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A Galerkin finite element discretization of a convection-diffusion boundary value
problem is considered on two special types of layer-fitted meshes: Shishkin and
Gartland-type meshes. The interpolation and discretization error is estimated for
two typical problems with exponential and parabolic boundary layers, respectively.
For the Galerkin method we obtain uniform convergence (with respect to the
perturbation parameter €) in the e-weighted H1 norm. As well as the previously
known result of order O(H In(1/H)) for Shishkin meshes applied to exponential
layers, we show that the order of convergence is of order O(H) in all the other
cases considered, where H denotes the mesh diameter. Numerical experiments
shows that the Galerkin finite element method sometimes yields significantly
better accuracy on Gartland-type meshes than on Shishkin meshes.

1. INTRODUCTION

In the development of modern discretization methods for singularly perturbed
problems, there is recently a trend away from methods for general meshes and
towards solution-adapted meshes. In this context, a very promising approach
was introduced by SHISHKIN [9, 10], where fine equidistant meshes are used
within layers. Although some classes of problems, e.g., those containing curved
layers, cannot yet be solved satisfactorily by this approach, the analysis of
various discretization methods shows that such special meshes are in many
respects superior to uniform triangulations of the computational domain. For
example, a Galerkin finite element method on Shishkin meshes is uniformly
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convergent with respect to the singular perturbation parameter without any
stabilization (see [11]). The order of convergence for two-dimensional problems
with exponential layers is O(N~!In N) in the e-weighted H; norm, where the
total number of nodes is proportional to N2. This is better than O(N~1/2),
which is the best result obtained so far for exponentially fitted finite element
spaces on equidistant meshes (see [6]).

Despite these promising properties of the Shishkin meshes, their practical
application entails some difficulties. These are related, for instance, to the
solution of the discrete systems of equations as well as the determination of
gradients of the numerical solution. Although Shishkin meshes have some an-
alytic advantages because of their simple piecewise equidistant structure, the
investigation of alternative meshes with comparable analytical properties seems
to be justified because of the above reasons. In this context, Bakhvalov meshes
in particular should be mentioned although up to now few results for them are
known in two dimensions (cf. [13]).

In this paper we want to analyze the Galerkin finite element method both
for Shishkin meshes and for another type of mesh that is graded in the vicinity
of layers. Because the latter look like the meshes analyzed by GARTLAND [4]
for a finite difference method, we refer to them as meshes of Gartland type.

We consider the convection-diffusion problem
L(u) ;= —eAu+b-Vu+cu = f in Q= (0,1)2,
u = 0 on I

(1)

ASSUMPTION 1. In the data of the differential equation (1), we assume that
€ > 0andb, c and f are sufficiently smooth. Furthermore, let ||bl|_ (o) = O(1)
andc—(V-b)/2>¢>0.

A comparison of both types of meshes that we consider is not possible in general
for (1) as we lack analytical statements that describe the layers in the exact
solution. Consequently we restrict our attention to two simple but important
practical cases:

Problem I: Exponential layers
First we consider the boundary value problem (1) with

b = (b1,b2) > (gfB1,962) > (0,0),

and some arbitrary ¢ > 1 (see Figure 1). In this case, two exponential layers
are usually present along the outflow boundary at z =1 and y = 1.

Problem II: A parabolic boundary layer
In the second problem that we consider,

b= (b1,0) withb; > g8, > 0.
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FIGURE 1. Problem statements

We assume that the remaining data in (1) are chosen in such a way that
only one parabolic layer arises along the characteristic boundary y = 0 (see
Figure 1).

The outline of this paper is as follows: we start in Section 2 with a short
discussion of the properties of convection-diffusion problems. The focus here is
on estimates for the exact solution near exponential and parabolic layers; these
are obtained using asymptotic expansions. The Galerkin finite element method
is introduced in Section 3 and applied in Sections 4 and 5 to the Shishkin and
Gartland-type meshes. Using anisotropic interpolation estimates, we derive
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error estimates in the e-weighted H; norm and show that the method is uni-
formly convergent in all cases. In Section 6 we present some numerical results
and quantitatively compare the practical behavior of the Galerkin method on
the two types of meshes.

Let us finally remark that our analysis is completely different from the
technique used recently in [5] where Lo-error estimates are proved.

2. PROPERTIES OF THE CONTINUOUS PROBLEM
The construction of layer-adapted grids and the analysis of finite element meth-
ods both require information about the behaviour of derivatives of the exact
solution. Such information can be obtained heuristically by the formal dif-
ferentiation of an asymptotic expansion, but it is difficult to provide a solid
mathematical foundation for the results obtained (see [8]).

