
the Fourier transform decomposes X in terms of its frequency content. The
magnitude jE(X)j of E(X) is given by

jE(X)j(s) =

�
js(X)� s+1(X)j; for s = 0; 1; :::
j�jsj(X)� �jsj�1(X)j; for s = �1;�2; :::

(11)

which is known as the pattern spectrum (in the grayscale case, when R > 1, jX j
=
P

w2W X(w)). The pattern spectrum does not contain enough information
to uniquely reconstruct X (in the same way that the magnitude Fourier trans-
form is not adequate for signal reconstruction { this also requires knowledge
of phase information). It is however a powerful tool for shape description. For
example, if s(X) = X�sB (as in Example 3.1) and if jE(X)j(0) = 0, then
X = X�B. In the binary case, this means that X is a union of translated
replicas of structuring element B. On the other hand, if s(X) is as in Example
3.3, jE(X)j(s) = 0, for s = 0; 1, results in X = 1(X) = 2(X), which means
that X contains no components with area less than �(2).
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In the next section, we show that the pattern spectrum can be e�ectively

X Xrγ1( ) γ γ1 2( ) ( )X Xr

γ 5( )X

γ γ2 3( ) ( )X Xr

γ γ3 4( ) ( )X Xr γ γ4 5( ) ( )X Xr

Figure 5. The decomposition fX r 1(X); 1(X)r 2(X); :::g of image X in
Fig. 1 associated with the granulometry in Example 3.2 (see also Fig. 2). The
union of all these images produces X .

used for random image modeling. The key is to consider a parametric Gibbs
random �eld with energy function speci�ed by means of the pattern spectrum
and recognize that the pattern spectrum of the ground states of such a model
is directly related to the model parameters.

4. Statistical models

As we discussed in the introduction, our main task is to construct random
image models which incorporate a priori geometric information in the form of
morphological constraints. If we make the \benign" assumption that the prob-
ability mass function is strictly positive, then our model should necessarily be a
GRF. As a direct consequence of (4), a GRF at high temperatures experiences
only short range pixel interactions and a typical realization lacks structure.
However, at low enough temperatures and for a large enough window W , long
range pixel interactions are possible and a typical GRF realization is well struc-
tured. Since, at low enough temperatures, the most probable states of a GRF
are its ground states (recall (5), (6)), these are the most interesting states from
a practical point of view. We are therefore interested in random images mod-
eled as GRFs whose ground states satisfy certain morphological constraints. In
the following, we present a family of GRFs whose ground states are speci�ed
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by means of the pattern spectrum.
Consider a GRF whose energy function is given by [20, 23]

U(X) =

IX
i=0

ai

���ji(X)� i+1(X)j � �i

���

+

JX
j=1

a�j

���j�j(X)� �j�1(X)j � ��j

���; 8X 2 S: (12)

In (12), fsgs=0;1;::: is a granulometry, f�sgs=0;1;::: is its associated anti-granu-
lometry, I � 0, J � 1 are two �nite integers, fai;�J � i � Ig are binary-
valued parameters, taking values 0 or 1, and f�i;�J � i � Ig are real-valued
nonnegative parameters such that

IX
i=�J

�i � RjW j: (13)

X Xrγ1( ) γ γ1 2( ) ( )X Xr

γ 5( )X

γ γ2 3( ) ( )X Xr

γ γ3 4( ) ( )X Xr γ γ4 5( ) ( )X Xr

Figure 6. The decomposition fX r 1(X); 1(X)r 2(X); :::g of image X in
Fig. 1 associated with the granulometry in Example 3.3 (see also Fig. 3). The
union of all these images produces X .

From (5), (11), and (12), it is not di�cult to see that (we assume here that the
granulometry  and the parameters I , J , a, � in (12) are chosen so that U 6= ;)

U = fXg 2 S j jE(Xg)j(s) = �s; 8 s : as = 1g:
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Therefore, the pattern spectrum of the ground states of the GRF with energy
function (12) is constrained to take the value �s at sizes s for which as = 1.
In this case, and at low enough temperatures, the resulting GRF X may favor
realizations whose pattern spectrum is determined by the particular values of
a's and �'s. Notice that

