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We begin with a short review of the 2-D continuous wavelet transform (CWT),

covering successively the mathematical properties, the various analyzing wavelets

and the calibration problem. Then, after a short outline of the discrete wavelet

transform, we present a fast algorithm for the CWT. Then we discuss the group-

theoretical background of the CWT, which allows a straightforward extension to

more general situations. We conclude with some physical applications.

1. Introduction: The Continuous Wavelet Transform

The one-dimensional wavelet transform [12, 19, 32] has found nowadays many

applications to various �elds of physics, mathematics and signal processing

[16, 33, 34]. The original motivation was to design a method of analysis suitable

for nonstationary, highly inhomogeneous signals (such as speech), for which

Fourier analysis is inadequate. The outcome is a time-scale analysis, based on

the wavelet transform (WT):

S(b; a) = a�1=2

Z
 (a�1(t� b)) s(t) dt � h b;ajsi; (1)

where a > 0 is a scale parameter and b 2 R a translation parameter. In relation

(1), s is a �nite energy signal, the function  , the analyzing wavelet, is assumed

to be well localized both in the time domain and in the frequency domain,

and the bracket denotes the usual scalar product in L2(R; dt). In addition  

must satisfy an admissibility condition, which in most cases may be reduced

to the requirement that  has zero mean (hence it is su�ciently oscillating):R
 (t) dt = 0: Combining this condition with the localization properties of  (t)

and its Fourier transform b (!), one sees that the WT s 7! S provides a local
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�ltering, both in time (b) and in scale (a), which works at constant relative

bandwidth, �!=! = constant. Thus it is more e�cient at high frequency, i.e.

small scales, in particular for the detection of singularities in the signal. In

addition, the transformation s(x) 7! S(a; b) may be inverted exactly and yields

a reconstruction formula, which amounts to a decomposition of the signal in

terms of dilated, translated copies  b;a of the basic wavelet  .

Of course, the numerical implementation requires the discretization of inte-

grals. In particular, the reconstruction formula expresses the signal as a linear

superposition of a discrete family f bi;ajg. However, in general, this approach

does not lead to an orthonormal basis. In order to achieve this, it is neces-

sary to exploit a totally di�erent approach, based on multiresolution analysis

[19, 28, 29, 32]. The resulting discrete wavelet transform (DWT) has clear

advantages in certain problems, such as data compression.

Quite naturally, the DWT extends to 2-D and it has become a standard

tool in image processing [19, 28]. It proves indeed quite e�cient, yielding for

instance excellent compression rates . For that purpose, the 2-D multiresolution

analysis is usually taken as the tensor product of two 1-D analyses, one in x

and one in y. It is thus clearly bound to the Cartesian geometry, and this is

a distinct disadvantage when it comes to detecting directions, although it is

natural in other instances (TV, for instance).

Fortunately, the continuous wavelet transform (CWT) may also be extended

to 2 (or more) dimensions [35], with exactly the same properties as in the 1-D

case. Here again the mechanism of the WT is easily understood from its very

de�nition as a convolution (a detailed discussion is given in Section 2):

S(~b; a; �) �
Z

 
�
a�1r��

�
~x�~b

��
s(~x) d2~x; (2)

where s is the signal and  is the analyzing wavelet, which is translated by
~b 2 R2 , dilated by a > 0 and rotated by an angle � (r�� is the rotation operator).

Since the wavelet  is required to have zero mean, we have again a �ltering

e�ect, i.e. the analysis is local in all four parameters ~b; a; �, and here too it is

particularly e�cient at detecting discontinuities in images. When compared to

the 1-D case, the new fact here is the presence of the rotation degree of freedom.

This is crucial for detecting oriented features of the signal, that is, regions where

the amplitude is regular along one direction and has a sharp variation along

the perpendicular direction, for instance, edges or contours [25]. The CWT is a

very e�cient tool in this respect, provided one uses a directional wavelet, that

is, a wavelet which has itself an intrinsic orientation (for instance, it contains

a plane wave).

It is a quite common opinion that the CWT is too time consuming for any

practical use in image processing. This is, we think, a misconception. Not only

is it better adapted in a number of situations, but in addition fast algorithms

have been designed recently that make it truly competitive numerically [24].

The aim of this paper is to survey the theory and some applications of the 2-

D continuous WT. We begin in Section 2 by briey reviewing the mathematical
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basis of the theory and the problem of practical implementation. Then, in

Section 3 and 4, respectively, we describe various types of 2-D wavelets and

discuss the problem of calibration. In Section 5, we compare the CWT with

the discrete approach, and present fast algorithms for the CWT. In Section 6,

�nally, we review some applications of the CWT to di�erent physical problems.

2. The continuous WT in two dimensions

2.1. Construction and main properties

We begin by reviewing briey the basic properties of the CWT in 2 dimensions,

which are completely analogous to those familiar in the 1-D case.

We consider 2-D signals of �nite energy, represented by complex-valued,

square integrable functions s 2 L2(R2 ; d2~x). This condition may be relaxed,

to allow, for instance, a plane wave or a � function. In practice, a black and

white image will be represented by a bounded non-negative function: 0�s(~x)�
M; 8 ~x 2 R2 (M > 0); the discrete values of s(~x) corresponding to the level of

gray of each pixel.

Given a signal s 2 L2(R2 ; d2~x), we may transform it by translation, rotation

and global dilation [35]. This gives, in position and momentum (or spatial

frequency) space, respectively:

s~b;a;�(~x) = a�1s
�
a�1r��

�
~x�~b

��
; (3)

[s~b;a;�(
~k) = a e�i

~b:~k bs(ar��(~k)): (4)

In these relations, ~b 2 R2 is the translation parameter, a > 0 the dilation, and

r��(0 � � < 2�) denotes the familiar 2� 2 rotation matrix. As usual, the hat

denotes a 2-D Fourier transform. Clearly, the correspondence s 7! s~b;a;� is a

unitary map.

