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Implicit Runge{Kutta (IRK) methods are cherished for their stability properties

when solving Ordinary Di�erential Equations (ODEs). Unfortunately, computa-

tional complexities render them less competitive than implicit Linear Multistep

methods overall. Several modi�cations have surfaced to make IRKs more vi-

able. One such modi�cation that arose almost two decades ago in an attempt to

make IRKs similar in complexity to implicit Linear Multistep methods is denoted

Mono-Implicit Runge-Kutta (MIRK) methods. In this paper, progress in this

area is surveyed via parallel MIRK methods for initial value ODE systems.

1. Introduction

The numerical solution of systems of initial value ordinary di�erential equa-

tions, i.e. initial value problems (IVPs), of the form,

y0(t) = f(y(t)); y(t0) = y0; (1)

where y 2 Rm and f : Rm ! R
m has received considerable attention in the 20th

century. Classical accountings include Burrage [4], Butcher [7], Hairer

and Wanner [15], and back to Henrici [16]. When the IVP is sti�, implicit

Runge{Kutta (IRK) methods (see, for example [7] and references therein) are

commonly used to provide a numerical solution. For the nth step, using a

stepsize h, an s-stage IRK method has the form

yn+1 = yn + h

sX
i=1

bif(Yi); (2)

with
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Yi = yn + h

sX
j=1

ai;jf(Yj); i = 1; : : : ; s: (3)

Note that each unknown, Yi, is de�ned implicitly in terms of itself and the

other unknowns. These schemes are normally given in terms of the compact

Butcher tableau

c A

bT ;

where c = Ae, c = (c1; c2; : : : ; cs)
T , b = (b1; b2; : : : ; bs)

T and A is the s by s

matrix whose (i; j)th component is ai;j , and e is the s-dimensional vector of

1's.

Newton's method is usually employed to solve the system of s�m nonlinear

equations given in (3) in order to determine the intermediate values, Yi. As

pointed out by several authors (see, for example, Reusch et al. [21]), this

is one of the undesirable features of implicit Runge{Kutta methods rendering

them less competitive than other methods, such as Backward Di�erentiation

Formulas (BDFs). More speci�cally, Newton's method leads to an iteration

matrix (Ims � hA 
 J), where J is an approximation to the Jacobian @f

@y
.

Since the costs of the linear algebra associated with the solution of the re-

sulting linear systems generally dominate the overall cost of the computation,

many subclasses of IRK methods, such as diagonally implicit (DIRK) meth-

ods [1], singly implicit (SIRK) methods [5], mono{implicit (MIRK) methods

[11], multi{implicit Runge{Kutta methods ( for example, see [2] where they are

also referred to as MIRK methods), and parallel diagonally{implicitly iterated

Runge{Kutta (PDIRK) methods ([17], [12]) have been developed to attempt to

reduce these costs, usually by decoupling this large system of s�m equations

into s systems each of dimension m.

In this paper we are concerned with the design of MIRK methods that

are inherently parallel in that the s systems of equations are apportioned to

s concurrent processors, that is, parallelism across the method. The following

sections consider the evolution of this design beginning with the original MIRKs

discussed by Cash [8], and formally designated MIRKs by Cash and Singhal

[11].

2. Sequential MIRK schemes

When applied to (1) with integration stepsize h, MIRK methods have the form

yn+1 = yn + h

sX
i=1

bif(Yi); (4)

where
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Yi = (1� vi)yn + viyn+1 + h

i�1X
j=1

xi;jf(Yj); i = 1; : : : ; s: (5)

Thus the stages of a mono{implicit Runge{Kutta scheme are implicit only in

yn+1. MIRK methods are usually represented by the modi�ed tableau

c v X

bT ;

where v = (v1; v2; : : : ; vs)
T , c = v + Xe, and X , the s by s matrix whose

(i; j)th component is xi;j , is strictly lower triangular. The MIRK scheme (4){

(5) is equivalent to the IRK scheme (2){(3) with A = X + vbT .

The computational advantages associated with MIRK formulas, compared

with fully implicit Runge{Kutta formulas, were �rst pointed out in Cash [8].