P1
s=�1 jE(X)(s)j = RjW j, which implies that the

parameters � in (12) should satisfy condition (13).
The resulting GRF is not in general locally Markov (i.e., (7) is not satis�ed

for a small neighborhood N ) [20, 23]. This deviates from the common belief
that only GRFs that satisfy a local Markovian condition should be considered
for image modeling (however, see [7] for an exception). We however believe
that the main reason for using locally speci�ed GRFs, as opposed to using more
general GRFs, is purely computational. A local Markovian assumption sim-
pli�es simulation by means of Markov chain Monte Carlo (MCMC) sampling
[6]. MCMC sampling is an iterative simulation technique that relies heavily on
computing energy di�erences �Uk = U(X(k)) � U(X(k�1)) at each iteration,
where X(k) is the image obtained at iteration k. When X is a MRF, �Uk
has a simple \local" form which can be easily computed. However, depending
on the particular choice for the granulometry fsgs=0;1;::: in (12), �Uk may
also be put in a \local" form, and fast MCMC sampling algorithms may be
designed despite the fact that X is not locally Markov. We do not want to
expand on these subjects here, since they can get quite technical. For more
information, the interested reader is referred to [20, 23]. In the following, we
prefer to illustrate the proposed model with two examples.

Example 4.1. A GRF with energy function given by (12) can be e�ectively
used to statistically model a certain type of geometric constraints. For example,
we may be interested in random �eld models that favor realizations that are
both open and closed with respect to a structuring element B. This means that
the model of interest is capable of assigning higher probabilities to realizations
for which both foreground and background are unions of translated replicas
of B, whereas assigning lower probabilities to realizations that violate such a
condition. As we see in the next example, a model of this type is useful for
regularizing the inverse problem of removing noise from degraded images.

In (12), if we set I = 0, J = 1, a�1 = a0 = 1, ��1 = �0 = 0, and s(X) =
X�sB (in which case �s(X) = X�s �B), then

U(X) = jX� �B �X j+ jX �X�Bj ;8X 2 S ; (14)

in which case, the ground states will be both open and closed with respect to
B. As the temperature T decreases to zero, the GRF probability mass function
with energy function (14) will cluster around the ground states of U . At low
enough temperatures, the resulting GRF will strongly favor realizations that
are both open and closed with respect to the structuring element B. Figure
7(a) depicts a realization X of a binary GRF with energy function (14), where
B is a 13� 13 pixel square structuring element, sampled at a low temperature
(T = 0:1). The square structure of both foreground and background is a direct
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consequence of the fact that X is approximately open and closed with respect
to B. A similar realization is depicted in Figure 7(b). In this case however B
is a discrete approximation of a disk.

(a) (b)

(c) (d)

Figure 7. Realizations of binary GRFs whose energy function is given by (12)
with appropriately chosen parameters. The depicted images are approximately
both open and closed with respect to given structuring elements.

Other interesting realizations can be obtained by using the granulometries
considered in Examples 3.2, 3.3. However, a number of interesting patterns
can also be obtained by means of extending the granulometry of Example 3.1
to the case when

s(X) =

K_
k=1

X�sB
(k) ; 8X 2 S ; (15)

in which case

�s(X) =

K̂

k=1

X�s �B
(k) ; 8X 2 S ; (16)

for some integer K � 1. In (15), (16), fB(k); k = 1; 2; :::;Kg is a collection of
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structuring elements. Figures 7(c) and 7(d) depict two realizations of a binary
GRF with energy function

U(X) = j(X� �B(1)) ^ (X� �B(2))�X j+ jX � (X�B
(1)) _ (X�B

(2))j;

for all X 2 S, at temperature T = 0:1. For Figure 7(c), B(1) is a vertical linear
structuring element of length 6, whereas B(2) is a horizontal linear structuring
element of the same length. For Figure 7(d), the structuring elements are the
ones in Figure 7(c) rotated by 45o. More details on these and other examples
can be found in [20, 23]. 2

Example 4.2. In many image processing and analysis applications, image data
X are corrupted by noise and clutter. In this case, we are interested in designing
an operator 	 which, when applied on the corrupted data Y , optimally recovers
X . For illustration purposes, let us limit ourselves to the binary case. We may
assume that X is corrupted by union-intersection noise, in which case

Y = (X \Nc
1 ) [N2 ; (17)

where N1, N2 are the intersection and union noise components, respectively.
The inverse problem of recovering X from Y can be solved by means of an
operator 	, such that

