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A personal and retrospective view on sampled-data control systems is given.
Emphasis is placed on the course of the discovery of a function space model,
currently known as the lifted model, for this class of systems. Its impact on
the frequency domain characteristics is discussed. A design example is given to
illustrate the contents.

1. PRELUDE

In this brief article, I will attempt to give a fairly personal and retrospective
view on the recent developments in the theory of sampled-data control systems.
The emphasis is upon how I came to discover a new function space framework,
currently called lifting, for sampled-data systems, and how this notion helped
to clarify certain issues in the study of such systems.

It was a fairly cold day in January 1971. I was sitting in an old classroom of
Kyoto University equipped with a charcoal-type heater already obsolete even in
those days, attending an introductory course on control theory for junior stu-
dents. The professor was teaching us a basic treatment of sampled-data systems
Figure 1. Here P(s) describes the correspondence between the incoming and
outgoing signals u(s) and y(s) of the controlled plant as y(s) = P(s)u(s) in
terms of Laplace transforms. Similarly, C'(z) describes those of the controller
via z-transform to specify its operation in discrete-time. To interface these
two kinds of systems, sampling/hold operations are introduced. The former is
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F1cURE 1. Unity Feedback Sampled-Data System

denoted by the slanted line segment while the latter is designated by the box
H. The objective here is to analyze and design this control system.

The lecture started out with the introduction of z-transform, description of
how we can compute the z-transform from a given Laplace transform, and then
proceeded to the z-domain representation etc. I can still recall with a rather
vivid image that I got quite puzzled as the course proceeded. In a word, my
bewilderment may be summarized to the fact that Figure 1 was really never dis-
cussed. What was grasped is the behavior of the system at sampled points only.
In other words, instead of studying Figure 1, one used to resort to Figure 2, by

— % C(z) t H P P(s) —

FicURE 2. Modified Unity Feedback Sampled-Data System

introducing fictitious samplers. Of course we know the reasons why we do this.
Figure 1 is not a time-invariant system. If we try to regard it as a discrete-
time system, the continuous-time plant P(s) gives us a trouble. On the other
hand, if we attempt to view Figure 1 as a continuous-time system, the discrete-
time controller and sample/hold devices cannot be regarded as time-invariant
continuous-time components. By introducing fictitious samplers as above, we
can bypass these problems and consider Figure 2 a time-invariant discrete-time
system. This also made it possible to introduce such time-invariant notions as
transfer functions.

There is, however, a price to be paid. The intersample behavior is lost
in this discrete-time model of Figure 2. One may recover it by the modified
z-transform, but it is possible only after we specified the controller. It is not
taken into account in the design when the model is Figure 2.

Then why call this theory a sampled-data control? If we disregard the
continuous-time behavior of the plant and convert the plant to Figure 2, it
is almost merely a theory for discrete-time systems. To make it worse, the
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conversion of Figure 1 — Figure 2 was often implicitly done. Many text-
books simply stated, after discussing the methods of computing z-transforms
from given continuous-time transfer functions, “the problem is thus equivalently
transformed into the design of a discrete-time control problem,” often without
exhibiting Figure 2. On the other hand, if we insist upon maintaining the inter-
sample behavior, the mixture of continuous and discrete-time systems makes
it impossible to treat the sampled-data system as a time-invariant object. Of
course, it is not precise to say that I, junior student at the time, thought of
the problem precisely in this way. This only represents the mood I felt, but it
was somehow there. At any rate, this dichotomy disturbed me, but I did not,
of course, see any easy way out.

2. A STeEp FORWARD

From time to time, sampled-data systems came back to my mind. I was subcon-
sciously looking for a framework that has the advantage of incorporating the
intersample behavior while maintaining the advantage of transfer functions.
But whenever I tried to think about the problem relying upon the sampled
points, it led to the loss of intersample information. Or else, the continuous-
time plant introduced a time-varying behavior in the intersampling periods. In
a word, the dilemma left unresolved.