In this chapter we discuss the assumptions that are used in our analysis of
finite element methods for Problem I and Problem II.

Problem I: Exponential layers
For Problem I we assume the following;:

ASSUMPTION 2. The solution u of Problem I has the representation

U:G+E1+E2+E3, (2)
where the smooth part G satisfies
while the derivatives of the layer terms can be estimated by
6i+jE1 —i ﬁl(l — :L’)
OB, j Ba(1 —y)
—— | < (e - 5
G| < e (<200 (5)
Ot Es (it Br(l—x) Ba(1—y)
(i+4) _pP T 2T
Oridy < Ce exp < 8 ) exp ( 5 > (6)
fori,j =0,1,2.

Conditions that are sufficient for the existence of such a decomposition are
discussed in [3].

Now we denote by Ag the subdomain of Q where layers arise. We shall
define Ag in such a way that the first-order and second-order derivatives of the
exact solution are uniformly bounded in Q \ Ag. Thus (4) to (6) imply that
for the thickness of the layer region we should take

A = %sln(l/s), (7)
Ay = %Eln(l/s); (8)
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see Figure 1.

Problem II: A parabolic boundary layer
For Problem II we assume, similarly to Problem I, the following;:

ASSUMPTION 3. The solution of Problem 2 admits the representation
u=G+ P, 9)

where the smooth part G satisfies (8), while the derivatives of the layer term
can be estimated by

oitip . BZ/
—j/2 _Fg
‘amic’)yj < Ce exp ( 51/2> (10)

fori,j =0,1,2. Here (3 is an arbitrary paramter and C = C(3) is a constant
that is independent of €.

We are unaware of any rigorous analysis of conditions sufficient for the
existence of such a decomposition for problems with parabolic layers.
The thickness of the layer region Ap is now

A= %51/2 In(1/e). (11)

3. GALERKIN METHOD ON LAYER-FITTED MESHES

The layers arising in Problems I and IT are straight and aligned with the axes
of the coordinate system, so we shall consider only tensor-product meshes as in
Figure 2. We denote the coordinates of the grid lines by 0 = g < 1 < 22 <
o <zy, =land 0 =yo <y1 <y2 <--- <yn, = 1. We handle the layers
by using a fine anisotropic mesh. In Problem I this comprises the subdomains
Q1, Q5 and Q3. We shall use the notation Qp = Q; U Qs U Q3 for the entire
layer part of 2. For Problem II, the fine-mesh subdomain is denoted by Qp.
The width of these subdomains as well as the node distribution depend on the
particular type of mesh used. Both these items are discussed in detail in the
following Sections. In general, we can assume that Qg C Ap and Qp C Ap,
ie., that 7 <Ay, 7 < As and 7 < A. In the remaining part of g, we use a
uniform mesh.

The triangulation of €2 is now defined by

T ={K = [zi,Tir1] X [yj,¥j+1]; 0 <i < Nz, 0 < j < Ny}

We use piecewise bilinear functions to approximate the solution. To do this,
we introduce the spaces

V = H}(Q)={ve H'(Q)|v=0o0onT},
Vv = {veV|veQ(K)foral K €T}.
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Fi1GURE 2. Examples of layer-fitted meshes

Then the discrete problem for the Galerkin finite element method can be for-
mulated as follows:
Find u € Vy such that

B(un,vn) = F(vn) for all vy € Vi, (12)
where
B(u,v) = &(Vu,Vv)+ (b:Vu,v) + (cu,v), (13)
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Flv) = (f,v) (14)

for all u,v e V.
The Galerkin orthogonality property

B(uy —u,vy) =0 (15)
is satisfied by this method. The bilinear form B is Vi-elliptic with
B(vn,on) > elonlf ) + EllonllT, o), (16)

which follows immediately from integration by parts of the convective term:
(b-Vun,von) == ((vn,b- Von) + (vn, (V- b)uN)) .