By de�nition, a wavelet is a complex-valued function  2 L2(R2 ; d2~x) sat-

isfying the admissibility condition

c � (2�)2
Z
j b (~k)j2 d2~k

j~kj2
<1: (5)

If  is regular enough, the admissibility condition simply means that the

wavelet has zero mean:

b (~0) = 0 ()
Z

 (~x) d2~x = 0: (6)

Clearly the map s 7! s~b;a;� preserves the admissibility condition (5). Thus

the given wavelet  generates, by translation, rotation or dilation, the whole

family f ~b;a;�g, indexed by a > 0; � 2 [0; 2�);~b 2 R2 . It is easily seen that

the linear span of this family is dense in L2(R2 ). In the sequel we will denote

by G this 4-dimensional parameter space. Indeed, as this notation suggests,
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the whole construction has a group-theoretical backbone. The parameter space

G is in fact the so-called similitude group of the plane, composed precisely of

translations, rotations and dilations, and the 2-D CWT may be derived from

a unitary representation of it. We shall come back to this point in Section 6.

Given a signal s 2 L2(R2 ), its CWT with respect to the wavelet  is:

S(~b; a; �) = h ~b;a;�jsi = a�1

Z
 (a�1r��(~x �~b)) s(~x) d2~x (7)

= a

Z
ei
~b:~k b (ar��(~k)) bs(~k) d2~k: (8)

The properties of the wavelet transform are best expressed in terms of the

linear map W : s 7! c
�1=2

 S. They may be summarized as follows:

(i)W is covariant under translations, dilations and rotations. For instance:

S~bo(
~b; a; �) = S(~b�~bo; a; �); (9)

where S~bo is the transform of s~bo(~x) = s(~x�~bo).
(ii) W conserves norms:

c�1

 

ZZZ
jS(~b; a; �)j2 a�3d2~b da d� =

Z
js(~x)j2 d2~x; (10)

i.e., W is an isometry from the space of signals into the space of transforms,

which is a closed subspace of L2(G; dg), where dg � a�3d2~b da d� is the natural

(Haar) measure on G.

(iii) As a consequence, the mapW is invertible on its range, and the inverse

transformation is simply the adjoint of W . This means that the signal s(~x)

may be reconstructed exactly from its transform S(~b; a; �) :

s(~x) = c�1

 

ZZZ
 ~b;a;�(~x) S(

~b; a; �) a�3d2~b da d�: (11)

In other words, the 2-D wavelet transform provides a decomposition of the

signal in terms of the analyzing wavelets  ~b;a;� , with coe�cients S(~b; a; �).

(iv) The projection from L2(G; dg) onto the range of W , the space of

wavelet transforms, is an integral operator whose kernel K(~b0; a0; �0j~b; a; �) is
the autocorrelation function of  , also called reproducing kernel:

K(~b0; a0; �0j~b; a; �) = c�1

 h ~b0;a0;�0 j ~b;a;�i: (12)

Therefore, a function f 2 L2(G; dg) is the wavelet transform of a certain signal

i� it satis�es the reproduction property:

f(~b0; a0; �0) =

ZZZ
K(~b0; a0; �0j~b; a; �) f(~b; a; �) a�3 d2~b da d�: (13)
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In practice, one often uses a simpli�ed reconstruction, instead of (11), which

requires integration over the full group. For instance, if the wavelet is rotation

invariant, the � dependence drops out. More generally, one may use for re-

construction a wavelet di�erent from the analyzing wavelet, provided the two

satisfy a cross-compatibility condition. An extreme case is that of a delta dis-

tribution, with support either at the origin, or on a line. In the �rst case, one

reconstructs the signal by resumming only over scales and angles:

s(~x) �
ZZ

S(~x; a; �) a�2 da d�: (14)

The second case yields a wavelet version of the inverse Radon transform, which

is the mathematical basis of tomography. Further details may be found, for

instance, in [26, 27, 41].

2.2.. Interpretation of the CWT as a singularity scanner

In order to get a physical interpretation of the CWT, we notice that in signal

analysis, as in classical electromagnetism, the L2 norm is interpreted as the

total energy of the signal. Therefore, the relation (10) suggests to interpret

jS(~b; a; �)j2 as the energy density in the wavelet parameter space.

Assume now, as in 1-D, that the wavelet  is fairly well localized both

in position space (~x) and in spatial frequency space (~k). Then so does the

transformed wavelet  ~b;a;�, with e�ective support suitably translated by ~b,

rotated by � and dilated by a. Because (7) is essentially a convolution with a

function  of zero mean, the transform S(~b; a; �) is appreciable only in those

regions of parameter space (~b; a; �) where the signal is: we get an appreciable

value of S only where the wavelet  ~b;a;� `matches' the features of the signal

s. In other words, the CWT acts on a signal as a local �lter in all 4 variables
~b; a; �: S(~b; a; �) `sees' only that portion of the signal that `lives' around ~b; a; �

and �lters out the rest. Therefore, if the wavelet is well localized, the energy

density of the transform will be concentrated on the signi�cant parts of the

signal. This is the key to all the approximation schemes that make wavelets

such an e�cient tool.

Let us make more precise the support properties of  . Assume  and b 
to be as well localized as possible (compatible with the Fourier uncertainty

property), that is,  has for essential support (i.e. the region outside of which

the function is numerically negligible) a `disk' of diameter T , centered around
~0, while b has for essential support a `disk' of diameter 
, centered around ~ko.