In the meantime, my main research interest was centered around the real-
ization and control of distributed parameter systems, especially delay systems.
In due course and in collaboration with Shinji Hara, I encountered a new-type
servo scheme called repetitive control, see Figure 3 [25]. This is a control scheme
which aims at tracking every periodic signal of a fixed period L. To generate
all such signals, one needs a pure delay element of length L.

e~ Ls > P(s) >

F1cURE 3. Repetitive Control System

The idea of using an infinite-dimensional element (i.e., delay) to control a finite
dimensional plant intrigued me. Needless to say, to model such systems one
needs a function space on an interval of length L (typically L?[0, L]). Although
this did not have a direct connection with sampled-data systems, I started
thinking about combining this idea with sampled-data systems.
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3. LIFTING-FUNCTION SPACE MODEL
With the advance of micro-processors, the need for digital control systems be-
came more and more prevalent in the 80’s. Such a trend first started with
a discrete-time treatment. However, the need for handling the intersample
behavior in such control systems became more seriously recognized. In par-
ticular, Bruce Francis and his co-workers started a new pioneering approach
toward H>® and H? control of sampled-data systems with built-in intersample
behavior [8, 9, 10, 19]. During the summer of 1989, he visited Japan as a JSPS
fellow, and gave lectures on his new approach.

Meanwhile, I was struggling to reconcile the traditional approach with in-
tersampling behavior. Let us take the well-known model by KALMAN and
BERTRAM [28]:

h
Tyl = eAely, +/ e Boupdr, yi, = Cot (1)
0

for
z(t) = Acz(t) + Beu(t), y(t) = Cez(t). (2)

If we employ the model (1), it appears that we inevitably have to introduce
sampling in the input term, and hence this results in ignoring the intersampling
behavior. I had been stuck at this point for some time, but suddenly around
the end of summer of 1989, I came to realize that if we do not want to lose the
intersample information, we should simply keep it as a function vector. This
almost idiotically straightforward idea led me to the following: Let f(¢) be a
function of ¢, defined on [0, 0), and h a fixed sampling period. If we sample f(¢)
at each h interval period, we get a sequence {f(kh)}72,. This surely results
in loss of intersampling information f(kh 4+ 6), 0 < 6 < h. If we try to argue
that we can recover intersampling information in Figure 2 via z-transform, it is
misleading because intersampling information in the reference input r(t) surely
cannot be recovered. If it cannot be recovered, we should keep it. It is an
almost trivial mathematical idea to set up a mapping

L:f={f(kh+0)}2,, 0<0<h (3)
where each term on the right-hand side is regarded as a function of 6. See
Figure 4.

This maps a continuous-time signal to a sequence of functions

{f(kh +6)}0,

and is now called lifting. An important feature is that with this correspon-
dence, periodic continuous-time plants can be transformed into time-invariant
discrete-time systems. This may be explained as follows: Suppose we are at the
k-th sampling step, i.e., t = kh. According to the lifting definition (3), from
t = kh to t = (k + 1)h, input ug (@) is applied. We regard this as an infinite-
dimensional input vector that drives the system to the next step ¢t = (k + 1)h.
Accordingly, the state moves in a trajectory.
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To see such a state transition, one can replace h by # in the Kalman-
Bertram model (1), and replace uy by uy(#). This leads to the lifted model I
first obtained [39, 40]:

FI1cURE 4. Lifting

9
zr(0) = eA“hiL“kfl(h)*‘/ €A“(9*T)Bcu1¢+1(T)dT
0
yp(0) = Coxp(9) @

Actually, incorporating the full state history zy(6) into the model is a bit
superfluous, and one can well model it by using their values at kh, provided we
allow a direct feedthrough term in the model. This model was independently
proposed and used by TOIVONEN [38], and BAMIEH ET AL. [5, 7]? and exhibits
the finite-dimensionality of various optimization problems more explicitly.

h
Tpr1 = eA“ha:k+/ eA“(h*T)Bcuk(T)dT
0

[
ye(0) = CoeDyy + / C.e<=) By (7)dr (5)
0

From here on we assume this model.
The important point here is that the operators

