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We analyse and numerically study streamline�di�usion �nite element methods
applied to a singularly perturbed convection�di�usion two�point boundary value
problem whose solution has a single boundary layer� We �rst consider arbitrary
meshes� then in analysing the scheme on a Shishkin mesh� we consider two for�
mulations on the �ne part of the mesh� the usual streamline di�usion upwinding
and the standard Galerkin method� The error estimates we report are given in
the discrete L� norm and in particular describe the dependence of the error
on the user�chosen parameter �� specifying the mesh� When �� is too small�
the error becomes O���� but for �� above a certain threshold value� the error is
small and increases very slowly as a function of ��� Numerical tests support the
theoretical results for the L� norm�

�� Introduction

We consider the singularly perturbed boundary value problem

�Lu��x� �� ��u���x� � a�x�u��x� � f�x� for x � ��� ��� ��	��

u��� � u��� � ��

where � is a small positive parameter
 a�x� � � � � for all x � ��� �� and some
constant �
 and the functions a and f are suciently smooth	 The solution of
��	�� has a boundary layer at x � � �see
 e	g	
 ���
 ����	

���



Convection�di�usion problems of this type arise in linearised versions of the
Navier�Stokes equations
 so it is important to devise e�ective methods for their
numerical solution	 Many such methods have been proposed in the literature�
see ���� for a survey	

In this context
 one of the most commonly used numerical methods is the
streamline�di�usion �nite element method �SDFEM�
 which combines good
stability properties with high accuracy	 It was introduced by Hughes and
Brooks ��� and its convergence properties have been studied by many authors
��
 �
 ��
 ��
 ���	 The method has also been extended to much more compli�
cated problems
 such as the incompressible Navier�Stokes equations ��
 �
 ���	
Nevertheless
 the precise behaviour of the SDFEM on nonuniform meshes is
unknown	 As a �rst step towards a better understanding of the properties of
the SDFEM on meshes that are designed for convection�di�usion problems
 we
shall give a sharp analysis of its behaviour when it is used to solve ��	�� on
arbitrary and special meshes	

Recently
 several upwind �nite di�erence methods for ��	�� have been stud�
ied on special meshes ��
 �
 ��� and ��uniform convergence results have been
proved	 The di�erence schemes produced by the SDFEM di�er from these up�
wind methods	 The most prominent di�erence is that
 unlike the methods in
��
 �
 ���
 the SDFEM scheme loses consistency at any mesh point where the
local mesh is nonuniform	

In this paper
 we shall develop techniques sharper than those of ��
 �
 ��� to
analyse the SDFEM	 In particular
 we are able to make precise the relationship
between the error in the numerical solution and the user�chosen mesh parameter
for the well�known Shishkin mesh	 Previous work on the e�ect of varying this
parameter has been con�ned to numerical experiments �see
 e	g	
 ���
 where an
alternative di�erence method is used on the Shishkin mesh�	

Let our mesh be de�ned by � � x� � x� � � � � � xN � �� where N is
some positive integer	 For i � �� � � � � N we set xi���� � �xi�� � xi��� and
hi � xi � xi��	 Let H � maxi hi	 Given a mesh function v � fvig
 de�ne the
forward and backward di�erence operators D� and D� by

D�vi ��
vi�� � vi
hi��

and D�vi ��
vi � vi��

hi
�

respectively	
Let 	i
 for i � �� � � � � N 
 be the usual basis functions for the space of piece�

wise linear functions
 viz	


	i�x� ��

�����
����

x� xi��
hi

for x � �xi��� xi�

xi�� � x

hi��
for x � �xi� xi���

� for x �� �xi��� xi���

�

Set V N �� spanf	�� � � � � 	N��g	 The SDFEM for solving ��	�� is de�ned as
follows�
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Find uN � V N such that
 for all vN � V N 


NX
i��

Z xi

xi��

��u�Nv
�
N � au�NvN � au�N
i����av

�
N � dx

�
NX
i��

Z xi

xi��

f�vN � 
i����av
�
N � dx� ��	��

Here 
i���� is called the streamline di�usion parameter
 or SD�parameter for
short	 If 
i���� � � for i � �� � � � � N 
 then we get the standard Galerkin
discretization for ��	��
 which is known to produce nonphysical oscillations
unless the mesh is very �ne	