Then, for the transformed wavelets  ~b;a;� and
b ~b;a;� we have, respectively:

(i) ess supp  ~b;a;� is a `disk' of diameter ' aT around ~b, rotated by r�;

(ii) ess supp b ~b;a;� is a `disk' of diameter ' 
=a around ~ko=a, rotated by r�.
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Notice that the product of the two diameters is constant. Thus the wavelet

analysis operates at constant relative bandwidth, �k=k = const, where k � j~kj.
Therefore, the analysis is most e�cient at high frequencies or small scales, and

so it is particularly apt at detecting discontinuities in images, either point

singularities (contours, corners) or directional features (edges, segments).

In addition to its localization properties, the wavelet  is often required to

have a certain number of vanishing moments. This condition determines the

capacity of the WT to detect singularities. Indeed, if  has all its moments

vanishing up to order n � 1 (by the admissibility condition (6), the moment of

order 0 must always vanish),Z
x� y�  (~x) d2~x = 0; 0 � �+ � � n; (15)

then the CWT will �lter out any polynomial behavior up to degree n. For in-

stance, the case n = 1 means that the CWT is blind to any linear behavior, i.e.

it erases any linear trend in the signal. In general, if the wavelet has vanishing

moments, the smoother parts of the signal will have very small wavelet coef-

�cients, whereas sharp, non-stationary behavior will give rise to local maxima

of the modulus of S(~b; a; �). This explains why wavelet analysis is particularly

e�cient for the detection of discontinuities.

2.3.. Practical implementation: The various representations

The �rst problem one faces in practice is that of visualization. Indeed S(~b; a; �)

is a function of four variables: two position variables ~b = (bx; by) 2 R2 , and the

pair (a; �) 2 R+
�
� [0; 2�).

In the 1-D case [18, 29], a�1 de�nes the frequency scale, thus the full pa-

rameter space of the 1-D WT, the time-scale half plane, is in fact a phase space,

in the sense of Hamiltonian mechanics. Exactly the same situation prevails in

2-D: the pair (a�1; �) plays the role of spatial frequency (or momentum), ex-

pressed in polar coordinates, and so the full 4-dimensional parameter space of

the 2-D WT may be interpreted as a phase space. This interpretation, which

actually extends to higher dimensions, is borne out by mathematical analysis,

using the group-theoretical approach (one computes the coadjoint orbits of the

similitude group) [3, 4].

Now, to compute and visualize the full CWT in all four variables is hardly

possible. Therefore, in order to obtain a manageable tool, some of the variables,

a; �; bx; by must be �xed. In other words, one must restrict oneself to a section

of the parameter space. There are six possible choices of two-dimensional sec-

tions, but the geometrical considerations made above indicate that two of them

are more natural: either (a; �) or (bx; by) are �xed, and the WT is treated as

a function of the two remaining variables. The corresponding representations

have the following characteristics [3].

(1) The position representation: a and � are �xed and the CWT is considered

as a function of position ~b alone.

328



(2) The scale-angle representation: for �xed ~b, the CWT is considered as a

function of scale a and angle �, i.e. of spatial frequency.

The position representation is the standard one, and it is useful for the general

purposes of image processing: detection of position, shape and contours of

objects; pattern recognition; image �ltering by resynthesis after elimination of

unwanted features (for instance, noise). The scale-angle representation will be

particularly interesting whenever scaling behavior (as in fractals) or angular

selection is important, in particular when directional wavelets are used. In

fact, both representations are needed for a full understanding of the properties

of the CWT in all four variables.

For the numerical evaluation, in particular for exploiting the reconstruction

formula (11), one has to discretize the WT. In either representation, a system-

atic use of the FFT algorithm will lead to a numerical complexity of the order

of CN1N2(log2(N1N2))
2, where N1; N2 denote the number of sampling points

in the variables (bx; by) or (a; �) and C is a constant. In the former case, the

geometry is Cartesian and a square lattice will give an adequate sampling grid.

In the latter, the representation is in polar coordinates, and the discretization

must naturally be logarithmic in the scale variable a and linear in the angle �.

3. Choice of the analyzing wavelet

The next step is to choose an analyzing wavelet  . At this point, there are two

possibilities, depending on the problem at hand, namely isotropic or directional

wavelets.

3.1. Isotropic wavelets

If one wants to perform a pointwise analysis, that is, when no oriented features

are present or relevant in the signal, one may choose an analyzing wavelet

 which is invariant under rotation. Then the � dependence drops out, for

instance, in the reconstruction formula (11). Typical examples are:

The isotropic 2-D mexican hat or Marr wavelet : This is simply the Laplacian

of a Gaussian:

 H(~x) = (2� j~xj2) exp(� 1

2
j~xj2) = �� exp(� 1

2
j~xj2) (16)

(� denotes the Laplacian operator). This is a real, rotation invariant wavelet,

originally introduced by [30]. The mexican hat is e�cient for a �ne pointwise

analysis, but not for detecting directions. On the other hand, one may also use

higher order Laplacians of the Gaussian,

 
(n)
H (~x) = (��)n exp(� 1

2
j~xj2): (17)

For increasing n, these wavelets have more and more vanishing moments, and

are thus sensitive to increasingly sharper details. An interesting technique,
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pioneered in 1-D by A. Arn�eodo [9], is to analyze the same signal with several

wavelets  
(n)
H , for di�erent n. The features common to all the transforms surely

belong to the signal, they are not artifacts of the analysis.

Di�erence wavelets : Many other wavelets (or �lters) have been proposed in the

literature, often designed for a speci�c problem. An interesting class consists

of wavelets obtained as the di�erence of two positive functions, for instance

a single function h and a contracted version of the latter. If h is a smooth

non-negative function, integrable and square integrable, with all moments of

order one vanishing at the origin, then the function  given by the relation :

 (~x) = ��2 h(��1~x)� h(~x) (0 < � < 1) (18)

is easily seen to be a wavelet satisfying the admissibility condition (6).