A: C" 5 C":z el

B L?[0,h] = C" 1 u /h e =7) Bou(r)dr
C: C"=L*0,h:z~ cocef‘c(@)x
D

[4
L?[0,h] = L2[0,h] : u »—>/ C.e<=7) B u(r)dr
0

2 The idea of discrete-time lifting was known earlier in the signal processing literature, e.g.,
Davis [14]. However, this was not known to the control system community until these
developments were made. See also the work by KHARGONEKAR, POOLLA and TANNENBAUM
[29], where lifting was introduced for linear periodically time-varying discrete-time systems,
and application to continuous-time systems was indicated.
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do not depend on k (C™ denotes the n-dimensional complex Euclidean space).
Hence (5) can be written as a time-invariant equation

Tyl = Az + Buy
yr = Cuxp + Duy.

Thus the continuous-time plant (2) can be described by a time-invariant
discrete-time model. Once this is done, it is entirely routine to connect this
expression with a discrete-time controller, and hence sampled-data systems can
be fully described by time-invariant discrete-time equations, this time without
sacrificing the intersampling information.

It is now easy to write down the combined equation for sampled-data sys-
tems, for example, for Figure 1. We denote it abstractly as

Tk+1 — .Al‘k + Buk (6)
yr = Cxp+ Duyg.
Let us introduce the notion of transfer functions. Let f := {fx(")}2,

be a sequence of functions, each f; belonging to L%[0,h]. We can define its
z-transform as

Z[f)(=) = fez k. (7)
k=0

This is just a formal power series. Similarly, the z-transform of a sequence of
operators G = {G}22,, G € L(L?[0,h]) can be defined by

Z[G)(z) =Y Grz k. (8)
k=0

When G = CA*~'B and G¢ = D, the sequence describes the input/output
correspondence of system (6), and its z-transform is equal to

G(z) :==D+C(2I — A) 'B. (9)

This is the transfer function of system (6). When an input u(z) as in (7) is
applied to system (6), its zero-initial state output is given by G(z)u(z).

While such an expression primarily makes sense as a formal power series,
substitution of certain complex values for z often makes sense. Observe that A
is a matrix. Then (9) makes sense for z = A with A not being in the spectrum
of A. The resulting operator becomes a bounded operator in L?[0, h].

4. STEADY STATE AND FREQUENCY RESPONSE
Because of the time-invariance it induces, lifted model (5) is very effective in
characterizing steady state response.

Let G(2) be a stable transfer function as defined above. Here stability means
that the spectrum of A is contained in the open unit disc of the complex plane.
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Let us pose the question: What is the steady state response against sinusoidal
inputs?
Let us take a sinusoid e/“?. Its lifted image is

{ejwkhejwﬂ}zozo-

This has the form {\*v(6)}, i.e., power function with infinite-dimensional initial
vector. So we generalize the question above, and look for a steady state response
against inputs of type {\fv(#)} for |A| > 1.

By definition (7), the z-transform of A*v(6) is easily seen to be

zv(’)
2=\

Since G(z) is stable, the initial state response decays to zero, so the response
against this input asymptotically approaches G(z) (zv(-)/(z — A)). Since G(2)
is analytic in a neighborhood of z = A, it admits the expansion:

G(2) =G\ + (z = NG(2) (10)
with some G/(2) that is also analytic in |z| > 1 (by the stability of G). It follows
that

zv(0)  2G(A\)v(0) ~
G(z)z—)\ i + 2G(z)v(8).

The second term on the right goes to zero as k — oo by the analyticity of
G, so that the output approaches zG(A\)v(6)/(z — A). Therefore, the output y
asymptotically approaches

y(kh +6) = X(G(\))(6) (11)

as k — oo.
This result leads to the following observations.

1. When A = 1 and v(f) = 1, (11) gives G(1)v. This is the steady state
response against the step input. If G(z) is the transfer function from the
reference signal to the error output, then asymptotic tracking is achieved
only when [G(1)v](6) = 0.