In order to evaluate the integrals in ��	�� we apply the standard midpoint
rule Z xj

xj��

��x� dx � �xj � xj�����xj������

Let the discrete solution of ��	�� be

uN �x� �

NX
i��

ui	i�x��

Then
 taking vN � 	i for i � �� � � � � N � � in ��	��
 we get the scheme

LN �ui� � �i����fi���� � �i����fi���� � for i � �� � � � � N � �� ��	��

u� � uN � � �

where

LN �ui� �� � �

hi
fD�ui �D�uig

��i����ai����D�ui � �i����ai����D�ui � ��	��

and

�i���� ��
hi�� � �
i����ai����

�hi
� �i���� ��

hi � �
i����ai����

�hi
�

When � is small relative to the local meshsize
 a standard way of stabilizing
this scheme is to choose 
i���� according to the formula


i���� � hi�����ai������ ��	��

For this special choice the scheme ��	�� becomes

LN
� �ui� �� � �

hi
fD�ui �D�uig� ai����D�ui

� fi���� � for i � �� � � � � N � �� ��	��

u� � uN � � �

���



If the local meshsize is small enough � in particular if ai����hi�� � ��
� then the standard Galerkin method works well
 so it is possible to choose

i���� � �	 Thus the second special scheme that we consider is ��	�� with the
choice


i���� �

��
�

�� if ai����hi�� � ���
hi��

�ai����
� if ai����hi�� � ���

��	��

This generates a scheme whose di�erence operator we call LN
� 	

In all variations of the SDFEM
 one always chooses 
i���� in such a way
that � � 
i���� � hi�����ai�����	 Thus we shall assume that �i���� � �
and �i���� � ���	 Moreover
 we add a condition that guarantees that the
di�erence scheme satis�es a discrete maximum principle �Lemma �	� below��
we shall henceforward assume that the parameters � and � satisfy

�

hiai����
� �i���� � � and �i���� � ��� for all i� ��	��

Both our special choices �LN
� and LN

� � satisfy ��	��	

Remark ���� When the functions a and f are constants� then the choice


i���� �
hi��

�a

�
coth

ahi��

��
� ��

ahi��

�
��	��

yields the exact solution at all nodes ���� For this choice of 
� if the mesh is
�xed then

lim
����


i���� �
hi��

�a
�

That is� the choice �	�
� is essentially the limiting case of �	��� when � is small
compared with the local meshsize�

The plan of the paper is the following	 First
 in Section �
 we outline an
analysis of the scheme on a general mesh	 In Section � we study its behaviour
on a Shishkin mesh
 which is a piecewise uniform mesh	 The transition point
that separates the coarse and �ne portions of the Shishkin mesh is given by

��  �� ��min

�
�

�
�
�
�
� logN

�
�

where � is a user�chosen parameter	 While Shishkin meshes have been used
to compute numerical solutions of many singularly perturbed di�erential equa�
tions
 no previous analysis has revealed the relationship between � and the
error in the computed solution	 We state the results of such an analysis here	
In Section � we describe numerical experiments that demonstrate both the
accuracy obtained when using the Shishkin mesh and the sharpness of the
theoretical relationship between the error and � that was proved in Section �	
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Full details of the analysis outlined here can be found in ����	
Notation	 Throughout the paper C will denote a generic positive constant that
is independent of � and the mesh	 In the particular case of a Shishkin mesh
�Sections � and �� it will also be independent of �	 When we write
 e	g	

gj � O��hj�
 we mean that jgj j � C�hj �and note that C is independent of j�	

�� Error Estimate on an Arbitrary Mesh

The following ingredients are essential in the analysis leading to our error esti�
mates	

� Decomposition of the exact solution ��	�� into smooth and layer parts

which can be found in ����

Lemma ���� The solution u of �	�	� can be decomposed as u�x� � G�x� �
E�x� on ��� ��� where for any prescribed �nite order q and � � x � �� the
smooth part G satis�es LG�x� � f�x� and

jG�k��x�j � C for k � �� �� � � � � q � ��	��

while the layer part E satis�es �LE��x� � �� and

jE�k��x�j � C ��k e�����x��� for k � �� �� � � � � q� ��	��

� Discrete Maximum Principle�

Lemma ���� The discrete operator LN satis�es a discrete maximum prin
ciple� i�e�� if fvig and fwig are mesh functions that satisfy v� � w��
vN � wN � and LN �vi� � LN�wi� for i � �� � � � � N � �� then vi � wi

for all i�

When the conditions of Lemma �	� are satis�ed
 we say that fwig is a
barrier function for fvig	