Cash proposed the general class of formulas to be of form (4){(5), with

vi = 1; 1 � i � r; (6)

vi = 0; xi;j = 0; r + 1 � i � s; 1 � j � r;

where r is an integer satisfying s � r � [ 1
2
s] which, consequently, yields the

potential for A{stability. With this class of MIRKs, the system of m nonlinear

equations implicitly de�ning yn+1 is given by

F (yn+1) � yn+1 � yn � h

sX
i=1

bif(Yi); (7)

and the Newton iteration scheme for the solution of this system is

JF (y
(l)
n+1)�y

(l)
n+1 = �F (y(l)n+1); y

(l+1)
n+1 = y

(l)
n+1 +�y

(l)
n+1; l = 0; 1; : : : : (8)

Note that the expression for JF (y
(l)
n+1) involves the evaluation of @f

@y
at several

points. For example, with s = 3 and r = 2, this particular brand of MIRK

formulas has form

yn+1 = yn + h

3X
i=1

bif(Yi) (9)

Y1 = yn+1

Y2 = yn+1 + hx2;1f(Y1):

Y3 = yn:

The corresponding system of equations to be solved has form (8) where

JF (y
(l)
n+1) = I � hb1J1(y

(l)
n+1)� hb2J2(y

(l)
n+1)[I + hx2;1J1(y

(l)
n+1)] (10)
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and

J1(y
(l)
n+1) =

@f

@y
(y

(l)
n+1)

J2(y
(l)
n+1) =

@f

@y
(y

(l)
n+1 + hx2;1f(y

(l)
n+1)):

While the linear system has only dimension m, the Jacobian matrix @f

@y
must

be evaluated twice and the product J2(y
(l)
n+1)J1(y

(l)
n+1) computed. These com-

putational aspects were considered in [9] where the coe�cients of the MIRK

formula were chosen so that, for example, the Newton iteration matrix (10)

factorizes exactly as

JF = (I � b2hJ2)(I � b1hJ1); (11)

from which it necessarily follows that b2 = �x2;1. Even with this factorization,

Cash and Singhal [11] note that the amount of work required to solve the

system of equations is still twice that of linear multistep methods. The usual

modi�cation of Newton's method approximates the partial derivatives in JF at

the same point rendering it a polynomial in J � @f

@y
. With this modi�cation, a

particularly e�cient second order MIRK arises as the Newton iteration matrix

(10) factorizes as a perfect square

JF = (I � �hJ)2; (12)

where � = 1� 1p
2
, and the remaining coe�cients are given by [11]:

b3 = 1� 2�; b2 =
(b3 � 1

2
)2

1
3
� b3

; b1 = 1� b3 � b2; x2;1 =
1
3
� b3

b3 � 1
2

: (13)

MIRKs of orders up to and including six have been proposed by Cash ([8],

[9],[10]), and by van Bokhoven [3] where they were denoted implicit endpoint

quadrature formulas. Higher order formulas do not readily admit perfect power

factorizations of JF and Cash and Singhal [11] followed the approach of

Skeel and Kong [22] wherein JF in a sense nearly factorizes as a power of a

single matrix to generate e�cient higher order, L{stable MIRKs.

Applying MIRK schemes (4){(5){(6) to the scalar test equation _y = �y,

Re� < 0, we obtain yn+1 = R(q)yn, with rational stability function

R(q) =
N(q)

D(q)
; q = �h; (14)

where N(q) is a polynomial of degree s� r and D(q) is a polynomial of degree

r. For A{stability, using the concept of an E{polynomial developed by N�rsett

[19] and de�ning

E(y2) = jD(iy)j2 � jN(iy)j2;
the corresponding methods will be A{stable if, and only if, D(q) has no zeros in

the left{hand plane Re(q) < 0, and E(y2) � 0 for all positive real arguments.

N�rsett and Wolfbrandt [20] considered rational approximations to eq

with real poles of the form
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1 + �1q + �2q
2 + �nq

n

(1� �1q)(1� �2q) : : : (1� �mq)
� eq; (15)

and showed that, ifm � n, the maximum obtainable order forA-stable methods

is n+1 and that the approximation of order n+1 with least absolute value of

the error constant occurs in the case of repeated poles, �i = �, 1 � i � m. For

example, with n = 1 and m = 2 in(15),

1 + �q

(1� �q)2
; � =

p
2� 1; � = 1�

p
2

2
; (16)

is the second order approximation to eq with smallest error constant

C�
3 =

4� 3
p
2

6
� �0:0404; (17)

and coincides with the stability function of the second order MIRK (13) pos-

sessing a perfect square iteration matrix (12).

3. Parallel MIRK schemes

MIRKs with perfect power Newton iteration matrices were built for sequential

computers. The potential for parallelism across the method was investigated

by Voss ([24], [25]) for a special brand of MIRKs, denoted PaMIRK(r), of form

(4){(5){(6) with s = 2r � 1, that is, with r implicit stages and r � 1 explicit

stages.