2. When |A| = 1, A*G(A\)v(8) is really not in “steady-state” unless A = 1.
However, its modulus |G(A)v(#)| remains the same at each sampling time.
The change at each step is a phase shift induced by the multiplication by

edwh,
The latter observation motivates the following definition:

DEFINITION 4.1. Let G(z) be the transfer function of the lifted system as
above. Let w, := 2w /h. The frequency response operator is the operator

G (€M) : L2[0,h] — L?[0, h] (12)
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regarded as a function of w € [0,ws). Its gain at w is defined to be
1G (7 )vl|

|G(e™M)|| = sup . (13)
vEL2[0,h] [|v]]

The maximum ||G(e’“")|| over [0,ws) is the H> norm of G(z).

The above definition of gain takes all the aliasing effects into account. To see
this, observe that the lifting of e7(“+7@:)t can be expressed also as

{ejwkhej(w+nws)0 I?;O

because ef(wtnws)h — giwh Therefore, z-transforms of type

zv(6)

z — elwh

can express all aliased signals of e/“?, and the gain defined above gives the
magnitude of the worst case response against those signals.

5. FREQUENCY RESPONSE VIA SEQUENCE SPACES

Independently, Araki and co-workers proposed a different definition of fre-
quency response for sampled-data systems [1, 2, 3]. The idea is the following.
Fix a fundamental frequency 0 < w < wg, and write w, := w +nw;. What they
found through the impulse modulation formula (e.g., [32]) is that the steady
state response against inputs of type Zzo:_oo unel“rt is again expressible in
the same form. In other words, sample and hold operations introduce aliased
waveforms of type e/“»t, n = 0,+1,+2,..., but that completely describes the
system and no further waveforms are necessary. They introduced a function

space

X, = {z(t) = Z Tnelnt Z |'75n|2 < oo}, (14)

n=—oo n

isomorphic to £2 for each fixed w, and showed that a stable sampled-data system
induces a bounded linear operator G, : X, — X, in the form

oo o0
Gu( Z uged“tt) = Z g ugednt

{=—00 n,{=—o00

They call this G, (or the matrix (g’)) an FR operator. The same concept was
also used effectively by DULLERUD and GLOVER [16] for the study of robust
stability.

This definition looks quite different from the frequency response introduced
in the previous section. They are, however, actually equivalent. To see this,
the following lemma is fundamental.
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LEMMA 5.1. Fiz any w € [0,ws). Then every ¢ € L%[0,h] can be expanded in

terms of e7“n? as

() = Z ane’n? (15)

with
1

1 [
= — —JwWnT = —p(17 1
an h/o e o(r)dr hw(an) (16)

where o € L?[0,h] is embedded in L*[0,00) as a function having support con-
tained in [0,00). Furthermore, the L*> norm ||pl| is given by

lel>=h > lanl. (17)

n=-—oo

In short, the family {e/“? /v/h}52
in the lifting expression

{e™ u(0)}3720 (18)

forms an orthonormal basis, so that

— 00

the initial function v(f) can be expanded into the sum as above: wv(f) =

S veedwed,

We give a lifting interpretation of G,. Suppose that (18) is applied to a
stable transfer function G(z). By what we have seen in the previous section,
its steady state response at the k-th step is

ejwth(ejwh)[,U] — ejwth(ejwh)[Z U{@jwle]

{=—00
e . . .
= Z IR G (eI [e10 0 vy (19)
{=—00
Expand G(e/“")[e/“¢?] in terms of e/“»? to get

o0
G ]= Y ghe .

n=-—oo

Substituting this to (19), we obtain

o0 oo
ejwth(ejwh)[,U] — ejwkh Z Z gflejwnH,Ue-

{=—0o0n=—00

Since e(wtnws)h — giwh thig is the k-th step response of

00 00
L _jwnt
2. D gne’ o,

{=—00 N=—00
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where t = kh + 6. Interchanging the order of summation, this is equal to

5 (z gﬁ(w)w) 20

n=—oo0 \{=-—00

This means that the sequence space definition given here is precisely the ma-
trix expansion with respect to the basis {e/“»’} of G(e/“"). Since this is an
orthonormal basis, this correspondence gives an isometric isomorphism, so that
all of their singular values and norms coincide.