� Barrier Functions�

Set � � ���	

Lemma ���� Let zi �� � � xi for i � �� �� � � � � N� Then LN�zi� � �� for
i � �� � � � � N � ��

Lemma ���� For i � �� � � � � N � de�ne the mesh function

Si �
iY

j��

�
� �

�hj
�

�

���



�with the usual convention that if i � �� then S� � ��� Then� for i �
�� � � � � N � �� we have

LN �Si� � C

maxf�� hig Si �

for some positive constant C�

Corollary ���� For the particular case when LN � LN
� � Lemma ��� still

holds true if � is replaced by � in the de�nition of Si�

� Stability for the discrete operator LN �

The following Lemma enables us to bound the pointwise error in terms of a
discrete L� norm of the consistency error	 In the terminology of ����
 it says
that LN is ��� ���stable
 just as the di�erential operator L is ��� ���stable
because its Green�s function is bounded pointwise	

Lemma ���� Write MN for the �N ���� �N ��� matrix of the di�erence
scheme LN � where the boundary conditions are handled by �MN ���� � ��
�MN ���i � �MN�N�i�� � � for i � �� � � � � N � and �MN �N�N � �� Then for
any �N � ��dimensional row vector v � ��� v�� v�� � � � � vN��� ��� we have�
for each i�

jvij � C

N��X
j��

hj j�MNv
T �j j�

where T denotes transpose�

� Sharp estimate of the layer part�

Lemma ���� For each i and any constant k � �� we have

exp

�
�k��� xi�

�

�
�

NY
j�i��

�
� �

khj
�

���
� ��	��

Now we formulate the main statement of this section	

Theorem ���� Let u be the solution of �	�	� and fuig the solution of �	����
Assume that H is su�ciently small �independently of ��� Then� for each i� we
have

ju�xi�� uij � CH���H� � C�
N��X
j��

j
j����aj���� � 
j����aj����j

�C

NY
j�i��

�
� �

�hj
�

���
� ��	��

���



We can sharpen this result for the special case of LN
� 	

Corollary ���� Let u be the solution of �	�	� and fuig the solution of �	���
�i�e�� the solution computed using LN

� �� Assume that H is su�ciently small
�independently of ��� Then� for each i� we have

ju�xi�� uij � CH���H� � C�
N��X
j��

jhj�� � hj j� C
NY

j�i��

�
� �

�hj
�

���
�

Theorem �	� also implies the following simpler but weaker result for the
general di�erence scheme LN 	

Corollary ���� Let u be the solution of �	�	� and fuig the solution of �	����
Assume that H is su�ciently small �independently of ��� Then� for each i� we
have

ju�xi�� uij � C���H�� � C

NY
j�i��

�
� �

�hj
�

���
�

�� Estimate on a Shishkin Mesh

The accuracy of our computed solution will be improved if we use a mesh
that �at least partly� resolves the boundary layer	 Many adaptive and special
meshes proposed in the literature set out to do this	 �See ���� for a summary
of previous work in this direction	� In particular
 Shishkin ���� introduced
piecewise uniform meshes of this type
 which are simpler to handle than graded
grids	

A Shishkin mesh for ��	�� is de�ned in the following way� let N be an even
integer	 Set

 � min

�
�

�
�
�
�
� lnN

�
�

where the constant � is independent of � and N 	 Divide each of the intervals
��� �� � and ���� �� into N�� equidistant subintervals	 In practice one usually
has  �� �
 so the mesh is coarse on ��� ��  � and �ne on ��� � ��	

We shall assume that  � ������ lnN 
 as otherwise N is exponentially
large relative to ���
 which is very unlikely in practice and implies that any
reasonable numerical method will yield accurate results for ��	��	 We denote
the mesh width of each subinterval in ��� � �� by h	 Then it is easy to see that