X̂ = 	(Y ) = 	((X \Nc
1 ) [N2) (18)

is a \good" approximation to X . The e�ectiveness of obtaining X from Y

by means of 	 strongly depends on certain \non-overlapping" characteristics
of the noise free image X and the noise components N1, N2, typical to the
particular �ltering problem at hand. It also depends on the e�ectiveness of
	 in discriminating between these characteristics. For example, if we assume
that the noise-free image X is \lowpass," whereas the noise components N1

and N2 are su�ciently \highpass" (in the sense that the \frequency bands" of
X and N1, N2 do not overlap), then an \ideal low pass" �lter with appropriate
\cut-o� frequency" will perfectly reconstruct X from Y . To obtain such a
�lter, we certainly need to de�ne what we mean by \lowpass," \highpass,"
\frequency bands," etc., and make the regularizing assumption that (17) is
limited to \lowpass" images X . Notice however that 	 should be such that
	(X) = X , which guarantees that 	 does not a�ect X when N1 = N2 =
0. Clearly, this condition should not hold for every X (otherwise, 	 will be
the identity operator). It should however hold for all \lowpass" images. In
general, the invariance domain of 	 (i.e., the collection of all images X for
which 	(X) = X), may contain images that are not necessarily \lowpass." It
is therefore desirable to consider only operators 	 with the property that any
\lowpass" image X belongs to its invariance domain.

To be more speci�c, we should note here that the union and intersection
noise components are usually \bandlimited," in the sense that there exists a
\size" s0 such that

jE(N1)j(s) = jE(N2)j(s) = 0 ; for s � s0 : (19)
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T = 5 0. T = 01.

Figure 8. Realizations of a GRF with energy function (21), with s0 = 2, B =
f(0;�1), (0; 0), (0; 1), (�1; 0), (1; 0)g, at temperatures T = 5:0; 0:1.

This simply says that the \size" of the noise components is small, limited
between 0 and s0 � 1. If we consider \size" as being the discriminating factor
between X and N1, N2, then the noise free image X should be \bandlimited"
as well, in the sense that

jE(X)j(s) = 0 ; for � s0 � s � s0 � 1 : (20)

To guarantee (20), we may assume that X is a realization of a GRF X

whose energy function is given by (12), with I = s0�1, J = s0, a�s0 = a�s0+1
= � � � = a0 = a1 = � � � = as0�1 = 1, ��s0 = ��s0+1 = � � � = �0 = �1 = � � � =
�s0�1 = 0, s(X) = X�sB, and �s(X) = X�s �B. In this case,

U(X) = jX�s0 �B rX j+ jX rX�s0Bj ; 8X 2 S ; (21)

and the ground states consist of all binary images X on W which are both
open and closed with respect to structuring element s0B (i.e., X = X�s0B =
X�s0 �B). This implies that, at low enough temperatures, the probability mass
function of X will assign higher probabilities to images that are both open and
closed with respect to structuring element s0B and a typical realization will be
an image X that approximately satis�es the desirable condition (20).

Figure 8 depicts two 128�128 pixel realizations of such a GRF with T = 5:0
and T = 0:1. We have set s0 = 2 and B = f(0;�1); (0; 0); (0; 1); (�1; 0); (1; 0)g.
At the high temperature T = 5:0, the realization looks random, whereas, at
the low temperature T = 0:1, the realization is well structured and satis�es the
following geometric property:

Both foreground and background are approximately unions of translated

replicas of structuring element 2B.

This is a direct consequence of the fact that the realization is approximately
open and closed with respect to structuring element 2B.
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(a) (b)

(c) (d)

Figure 9. (a) A binary image X whose pattern spectrum is approximately
zero at \sizes" �2 � s � 1. (b) A noisy version of the image in (a) { the SNR
is 3:10 dB. (c) The result of applying the alternating sequential �lter (22), with
s0 = 2, on the image in (b) { the SNR is 10:46 dB. (d) The result of applying
the morphological �lter (23), with s0 = 2, on the image in (b) { the SNR is
14:98 dB.

It can be shown (e.g., see [21]) that, if X in (17) is a realization of a GRF
X with energy function (21) at low enough temperature, and if the pattern
spectra in (19), (20) are based on the granulometry of Example 3.1, then a
desirable operator 	 in (18) will be the alternating sequential �lter [17, 19]

	(Y ) = (((((Y�B)� �B)�2B)�2 �B)� � � ��s0B)�s0 �B : (22)