A typical example is the `Di�erence-of-Gaussians' or DOG wavelet, obtained

by taking for h a Gaussian

 D(~x) = ��2 e�j~xj
2=2�2 � e�j~xj

2=2; (0 < � < 1): (19)

The DOG �lter is a good substitute for the mexican hat (for ��1 = 1:6, their

shapes are extremely similar), frequently used in psychophysics works [20].

3.2.. Directional wavelets

When the aim is to detect oriented features (segments, edges, vector �eld,. . . )

in an image, or to perform directional �ltering, one has to use a wavelet which

is sensitive to directions. The best angular selectivity will be obtained if  is

directional, which means that the e�ective support of its Fourier transform b 
is contained in a convex cone in spatial frequency space f~kg, with apex at the

origin. A review of directional wavelets and their use may be found in [5]. This

de�nition is justi�ed by the formula (8), which says that the wavelet acts as

a �lter in ~k-space (multiplication by the function b ). Suppose the signal s(~x)
is strongly oriented, for instance along the x-axis. Then its Fourier transform

bs(~k) is strongly peaked along the ky-axis. In order to detect such a signal, with

a good directional selectivity, one needs a wavelet  supported in a narrow

cone in ~k-space. Then the WT is negligible unless b (~k) is essentially aligned

onto bs(~k): directional selectivity demands to restrict the support of b , not  .
The 2-D Morlet wavelet : This is the prototype of a directional wavelet:

 M(~x) = exp(i~ko � ~x) exp(� 1

2
jA~xj2); (20)

b M(~k) =
p
� exp(� 1

2
jA�1(~k � ~ko)j2); (21)

The parameter ~ko is the wave vector, and A = diag[��1=2; 1]; � � 1; is a 2� 2

anisotropy matrix. We have dropped the correction term necessary to enforce
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Figure 1. Two 2-D directional wavelets in spatial frequency space, in level

curves: (a) the Morlet wavelet, with � = 5; ~ko = (0; 6); (b) the Cauchy wavelet

 
(C)

44
for C = C(�10o; 10o), rotated by 90o for the sake of comparison.

the admissibility condition b M(~0) = 0, because it is numerically negligible for

j~koj � 5:6 [19]. The wavelet  M smoothes the signal in all directions, but

detects the sharp transitions in the direction perpendicular to ~ko. In Fourier

space, the e�ective support of the function b M is an ellipse centered at ~ko and

elongated in the ky direction, thus contained in a convex cone, that becomes

narrower as � increases (see Figure 1 a).

Cauchy wavelets : A typical example of directional wavelets is the family of

Cauchy wavelets, described in [4, 5, 6]. Let C � C(��; �) = f~k 2 R2 j � � �
arg~k � �g be the convex cone determined by the unit vectors ~e��; ~e�. The

dual cone, also convex, is ~C(�~�; ~�) = f~k 2 R2 j~k � ~k0 > 0; 8 ~k0 2 C(��; �)g,
where ~� = �� + �=2, and therefore ~e�� � ~e~� = ~e� � ~e�~� = 0. Given the �xed

vector ~� = (�; 0); � > 0 (thus ~� 2 ~C), we de�ne the Cauchy wavelet in spatial

frequency variables (see Figure 1 b):

b (C)

lm (~k) =

�
(~k � ~e~�)l (~k � ~e�~�)

m e�
~k�~�; ~k 2 C(��; �)

0; otherwise:
(22)

The parameters l; m 2 N� give the number of vanishing moments on the edges

of the cone. An explicit calculation yields the following result:

 
(C)

lm (~x) = const. (~z � ~e�)�l�1 (~z � ~e��)�m�1; (23)

where we have introduced the complex variable ~z = ~x + i~� 2 R2 + ieC: The
construction generalizes in a straightforward way to any convex cone C(�; �)
[4, 5, 6]. In addition, if one lets ~� vary in the dual cone ~C(~�; ~�), then the wavelet
 
(C)

lm (~x) is the boundary value of a function  
(C)

lm (~z), holomorphic in the tube

R2 + ieC: This follows from general theorems [36], since the function b lm(~k) has
support in the convex cone C = C(�; �) and is of fast decrease at in�nity.
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4. Evaluation of the performances of the CWT

Given a wavelet, what is its angular and scale selectivity (resolving power)?

What is the minimal sampling grid for the reconstruction formula (11) that

guarantees that no information is lost? The answer to both questions resides

in a quantitative knowledge of the properties of the wavelet, that is, the tool

must be calibrated.

To that e�ect, one takes the WT of particular, standard signals. Three such

tests are useful, and in each case the outcome may be viewed either at �xed

(a; �) (position representation) or at �xed ~b (scale-angle representation).

� Point signal: for a snapshot at the wavelet itself, one takes as the signal

a delta function, i.e. one evaluates the impulse response of the �lter:

h ~b;a;�j�i = a�1  (a�1r��(�~b)): (24)

� Reproducing kernel: taking as the signal the wavelet  itself, one ob-

tains the reproducing kernel K, which measures the correlation length in each

variable ~b; a; � :

c K(~b; a; �j~0; 1; 0) = h ~b;a;�j i = a�1

Z
 (a�1r��(~x�~b))  (~x) d2~x: (25)

� Benchmark signals: for testing particular properties of the wavelet, such

as its ability to detect a discontinuity or its angular selectivity in detecting a

particular direction, one may use appropriate `benchmark' signals.