The e-weighted H' norm

lonllZg =¢ |'UN|%11(Q) + ||UN||%2(Q) (17)

satisfies the inequality

B(vy,vn) > 7 llonlZ o- (18)

The error estimates in the energy norm and in the norm (17) can be reduced
to the estimation of the interpolation error u — u! (we denote the interpolant
of v € H2(Q2) in what follows by v’). The layer-fitted meshes do not satisfy
standard regularity assumptions because of the strongly varying mesh size, so
we cannot use standard estimates like (see [2])

lv— v g (x) < C diam (K)* 0| g2 k), k=0,1,2.
Instead, we make use of the following anisotropic relations (see [1]):

LeMMA 1. Consider a rectangular element K € T, K = [x;, 1] X [Yj,Yj+1],
0<i< Ng, 0<j <N, Then forv e H*(K) the following interpolation
estimates hold:
llo =o'l L)

82

0% 0%v v
< € (G iy + ey sl il + 1 ) (19)

l|lv —UI||2L2(K)

8%v 0%v 8%v
<C <hi,K||w||%2(K) + hi,KhZ,K”am—ay“%Z(I() + h;,K”a—ZPH%Q(K)) (20)

and

9 Iy|[2 2 v o 2 vy

I35 @ =)L) < C (hz,K“—amz a0 + byl 5 6y||L2(K) , (21)
9 Iy|[2 2 v s 1970

H@_y(v —-v )||L2(K) < C (hz,K“—amay“Lz(K) + hy,K||—ay2 ||L2(K) » (22)

where hy Kk = Ti41 — T and hy Kk = Yj11 — Yj-
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4. SHISHKIN MESHES
4.1. Node distribution
Let us consider Problem I. We set here N, = N, = N and suppose that N is

even. The subdomains €4, ..., Q3 are defined by
2 2
71 = min{0.5, —¢eln N}, 7 = min{0.5, —eln N'}.
B B2

We restrict our attention to the convection-dominated case with ¢ < N,
which is of practical interest; then 7 and 7 are given by the second arguments
in the above formulas. In this case we also have In N < In(1/¢), so the widths
of the subdomains Qg and Qp on Shishkin meshes are essentially smaller then
the widths of the layer regions Ag and Ap.

Each of the four subdomains has an equidistant mesh of N/2x N /2 elements.
The mesh size in g is given by

2(1—m) 2 2(1 — 1) 2
Sk S VA Sk SV g
hz,K N > N, hy,K N > Na
in 2 (and analogously in 25 and 3) we obtain
2 4elnN 20—-m) 2
ek = N ek N N
We introduce the mesh size
2
H = max(hz,K,hy,K) S N
For Problem II, we set Ny = 2N, = N. The mesh is then defined by
2
7 = min{0.5, 3 e/2In N}, (23)
In Qp we have
2 27 4¢'/?InN
S = -=__ " 24
herk=xy  ME=g N 24)

The mesh size H can again be bounded by 2/N.

4.2. The interpolation error
As shown in [3, 11], the following interpolation error estimates are valid for
Problem I with exponential layers:

lu—ullL @) < CN72,

25

Ju—ulloos) < CN-2WN, 29)

e u—u|p, < CN7Y, (26)
61/2|U—U1|H1(QE) < CN_IIHN,

and if e/21n?> N < C, then
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lu—u'llpy@) < ON72 (27)

For Problem II, the above inequalities apply mutatis mutandis (one has to
replace € by €!/2). In particular we have

0 .
51/4||8_y(u_u1)“L2(90) < ONT,

i o 2
et/ g5 (= uDllzaee) < CN~'InN.
On the other hand, assuming that /2 In> N < C, we now prove that
0 _
55 (= u!)|| o) S ONT. (29)

This inequality is obviously satisfied by the smooth part G — G' of the inter-
polation error, so we need only prove (29) for P — P/,
In Qg, we have

oP BT _
1Sl < Coxn (~L7) < on2,
P < C br CON2
I ”LOO(QO) > exp z) S )
so an inverse estimate yields
0 OP oPT
5y P = P10, < 155 a0 + 15~ llz2(20)
< ON?+CH™ '[Py
< CON?+CN|IPp.(a)
< ON?+ON P10
< CON . (30)

In Qp, we can use the anisotropic estimate (21). Since

o?P

%P 122
Ox Oy

155 12000 < C,

= 17005 < Ce™/2,

we invoke the mesh sizes (24) to obtain finally the estimate (29).

4.3. The discretization error
For Problem I, Stynes and O’Riordan [11] derived the error estimate

Jun — ufeo < CN~'1n N. (31)
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We give a brief outline of the proof. The starting point is the ellipticity (18)
of the bilinear form B combined with the error orthogonality (15). Applying
these to uny — u!, we obtain

alun —uI|||§7Q < B(uny —u uny —u’) = B(u —u’,un —u').

