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In many of the present controlled large-scale systems - communication and com-
puter networks, detection networks, manufacturing systems, economic systems,
database systems, power systems, etc. - information is decentralized. Further-
more, in the abovementioned systems it may be impossible to order the control
actions a priori, independently of the set of control laws that determines these
actions. Such systems are called nonsequential. The theory of nonsequential
stochastic controlled systems is at a very early stage of development. In this pa-
per, we first present a survey of existing results on nonsequential systems within
the framework of Witsenhausen’s intrinsic model; then, we discuss some open
problems arising from the research performed so far.

1. INTRODUCTION

In centralized stochastic controlled systems, all control actions are taken by
one control station where all the information is gathered. The station has
perfect recall and can base each action on all the information gathered up to
the time the action must be taken. The theoretical foundations for the analysis
and optimization of centralized stochastic controlled systems are by now well-
developed (see, for example, [12], [18], [26], [27], [28], [33]).

Most of the present large-scale systems such as communication and com-
puter networks, manufacturing systems, economic systems, database systems,
power systems, etc., are informationally decentralized. The salient features of
these systems are the following: (1) there are several control stations that have
access to different information; (2) the stations may communicate among each
other by signaling through the system itself or through noisy channels (that are
part of the system); (3) the stations have a common objective; (4) the stations
have to coordinate their control strategies to optimize that common objective.
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The decentralization of information and the possibility of communication
among control stations make decentralized decision problems drastically dif-
ferent from centralized stochastic control problems. The difficulties arising in
informationally decentralized ststems are clearly pointed out by Witsenhausen
in [34] as follows: In informationally decentralized systems “the data available
for a certain decision may be insufficient to determine what the control values
chosen at earlier decisions were. Worse yet, the data may be insufficient to
determine which decisions have been made and which are in the future and
could possibly have their data dependent upon the decision under considera-
tion. This is because for any agent (device) which is to implement a decision,
the time (and place) of that decision may depend upon the random inputs to
the system and on the values decided upon by other stations.”

Because of the abovementioned difficulties, the fundamental techniques of
analysis and optimization of centralized stochastic controlled systems cannot
be used to analyze and optimize the performance of informationally decen-
tralized systems (cf. Section 6). One of the reasons is that in decentralized
systems it may be impossible to order the stations’ control actions a priori,
independently of the set of control laws, called the design (or control policy),
that determines the actions. Such systems are called nonsequential. In the
simplest case, a nonsequential system’s actions may be ordered a priori, given
any design, but the order varies from design to design. In general, for at least
one design, the actions’ order depends on the system’s uncontrolled inputs (the
noise variables), i.e. action «; may depend on action as under some circum-
stances while as may depend on «; under other circumstances. Examples
of systems that exhibit such interdependence are: (1) packet-switched data
networks [29] - packet routing, buffering, and reassembling interdependencies;
(2) distributed databases [11] - transaction scheduling and locking interdepen-
dencies; (3) flexible manufacturing systems [24] - part delivery, buffering and
assembly interdependencies; and (4) decentralized detection networks [4, Ap-
pendix A], [1, Appendix L] - observation and signaling interdependencies. It
has been shown in [4, Appendix A] that nonsequential systems can potentially
perform better that sequential systems, i.e. systems where the control actions
can be ordered a priori, independently of the design. However, nonsequential
systems are subject to deadlock, i.e. it is possible that for some design two or
more actions are mutually dependent, - e.g. action a; depends on a, and vice
versa.

The theory of nonsequential stochastic controlled systems is at a very early
stage of development. The performance of these systems crucially depends
on what information is available for each control action. Thus, some of the
fundamental issues associated with the performance of nonsequential stochastic
controlled systems are:

P1. Who should know what and when?
P2. Who should communicate with whom and when?
P3. Given that communication must be limited, either because channels have
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limited capacity or because stations have limited memory to store data and
limited processing capability, what information must be exchanged in real-
time among stations so that they can improve the quality of their actions?

P4. What information should be available to each control station so that the
system is deadlock-free?

P5. Given that the design of highly concurrent systems is desirable, but con-
currency can only increase by increasing the complexity of the system’s
information gathering sources, what are the fundamental tradeoffs between
system concurrency and the complexity of the system’s information gath-
ering sources?

P6. How does one optimize the performance of nonsequential stochastic con-
trolled systems?

In this paper, we first present the intrinsic model for stochastic control
which is a mathematical model for nonsequential stochastic controlled systems;
then, we briefly survey existing results on nonsequential systems within the
framework of the intrinsic model; and finally, we discuss some open questions
arising from the research performed thus far.

2. WITSENHAUSEN’S INTRINSIC MODEL FOR STOCHASTIC CONTROL

At least five different classes of models have been proposed for modeling nonse-
quential systems: (1) a quantum mechanical model [9]; (2) discrete event mod-
els (e.g.[16], [17], [22], [23], [30], [31]); (3) a game- theoretic model [25], [32]; (4)
a hybrid dynamical model [10], [20]; and (5) an intrinsic model [34], [36]. These
models provide a statistical, logical, informational, logical/temporal, and in-
formational characterization of nonsequentiality, respectively. Witsenhausen’s
intrinsic model for stochastic control, [34], [36], provides the framework for the
results that will be presented and discussed in this paper.