A typical example is the calibration of the angular selectivity of a directional

wavelet. First one needs a suitable parameter. One that has proven e�cient is

the so-called angle resolving power (ARP) [4, 5]. This is de�ned as the opening

angle of the cone tangent to the (e�ective) support of the wavelet in ~k-space.

For the Cauchy wavelet (22), the ARP is simply the opening angle � = 2�

of the supporting cone. Then one may use as benchmark a semi-in�nite rod,

sitting along the positive x-axis, and modeled with a delta function:

s(~x) = #(x) �(y); (26)

where #(x) is the step function.

Taking either a Morlet wavelet or a Cauchy wavelet, oriented at an angle �,

one computes the CWT of s as a function of x. The result is that both wavelets

detect the orientation of the rod with a precision of the order of 5�. Indeed,

for � < 5�, the WT is a \wall", increasing smoothly from 0, for x � �5,
to its asymptotic value (normalized to 1) for x � 5. Then, for increasing

misorientation �, the wall gradually collapses, and essentially disappears for

� > 15�. Only the tip of the rod remains visible, and for large � (� > 45�), it

gives a sharp peak (see Figure 2 [4, 5]).
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Figure 2. Testing the angular selectivity of the Cauchy wavelet b 44 of Figure
1 with the semi-in�nite rod signal. The �gure shows the modulus of the CWT

as a function of ~x, for various values of the misorientation angle �.

5. Going discrete

5.1. Discretization of the CWT

The reproduction property (13) means that the information contained in the

WT S(~b; a; �) is highly redundant. This redundancy may be eliminated (this

is the basic idea behind the discrete WT), or exploited, either under the form

of interpolation formulas or for discretizing the reconstruction formula (11),

as needed for numerical evaluation. The integral is replaced by a sum over a

discrete (but in�nite) family of wavelets  ~bi;aj ;�k , which can be chosen in such

a way that no information is lost:

s(~x) =
X
ijk

 ~bi;aj;�k(~x) S(
~bi; aj ; �k): (27)

Such an overcomplete family is called a frame, according to the terminology

introduced by Du�n and Schaefer [21] in the context of nonharmonic Fourier

series. Its existence for speci�c wavelets may be proven along the same lines as

in the 1-D case [17, 18, 19] with similar results [35]. In practical applications,

the in�nite sum will be truncated (a few terms will often su�ce) and the

approximate reconstruction so obtained is numerically stable [18, 19].

The problem, of course, is how to choose the sampling grid in an optimal

fashion. The 2-D wavelet transform too obeys sampling theorems, that give
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lower bounds on the density of sampling points, like the standard Shannon

theorem of signal analysis, only more complicated. In practice, the sampling

points are often �xed empirically, but a systematic exploitation of the repro-

ducing kernel K leads to a minimal dicretization grid [4, 5].

5.2.. The discrete WT in one dimension

One of the successes of the WT was the discovery that it is possible to construct

functions  generating an orthonormal wavelet basis of L2(R). The construc-

tion is based on two facts: �rst, almost all examples of orthonormal bases of

wavelets can be derived from a multiresolution analysis, and then the whole

construction may be transcripted into the language of digital �lters, familiar

in the signal processing literature. As a consequence, it yields fast (pyramidal)

algorithms, and this is the key to the usefulness of wavelets in many applica-

tions. In the 2-D case, the situation is exactly the same, as we shall sketch in

this section. Further information may be found in [19] or [32].

In 1-D, a multiresolution analysis of L2(R) is an increasing sequence of

closed subspaces

: : : � V�2 � V�1 � V0 � V1 � V2 � : : : ; (28)

with
T
j 2ZVj = f0g and Sj 2ZVj dense in L2(R), and such that

(1) f(x) 2 Vj , f(2x) 2 Vj+1

(2) There exists a real function � 2 V0, called a scaling function, such that the

family f�(x� k); k 2 Zg is an orthonormal basis of V0.

Combining conditions (1) and (2), one gets an orthonormal basis of Vj , namely

f�j;k(x) � 2j=2�(2jx� k); k 2 Zg:
Each Vj can be interpreted as an approximation space: the approximation

of f 2 L2(R) at the resolution 2�j is de�ned by its projection onto Vj , and

the larger j, the �ner the resolution obtained. Then condition (1) means that

no scale is privileged. The additional details needed for increasing the resolu-

tion from 2�j to 2�(j+1) are given by the projection of f onto the orthogonal

complement Wj of Vj in Vj+1:

Vj �Wj = Vj+1; (29)

and we have:

L2(R) =
M
j2Z

Wj = Vjo �
0
@ 1M
j=jo

Wj

1
A ; (30)

where jo is an arbitrary lowest resolution level. Then the theory asserts the

existence of a function  , called the mother wavelet, explicitly computable from

�, such that f j;k(x) � 2j=2 (2jx � k); j; k 2 Zg constitutes an orthonormal

basis of L2(R): these are the orthonormal wavelets.
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The construction of  proceeds as follows. First, the inclusion V0 � V1
yields the relation (called the scaling or re�ning equation):

�(x) =
p
2

1X
n=�1

hn�(2x� n); hn = h�1;nj�i: (31)

Taking Fourier transforms, this gives

b�(2!) = m0(!) b�(!); with m0(!) =
1p
2

1X
n=�1

hne
�in!: (32)

Thus m0 is a 2�-periodic function and it satis�es the relation

jm0(!)j2 + jm0(! + �)j2 = 1; a.e.: (33)

Iterating (32), one gets the scaling function as the (convergent!) in�nite prod-

uct

b�(!) = (2�)�1=2

1Y
j=1

m0(2
�j!): (34)

Then one de�nes the function  2W0 � V1 by the relation

b (2!) = m1(!) b�(!); (35)

where m1 is another 2�-periodic function. By the relation (29) and the or-

thonormality of the functions f�j;kg, the functions m0;m1 must satisfy the

identity

m1(!)m0(!) +m1(! + �)m0(! + �) = 0; a.e.: (36)

The simplest solution is to put m1(!) = ei! m0(! + �), which implies, in

particular jm0(!)j2 + jm1(!)j2 = 1, a.e.. Then one obtains

 (x) =
p
2

1X
n=�1

(�1)n�1h�n�1�(2x� n); (37)

and one proves that this function indeed generates an orthonormal basis with

all the required properties. Various additional conditions may then be imposed

on the basic wavelet  : arbitrary regularity, several vanishing moments (in any

case,  has always mean zero), symmetry, fast decrease at in�nity, and even

compact support [19].