N�� � H � �N�� and h �
��
�
�N�� lnN� ��	��

The simple structure of the Shishkin mesh allows us to express the result of
Theorem �	� in a more accessible form for our special schemes LN

� and LN
� 	

Our �rst theorem gives an estimate for the error in the solution computed
by LN

� 
 expressed in terms of the parameter �
 under a mild condition on the
size of N �see Remark �	��	
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Theorem ���� Let u be the solution of �	�	�� Let our mesh be the Shishkin
mesh described above� Assume that H is su�ciently small �independently of
�� and that �N

�� lnN � �� Let fuig be the solution computed by the scheme
�	��� that de�nes LN

� � Then for each i we have

ju�xi�� uij � Cmax

�
N��� exp

�
����
e�
p
N

�
� �N

�� lnN

�
�

Remark ���� In practice one typically has � � ��� ���� so our assumption that
�N

�� lnN � � is not restrictive�

Now we move on to our alternative SDFEM
 LN
� 	 As we shall see in Theorem

�	�
 its virtue is that on the Shishkin mesh it attains almost second�order
accuracy when � � �	 First we state a sharper version of Lemma �	� for LN

�

on the Shishkin mesh
 under two mild conditions on N 	

Lemma ���� For i � �� � � � � N��� let Si be the mesh function de�ned in Lemma
��� with � replaced by �� Assume that our mesh is the Shishkin mesh� that
�N

�� lnN � ���max����	 a�	� and that ��N � �� Then� for i � �� � � � � N � ��
we have

LN
� �Si� � C

maxf�� hig Si�

for some positive constant C�

The conditions �N
�� lnN � ���max����	 a�	� and ��N � � are reasonable

in practice	

Theorem ���� Let u be the solution of �	�	�� Let our mesh be the Shishkin
mesh� Assume that H is su�ciently small �independently of �� and that

�N
�� lnN � ���max

����	
a�	� and ��N � ��

Let fuig be the solution computed by the scheme �	���� �	��� that de�nes LN
� �

Then for each i we have

ju�xi�� uij � Cmax

�
N��� exp

�
����

e�
p
N

�
� ��N

�� ln�N

�
�

Remark ���� Theorem ��� implies that for �xed � � �� we have the error
bound

sup
�����

max
��i�N

ju�xi�� uij �M��� N
�� ln�N�

Thus the method is in practice almost secondorder convergent� but the error
constant M depends on the value of �� We shall verify this by numerical
experiments in the next section�

Remark ���� Under the hypotheses of Theorem ���� the scheme LN
� is up

winded only on the coarse mesh� on ��� �� ��� where the layer is strongest� the
�ne Shishkin mesh is su�cient to stabilize the method�

���



Table ���	 SDFEM method
 � � ���


�� N��� N��� N��� N���	 N��
� N�
�� N�����

��� ���
	�e�� ������e�� ������e�� ����
�e�� �����	e�� ����
�e�� ����
�e��

��� �����
e�� ���
��e�� ���
�	e�� ������e�� ��	���e�� ����
�e�� ���
��e��

��� ������e�� ���	��e�� ����
	e�� ������e�� ������e�� ������e�� ������e��

��	 ������e�� ��	���e�� ���	��e�� �����
e�� �����	e�� ��
���e�� ����	�e��

��� 
���	�e�� ��


�e�� ������e�� ����
�e�� ��	���e�� �����	e�� ������e��

��� ���	��e�� ���
	�e�� ������e�� ����	�e�� �����	e�� 
�����e�� ������e��

��� ������e�� ��	�	�e�� ������e�� ��	���e�� ���	��e�� ���	��e�� ���
��e��

��� 	����	e�� 
�

�	e�� ��
�	�e�� �����	e�� ����	
e�� ���

�e�� �����
e��

��	 ������e�� �����	e�� �����	e�� ������e�� ���	��e�� �����
e�� ������e��

��� �����
e�� ������e�� �����	e�� ������e�� ��
���e�� 	��	��e�� ������e��

��� ������e�� ���	��e�� ������e�� ��	�	�e�� ���	
	e�� ������e�� 
�����e��

Table ���	 SDFEM method
 � � ����

�� N��� N��� N��� N���	 N��
� N�
�� N�����

��� ������e�� ������e�� ������e�� ������e�� 	�
���e�� 
��
��e�� ��
�
	e��

��� ������e�� ���
�
e�� ���	��e�� ������e�� ��	���e�� ���	��e�� ��

�	e��

��� ������e�� ���	��e�� ������e�� ������e�� ����
�e�� ������e�� ������e��

��	 ������e�� ��	���e�� ���	��e�� ����
�e�� ������e�� ��
���e�� ���	�
e��

��� 
�����e�� ��

��e�� ������e�� ����
�e�� ��	���e�� �����	e�� ����
�e��

��� ���	
�e�� ������e�� ����	�e�� ������e�� ���
��e�� 
�����e�� �����	e��

��� ����
�e�� ��		�
e�� �����
e�� ��	���e�� ���	��e�� ���	
�e�� ���
	�e��

��� 	�����e�� 
�
���e�� ��
���e�� ������e�� ����		e�� ���
��e�� ����	�e��

��	 ����
�e�� ������e�� ������e�� ������e�� ���	��e�� ������e�� ������e��

��� �����
e�� ������e�� ������e�� ������e�� ��
�	�e�� 	��	��e�� ������e��

��� ����	�e�� ���	��e�� ������e�� ��	��
e�� ���	��e�� ������e�� 
�����e��

�� Numerical experiments

All of our experiments have been performed on Shishkin meshes using the test
problem

� �u���x� � �� � x��� x�� u��x� � f�x� on ��� ��� u��� � u��� � ����	��

where f is chosen such that

u�x� �
�� e����x���

�� e����
� cos

�

�
x ��	��

is the exact solution	 This solution exhibits typical boundary layer behaviour	
To construct our Shishkin mesh we have taken � � ��� in all our examples	

As we shall vary � below
 there is no point in also varying � as only the
quotient ��� a�ects the placement of the mesh	

We shall study the rates of convergence for the SDFEM method for various
choices of 

 viz	
 ��	��
 ��	�� and ��	��	 When 
 is given by ��	��
 we simply
refer to the resulting method as the SDFEM method� when 
 is de�ned by
��	��
 we call the method the SDFEM�Galerkin method� and when 
 comes
from ��	��
 we call the method the exponentially �tted SDFEM	

Tables �	� � �	� show the maximum nodal errors as � varies
 for � � ���


and � � ����	 The range of values for � is chosen so as to spread across the
two convergence regimes appearing in Theorems �	� and �	�	