6. GAIN COMPUTATION
The gain function G(e/“") is given as the operator norm at each frequency, and
this is not so easy to compute. Fortunately, for most of the practical purposes,
it can be computed as the maximal singular value [43]. To be more precise,
the operator G(e/“") is at most a compact perturbation of a multiplication
operator, and except the singular case in which the norm is equal to the norm
of this multiplication operator, the norm of G(e/“") is given as the maximal
singular value.

Our problem is thus reduced to that of solving the singular value equation

(v*I — G*G(e“M)w = 0. (21)

This is still an infinite-dimensional equation. However, we can convert this
into state space forms, by invoking the state space realization of G(z) and its
adjoint G*(z). Note that by lifting a realization of G(z) can be written in the
form

Az + Bwy,
Y = Cxp + Dwy,.

Th+41

Its adjoint can then be easily derived as

pr = A'pry+Cu
e = B*pk+1 + D*uy.

Taking the z-transforms of both sides, setting z = e/“", and substituting v = y
and e = y?w, we get

ety = Ax+ Bw
p = "A*p+C*(Cx + Dw)
(Y2 =D*D)w = e“"B*p+D*Cx

Solving these, we obtain

; I BR;'B* A+ BR;'D*C 0 x
jwh _ _
([} 0 S |- [ AT 2] 2] o
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where R, = (vI — D*D). The important point to be noted here is that all the
operators appearing here are actually matrices. For example, by checking the
domain and range spaces, we easily see that BR> !B* is a linear operator from
C" into itself, i.e., a matrix. Therefore, in principle, one can solve the singular
value equation (21) by finding a nontrivial solution for (22) (provided R is
invertible) [41, 43].

REMARK 6.1. In actual computation, it is often more convenient to employ
approximation approach [23, 31]. A bisection search algorithm is also given in
[23].

7. EXAMPLE
We give a simple H? design example that exhibits the difference of the modern
and classical design methods.

Consider the following unstable continuous-time generalized plant G:

z w
0 10 O
10 =21 1
1 010 0
y 1 o0lo o] w
H
A
> K(z)

FiGURE 5. Sampled Feedback System

Here [%’%] is a shorthand for D + C'(2I — A)~'B.

Suppose we discretize the plant G at sampled points, get a discrete-time
generalized plant G4, and then execute the H? design for G4. Naturally Gg
loses not only the intersample information but also information on how long
the sampling period is. We then pose the question: What kind of performance
does this design sacrifice? To make a comparison, we take a direct, continuous-
time based, sampled-data H? design [10, 30, 6]. Here the latter H? problem
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minimizes the average of responses against impulses applied over the first time
interval [0, h).
We set the sampling period h = 0.2, and execute the

— new sampled-data H? design, get a controller K,

— discretize the plant (representing the sample point behavior only), and
execute the discrete-time H? design, and get a controller K.

The computation is executed over the function routines HSYs Module program

developed by HArRA, YaAMAMOTO, FUJloKA and TAKEDA [24]. The results are
as follows:

K, (sampled-data design):

A1 B [ [ —3.72509 —20.8438 —16.6414 -|
{TS’TS} = 0.259501 0.999332 0.243988
sl | [ 11.0285 16.5185 | 0 J
K4 (discrete-time H? design):
4,1 B [ [ —5.12471 —28.1772 —22.268 '|
{%’Dfd} = 0.337204  1.35992 0.46908
| | [ 131959 23.2278 ] 0 J
10
s ; ||‘
F !\
<F h
.y &
= B
e P
s ,', !
-20 F ES // \‘\
F s -‘:-\x/ i’ o
25 L
_3%_:1 a 10

frequency [rad/sec]