Actually, the discussion above means that we have translated the multires-

olution structure into the language of digital �lters (by a �lter, we mean a

multiplication operator in frequency space or a linear convolution in the time

variable). For instance, m0(!) is a �lter, with Fourier coe�cients hn, m1(!) is

another one, and fm0;m1g are called Quadrature Mirror Filters or QMF. Then

the various restrictions imposed on  translate into suitable constraints on the

�lter coe�cients hn. For instance,  has compact support if only �nitely many
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hn di�er from zero (one then speaks of a �nite impulse response or FIR �lter).

The rapidity of the algorithms depends crucially on the length of the �lters

involved, because the pyramidal structure rests on a concatenation of several

�lters.

However, it turns out that the scheme based on orthonormal wavelet bases is

too rigid for most applications and various generalizations have been proposed.

Among them, we may quote: biorthogonal wavelet bases [14], wavelet packets

and the best basis algorithm [15, 32, 40], second generation wavelets and the

so-called `lifting scheme' [37], integer wavelet transforms [13].

5.3.. The discrete WT in two dimensions

In 2-D, the simplest approach consists in building a multiresolution analysis

simply by taking the direct (tensor) product of two such structures in 1-D, one

for the x direction, one for the y direction. If fVj ; j 2 Zg is a multiresolution

analysis of L2(R), then feVj = Vj 
 Vj ; j 2 Zg is a multiresolution analysis of

L2(R2 ). Writing again eVj �fWj = eVj+1, it is easy to see that this 2-D analysis

requires one scaling function : �(x; y) = �(x)�(y), but three wavelets:

	h(x; y) = �(x) (y); 	v(x; y) =  (x)�(y); 	d(x; y) =  (x) (y): (38)

As the notation suggests, 	h detects preferentially horizontal edges, that is,

discontinuities in the vertical direction, whereas 	v and 	d detect vertical and

oblique edges, respectively.

From these three wavelets, one gets an orthonormal basis of eVj by de�ning

f�jkl(x; y) = �j;k(x)�j;l(y); k; l 2 Zg, and one for fWj in the same way, namely

f	�;jkl (x; y); � = h; v; d and k; l 2 Zg. Clearly this construction enforces a

Cartesian geometry, with the horizontal and the vertical directions playing

a preferential role. This is natural for certain types of images, such as in

television, but is poorly adapted for detecting edges in arbitrary directions.

As in the 1-D case, the implementation of this construction rests on a

pyramidal algorithm introduced by Mallat [28, 29]. The technique consists

again in translating the multiresolution structure into the language of QMF,

and putting suitable constraints on the �lter coe�cients.

5.4.. Fast algorithms for the CWT

Besides the full discretization described in Section 5.1, and the discrete WT

just discussed, there is an intermediate procedure, introduced in [22], under

the name of in�nitesimal multiresolution analysis. It consists in discretizing

the scale variable alone, on an arbitrary sequence of values (not necessarily

powers of a �xed ratio). This leads to fast algorithms that could put the CWT

on the same footing as the DWT in terms of speed and e�ciency, by extending

the advantages of the latter to cases where no exact QMF is available. Let us

sketch the method, �rst in 1-D. Further details may be found in [38].
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Instead of the standard L2-normalization used in (1), it is more conve-

nient to choose the L1-normalization, namely to use  (b;a) = a�1 
�
a�1(t� b)

�
.

Then, given a wavelet  , normalized to c = 1, one lumps together all the low

frequency components in a scaling function

�(t) =

Z 1

1

 

�
t

a

�
da

a2
=

1

t

Z t

0

 (s) ds; b�(!) =
Z 1

1

b (a!) da
a
; (39)

and introduces the integrated wavelet

	(t) =

Z
1

1=2

 

�
t

a

�
da

a2
=

1

t

Z
2t

t

 (s) ds; b	(!) =
Z

1

1=2

b (a!) da
a
: (40)

These functions satisfy two-scale relations:

	(t) = 2�(2t)��(t); b	(!) = b�(!=2)� b�(!): (41)

Next, one chooses a regular grid, as opposed to the dyadic one used in the

discrete case, namely:

�jt � �(t;2�j) = 2j�(2j(� � t)); 	
j
t = 2j	(2j(� � t)): (42)

Although the resulting transform will be redundant, it has the great advan-

tage over the conventional DWT of maintaining translation covariance. Then,

exactly as in (30), one gets a discrete reconstruction formula:

s(t) = h�jot jsi+
1X
j=jo

h	jt jsi: (43)

Then assume there exists two functions �0; �1 satisfying the following relations,

analogous to (32), (35),

b�(2!) = �0(!)b�(!); b	(2!) = �1(!)b�(!); a.e. (44)

These functions are not necessarily 2�-periodic. However, since using the regu-

lar grid means sampling �(t) at unit rate, we have to assume that the functionb� is essentially supported in [��; �]. Therefore, in view of the relations (44),

it is reasonable to approximate the functions �0; �1 by 2�-periodic functions

m0;m1. In fact in can be shown [38] that there exists a unique pair m0;m1

that minimizes the quantities

�(�i;mi) =

�Z
R

j(�i(!)�mi(!))b�(!)j2
�1=2

; i = 0; 1;

namely

m0(!) =

P
k2Z

b�(! + 2k�) b�(2! + 4k�)P
k2Zjb�(! + 2k�)j2

; (45)

337



m1(!) =

P
k2Z

b�(! + 2k�) b	(2! + 4k�)P
k2Zjb�(! + 2k�)j2

: (46)

These approximate �lters m0;m1, which are called pseudo-QMF, satisfy the

identity m0(!) +m1(!) = 1.