Consider a generic stochastic controlled system in which the number of con-
trol actions (decisions), and the number of primitive random inputs, are both
finite (Figure 1). From a game theoretic perspective, the controller’s decisions
can be viewed as being the decisions of N autonomous, single-decision agents
(usually, computers or devices) acting on the controller’s behalf (cf. [32]). Like-
wise, the primitive random inputs can be viewed as being a single decision of
nature (chance). This perspective entails no loss of generality since realiza-
tions of the system’s uncertainties can always be selected before any control
decisions are made and then forwarded to the system as needed. Denote na-
ture’s decision by w := (w°,w',...,w") € Q, and the agents’ observations and
decisions by y := (y*,y>,...,y") € Y and u := (u',u?,...,u"N) € U, respec-
tively. Let nature’s decision model the initial uncertainty in the system (w°)
and all other uncertainties (w¥, 1 < k < N) affecting the agent’s observa-
tions. Let the agents’ observations be measurable functions of the system’s
intrinsic variables, w and u (e.g., y* = h¥(w,u), 1 < k < N), and constrain
each agent’s decision policy to be a measurable function of its observation (e.g.,
u® = gk(y*), 1 <k < N). As long as the superscripts on w,y, and u are not
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FIGURE 1. A generic stochastic control system

assumed to index time, this setup imposes no a priori constraints on the agents’
decision order. It follows that nonsequential systems can be represented within
this framework.

Witsenhausen’s intrisic model for stochastic control, [34],[36], simplifies in a
theoretical sense the preceding representation. Witsenhausen adopts a “snap-
shot” approach that simultaneously relates all of the system’s uncertain inputs
and control actions to the information that determines the control actions. His
crucial observations are:

(1) All agents’ decisions are determined by the system’s intrinsic variables; that

is, uk = gF(y*) = (g* - B¥)(w,ut,u?, ..., ulV) = v*(w,ut,u?,...,u?), where
v*, k=1,..., N, are measurable functions of all of the system’s intrinsic vari-
ables.

(2) The kth agent’s observation, k = 1,2,..., N, only affects the kth agent’s
decision indirectly via the information subfield it induces on the space of in-
trinsic variables; that is, if Y* is the o-field on Y*, h* induces the subfield
[RF]=1 (V%) on Q x U. Consequently, it is unnecessary to model the observa-
tions explicitly.

The measurability constraints on v*, & = 1,2,..., N, replace the observation
equations as the sole determinants of the relationship among the uncertain
inputs, the control actions and the information that determines the control
actions. Thus, within the intrinsic model’s framework, the control process can
be viewed as a feedback loop that maps information into control actions via
the control laws, and control actions into information via the measurability
constraints. The principal advantage of Witsenhausen’s intrinsic informational
characterization of nonsequentiality is that it provides a theoretical framework
that is appropriate for the investigation of Problems P1 - P6 posed in Section
1.

Formally, Witsenhausen’s intrinsic model, [34], [36], has three components: An
information structure 7, a design constraint set ', and a description of nature’s
randomized control policy.

1. The information structure Z := {N, (Q, B),(U*, u*),3* k=1,2, ...,N}
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specifies the system’s allowable decisions and distinguishable events.

(i) N € N is the number of agents in the system excluding nature.

(ii) (2, B) is the measurable space from which w, nature’s random action,
is selected. (€2 is a set and B is a o-algebra of subsets of (2.)

(iii) (U*, U*),k =1, 2, ..., N, is the measurable space from which u¥, the
kth agent’s control action is selected. It is assumed that the singletons
of U* belong to U*, and that the cardinality of U¥, is greater than
1 (see [1]). The measurable product containing the agents’ collective
actions, u := (u',u?,...,u!), is denote by (U,U) := (IIIL, U4 @, U)

(iv) S*,k = 1,2,...,N, is the information subfield of the product o-field
B ® U characterizing the kth agent’s set of distinguishable events.

2. The design constraint set I'. constrains N-tuples of the agents’ control poli-
cies v :i= (V52,0 YY), YR - (A x U, S%) — (UF, U*), k =1,2,..., N, called
designs, to a nonempty subset of I' := Hﬁilfi, where T* k = 1,2,..., N,
denotes the set of all 3*/i/*- measurable functions.

3. A probability measure P on (12, B) specifies the randomized control policy
used by nature.

Note that the intrinsic model does not exclude the possibility of an agent em-
ploying a mixed (i.e., randomized) decision policy, or a policy which occasion-
ally dictates that the agent not act. To model the mixed policy, randomizing
devices can be included as factors in (2, B, P), and the effects of the devices’
outputs can be specified in 3*, £ = 1,2,...,N. To model the occasional

inaction, the agent can be allowed to make decisions that have no effect.

3. THE GENERIC STOCHASTIC CONTROL PROBLEM
We are concerned with the following generic stochastic control problem.
(P) Given an information structure Z, a design constraint set I,
a probability measure P on B, and a bounded, nonnegative,
B®U-measurable reward function V, identify a design v in [,

that achieves
sup,ep, B [V(w,u])] exactly, or within ¢ > 0.
In the above problem, the notation u), indicates that u := (u!,u?,...u’V) de-

pends on w through v; that is, u* = v¥(w,u) for all k =1,2,...,N.