Using integration by parts of the convection term, the bilinear form B can be
transformed into

B(u,v) =e(Vu,Vv) — (u,b- Vv) + (¢u,v),

where ¢ := ¢— (V- b). The diffusion and reaction parts can be estimated using
(26) and (27):

|5(V(u —uI),V(uN —uI)) + (6(u—u1),uN —uI) |
< elu—u'lmg)luy —u'lmg)
Hlell Lo (@) 1w = u | Loy lun — ||,
< max(L, [|ellz, () fu = u |- ellux —u'|l0
<ON7'InN Jluy — u'|. 0 (32)

Applying (27) and an inverse estimate, the convection part in g is bounded
by

| (w—u",b-V(un —ul))o,| < Cllu—u'llLy0) 1L (0)
H™ |uy =[] 22050
< ONHuy = vl - (33)

(The inequality (27) holds true on the subdomain €y without the hypothesis
e'/?1n®> N < C.) In Qp we have

| (u—u,b-V(un =)o, | < flu—u'||o@p) 1L @o)
V(UN _uI)HLl(QE)

1/2

< Cllu—u'l|L (o) (meas Qp)'/? Juy — v | g1 (). (34)

From (25) and (meas Qp)'/2 < Ce'/2In'/? N it follows that
|(u—u',b-V(uny —u'))a,| < CN~?In” NIn'2N luy —u'|ca.. (35)

The combination of (32), (33) and (35) yields the estimate (31). i

For Problem II, we have to modify the Stynes & O’Riordan technique since
the transition from (34) to (35) is not possible here as (meas Qg)'/? = O(e'/*).
Nevertheless, the estimate

|(b-V(u—u1),uN—uI)| = (bli(u—ul),uN—uI)

or

IN

0
Cllg (= u) |y llun = |z () (36)
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can be applied to the convection term. Then a direct estimate, using (29) and
the inequality
|€(V(u —ul), V(uy —u)) + (c(u —ul),uny —u) |
< Cllu = u'fle elluy — u']l- 0
<C(eY*N'InN + N72) Jluy — u||- 0,

which is valid for e2/2In®> N < C, leads to the result:
Jlun —u'fle0 < ONT (37)

Finally, we can formulate the following statement for the parabolic layer
problem:

THEOREM 1. Let assumptions 1 and 3 for Problem II be satisfied and let un
be the Galerkin approximation of the solution of the given problem wusing a
piecewise bilinear trial space on a Shishkin mesh. If /210> N < C, then the
error estimate (37) is valid.

REMARK 1. In the case of an exponential layer, if we specify the transition
point by the formula 7 = 79/8 - €In N, then we obtain error terms of the form

o N"'In N + N~ (=1,

The choice 7y = 2 is therefore advisable. This is true also for parabolic layers
where the factor 2 in (23) allows a favorable estimate of the layer correction
(30).

REMARK 2. For Shishkin meshes the number of nodes is bounded in each
direction by
H'<N<2H Y (38)
so the estimate (37) can also be written in the form
lun — !l < CH.

Meshes with this property are called meshes of “yoghurt” type in [12]. As we
show in the next section, there is no relationship between N and H as simple
as (38) for Gartland-type meshes; there the product HN increases (albeit ex-
tremely slowly) as € become smaller (see Section 5.1), so these meshes are not
uniformly of “yoghurt” type.

5. GARTLAND-TYPE MESHES

5.1. Node distribution

For meshes of Gartland type, the fine mesh regions Qg and Qp and the layer
parts Ag and Ap coincide; that is, we choose

T1:A1, TQZAQ, T:A.
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The fine subdomains near the layers are therefore essentially wider than in the
case of Shishkin meshes.

Outside the layers (i.e., in g), we use in both Problems a uniform equidis-
tant mesh with M x M elements. The mesh size can be estimated here by

H = max(hz,K,hy,K) S i (39)
M

In the layer parts, the aspect ratio of elements adjacent to the part of the
boundary I" on which exponential or parabolic layers arise is equal to & and £'/2,
respectively. It is thus of the same order as on Shishkin meshes. But the mesh
sizes perpendicular to the layer increase with the distance to I' until the aspect
ratio becomes 1 at the transition to . This guarantees a smooth change
of mesh size in the whole domain 2. Furthermore, the graded distribution of
elements in the layer part has a positive effect on the number of nodes used.