FIGURE 6. Frequency Responses

Figure 6 shows the frequency responses of the closed-loop systems. The
solid curve shows that of the sampled-design, whereas the dotted curve shows
the discrete-time frequency response when K is connected with the discretized
plant G4 (i.e., purely discrete-time frequency response). Although it appears
that the usual discretized design performs better, it is actually worse when
we compute the real (continuous-time) frequency response of G connected with
K 4. The dash curve shows this frequency response. It is similar to the discrete-
time frequency response in the low frequency range, but exhibits a very sharp
peak around the Nyquist frequency (7/h ~ 15.2 rad/sec).
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This can also be observed in the time-response Figure 7 (impulse response).
The solid curve shows the sampled-data design, and the dash curve the discrete-

=2

-—

R
h [REN RNANANT, s
TV TV E ey TN =
(VA v

time
FiqURE 7. Impulse Responses

time design. It is easily seen that the latter shows a very oscillatory behavior.

Also, we see that both responses decay to zero very rapidly at sampled in-

stants. The difference is that the latter exhibits very large ripples, with period

approximately 0.4 sec. This corresponds to 1/0.4Hz, which is the same as

(27)/0.4 = w/h rad/sec, i.e., Nyquist frequency. This is precisely the phe-

nomenon captured in the (lifted) frequency response in Figure 6.
Summarizing, we see that

— the modern sampled-data design effectively attenuates undesirable inter-
sample ripples, and

— the introduced sampled-data frequency response successfully captures con-
tinuous-time behavior which the purely discrete-time notion fails to de-
scribe.

8. NOTES ON RELATED WORK

I have given a fairly personal and retrospective view on the recent developments
of sampled-data systems, focused around the themes I was interested in. As I
noted in the beginning, the views are fairly biased, and there are lots of other
related, but independent work. To circumvent the overall perspective, let us
give a few notes on some related work. Naturally, the list cannot be complete,
but I have benefitted greatly from the recent account by CHEN and FRANCIS
[12], which gives far more complete discussions; interested readers are referred
to this monograph.

Varied design methods have been obtained, all taking account of intersam-
ple behavior, and differ from the classical design methods. The computation
and optimization of H*°-norm have been studied by many authors: CHEN and
FrANcCIS [9], KABAMBA and HARA [27], TOIVONEN [38], BAMIEH and PEAR-
SON [5], TADMOR [37], SIVASHANKAR and KHARGONEKAR [35], HAYAKAWA

273



ET AL. [26], SUN ET AL. [36], YAMAMOTO [41], and YAMAMOTO and KHAR-
GONEKAR [43], etc. Among them, CHEN and FRANCIS [9] gave the first at-
tempt. KABAMBA and HARA [27] gave a first state space solution for the gen-
eral case. BAMIEH and PEARSON [5] gave a solution in the lifting framework.
SIVASHANKAR and KHARGONEKAR [35] gave a direct state space approach that
leads to the Riccati equations.

H? control problems have also been studied fairly extensively. For exam-
ple, see CHEN and FrRANCIS [10, 11], KHARGONEKAR and SIVASHANKAR [30],
BaAMIEH and PEARSON [6], HARA, Fusioka and KABAMBA [22] for the case
with discrete-time inputs, and HAGIWARA and ARaKI [21] for FR-operator
type approach.

It is to be noted that if we allow any periodically time-varying perturbations,
the small gain condition is necessary and sufficient for robust stability [34]. On
the other hand, if we restrict perturbations to linear time-invariant ones it can
be fairly conservative (DULLERUD and GLOVER [16]; an infinite-dimensional x
condition results.) Computation using “D-scaling” is discussed in [17].

L'-norm problems are studied by DULLERUD and FRANCIS [15], SIVASHAN-
KAR and KHARGONEKAR [33], and BAMIEH, DAHLEH and PEARSON [4].

For frequency domain approaches not dealt with here, especially that related
to generalized hold functions or Bode type integral design constraints, see [18,
20].

There is also a new attempt to design digital filters with these new H
sampled-data techniques. See [13].
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