Several issues associated with Problem (P) arise. Since the problem may
not be sequential it need not be deadlock-free (i.e. for some design two or more
control actions may be mutually dependent) or well-posed (i.e. some design
v € T'. may not possess an expected reward EY (V(w,u])) so that optimization
may not be possible) as demonstrated by the following two examples.
ExaMPLE 3.1 Consider a system consisting of three agents and nature. Assume

Q = U'=0?=U3={0,1}, (3.1)
B = U'=u?=U"={¢{0},{1},{0,1}}, (3.2)
3t = {¢,QxU,{(w,u1,u2,u3) :wa2u3:1} ,
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{(w,ul,u2,u3) cwitud = 0}} , (3.3)

32 = {(;5,9 x U, {(w,ul,u2,u3) cwitu! = 0} ,

{(w,ul,u2,u3) cwitu! = 1}} , (3.4)
3 = {(;5,9 x U, {(w,ul,u2,u3) cwalu? = 0} ,

{(w,ul,u2,u3) cwalu? = 1}} , (3.5)

where @' denotes the binary complement of u € {0,1},i = 1,2,3; that is,
' = (1+u') mod 2,i=1,2,3.
Consider the following design v := (v',~%,73),

1, if witu® =1
1 1,2 3\ _ )
7w uh b e’) = { 0, otherwise, (3.6)
1, if wadu' =1
2 1,23\ _ ;
7w el b e’) = { 0, otherwise, (3.7)
1, if wa'u?=1
3 1 2 3 _ )
v (w,u U ) - { 0, otherwise. (3.8)

Then, when w = 1 occurs, v' depends on u? and u?,~? depends on »> and u!,
and 7 depends on u' and u?. Consequently, no agent can act and a deadlock

occurs. O
ExaAMPLE 3.2 Consider a system consisting of two agents and nature. Let
Q = U'=U0?=/{0,1}, (3.9)
B = u'=u*={¢,{0},{1},{0,1}}, (3.10)
3 = ¥FP=BoU' U’ (3.11)

Consider the following design v := (v!,+?)

0,ifu? =0

o (wyut ) = { ety (3.12)
0,ifu! =0

V2 (w,ul,u?) = { Liful = 1. (3.13)

Then, at w = 0 the closed-loop equations

ul =41 (w,ul,u2) Ju? =2 (w,ul,uQ) (3.14)

fail to possess a unique solution

u) = (ull,ulz) (3.15)
as

0 =+'(0,0,0), 0 =~20,0,0) (3.16)
and
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1=+'0,1,1), 1 =+%(0,1,1) (3.17)
both satisfy (3.14). A similar situation arises at w = 1 where

0=1+'(1,0,0), 0=12(1,0,0) (3.18)
and

1=7'(1,1,1), 1 =4%(1,1,1) (3.19)

both satisfy (3.14). In this case the reward V(w, ) induced by any w under
is not unique, the expectation EJ [V (w,u})] does not exist and Problem (P)
is not well-posed. O

Therefore, it is important to identify conditions on the information struc-
ture to ensure that Problem (P) is deadlock-free and well-posed. Since there
exist problems of the form (P) where some, but not all, nontrivial designs are
deadlock-free and possess expected rewards (see [4], Appendix A), two classes
of conditions can be considered: (1) conditions based on the problem’s design-
independent properties (that is, properties that hold for all v € T'); and (ii) con-
ditions based on the problem’s design-dependent properties (that is, properties
that may hold only for specific designs v € I'). We examine these conditions
separately in the following two sections.

4. DESIGN-INDEPENDENT PROPERTIES

In this section we present the properties the information structure Z must pos-
sess to ensure that Problem (P) is well-posed and deadlock-free for all designs
vyeT.

4.1. Properties DF, S, SM.
To ensure that Problem (P) is deadlock-free, it is sufficient to require that its
information structure, Z possesses Property DF (deadlock-freeness).
DEeFINITION 4.1 ([1], [4]). An information structure Z possesses Property DF
(deadlock- freeness) if for each v = (y!,72,....,¥"Y) € T and for every w € Q,
there exists an ordering of v’s N control laws 751 () 452(«) " ~s~(w) guch that
no control action u**() n = 1,2, ..., N, depends on itself or the control actions
that follow. a
Property DF generalizes the usual notion of causality since it does not as-
sume that the actions’ order is fixed independently of the random input w € Q
and the design v € T. To ensure that Problem (P) is well-posed we must
guarantee that every design v € I induces a unique outcome ), (or a unique
reward V(w, u,},)) for every decision w of nature and that the expected reward
EY) [V(w,u,))] is also defined. These requirements lead to Properties S and
SM defined below.
DEFINITION 4.2 ([36]). An information structure Z possesses Property S (solv-
ability) when for each design v € T' and every w €  there exists a unique
u), € U satisfying the closed-loop equations.
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uF =~ (w,u), k=1,2,..N.