For Problem I, we use a distribution of elements in the layer part €, for
which the aspect ratio is defined by

hak _ oo (M) . (40)

hy’K 2¢e

Here the distance from the element K to the boundary x = 1, at which the layer
contained in € is located, is denoted by [1 — z]x. In 5, we use an relation
analogous to (40). As the asymptotics for the parabolic layer are different, for
Problem IT in Qp we define

Mk _ 172 o, (5 by (41)

hx,K 261/2

A certain optimality of these meshes with respect to the interpolation error
of the boundary layer will be discussed in the next section (see Remark 5.2).

REMARK 3. Meshes of this type were first used by Gartland [4] in an analy-
sis of a compact finite-difference method for one-dimensional boundary value
problems. The interval [0, 1] was however subdivided by two points

z* =Keln(K/H), ' = Keln(1/e),

which is different from the definition of our mesh. (The parameter K corre-
sponds to the order of the method.) In the so-called inner region [0, z*] a graded
mesh was applied following (40). In the so-called transition region [z*,z'], the
mesh sizes were defined by a geometric sequence. Outside these regions an
equidistant mesh was used.

Gartland introduced the transition region in order to ensure that the mesh
is locally quasi-uniform. This property is not needed in our analysis of the
Galerkin method.

The remainder of this section deals with the determination of the number
of elements in the layer parts Qg and Qp. Furthermore, we derive here a
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F1aure 3. Distribution of elements in a layer part

relation between the mesh size H and the total number of elements in Q. This
information is needed in the subsequent error estimates.

The determination of the number of elements m in a layer part in the
direction perpendicular to the boundary T" will follow from relations (40) and
(41). In order to simplify the notation, we index the elements beginning from
the boundary T as shown in Figure 3. For each element K9, we denote the
distance to the boundary by £(¥ and the “width” of K by h(®. Then the aspect
ratio of the element is defined by the recursive formula:

R0 (i+1) _ ¢(9) O]
H = % = Sa exp <ﬁ2§a > s (42)
where 5
0<ed < A= Fa e%1n(1/e).

The parameter a depends on the type of the boundary layer: in ; and s we
have a = 1, while in Qp we have a = 1/2. In the above formula, the “length”
of the elements is denoted by H (cf. (40), (41)).

Let us now consider the first m* = 2a/(8 H) = (2a/3) M elements. The
mesh size (") increases with increasing €9, so for all these elements it is greater
than h(®) = ¢*H. Hence the width of the first m* elements exceeds

2«
A* i=m*hO = 2= o,
B
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izt for
R /A"

J ;) / a=1 a=1/2
m* >« >1 >0.5
2m* > ae® > 2.7182 > 0.8243
3m* > qe*e” > 15.154 > 1.1402
4m* > ae®e”® > 3.8 10° > 1.5637
5m* : > 2.3882
6m* : > 5.4472
Tm* : > 116.06
8m* : >1.2.10%°

TABLE 1. Total width of j elements within the layer part

The mesh size of the next m* elements (m* <1i < 2m*) is

B > A0 > 2@ exp (@ A ) =0 fl,
E»Oé
so the total width of these 2m* elements is at least
A* +m* ™) = A* (14 e%) > A*e?.

This procedure can be continued. The results are summarized in Table 1.

The width of the layer part equals A = A* In(1/e), so one can conclude
from the entries in Table 1 that the number of elements perpendicular to the
layer is, for practical values of ¢, at most 4m*/a = 8/(8H). In order to state
this result precisely, we define a function A, : IN — IR by

Aa(l) = a, Aa(k +1) =aer=®) for k € IN,
where n,(¢) is defined as the greatest positive integer for which

Aa(na(€)) > In(1/e).

Then we see that m < n,(g) m*. For £ > 107199090 we obviously have n,(g) <
4/a and in practice nq(g) can be regarded as bounded.

We can derive a lower bound for m by using the monotonic dependence of
the mesh size h(Y on the coordinate &%)

/%d£>/<aﬂexp<2ﬂ§>>l dgzﬂ%(l_sa)_

Because of the uniformity of the mesh in g, we have
1 _
— H < H<CH.
cH=sH=s

The number of elements m in the layer part is thus bounded by

290



C'(1—e*)H ' <m < C"ng(e) H . (43)
The total number of elements used in Problem I can therefore be estimated by

C'(1-e*)?H™? < NN, < C"(1+nqa(e))> H™> (44)
and for Problem II by

C'(1-e*)H > <MN, <C"(1+n,(e)) H2. (45)

Finally, let us prove the following lemma which plays a role in the interpo-
lation error estimates in the next section.