Notice that, if (20) is satis�ed, then X =X�sB =X�s �B, for every 1 � s � s0
and X will belong to the invariance domain of 	, as required. Figure 9(a)
depicts a binary image X for which (20) is satis�ed. The corresponding noisy
image, depicted in Figure 9(b), is obtained by means of (17) with N1, N2 being
realizations of a germ-grain model [24]. In this case, a number of points (the
germs) in W are chosen at random. A structuring element nB (the grain),
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with B = f(0;�1); (0; 0); (0; 1); (�1; 0); (1; 0)g, is centered at each germ, with
n taking values 0 or 1 with equal probability. If no much overlapping occurs
among the noise grains, then (19) will be approximately satis�ed (with s0 = 2)
for both N1 and N2. For the noisy image depicted in Figure 9(b) the signal

to noise ratio (SNR) 20 log10(jX j=jY4X j) is 3:10 dB (4 denotes symmetric

di�erence, i.e., X14X2 = (X1rX2)[(X2rX1)). Application of the alternating
sequential �lter (22), with B = f(0;�1); (0; 0); (0; 1); (�1; 0); (1; 0)g and s0 = 2,
produces the approximation X̂ depicted in Figure 9(c). X̂ is a reasonable
approximation of X , despite the fact that the input SNR is rather low. In fact,
the SNR in Figure 9(c) is 10:46 dB, an increase of 7:36 dB from the SNR of
Figure 9(b).

An alternative operator 	 can be obtained by setting

	(Y ) = (�B0(Y�s0B j Y )�s0 �B)�s0B ; (23)

where
�B0(Xm j X) =

[
n�1

�n
B0
(Xm j X) ; (24)

�n
B0
(Xm j X) = �1

B0
�1
B0
� � � �1

B0
(Xm j X) (n times) ; (25)

�1
B0
(Xm j X) = (Xm �B0) \X; Xm � X : (26)

Operator �n
B0
(Xm j X) in (25), (26) is known as the conditional dilation of Xm

in X of size n. The conditional dilation \expands" a marker Xm of X by means
of a structuring element B0 (that contains the origin), making sure that the
\expansion" remains always inside X . Operator �B0(Xm j X) in (24) is known
as morphological image reconstruction. Its e�ect is to recover all connected
components of image X marked by a marker Xm [9]. The opening Y�s0B

in (23) removes all components of Y of \size" less than s0. It will therefore
eliminate most of N2 in (17). However, it will also distort X \ N c

1 . The
morphological reconstruction �B0(Y�s0B j Y ) will reconstruct the connected
components of Y marked by Y�s0B, and it will therefore reconstruct most of
Y \ Nc

1 (notice that Y�s0B � Y , as required for Y�s0B to be a marker of
Y ). However, �B0(Y�s0B j Y ) may also reconstruct components of N2 that
\touch" X . Subsequent closing with structuring element s0B will remove most
of N1 from X \Nc

1 , whereas opening with s0B will remove most components
of N2 that \touch" X . This is illustrated in Figure 10, and for the noisy image
depicted in Figure 9(b), with B = f(0;�1); (0; 0); (0; 1); (�1; 0); (1; 0)g. The
resulting operator is a variant of an open-close-open morphological �lter [19],
where the �rst opening is replaced by operator �B0(Y�s0B j Y ). In fact,
�B0(Y�s0B j Y ) is an opening as well, known as opening by reconstruction

[19]. If (20) is satis�ed, then X = X�sB = X�s �B, for every 1 � s � s0
and X will belong to the invariance domain of 	, as required. This is a direct
consequence of the fact that �B0(X j X) = X .

Application of this operator on the noisy image depicted in Figure 9(b),
with B = B0 = f(0;�1); (0; 0); (0; 1); (�1; 0); (1; 0)g and s0 = 2, produces the
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Figure 10. Illustration of the steps required for the implementation of oper-
ator (23).

approximation X̂ depicted in Figure 9(d). X̂ is a better approximation to X
than the one obtained by means of alternating sequential �ltering, as is evident
by comparing (c) and (d) in Figure 9. In fact, the SNR in Figure 9(d) is 14:48
dB, an increase of 11:38 dB from the SNR of Figure 9(b) and 4:02 dB from the
SNR of Figure 9(c). 2

5. Conclusion

In this paper, we have considered the problem of statistical image modeling by
directly incorporating multiresolution morphological constraints in the proba-
bility mass function of a random image model. This was achieved by considering
a class of Gibbs random �elds, with energy function given by (12), whose most
likely realizations satisfy the desirable constraints.

An important issue here is development of e�cient algorithms for simulating
these models. It has been shown in [20, 23] that a Markov chain Monte Carlo
sampling technique exists that allows fast simulation when the granulometry
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associated with (12) is the one in Example 3.1. It will be very important to
develop sampling algorithms for other granulometric choices, especially for the
choice in Example 3.2, which provides multiresolution signal decomposition by
reducing scale as well.

Important statistical properties of the proposed models have been exten-
sively studied in [20, 23]. It has been also demonstrated, by means of texture
classi�cation experiments, that the proposed models are very useful in model-
ing natural textures. We believe that the proposed models can be e�ectively
used as a-priori models in Bayesian image restoration as well. Their use in this
framework is currently under investigation.