When Problem (P)’s information structure possesses Property S, every de-
sign v € T induces a unique closed-loop solution map .7 : Q — U via the
closed-loop solutions {u), € U : y(w,u)) =u)}. Hence, we have > "(w) =
u), and therefore Problem (P)’s reward V(w,u)) can be uniquely defined as
V(w,>."(w)) for all v € T'. The expected reward E [V (w,>.” (w))] is also de-
fined when the map Y7 : Q — U is B/U~ measurable.
DEFINITION 4.3 ([36]). An information structure Z possessing Property S
possesses Property SM (solvability - measurability) when for each v € T the
induced map .7 : Q — U is B/U— measurable. ]

In general, it is not known whether Property S implies Property SM. How-
ever, in two important cases S implies SM.
THEOREM 4.1 ([1], [3]). Property S implies Property SM when either of the
two conditions is satisfied:

(i) U*,k = 1,2...N, are countable sets, or

(ii) (Q, B) and (U*, U*), k=1,2,..N, are Souslin measurable spaces. O

Most measurable spaces of interest are Souslin [19]. For example, countable
spaces, standard Borel spaces [15] and Blackwell spaces [14] where all singletons
are measurable are Souslin spaces. Furthermore, spaces of the form (X, B(X)),
where is X is Borel, or more generally an analytic subset of R"™, and B(X) is
the Borel o-field of X, are Souslin. Consequently, for most cases of interest
Properties S and SM are equivalent. Property DF implies property SM; this
will become clear from the results of Section 4.2. In general, Property SM does
not imply Property DF as the following example shows.
ExAMPLE 4.1 Consider the information structure Z of Example 3.1. This
information structure posseses Property S. Since U*, k = 1,2,3, are finite, by
Theorem 4.1, 7 possesses Property SM. However, as shown in Example 3.1, 7
does not possess Property DF. O

Since Properties DF, S and SM ensure that the generic stochastic control
problem (P) is deadlock-free and well-posed, it would be desirable to determine
properties of the information structure Z that guarantee Properties DF, S and
SM. This leads to Properties C and CI discussed below.

4.2. Properties C and CL

Property DF suggests that deadlocks cannot arise if for each w € Q and each
design v € I' the agents can be ordered in a such way that each agent’s in-
formation depends only on w and its predecessors’ actions. To formalize this
observation we adopt the following notation: For all k£ = 1,2... N, we define
Sk, to be the set of all k-agent orderings, that is, all injections of {1, 2, ...k} into
{1,2,..,N}. Forallj=0,1,2,..N,and k = j,j+1,...N, we let Tf Sk — S
denote a truncation map that returns the ordering of the first j agents of a
k-agent ordering, that is, Tj’“ restricts s € Sy, to the domain {1,2,...5} or to ¢
when j =0. For all s := (s1, $2, ..., 8x) € Sk, and k = 1,2,...N, we define P; to
be the projection of Q x U onto (Q x I¥_, U%), that is
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Ps(w,u) = (w,u®,...,u’*), Py(w,u) = (w) (4.2)

Finally, for all s € Sy, k = 1,2,..., N, we denote by F(T} ,(s)) the o-field of
intrinsic events that is induced by the actions of nature and the first k-1 agents
in s. Then, the intuitive notion of causality can be formalized as a constraint
on Problem (P)’s information structure as follows:

DEFINITION 4.4 ([36]). An information structure Z possesses Property C
(causality) when there is at least one map ¢ : Q x U — Sy such that for all
s:=(s1,82,..,5;) € Sk, k=1,2,..N,

S N [T -] (s) C F (T ((s)) .(4.3)0

DEFINITION 4.5 ([4]). An information structure Z possesses Property CI
(causal implementability) when there exists at least one map ¢ : Q@ x U — Sy
such that for all k=1,2,...N, and (w,u) € Q x U,

3% N [PT,j",l(s)] B (PT,j‘il(s) (w,u)) C
- {¢, [PT,L(S)]_I {PT,ggl(s) (W:U)]} (4.4)

when s := (s1, 82, ...sN) = Y(w, u). O
We now intuitively interpret each of the above definitions. The function

maps every intrinsic outcome (w,u) €  x U into an N-agent decision (action)

order. .

(TN -4p] " (s) is the set of intrinsic outcomes that are mapped by ¢ into deci-

sion orders where the order of the first k agentsis s € Si. S**N[T - ] - (s),s €
Sk, is the o-field of intrinsic events that agent s, can distinguish, given that
the order of the first k£ agents, as determined by ), is s. Property C en-
sures that there exists an order function ¢, such that for all possible orderings
s € Sk, k=1,2,...N, the events that agent s can distinguish, (given that the
ordering of the first k agents, as determined by 1, is s), are events that can
be induced by the decisions of nature, and the s, agent’s predecessors in s.
Property CI’s interpretation proceeds along similar arguments. As before, 1 is
a function that maps every intrinsic outcome (w,u) € 2 x U into an N-agent
ordering.
-1

[PTlév_l(s)] B (PTlév_l(s) (w, u)) = [IPT,j\’_l(S)] (w,u’, ..., u’ ") (4.5)

is the cylinder set induced on © x U, when the intrinsic outcome is (w,u), by
the actions of nature and the first k-1 agents in s := (s1, $2, ..., sn) = ¥ (w, u).
The o-field

3% [Pry )] B (Pry o) () (4.6)

denotes the trace of the sith agent’s information field on this cylinder set. Re-
quirement (4.4) constrains the cylinder set (4.5) to be a subset of all events
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containing (w,u) in the sith agent’s information field $%; that is, no event
containing (w,u) may depend on u¢ u®+1 ... u*¥. Therefore, Property CI
ensures that for all outcomes (w,u) € Q x U, there exists an order s :=
(s',5%,...,8N) = o(w,u) such that for all k = 1,2,...N, the sith agent’s
information at the point (w,u) depends only on the actions of nature and its
predecessors in s.