LEMMA 2. Let the mesh sizes h') be defined by (42). Then the estimate

n ()
Z exp <— ﬁQi” ) <CH! (46)

i=0

1s valid.

PROOF. We use the technique already applied in determining the upper bound
for m, viz., a step-by-step estimation for sections of m* elements. We obtain

L BEDY _ & BEw
$ o (42) <5 (42 <

i=0 =0

m* (1 e p om0 oo™ ) .
It can be easily shown that for =1 and a = 1/2 we have

« ael 1
(1 4 e~ + e~ e +e—ae 4. ) - (1 +e—a 4 e—2a +e—3a 4. )

«a
1 1 3
< - < —.
- al—e T«
Consequently,
i exp (BED) L 2mt 6 CH!
2P\ " gea ) = Ta” A
is also valid. O

5.2. The interpolation error

In this section, we derive interpolation error estimates for Gartland-type meshes
that are analogous to those of Section 4.2.
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THEOREM 2. For Problem I, the interpolation error satisfies

lu—w'llp @ < CH? (47)

lu—uw!|yro, < CH, (48)
61/2|u—uI|H1(QE) < C(CH,

lu =ullzopy < CH?(meas D)'/2, (49)

where D C (.
For Problem II, the estimates (47) and (49) remain valid. Instead of (48),
we have

|U’ - U’I|H1(Qo) < CH7 (50)
gl/4 |U_UI|H1(QP) < CH
and in particular
0
I (u = u")l,q0) < CH. (51)

PROOF. The starting point for the proof of the interpolation estimates is, as for
Shishkin meshes, the decompositions (2) and (9). Let us first consider Problem
I and the interpolation error in the L., norm. The exact solution u is bounded
in Qp, so the standard estimate

lu — w1 (q,) < CH?

can be applied here. In 2, the inequality (19) is satisfied in each element K.
Taking into account (40) and (4) or

2B,
3mi3y27i Loo(

we obtain immediately

fori=0,1,2,

K) < Ce~lexp <—7ﬂ1[1 ; w]K>

1By = E{|l Lo (00) < CH?.
Because G + E» + E3 is bounded in 1, the inequality
lu = u'l|1. o) < CH (52)
is also satisfied. Analogous results for the subdomains Q- and (23 finally yield
(47).
Let us now consider the interpolation error in the e-weighted H; seminorm.
Standard estimates remain valid in Q. It can be easily shown that, for each

element in {2y, % (Ey — EY) is the dominant derivative of the gradient in the
decomposition (2) . According to (4), we have

2E 2 1-—
||_8a$21 ||2L2(K) < Ce texp (—7ﬂ1 [ . mh{) he kH,
82E’1 2 —9 Qﬂl [1 - CE]I(
L T P
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Then the anisotropic interpolation estimate (21) and the aspect ratio (40) for
the element K together yield
6 _ ﬂl [1 — HZ]K
I3 (8 = B < 0= oo (22

Summing over all elements of ; and using (46), we obtain

0
61/2 ||%(E1 - EII)“Lz(Ql) S CH:

SO
e lu—u|grq,) <CH
is also true. Analogous estimates for (2o and €23 result in (48).
The estimate of the interpolation error in the Ly norm can be done in the
same way. For example, let us consider again the boundary layer correction F;
in the subdomain ;. We have here

1B — B2, ) < C (meas K) H*.
The sum over all elements yields
llu =" ||Ly()) < C (meas Q) H?.

Thus (49) is valid.
The proofs of (47) and (49) for Problem II are analogous to those for Prob-
lem I, and the inequality (50) can be derived analogously to (48). The differ-
ences in the e-weighting can be explained by the different asymptotics of the
parabolic layer (i.e., now a = 1/2).
For (51), we can start from the fact that w is bounded in Qp; then (51) is
just a standard estimate. In Qp we have
o’P o0’P
||W“%2(K) < ChyxH, “c’)m—c’)y

On each element K, the anisotropic estimate (21) yields

2,
||%2(K) S 05_1 exp <—%> h%KH

||% (u—uI)HLZ(K) <C <H2 +e texp <—@> hZ,K> hy kH < Chy x H3.
Hence the sum over all elements in Qp leads to