Finally, it is worthwhile noticing that additional models may be constructed,
more appropriate for a particular application, by appropriately choosing the
granulometry in (12). Extension of the proposed models to the continuous case
is another exciting possibility. This has been recently explored in [11, 12].

References

1. Chen, F. (1994). Robust and Morphologically Constrained Image Segmen-

tation. PhD Thesis, Department of Electrical and Computer Engineering,
University of Massachusetts at Amherst, Amherst, Massachusetts.

2. Chen, F., Kelly, P. A. (1992). Algorithms for generating and segmenting
morphologically smooth binary images. Proceedings of the 26th Conference

on Information Sciences and Systems, 902{906.
3. Delfiner, P. (1971). A generalization of the concept of size. Journal of

Microscopy 95, 203{216.
4. Geman, D. (1990). Random �elds and inverse problems in imaging. �Ecole

d' �Et�e de Probabilit�es de Saint-Flour XVIII - 1988, P. L. Hennequin, Ed.,
1427. Springer-Verlag, Berlin, Germany, 117{193.

5. Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6, 721{741.
6. Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discus-

sion). Statistical Science 7, 473{511.
7. Gimel'farb, G. L. (1996). Texture modeling by multiple pairwise pixel

interactions. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 18, 1110{1114.
8. Hadamard, J. (1923). Lectures on the Cauchy Problem in Linear Partial

Di�erential Equations. Yale University Press, New Haven, Connecticut.
9. Heijmans, H. J. A. M. (1994). Morphological Image Operators. Academic

Press, Boston, Massachusetts.
10. Jain, A. K. (1989). Fundamentals of Digital Image Processing. Prentice

Hall, Englewood Cli�s, New Jersey.
11. van Lieshout, M. N. M. (1997). Size distributions in stochastic geometry.

Tech. Rep. PNA-R9715, CWI, Amsterdam, The Netherlands. To appear in
Pattern Recognition.

368



12. van Lieshout, M. N. M. (1998). Size-based random closed sets. Mathe-

matical Morphology and Its Applications to Image Processing, H. J. A. M.

Heijmans and J. B. T. M. Roerdink, Eds. Kluwer, Dordrecht, The
Netherlands 291{298.

13. Maragos, P. (1989). Pattern spectrum and multiscale shape representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 11,
701{716.

14. Marroquin, J., Mitter, S., Poggio, T. (1987). Probabilistic solution
of ill-posed problems in computational vision. Journal of the American

Statistical Association 82, 76{89.
15. Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley,

New York City, New York.
16. Moussouris, J. (1974). Gibbs and Markov random systems with con-

straints. Journal of Statistical Physics 10, 11{33.
17. Schonfeld, D., Goutsias, J. (1991). Optimal morphological pattern

restoration from noisy binary images. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 13, 14{29.
18. Serra, J. (1982). Image Analysis and Mathematical Morphology. Aca-

demic Press, London, England.
19. Serra, J., Vincent, L. (1992). An overview of morphological �ltering.

Circuits, Systems and Signal Processing 11, 47{108.
20. Sivakumar, K. (1997). Morphological Analysis of Random Fields: Theory

and Applications. PhD Thesis, Department of Electrical and Computer
Engineering, The Johns Hopkins University, Baltimore, Maryland.

21. Sivakumar, K., Goutsias, J. (1997). Discrete morphological size distri-
butions and densities: Estimation techniques and applications. Journal of
Electronic Imaging 6, 31{53.

22. Sivakumar, K., Goutsias, J. (1997). Morphologically constrained dis-
crete random sets. Advances in Theory and Applications of Random Sets,
D. Jeulin, Ed. World Scienti�c, Singapore 49{66.

23. Sivakumar, K., Goutsias, J. (1997). Morphologically constrained Gibbs

random �elds: Applications to texture synthesis and analysis. Tech. Rep.
JHU/ECE 97-11, Department of Electrical and Computer Engineering, The
Johns Hopkins University, Baltimore, MD.

24. Stoyan, D., Kendall, W. S., Mecke, J. (1995). Stochastic Geometry

and its Applications, Second Edition. John Wiley, Chichester, England.
25. Vetterli, M., Kovacevic, J. (1995). Wavelets and Subband Coding.

Prentice Hall, Englewood Cli�s, New Jersey.
26. Wilson, K. G. (1979). Problems in physics with many scales of length.

Scienti�c American 24, 158{177.

369