The significance of Properties C and CI stems from the following results:
THEOREM 4.2 ([36]). If an information structure Z possesses Property C then:

(i) Z possesses property SM;

(ii) Z possesess property DF. a
THEOREM 4.3 ([4]). Let Z be an arbitrary information structure. Then,

(i) T possesses property SM if 7 posseses property CI, and

(ii) Z possesses property DF if and only if Z possesses property CL O

Part (i) of Theorems 4.2 and 4.3 ensures that when Problem (P) satisfies
either Property C or Property CI then it is well-posed. Theorem 4.2 provides
a sufficient condition, whereas Theorem 4.3 provides a necessary and sufficient
condition for deadlock-free operation of nonsequential systems. The reason for
this difference is the following: The requirement expressed by (4.3) in the def-
inition of Property C imposes certain measurability constraints on the order
function ¢ (Lemma 5, [36]); however, there are order functions 1 for which 7
possesses property CI and which do not satisfy the measurability constraints
imposed by Property C. Such an order function is given in the following exam-
ple:
EXAMPLE 4.2 ([4]). Consider a nonsequential information structure Z of the
form

N = 3
Q = U'=0?=U3%={0,1},

B = U'=u*=U’={$,{0},{1},{0,1}},

St = g {(w,u) rwu® =0}, {(w,u) rwu® =1} ,Qx U},

Sh {¢, {(w,u) :wu' =0}, {(w,u) rou' =1},Qx U},

3 = ¢, {(w,u):w=0},{(w,u):w=1},2x U}, (4.7)

where @ is the binary complement of w € {1,0}.
The order function 1 defined by

(1,2,3), whenw =0
Y(w,ut,u u?) = ¢ (3,2,1), when wu® =1 (4.8)
(2,1,3), otherwise
is such that Z possesses property CI but not property C; Eq. (4.3) fails when
k =1,s =3 € S, because [Tf-w]fl (3) = {(w,u) :wu® =1} ¢ F(p) =
B {¢,U}. O
Since Property C implies Property DF (Theorem 4.2) and Property DF
implies Property CI (Theorem 4.3) the following is clear.
THEOREM 4.4 ([4]). Property C implies Property CI. |
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Furthermore, since there exist nonsequential information structures Z, and
order functions % such that Z possesses Property CI but not Property C, (Ex-
ample 4.1), Property CI may not imply Property C, and general proofs that
Property CI implies Property C must be constructive. It is not known, in gen-
eral, whether Property CI implies Property C; the implication however, holds
in the following cases.

THEOREM 4.5 ([4], [36]). Property CI implies Property C whenever N < 2. O
TuEOREM 4.6 ([4]). Property CI implies Property C whenever Q and U*, k =
1,2,..,

N, are countable sets, and B contains the singletons of ). a
THEOREM 4.7 ([4]). All constant order functions % such that Z possesses
Property CI are order functions such that Z possesses Property C. |

An information structure Z is said to be sequential when Property CI holds
for some constant order function 1. Therefore, by Theorem 4.7, Property CI
implies Property C when 7 is sequential.

We conclude this section by noting that the motivation and development of
Properties DF, S, SM, C and CI was done independently of any properties of
the reward function V. Consequently, the results presented in this section apply
to nonsequential stochastic controlled systems as well as games. The results of
this section imply that a game with a finite number of decisions, chosen from
decision spaces that satisfy the constraints imposed by the intrinsic model,
has an extensive form, [25], if and only if its information structure possesses
Property CI.

5. DESIGN-DEPENDENT PROPERTIES

The real world imposes independent constraints on the information available
to a system’s agents. Thus, problems that do not satisfy property CI arise
in practice. Nevertheless, many of those problems’ admissible designs possess
expected rewards and deadlock-free implementations. For example, when cast
as decision problems, many routing, flow control and concurrency control prob-
lems are such that some protocols (designs) are deadlock-free whereas others
are not ([11], [29]). Thus, it is important to determine necessary and sufficient
conditions for individual designs to possess expected rewards and deadlock-
free implementation, and to restrict optimization to the set of all designs that
possess the above characteristics.

The above considerations motivate the development of the design-dependent
analogues of Properties DF, S, SM, C and CI. These analogues are Properties
DF*, S*, SM*, C* and CI*, respectively. Their development parallels that of
Properties DF, S, SM, C and CI and will not be presented here. The precise
definition of Properties DF* S* SM* C* and CI*, the subtleties that arise
in their construction from their design-independent analogues, as well as their
implications, are presented in detail in [1], [5]. Here we only remark that a
design 7’s possession of Properties DF* and SM* guarantees that -y possesses a
deadlock-free implementation and an expected reward, respectively. Further-
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more, y’s possession of Property C* or Property CI* ensures that v possesses
Property DF* and SM* [5]. Thus, optimization of real-world nonsequential
systems may be performed among those designs that possess Properties CI* or
C*.

Design-dependent properties provide a finer characterization of a design’s
closed-loop solvability and deadlock-freeness than design-independent proper-
ties. This happens because, as pointed out at the beginning of this section,
there are many designs whose deadlock-freeness and closed-loop solvability can
not be characterized using any design-independent property. Such a situation
is presented in the following example.