More exibility is obtained if one subdivides the scale interval [1=2; 1] into

n subbands, by ao = 1=2 < a1 < : : : < an = 1. In that case one ends up

with one scaling function �(t) and n integrated wavelets 	i(t); i = 0; : : : n �
1; corresponding to integration from ai�1 to ai. An additional improvement

consists in periodizing the signal and computing �lters m0;m1 of the same

length as the signal. The resulting pyramidal algorithm has a complexity equal

to one half of the traditional FFT value O(N log2
2
N). Thus one obtains a very

fast implementation of the CWT, truly competitive with the DWT.

The extension to 2-D is straightforward. Starting from an isotropic wavelet

 , one gets a scaling function b�(~k) and a family of isotropic integrated waveletsb	iso
i (~k) � b	iso

i (k), where k = j~kj. But one can do better and design di-

rectional pseudo-QMF as follows. Let f�l(�); l = 1; : : : dg be a resolution of

the identity consisting of C1; 2�-periodic, functions of compact support, i.e.Pd
l=1

�l(�) = 1. Then one obtains a family of directional integrated wavelets,

in polar coordinates, as

b	i;l(k; �) = b	iso

i (k) �l(�); (47)

and indeed one has
dX
l=1

b	i;l(k; �) = b	iso

i (k): (48)

The net result is a discrete, fast, implementation of the 2-D CWT, including

the directional degree of freedom (here the last improvement described above in

the 1-D case becomes crucial). The preliminary applications of this algorithm

look very promising, for instance in directional �ltering [24, 39].

6. The group-theoretical background: Continuous wavelets as

affine coherent states

As already mentioned in Section 2, the CWT is entirely rooted in group theory.

Indeed, the operations of translations, rotations and global dilations make up

the so-called similitude group of the plane (or Euclidean group with dilations),

SIM(2) = R2 o (R+� � SO(2)) (o denotes a semidirect product). Then the

relation

(U(~b; a; �)s)(~x) = s~b;a;�(~x) = a�1 s(a�1 r��(~x�~b)); (49)

de�nes the natural representation of SIM(2) in the Hilbert space L2(R2 ; d2~x)

of �nite energy signals, and it is unitary and irreducible. Furthermore, U is

also square integrable, which means there exists at least one (and in fact a

dense set of) admissible vectors, i.e. vectors  such that the matrix element
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hU(~b; a; �) j i is square integrable over the group, with respect to the Haar

measure dg � a�3d2~b da d�). Indeed a straightforward calculation shows that

ZZZ
jhU(a; �;~b) j ij2 a�3d2~b da d� = c k k2; (50)

where c is the constant de�ned in (5), so that the two notions of admissibility

indeed coincide. From this, one can derive all the properties of the 2-D CWT

described in Section 2 [1, 2].

Now this is not an isolated fact, but an example of a general pattern. In-

deed, let H � L2(Y; d�) be the space of �nite energy signals on a manifold Y ,

and assume there is a transformation group G acting on Y , with a continu-

ous unitary irreducible representation U in H. Assume furthermore that the

representation U is square integrable, that is, there exists at least one nonzero

admissible vector  2 H. Under these conditions, a G-adapted wavelet analysis

on Y may be constructed, following the general construction of coherent states

associated to G, that we now sketch (see [1, 2] for details).

Choose a �xed admissible vector  2 H (the analyzing wavelet). Then

the wavelets are the vectors  g = U(g) 2 H (g 2 G), and the corresponding

continuous wavelet transform (CWT) is de�ned as:

S (g) = h g jsi (51)

Introduce again the linear map W : H ! L2(G; dg) given by (W s)(g) �
c
�1=2
 S (g), where

c =

Z
G

jhU(g) j ij2 dg (52)

and dg denotes the left invariant Haar measure on G. Then the CWT has the

following properties [1, 2], that match exactly those described in Section 2.1:

(i) The CWT is covariant under the action of the group G:

W [U(g)s](go) = (W s)(g
�1go); 8 g 2 G: (53)

(ii) Norm conservation:

c�1

 

Z
G

jS (g)j2 dg =
Z
Y

js(y)j2 d�(y); (54)

i.e. W is an isometry; hence its range, the space of wavelet transforms, is a

closed subspace H of L2(G; dg).

(iii) By (i), W may be inverted on its range by the transposed map, which

gives the reconstruction formula:

s(y) = c�1

 

Z
G

S (g) g(y) dg: (55)
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(iv) The projection from L2(G; dg) onto H is an integral operator with

kernel K(g; g0) = c�1

 h g j g0i; that is, the auto-correlation function of  , also

called a reproducing kernel; in other words, a function f 2 L2(G; dg) is a WT

i� it satis�es the reproducing relation:

f(g) = c�1

 

Z
G

h g j g0 if(g0) dg0: (56)

Now it may happen that the analyzing wavelet  has a nontrivial isotropy

subgroup H , up to a phase, i.e.