With r implicit stages, the Newton iteration has the form

JF (yn+1) = I � h

rX
i=1

biJiBi (18)

with

Ji � Ji(yn+1) = Jf (yn+1 + h

i�1X
j=1

xi;jf(Yj))

and

Bi = I + h

i�1X
j=1

xi;jJjBj ;

for 1 � i � r.

As in [10], factorizing (18) into the r linear factors

JF (yn+1) =

r�1Y
i=0

(I � br�ihJr�i) (19)

requires that for 1 � j � r � 1,

xi;j = �bj ; i = j + 1; : : : ; r: (20)
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This natural factorization still leaves free r
2
(r + 1) of the r2 parameters occur-

ring in the MIRKS. Natural parallelism surfaces if the usual modi�ed Newton

iteration scheme resulting from setting Ji = J; 1 � i � r is used, and the inverse

of the iteration matrix in (19) is decomposed into a partial fraction expansion

of the form

J�1F (yn+1) =

rX
i=1

wi(I � bihJ)
�1; (21)

from which it follows that

wi =
br�1iQr

j=1

j 6=i
(bi � bj)

; 1 � i � r; (22)

provided fbigri=1 are distinct.
The Butcher matrix for this brand of MIRKs has form

A =

2
66666666666666664

b1 b2 b3 : : : br br+1 br+2 : : : : : : bs
0 b2 b3 : : : br br+1 br+2 : : : : : : bs
0 0 b3 : : : br br+1 br+2 : : : : : : bs
...

...
...

. . .
...

...
...

...
...

...

0 0 0 : : : br br+1 br+2 : : : : : : bs
0 0 0 : : : 0 0 0 : : : : : : 0

0 0 0 : : : 0 xr+2;r+1 0 : : : : : : 0

0 0 0 : : : 0 xr+2;r+1 xr+2;r+2 0 : : : 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 : : : 0 xs;r+1 xs;r+2 : : : xs;s�1 0

3
77777777777777775

;

and it is immediately apparent that the natural factorization (19){(20) results

in the Butcher matrix having r real distinct eigenvalues, bi; i = 1 : : : r, and a

(r � 1){fold eigenvalue at 0. In general, the potential for parallelism in IRK

methods arises when the Butcher matrix has real and distinct eigenvalues as

a similarity transformation can be applied to decouple the stages so that each

stage can be performed in parallel. In the case of PaMIRK(r) methods this

transformation is unnecessary since with the expansion (21), using Newton's

method to resolve the r implicit stages involves the solution of r independent

real linear systems of the form

(I � bihJ(y
(l)
n+1))4i y

(l)
n+1 = �F (y(l)n+1); 1 � i � r;

on r processors. The resulting increment is

�y
(l)
n+1 =

rX
i=1

wi 4i y
(l)
n+1

and, as depicted by Sweet [23], a highly recursive multiplicative algorithm is

converted into an additive parallel algorithm.
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For this brand of MIRKs the stability function has form (14) where N(q)

is a polynomial of degree r � 1 and

D(q) =

rY
i=1

(1� biq):

Consequently, the resulting methods will be strongly stable at in�nity if bi 6=
0; 1 � i � r: D(q) has no zeros in the left{hand plane Re(q) < 0 if

bi > 0; 1 � i � r: (23)

With the constraints (20) and (23), the remaining parameters were deter-

mined so that the corresponding parallel Runge{Kutta schemes listed in [25]

were L{stable and possessed order r, r � 4. In particular, the second order

PaMIRK(2) method

yn+1 = yn +
h

12
(3f(Y1) + 4f(Y2) + 5f(Y3)) (24)

Y1 = yn+1

Y2 = yn+1 � h

4
f(Y1):

Y3 = yn;

was used to provide an e�cient coarse grain time{stepping parallel algorithm

in the solution of linear, multidimensional second order time dependent PDEs

via the Method of Lines semidiscretization approach [26]. Its stability function

R(q) =
1 + 5

12
q

(1� 1
3
q)(1� 1

4
q)

possesses error constant C3 = � 1
24

� C�
3 , where C�

3 is the optimum error

constant given in (17).