EXAMPLE 5.1 ([5]). Consider the nonsequential information structure Z with

N = 3, (5.1)
QO = U'=0*=0%={0,1}, (5.2)
B = U =u=u’={¢{0},{1},{0,1}}, (5-3)
' = ¢, {w,u):w=0},{(w, u)'wzl} OxU}, (5.4)
3% = {¢,{(w,u) :max (wa'@’ u'v®) =0},

{(w,u) : max (wu'@®,u'v? —1} QxU}, (5.5)
3 = ¢, {(w,u) :wu® =0}, {(w,u) :wu® =1} ,Qx U}, (5.6)

where @ and @‘,i = 1,2,3, denote the binary complement of w,u’ € {0,1},i =
1,2, 3, respectively.

Consider the designs v := (y!,7%,7%) and 74 := (¥',42,5°) defined as fol-
lows:

1 1 2 3 _ 0, 1fw = ].
v (wutuhut) = { 1, otherwise, (5.7)
1 . 1, if max (@@'a®, ulud) =1
Ywulut ) = { 0, otherwise, (5-8)
1, ifwu?=1
3 1.2 .3 _ )
VW uhuuT) = { 0, otherwise, (5.9)
1, fw=1
1 1,2 .3y _ )
¥ (w,uh,uhu®) = { 0, otherwise, (5.10)

For k =1,2,3, v and 4* both induce the same information subfield @k, that is,

SE =AU = ). (5.13)
The graph G7 of v, defined by
G = {(w,u)  u = y(w,0)}, (5.14)

is found to be
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G" ={(0,1,0,0),(1,0,0,0)}. (5.15)
The graph of 4 is
G7 ={(0,0,1,0),(1,1,0,0), (1,1,1,1)}. (5.16)

Equation (5.16) implies that 4 does not possess Property S*!. Furthermore,
it is known ([5], Theorem 5) that an information structure Z possesses Property
S if and only if all v € T' possess Property S*. Consequently, no information
structure (including 7) that can be associated with 4 can possess Property S;
that is, no information structure

j:: {(078)) (Uk)uk)7 gk) k: 17273}7 (517)
such that
A7 b = 8% c Sk, k=1,2,3, (5.18)

can possess Property S.

On the other hand, Eq. (5.15) implies that the design v possesses Prop-
erty S*. Furthermore, it can be shown that the order function ¢ : G — Sy
defined by

(1,3,2)
2

1 2 3y lf (w7u17u2au3) = (0717070)
dj(w)u)u:u)_{(l 00

,2,3), if (w,ul,u2,ud) = (1,0,0,0) (5.19)

is such that v possesses property C*2. Consequently, by the results of [5] (Thm.
1), v possesses properties DF* and SM*.

However, since 4 does not possess Property S* and (5.13) holds, v cannot
be associated with any information structure possessing Property S, let alone
properties SM, CI or C. a

6. OPTIMIZATION

In centralized stochastic control the dynamic programming algorithm (see for
example [21], [26]) is an approach to optimization. Dynamic programming
provides a recursive decomposition of the optimization problem and is based
on the following fact ([8], [26]): If the future control laws are fixed, then, given

L A design v possesses Property S* when for every w € Q there exists a unique v € U
satisfying the system of equations u* = v*¥(w,u), k =1,2,...N.

2 A design v possesses property C* when Py(G7) = Q2 , and there exists at least one map
¥ : G — Sy such that for all s := (s!,s2,...5%) € S}, and k =1,2,...,N,

—1

77 A [PT:_lu)] (PT:_1(5> ([Tliv"”rl(s)))
—1

crat 0[P o] (P 0@).

where J'Yj is the jth agent’s infrormation partition induced by 7, J'Yj =
{[’yf}_l(uf) s ud € Uf}.
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the information available at the current step and the action taken at the present
step, the total conditional expected cost is independent of the past and present
control laws.

Decentralized sequential stochastic control problems are also amenable (in
theory) to recursive decomposition. Witsenhausen’s dynamic programming
algorithm, [35], in terms of unconditional distributions provides such a decom-
position, but is often computationally forbidding.

Optimization of nonsequential stochastic controlled systems that are deadlock-
free and well-posed is complicated by the fact that dependencies among control
actions are dynamic; that is, the order of actions is not fixed in advance but
depends on the problem’s random inputs (the nature’s choice) and the design.
Such dependencies, at first glance,would preclude recursive decomposition of
nonsequential controlled systems. Nevertheless, it is possible, within the frame-
work of Witsenhausen’s intrinsic model, to reduce unconstrained nonsequential
problems to equivalent sequential problems. Such a reduction can be achieved
when Property CI and a mild measurability condition are satisfied [2].

To convert a NN-agent nonsequential stochastic control problem into an
equivalent sequential one (within the framework of Witsenhausen’s intrinsic
model) the dynamic dependencies among control actions must be eliminated.
To eliminate these dependencies Andersland [2] proceeds as follows. Starting
with the original N-agent intrinsic model, (cf. Section 2), he introduces one
additional agent and considers the following new (N + 1)-agent intrinsic model:

1. The information structure is
7:={(,B), (0", U0"), 8" 1 <k <N+ 1},

where

(i) (2, B), are the same as in the original N-agent intrinsic model,
.. Sk 7Tk (U, U) fOrk’ZI
(11) (U ) u ) - { (Uk_l, uk—l) for k = 2,3,.,N+1,
UkUu*, k=1,2,...,Nand U = IY. |, U, U = @Y, U are the same
as in the original N-agent intrinsic model,
(i) & = B {p,U}®{p,U} fork=1
T St e {e, U} fork=2,3,..,N+1,
and §*,k =1,2,..., N, are the same as in the original N-agent intrin-
isic model.
2. The set of admissible control laws is [ := H?ﬁllfi, where Tk &k =1,2,..., N+
1, denotes the set of all 3* /i{* measurable functions.