In Figures �	� � �	� we show the results for � � ���� �the results for � � ���


are qualitatively similar�	 In Figures �	� and �	� we show the maximum nodal

���



Table ���	 SDFEM�Galerkin method
 � � ���


�� N��� N��� N��� N���	 N��
� N�
�� N�����

��� �����
e�� ������e�� ������e�� ����	�e�� ������e�� ������e�� ������e��

��� �����
e�� 
��
�
e�� ������e�� �����
e�� ������e�� ������e�� ������e��

��� ������e�� ���
�
e�� ������e�� ���	��e�� ������e�� 
�	���e�� ��
���e��

��	 	�
���e�� ���


e�� 	���		e�� ��

�
e�� ������e�� ������e�� ��		��e��

��� ������e�� ������e�� ��
���e�� �����
e�� �����
e�
 ����	�e�
 ������e�


��� ��	���e�� ���
��e�� 	�	
��e�� ��	���e�� �����	e�
 ��	
��e�
 ������e�


��� ������e�� ������e�� �����	e�� ������e�� ���	��e�� ������e�
 ����	�e�


��� ������e�� ����		e�� ������e�� �����	e�� ��
���e�� ��	���e�
 ������e�


��	 ���
��e�� ������e�� ���
��e�� 
�		��e�� ������e�� �����
e�
 ��	���e�


��� ��
��	e�� ����	�e�� ���
��e�� ������e�� ����	�e�� ������e�
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Figure ���	 SDFEM method
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error in the solution �as a function ofN� for the values � � ���� ���� � � � � ���
 and
in Figure �	� we take � � ���� ���� � � � � ���	 We also draw two curves to illustrate
certain �xed rates of convergence
 so that the reader can make comparisons	 In
Figure �	� the lowest error curve is for � � ���
 and each increase of �	� in �
moves us up to the next curve	 In Figure �	�
 we see from the N � ���� column
in Table �	� that the same statement holds true if we look at the right�hand
ends of the curves drawn
 except that the curve � � ��� lies below the curve
for � � ���	 The order of curves in Figure �	�
 for the exponentially �tted
SDFEM
 is quite di�erent� from the N � ���� column in Table �	� it follows
that
 considering the right�hand end of each error curve
 the highest curve is for
� � ���
 and each increase of �	� in � moves us down to the next curve	 We
see from the Figure that as � increases
 the method switches from �rst order
to second order	 But the exponentially �tted SDFEM is more computationally
expensive than the other two methods
 and we know from Theorem �	� that
the simpler SDFEM�Galerkin method gives almost second�order convergence

so we do not consider a detailed theoretical analysis of the error behaviour of the
exponentially �tted SDFEM	 The �almost� �rst�order convergence and �almost�
second�order convergence of the SDFEM and SDFEM�Galerkin methods can

���



Figure ���	 SDFEM�Galerkin method
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Table ���	 SDFEM�Galerkin method
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be seen clearly in Figures �	� and �	� respectively	
In all our experiments with the SDFEM and the SDFEM�Galerkin method


when we varied �
 we observed essentially the same behaviour� at �rst increas�
ing � decreases the error
 because we are in the N��� regime of Theorems �	�
and �	�
 but eventually we move into the �N

�� lnN or ��N
�� ln�N regime


where increasing � causes the error to increase	
Next
 Figure �	� demonstrates what can happen when � has been chosen

too small	 The maximum nodal error of the SDFEM is studied for our test
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Figure ���	 Exponentially �tted SDFEM
 � � ����

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of meshpoints

M
ax

im
um

 n
od

al
 e

rr
or

O((1/N)^2)

O(1/N)

example ��	�� with � � ����� and several values of �	 When � is too small

increasing the number of meshpoints �rst makes the error increase
 then
 after
some threshold is passed
 the error starts to decrease	 This behaviour occurs
because when � is very small
 the coarse mesh intrudes on the boundary layer
region and the method behaves like an upwind method on a uniform coarse
mesh� in this setting
 initially increasing N is known to increase the maximum
nodal error �cf	 ���
 page ��
 Fig	 �	���	 The data corresponding to this Figure
are given in Table �	�	

Finally
 in Figure �	� we take � � ����� andN � �� and graph the maximum
nodal error as a function of � for both the SDFEM and SDFEM�Galerkin
methods	

The optimal value of � for each method is the value that yields the lowest
point on the corresponding curve	 We see in both cases that moving � below
its optimal value leads rapidly to an unacceptably large error
 but increasing �
above this optimum causes a much slower increase in the error	 This �ts with
the theoretical error bounds given in Theorems �	� and �	�	 Indeed
 for larger
values of � we can observe the convergence behaviours of �N

�� lnN �i	e	

linear in �� and 

�
�N

�� ln�N �i	e	
 quadratic in �� that were predicted in these

���



Figure ���	 SDFEM�Galerkin method
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Theorems	 Furthermore
 because of the �almost� second�order convergence of
the SDFEM�Galerkin method
 its error is for reasonable � much smaller than
the corresponding error of the SDFEM	

Our theory and experience lead us to conclude that the SDFEM�Galerkin
method should always be used in preference to the SDFEM
 and that as the
optimal value of � is in practice unknown
 it is wiser to choose � too large
than too small	

References

�	 V�B� Andreev	 I�A� Savin ������	 On uniform with respect to a small
parameter convergence of a monotone scheme of A	A	 Samarskij and its
modi�cation �in Russian�	 Comput� Math� Math� Phys� ��
 �������	

�	 A�F� Hegarty	 J�J�H� Miller	 E� O
 Riordan and G�I� Shishkin

������	 On numerical experiments with central di�erence operators on
special piecewise uniform meshes for problems with boundary layers	
W� Hackbusch andG� Wittum
 editors
 Adaptive Methods � Algorithms�
Theory and Applications� Proceedings �th GAMM Seminar� Kiel� January
����� 	���
 volume ��
 of Notes on Numerical Fluid Dynamics
 Braun�

���
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