U(h) = ei�(h) ; h 2 H : (57)

In this case, the whole construction may be performed [1, 2] under a slightly

less restrictive condition, namely the representation U need only to be square

integrable on the coset space X = G=H . Then one obtains wavelets indexed

by the points of X , namely  x = U(�(x)) (x 2 X), where � : X ! G is an

arbitrary section.

The interested reader may �nd the detailed theory in the review [1] and pa-

pers quoted there. It is then easy to see that all the properties of the 2-D CWT

discussed in Section 2 are simply the particularization to the group SIM(2) of

those listed above.

The advantage of this point of view is twofold. First, it shows that the

CWT is �rmly based on mathematical theorems, not numerical recipes. Then,

it allows the extension of the CWT to a host of other situations, such as 3

space dimensions, the 2-sphere and similar manifolds, and also to space-time

(time-dependent signals or images, such as TV or video sequences), including

relativistic e�ects (using wavelets associated to the a�ne Galilei or Poincar�e

group). We refer the reader to [10, Chapter 2] or to [1, 2] for further details.

7. Applications of the 2-D CWT

The 2-D CWT has been used by a number of authors, in a wide variety of

physical problems [16, 33, 34]. In all cases, its main use is for the analysis

of images. It can be used for the detection of speci�c features, such as a

hierarchical structure, edges, �laments, contours, boundaries between areas of

di�erent luminosity, etc. Of course, the type of wavelet chosen depends on the

precise aim. An isotropic wavelet (mexican hat) su�ces for pointwise analysis,

but an oriented wavelet (Morlet, Cauchy) is more e�cient for the detection of

oriented features in the signal, that is, regions where the amplitude is regular

along one direction and has a sharp variation along the perpendicular direction.

In this section, we will quickly list the most signi�cant applications. We

refer the reader to [10], in particular Chapter 2, for a detailed survey, including

the original references.

340



Figure 3. CWT of a thick letter `A', with a mexican hat and a = 0:075, in

level curves. (a) the letter; (b) the WT, showing the contours.

7.1. Pointwise analysis

{ Contour detection, character recognition: since the CWT is sensitive to

discontinuities, it is very e�cient for detecting the contour [3, 35] or the

edges of an object [25, 31] (which are discontinuities in luminosity). An

immediate application is automatic character recognition in optical reading

(see Figure 3).

{ Analysis of 2-D fractals [8], either arti�cial (numerical snowakes, di�usion

limited aggregates) or natural (electrodeposition clusters, various arbores-

cent phenomena); here the (a; �) representation is useful, since it presents

the signal at all scales at once; particular applications include the measure-

ment of the fractal dimensions and the unraveling of universal laws (mean

angle between branches, azimuthal Cantor structures, . . . ).
{ Analysis of astronomical images: the CWT has been used for several pur-

poses, such as removal of background sky, unraveling of the hierarchical

structure of a galactic nebula, or that of the universe itself (galaxy counts,

detection of galaxy clusters or voids); detection of Einstein gravitational

arcs in cosmological pictures, with an annular wavelet.
{ Determination of the local regularity of a signal, by estimation of local

Lipschitz exponents.
{ Medical physics and psychophysics: modelling of human vision, e.g. def-

inition of local contrast in images (actually a nonlinear extension of the

CWT), medical imaging, in particular 2-D NMR imaging and tomography.

7.2. Applications of directional wavelets

{ Fluid dynamics: the CWT has been applied succesfully to the analysis of

2-D developed turbulence in uids, in particular the localization of small

scales in the distribution of energy or enstrophy [23]; other applications in
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Figure 4. Analysis of an octagonal pattern : (a) the pattern; (b) the local

maxima of its scale angle measure �S(a; �); this pattern has a rotation symme-

try by �=4, and two distinct mixed symmetries, consisting of a rotation by �=8

combined with a dilation by �1 =
p
2 cos(�=8), resp. �2 = 2 cos(�=8). Homol-

ogous maxima are linked by a line segment, continuous for �1 and dashed for

�2.

uid dynamics include the visualization and measurement of a velocity �eld

with help of an directional wavelet, or the disentangling of a wave train.
{ Detection of symmetries: directional wavelets may be used for detecting

(hidden) dilation-rotation symmetries in patterns, such as Penrose tilings

or the di�raction spectrum of a quasi-crystal [6, 39]. The tool here is the

so-called scale-angle measure of the signal, namely the positive function

�S(a; �) =

Z
jS(~b; a; �)j2 d2~b �

Z
j b (ar��(~k))j2 jbs(~k)j2 d2~k: (58)

Figure 4 shows an example of this analysis.
{ Other applications of the CWT with directional wavelets include the anal-

ysis of geological faults, or that of textures, both of which usually carry

oriented features.

By contrast, the DWT is used mainly whenever data compression is es-

sential, in particular for the reconstruction of a signal after some kind of pre-

processing. Typical applications would be, for instance, the representation of

images in terms of wavelet maxima, image compression and coding (e.g. in

HDTV), image and signal denoising, or identi�cation of �ngerprints (the algo-

rithm used by the FBI [11]).

8. Conclusion

As in 1-D signal analysis, wavelet techniques have become an established tool in

image processing, both in their DWT and CWT incarnations and their gener-

alizations. Actually the DWT and the CWT have almost opposite properties,
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hence their ranges of application di�er widely too. The DWT and its gen-

eralizations are fast and economical, they yield for instance impressive data

compression rates, which is especially useful in image processing, where huge

amounts of data, mostly redundant, have to be stored and transmitted. It is

also the most popular wavelet technique. On the other hand, the CWT is very

e�cient at detecting speci�c features in signals or images, such as in pattern

recognition or directional �ltering, and thus it is often a better tool for analysis.

Furthermore, fast CWT algorithms are increasingly available, and this should

dispel the wrong, but widely held, belief that the CWT is too cost intensive

for practical applications.
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