3. The probability measure P on (€2, B) is the same as in the original intrinsic
model.

The proposed new model has the following features:
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(F1) Agents 2,3,..., N+1, are the same as agents 1,2, 3, ..., N, in the original
model.
(F2) Agent 1, (the additional agent), always acts first and its action in effect
simulates the actions (u',u?,...,u”) of the agents of the original intrinsic
model via a B/U-measurable function, say 6, that is, 4! := 4/ = 0(w).
(F3) The subfields St and @’“, k =2,3,...,N + 1, are degenerate; thus, all
3 := (34,42, ..., 4N 1) € I can be viewed as pairs (8, 7), where 6 is as above and
7 isin T (cf. Section 2). Therefore, we write 4 := (6,7v) = (6,7*,7%,...,¥N).
(F4) The actions @*, k = 2,3,...,N + 1, of the N agents of the original
model are decoupled in the new model because (by the definition of @k, k=
1,2,...,N +1) each a* k = 2,3,..., N + 1, is selected as a function of w and
al(a' = af). Hence, we can write 'u’7 := (42,43, ..., aN*t) = y(w, a?).
Within the framework of the above (N + 1)-agent intrinsic model Anders-
land formulates the following control problem:

(P) Given the information structure Z, the design set I and a real nonnegative,
bounded, B ® U- measurable payoff function V, identify a design (¢,7) in
I that achieves

sup E [V (w, *ufl?) Lia=u} (@, 'ul)]
(6,v)er

exactly or within € > 0.

In the above problem, 1, denotes the indicator function of the set { (&, u) € U x U :
= u}.

Problem (P) has the following features:
(F5) Its expected payoff depends on v € I' as well as on (the simulation) 6.
(F6) Problem (P) is sequential. This is true because according to (F2) agent 1
always acts first, and according to (F4) the actions @*,k =2,3,..., N +1, are
decoupled.
(F7) The reward function for Problem (P) is such that the expected payoff
can be maximized only when the action of (the simulation) 6 agrees with the
actions of the agents of the original (N-agent) intrinsic model. Consequently,
e-optimal designs for Problem (f’) determine, via a simple correspondence,
g-optimal designs for Problem (P).

The observations made in (F6) and (F7) have been formalized by Anders-
land in [2] as follows:
THEOREM 6.1 ([2]). Problem (P) is a sequential (N + 1)-agent problem of the
form (P) when U*, k =1,2,..., N, are countably generable. a
THEOREM 6.2 ([2]). When the information structure Z possesses property CI
and U* k =1,2,..., N, are countably generable, the following is true: When-
ever the expected payoff of (,7) € I' is within & > 0 of optimal for Problem
(P), the payoff of v € I is within & of optimal for Problem (P). i

The above theorems have the following implications:

255



(i) Most nonsequential problems of the form (P) can be reduced to sequential
problems of the form (P) because most measurable spaces (X, X) (standard
Borel [19], Souslin [19]) have countably generable X’ that contains the singletons
of X.

(ii) To determine an e-optimal design v° := (y15, %5, ... 5 for the non-

sequential Problem (P) it is sufficient to determine an e-optimal design 4° :=

21,6 22, ~N+1,
(Y1e, 4%, .. AN e

N,E)

) for the sequential Problem (P) and to set 5 = (3%, ...,4V 1<),

7. CONCURRENCY — SOME OPEN PROBLEMS

The results of Sections 4-6 address Problems (P1) - (P4) and (P6), posed in
Section 1, by determining properties of the information structure that guaran-
tee deadlock-freeness and well-posedness of nonsequential stochastic controlled
systems, and by providing an approach to the optimization of these systems.
To the best of our knowledge, within the framework of the intrinsic model,
concurrency of nonsequential systems has not been investigated so far. In this
section we discuss issues of concurrency in nonsequential systems. We present
a few ideas that lead to open problems the solution of which, we believe, will
shed light into the role of the system’s information gathering sources on the
system’s parallelism.

Nonsequential systems that are deadlock—free and well-posed can exhibit a
high degree of concurrency (parallelism). The degree of concurrency that is ac-
tually achieved in a nonsequential system depends on the physical structure of
the information sources that provide the data required for each operation, e.g.
the system’s sensors or signaling network. Thus, to understand issues of con-
currency it is necessary to incorporate into the intrinsic model the observation

functions
R xUBoU) = (Y*, DY), k=1,2,...,N, (7.1)

that induce the subfields 3* = [h*]~1(*) 2. The motivation for incorporating
this additional detail into the intrinsic model comes from the following fact:
Identical sources that provide identical outputs given the outcome of one set
of operations may behave differently given the outcomes of a subset of these
operations. This is demonstrated by the following example.