Unfortunately, in common with DIRKs, these MIRKs all possessed stage

order one which is of some concern since the phenomenon of order reduction

[14] can arise with the potential of causing these IRKs to behave as if their

order were only their stage order. While convenient, the natural factorization

(20) severely restricted the MIRK stage order due primarily to the presence

of explicit stages. Recently Voss and Muir [27] investigated the full class

of MIRKs, denoted MIRKspq, indicating a MIRK scheme having s stages, of

order p, and having stage order q. Returning to the modi�ed Newton iteration

scheme, Ji = J , for this case, (10) has the form

JF (yn+1) = I � (bT v)hJ � (bTXv)(hJ)2 � : : :� (bTXs�1v)(hJ)s; (25)

and, again, parallelism across the method surfaces if (25) is expressible in the

form

JF (y
(l)
n+1) =

sY
i=1

(I � �ihJ(y
(l)
n+1)); (26)
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where �i; i = 1 : : : s, are distinct. The Butcher matrix for the general MIRK

class (4){(5) is given by

A =

2
666664

v1b1 v1b2 : : : v1bs
x2;1 + v2b1 v2b2 : : : v2bs

...
...

. . .
...

xs;1 + vsb1 xs;2 + vsb2 : : : vsbs

3
777775
:

For general IRKs (2){(3) the linear stability function can be written in the

form (see, for example, Dekker and Verwer [13])

R(q) =
det[I � qA+ qebT ]

det[I � qA]
: (27)

More recently, Muir and Enright [18] give R(q) for MIRKs (4){(5) in the form

R(q) =
1 + qbT (I � qX)�1(e� v)

1� qbT (I � qX)�1v
: (28)

Since X is strictly lower triangular,

(I � qX)�1 = I + qX + q2X2 + : : :+ qs�1Xs�1;

so that the denominator in (28) becomes

D(q) = 1� (bT v)q � (bTXv)q2 � : : :� (bTXs�1v)qs: (29)

Clearly, D(hJ) = JF in (25) and the goal is to �nd distinct �i; i = 1 : : : s, that

is, the eigenvalues of the Butcher matrix A, such that
Qs

i=1(1 � �iq) = D(q).

Expanding and equating the coe�cients of like powers of q results in the system

of equations for �i:

�1 + : : :+ �s = bT v;

�1 � �2 + �1 � �3 + : : :+ �s�1 � �s = �bTXv; (30)

: : : ;

�1 � : : : � �s = (�1)s�1bTXs�1v:

A MIRK scheme has order p if its local error is O(hp+1); for Runge{Kutta

schemes this is imposed by requiring the coe�cients of the scheme to satisfy

a set of equations called order conditions (see [7]). A MIRK scheme has stage

order q if it has coe�cients which satisfy the conditions,

Xck�1 +
v

k
=

ck

k
; k = 1; : : : ; q: (31)
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Order barriers for this class of MIRKs were established by Burrage et al.

[6] and are given in the next two theorems.

Theorem 3.1. The maximum order of an s{stage MIRK cannot exceed s+1.

Theorem 3.2. The maximum stage order of an s{stage MIRK is min(s,3).

In [27], parallel MIRK methods through order 4 were derived possessing

stage order at most 3, the maximum possible. The derivation process employed

consisted of selecting or determining families of MIRK schemes, in terms of the

�i parameters, with a given number of stages, a given order, and a given stage

order. Subject to the restrictions that the �i's be real, distinct, and positive,

and that the MIRK scheme be A{stable, free parameters were chosen to yield

optimal schemes according to the following criteria: (a) minimize jjTp+1jj, the
norm of the vector of truncation error coe�cients of order p+1 associated with

the MIRK scheme (see [7]), subject to the constraint that the ratio of jjTp+2jj
to jjTp+1jj is not too large, (b) minimize jjwjj, the norm of the vector of wi

coe�cients arising in (21), and (c) minimize jj�jj, the norm of the vector of �i
coe�cients.

For example, an L{stable MIRK222 is given by the following tableau along

with its stability function

1 1 0 0

4
45

344
2025

� 164
2025

0

37
82

45
82

; R(q) =
1 + 41

90
q

(1� q

10
)(1� 4q

9
)
: (32)

It has jjT3jj � 0:086, jjwjj � 1:3, jj�jj � 0:46, and jjT4jj � 0:11. The superior

performance of this and other MIRKspr methods on problems (for example,

see [12]) where DIRK schemes su�er order reduction appears in [27].

4. Conclusion

The design of parallel MIRKs was addressed, and on a machine with at least p

processors, the computational complexity of a pth{order parallel MIRK method

is similar to that of an implicit Linear Multistep method as it e�ectively requires

only one implicit stage per step whose solution involves a linear function of the

Jacobian. Moreover, unlike DIRK methods which have stage order at most

one, higher order MIRK methods with stage order up to and including three

have been determined [27].
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