12 (0= lgagapy < Celn(1f) H? < I
and (51) is therefore satisfied. O

REMARK 4. It can be shown easily that the estimate (47) is valid not only
globally but is also sharp with respect to an arbitrary element K € 7. In this
case, the constant C' depends on neither the form (aspect ratio) of the element
nor on the parameter €. This attractive property motivated us to investigate
such graded meshes in detail. Only afterwards did we discover a resemblance
to the meshes used by Gartland.
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5.8. The discretization error
We use the same technique as in Section 4.3 for the proof of the error estimate.
In the e-weighted H; norm, we have as a starting point

afluy —u'IZ g < Cllu—u'll-olluy —ull-0 + | (u—u",b- V(uny —u)].
For the convection term, it follows from (49) that in Qg we have

|(U—U1,b'V(UN—UI))QE|

IN

e Ju — ! || py0m) €2 lun — vl (0m)
CH?In(1/e) Jlux — u' |- -

IN

In Qp, using an inverse estimate, we obtain
| (u=u’,b-V(uy —u))a,| < [lu—u!ll100) H" [lun = u'l1,(00)
< CH fJuy — u'||-0,-

Obviously
Jlu—u'lle0 < CH

is satisfied. This yields immediately
lun —u'|l-.0 < CH. (53)
Considering Problem II, we take the convection term in its original form,
which leads to

afun —u'l2 g < Cllu—u'll-olluy —u'lleo + | (b V(u—u),uy —u')|.

While
Ju— !l <C (51/4H + H2) :

the convection term yields (using (51) in (36))
| (b-V(u— uI),uN — uI) | < CH |un — 'U,I|||E7Q.

Altogether, we obtain the estimate (53) for Problem II with a parabolic layer.
The results are summarized in the following statement.

THEOREM 3. Let the assumptions 1, 2 and 8 for Problem I and II be satisfied
and let uy be the Galerkin approxzimation of the solution of the given problems
using a piecewise bilinear trial space on a Gartland-type mesh. Then the error
estimate (53) is valid.

6. NUMERICAL RESULTS

In this section, we verify that our error estimates hold true numerically for
some examples. In particular, we are interested in seeing whether or not there
are quantitative differences between the practical convergence behaviour of the
Galerkin method on Shishkin and Gartland-type meshes.
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The first test problem is of type I. The coefficients of the differential equation
(1) are

b:(é’ji), c=0, f=zB-2)+yB-y).

Homogeneous Dirichlet boundary conditions are given on the whole boundary,
so exponential layers appear along x = 1 and y = 1 (see Figure 4). Far from

(a) (b)

7
A Y 4
e
St oy
""‘.'
sy o

FIGURE 4. Example I: A numerical solution of for ¢ = 3- 1072 on a Shishkin
(a) and a Gartland-type (b) mesh

the layers, the exact solution converges to the solution of the reduced problem
up =xy as € — 0.
The second test problem is defined by

1
b—<0>, c=0, f=0
The boundary conditions are
u = 0 at z =0,
U e 4 L at 0
= X _ =
p z(1—2) Y )
n-Vu = 0 atz=1andy=1.

In this case there is a parabolic layer along the boundary y = 0 (see Figure 5).
The derivatives of the exponential function that describes the solution on the
boundary vanish at £ = 0 and = 1. Our numerical tests have shown that
this property guarantees that no oscillations appear in the discrete solution at
the corners (0,0) and (1,0) of Q. In other cases, corner singularities arise.

The meshes described in the previous sections for Problem II do not however
avoid a weak layer at x = 1. The corresponding layer correction (we denote it
by E') in the asymptotic expansion of the exact solution can by estimated by
an inequality of the type

‘ 9itiE

Oxi0yJ €

< Ce'~fexp (—M> .
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FIGURE 5. Example II: A numerical solution of for ¢ = 1073 on a Shishkin (a)
and a Gartland-type (b) mesh

The width of the layer part is then equal to

1
A= —¢ln(1/e).
b
In order to approximate the solution as exactly as possible, we introduce a
fine mesh on a strip in the vicinity of the outflow boundary. For the Shishkin

mesh, we set
1

7"=—¢elnN,
1
subdivide Q by the lines v = 1 — 7" and y = 1 — 7 (see (23)) and define the
triangulation in each of these subdomains by a equidistant mesh consisting of
N/2 x N/2 elements. The modification of the Gartland-type mesh is a little
more complicated. In this case we apply a graded mesh near the boundary
x = 1. It is constructed in such a way that the aspect ratio of the elements is

equal to
he ik 1/2 Pl — =]k
By e '“exp 9% .

For further details see [7].