EXAMPLE 7.1 ([7]). Consider the nonsequential system with

N = 2
QO = Ut=0%*={0,1},

B = U =U*={¢,{0},{1},{0,1}},
Y' = Y?={L,, L},

VU= VP ={¢,{L1},{L2},{L1, L>}},

3 In this situation, as pointed out in Section 2, a design v € T is of the form v :=
(’Yla’YQa--':’YN) = (gl . h1792 . h2a"'7gN : hN) where gk : (Ykr yk) - (Uka uk)z k=
1,2,...,N

A~ N N~
DD Ut A W N
T = ~— — ~—
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and the following two pairs of observation functions:

L;, when w =0, (and any u',u?), or
hw,ul,u?) = u? =0 (and any w,ul) (7.7)

Ly, when w=1, u> =1, (and any

£
[
~

Ly, when w=1, (and any u!,u?), or
R w,ul,u?) = u! =1 (and any w,u?) (7.8)

Ly, when w =0, u! =0, (and any u?),

and
L, when w=0, u> =1, (and any u')
5 Ly, when w=0, u> =0, (and any u')
1 1 2 _ 1, 9 9 y
W w,usu’) = Ly, when w=1, u> =0, (and any u') (7.9)
Ly, when w=1, u> =1, (and any u'),

Li, when w=1, (and any u',u?), or
B (w,ut u?) = u' =1 (and any w,u?) (7.10)

Ly, when w =0, u! =0, (and any u?),

respectively. Both pairs (A, h?) and (h', h2?) induce identical information sub-
fields §' = [p']7 (YY) = [A']7H (YY), S2 =[R2 (V) = [A2]71()?), that sat-
isfy property CI. However, only the system with observation functions (h!, h?)
is deadlock-free. When w = 0, h! does not give an output until u? is known
and h* does not give an output until u' is known; thus, u" depends on u> and
vice versa, and the system deadlocks. In this example (h',h?) and (h!, h?)
are different physical realizations of the same function. The major difference
between these physical realizations is that when w =0 h! unnecessarily delays
reporting L; even though w = 0 implies L; independently of u?. This delay in
reporting the observation results in a dramatic change in the system’s behavior.
O

Example 7.1 suggests that any design v satisfying Property CI* can have
a deadlock free implementation if and only if for any (w,u) € G” and any
ordering w1« w2 4N consistent with Property CI*, for all
k=1,2,...,N, given (w, u®@) %) y%-1() bk provides an out-
put. The implementation of such information maps requires simultaneous mon-
itoring of several subsets of 2 x U. As the number of subsets of 2 x U requiring
simultaneous monitoring increases the complexity of implementation of these
information sources increases. In the case of Example 7.1, implementation of
h! (respectively h?) requires simultaneous monitoring of w and (w,u?) (respec-
tively w and (w,u!)). On the other hand, implementation of h! (respectively
h2) requires only monitoring of (w,u?) (respectively w and (w,u')). Hence,
implementation of h!, that is, writing a program to implement h', is more
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complex than implementation of k! in the sense that it requires more input
ports and processors.

The above example and discussion suggest that: (Qi) the relationship
between the physical realization of a system’s observation functions and its
deadlock—free operation should be formalized; and (Qii) a characterization of
the tradeoff between the system’s concurrency and the complexity of the phys-
ical realization of the system’s observation functions should be developed.

The precise relationship between deadlock-freeness and the physical real-
ization of a system’s observation functions will be developed elsewhere ([7]).
To find an answer to the issues raised in (Qii) we can proceed in several steps:
First it will be important to find a simple characterization of ¥, the set of all
functions ¥ from Q x U to Sy that satisfy Property CI, in terms of a function
from Q x U to partial orders on the set A of N agents. For each (w,u) € Qx U
as ¢ runs through ¥ one obtains a set of total orders ¥ (w, u) on A. Let ¢(w, u)
be the strongest partial order on A compatible with all these total orders. Can
¥ be recovered from ¢? That is, does the set ® of total orders generated by
¢ contain ¥? Under what conditions is ® = ¥? This is the causality prob-
lem posed by Witsenhausen in [34]. The solution to this problem, when the
spaces (0, B), (U*,u*), k =1,2,...,N, are discrete ([13]) will be presented
elsewhere ([6]). For more general spaces, Witsenhausen’s causality problem
remains unsolved. The advantage of having ¢ is that we can use it to gen-
erate all total order functions ¢ : Q@ x U — Sy that satisfy Property CI, as
well as all functions ¢;, from 2 x U to partial orders on A such that for every
(w,u) € Q x U each ¢;(w,u) is compatible with ¢ (w,u), ¥ € ¥, and each
¢i(w,u) is a weaker partial order than ¢(w,u). Each of the functions t and
ngSi in turn suggests a physical realization of the system’s observation functions
that result in a deadlock-free operation of the system. Furthermore, associated
with each of the above characterizations of the system’s observation functions
is the complexity of implementation (that is, the number of input ports and
processors required to realize the program implementing the observation func-
tion), and the system’s speed of response (concurrency). Thus, we can begin to
understand the tradeoffs between the system’s concurrency and the complexity
of the system’s information sources. Two open problems whose solution could
increase our understanding of the abovementioned tradeoffs are: (i) a character-
ization of the complexity of implementation of mazimally concurrent systems,
i.e. systems where the information sources report the information without any
delay; and (ii) a characterization of the complexity of implementation of min-
imally concurrent systems, i.e. systems where the information sources induce
deadlock-free information structures and report information with maximum
delay. Within the intrinsic model’s framework, the precise formulation of the
problem of reconciling the conflicting goals of maximizing concurrency and
minimizing the required resources (parallel processes) remains open.
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