The Galerkin finite element method has been proved to be uniformly conver-
gent in the e-weighted norm for both types of meshes considered. This pleasant
property does not inevitably mean, however, that the resulting algebraic sys-
tems of equations are easy to solve. In fact, no robust convergence behavior
could be established with standard iterative methods for non-symmetric sys-
tems such as GMRES or BiCGSTAB. In order to avoid the use of direct solvers,
we have applied the following defect correction method:

BGLS(UE\[;);UN) = F(vn),
BGLs(US\Z,+1)—U%),UN) = F(UN)—B(US\Z,),UN), i=1,2,....
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HUH*“LM”LOC(Q)
le-01 3 T

1le-02

1le-03 3

le-04 1
1e+02 1e+03 N let+04

I
s —uly gle.0
le-01 3 T

le-02

le-03

le-04 1
1e+02 1e+03 N let+04

FIGURE 6. Example I: Convergence behavior on a Shishkin (x) and a Gart-
land-type (4+) mesh

The bilinear form Bgrs corresponds to the Galerkin/least-squares finite ele-
ment method which was analyzed for Gartland-type meshes in [7]. The systems
of equations obtained by this stable discretization can be solved by standard
iterative methods. We find that a combination of the BICGSTAB method and
SSOR preconditioning is quite efficient for Problem I. On the other hand, GM-
RES(20) seems to be more suitable for Problem II. The stopping criterion for
both solvers was defined in such a way that the error of the iterative solution
can be neglected in comparison with the discretization error.
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HUH*“LM”LOC(Q)
le-01 3 T

1le-02

1le-03 3

le-04 1
1e+02 1e+03 N let+04

e g —uly e 0

le-01 3 T

le-02

le-03

le-04 1
1e+02 1e+03 N let+04

FIcUure 7. Example II: Convergence behavior on a Shishkin (x) and a Gart-
land-type (4+) mesh

The discretization error was computed in our numerical experiments using
the so-called “double-mesh principle”, but we discovered that a fine mesh gen-
erated by bisection of mesh size of the original mesh was not fine enough for a
precise approximation of the exact solution. Consequently we applied double
refinements in constructing the refined mesh. The discretization error was then
computed as the difference between the discrete solution ug obtained on the
original mesh and the solution ufi /4 from the refined mesh, where the solution

u§/4 was projected into the trial space of the original mesh.
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Shishkin mesh

H NNy lug —wl oo T g —wl leq T
1.25000e-01 289 2.09189e-02 3.22660e-02
6.24998e-02 1089 7.76954e-03  1.429 1.24263e-02  1.377
3.12499e-02 4225 2.76319e-03  1.491 4.42256e-03  1.490

Gartland-type mesh

H NNy lug —wl e @) T Mg —wl leq T
1.24992¢-01 400 6.50098¢-03 5.64876e-03
6.24988e-02 1296 1.86233¢-03  1.804 1.49592e-03 1.917
3.12154e-02 4761 5.13312e-04  1.859 3.84282e-04 1.961

TABLE 2. Example I: Discretization error for ¢ = 10~°

Shishkin mesh

H NeNy | g —wp gl T | Men —wpllea T
1.25000e-01 289 4.15236e-02 1.50869e-03
6.24998¢-02 1089 1.63759e-02  1.342 7.37105e-04 1.033
3.12499¢-02 4225 6.05049¢-03  1.437 2.91423e-04 1.339

Gartland-type mesh

H NeNy | lwg —wh gl 7 | Meg —wi,leo T
1.24985e-01 280 4.04809e-03 2.02225e-04
6.24961e-02 936 1.02648e-03 1.980 3.71923e-05 2.443
3.12490e-02 3400 2.49348e-04  2.041 8.85457¢-06 2.071

TABLE 3. Example II: Discretization error for ¢ = 1078

We have analyzed the error in the L., norm and the e-weighted H; norm.
Results for ¢ = 1078 and various mesh sizes H as well as the numerical con-
vergence rates

1 lurr — qu/4||oo,9 1 llwr — ujl[[/4|”579
= 7 and r=—1In T
2 " \[luzw — ul, s 2 "\ fuzw —ul, 1o

r

are listed in Tables 2 and 3.

In our numerical tests, we have also verified that the Galerkin method is
in practice uniformly convergent with respect to the parameter ¢. The con-
vergence behaviour for e = 1073, 107%, 10~° and 10~!2 shown in graphs in
Figures 6 and 7 confirms this property.
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