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In many of the present controlled large�scale systems � communication and com�
puter networks� detection networks� manufacturing systems� economic systems�
database systems� power systems� etc	 � information is decentralized	 Further�
more� in the abovementioned systems it may be impossible to order the control
actions a priori� independently of the set of control laws that determines these
actions	 Such systems are called nonsequential	 The theory of nonsequential
stochastic controlled systems is at a very early stage of development	 In this pa�
per� we rst present a survey of existing results on nonsequential systems within
the framework of Witsenhausen�s intrinsic model� then� we discuss some open
problems arising from the research performed so far	

�� Introduction

In centralized stochastic controlled systems� all control actions are taken by
one control station where all the information is gathered� The station has
perfect recall and can base each action on all the information gathered up to
the time the action must be taken� The theoretical foundations for the analysis
and optimization of centralized stochastic controlled systems are by now well�
developed �see� for example� ���	� ��
	� ���	� ���	� ��
	� �	��

Most of the present large�scale systems such as communication and com�
puter networks� manufacturing systems� economic systems� database systems�
power systems� etc�� are informationally decentralized� The salient features of
these systems are the following� ��� there are several control stations that have
access to di�erent information� ��� the stations may communicate among each
other by signaling through the system itself or through noisy channels �that are
part of the system�� �� the stations have a common objective� ��� the stations
have to coordinate their control strategies to optimize that common objective�
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The decentralization of information and the possibility of communication
among control stations make decentralized decision problems drastically dif�
ferent from centralized stochastic control problems� The di�culties arising in
informationally decentralized ststems are clearly pointed out by Witsenhausen
in ��	 as follows� In informationally decentralized systems �the data available
for a certain decision may be insu�cient to determine what the control values
chosen at earlier decisions were� Worse yet� the data may be insu�cient to
determine which decisions have been made and which are in the future and
could possibly have their data dependent upon the decision under considera�
tion� This is because for any agent �device� which is to implement a decision�
the time �and place� of that decision may depend upon the random inputs to
the system and on the values decided upon by other stations��

Because of the abovementioned di�culties� the fundamental techniques of
analysis and optimization of centralized stochastic controlled systems cannot
be used to analyze and optimize the performance of informationally decen�
tralized systems �cf� Section ��� One of the reasons is that in decentralized
systems it may be impossible to order the stations� control actions a priori�
independently of the set of control laws� called the design �or control policy��
that determines the actions� Such systems are called nonsequential� In the
simplest case� a nonsequential system�s actions may be ordered a priori� given
any design� but the order varies from design to design� In general� for at least
one design� the actions� order depends on the system�s uncontrolled inputs �the
noise variables�� i�e� action �� may depend on action �� under some circum�
stances while �� may depend on �� under other circumstances� Examples
of systems that exhibit such interdependence are� ��� packet�switched data
networks ���	 � packet routing� bu�ering� and reassembling interdependencies�
��� distributed databases ���	 � transaction scheduling and locking interdepen�
dencies� �� �exible manufacturing systems ���	 � part delivery� bu�ering and
assembly interdependencies� and ��� decentralized detection networks ��� Ap�
pendix A	� ��� Appendix L	 � observation and signaling interdependencies� It
has been shown in ��� Appendix A	 that nonsequential systems can potentially
perform better that sequential systems� i�e� systems where the control actions
can be ordered a priori� independently of the design� However� nonsequential
systems are subject to deadlock� i�e� it is possible that for some design two or
more actions are mutually dependent� � e�g� action �� depends on �� and vice
versa�

The theory of nonsequential stochastic controlled systems is at a very early
stage of development� The performance of these systems crucially depends
on what information is available for each control action� Thus� some of the
fundamental issues associated with the performance of nonsequential stochastic
controlled systems are�

P�� Who should know what and when�

P�� Who should communicate with whom and when�

P�� Given that communication must be limited� either because channels have
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limited capacity or because stations have limited memory to store data and
limited processing capability� what information must be exchanged in real�

time among stations so that they can improve the quality of their actions�

P�� What information should be available to each control station so that the
system is deadlock�free�

P�� Given that the design of highly concurrent systems is desirable� but con�
currency can only increase by increasing the complexity of the system�s
information gathering sources� what are the fundamental tradeo�s between
system concurrency and the complexity of the system�s information gath�
ering sources�

P�� How does one optimize the performance of nonsequential stochastic con�
trolled systems�

In this paper� we �rst present the intrinsic model for stochastic control
which is a mathematical model for nonsequential stochastic controlled systems�
then� we brie�y survey existing results on nonsequential systems within the
framework of the intrinsic model� and �nally� we discuss some open questions
arising from the research performed thus far�

�� Witsenhausen�s Intrinsic Model for Stochastic Control

At least �ve di�erent classes of models have been proposed for modeling nonse�
quential systems� ��� a quantum mechanical model ��	� ��� discrete event mod�
els �e�g����	� ���	� ���	� ��	� ��	� ��	�� �� a game� theoretic model ���	� ��	� ���
a hybrid dynamical model ���	� ���	� and ��� an intrinsic model ��	� ��	� These
models provide a statistical� logical� informational� logical�temporal� and in�
formational characterization of nonsequentiality� respectively� Witsenhausen�s
intrinsic model for stochastic control� ��	� ��	� provides the framework for the
results that will be presented and discussed in this paper�

Consider a generic stochastic controlled system in which the number of con�
trol actions �decisions�� and the number of primitive random inputs� are both
�nite �Figure ��� From a game theoretic perspective� the controller�s decisions
can be viewed as being the decisions of N autonomous� single�decision agents

�usually� computers or devices� acting on the controller�s behalf �cf� ��	�� Like�
wise� the primitive random inputs can be viewed as being a single decision of
nature �chance�� This perspective entails no loss of generality since realiza�
tions of the system�s uncertainties can always be selected before any control
decisions are made and then forwarded to the system as needed� Denote na�
ture�s decision by � �� ���� ��� � � � � �N � � �� and the agents� observations and
decisions by y �� �y�� y�� � � � � yN� � Y and u �� �u�� u�� � � � � uN � � U � respec�
tively� Let nature�s decision model the initial uncertainty in the system ����
and all other uncertainties ��k� � � k � N� a�ecting the agent�s observa�
tions� Let the agents� observations be measurable functions of the system�s
intrinsic variables� � and u �e�g�� yk � hk��� u�� � � k � N�� and constrain
each agent�s decision policy to be a measurable function of its observation �e�g��
uk � gk�yk�� � � k � N�� As long as the superscripts on �� y� and u are not
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Figure �� A generic stochastic control system

assumed to index time� this setup imposes no a priori constraints on the agents�
decision order� It follows that nonsequential systems can be represented within
this framework�

Witsenhausen�s intrisic model for stochastic control� ��	���	� simpli�es in a
theoretical sense the preceding representation� Witsenhausen adopts a �snap�
shot� approach that simultaneously relates all of the system�s uncertain inputs
and control actions to the information that determines the control actions� His
crucial observations are�
��� All agents� decisions are determined by the system�s intrinsic variables� that
is� uk � gk�yk� � �gk � hk���� u�� u�� � � � � uN� � �k��� u�� u�� � � � � uN �� where
�k� k � �� � � � � N � are measurable functions of all of the system�s intrinsic vari�
ables�
��� The kth agent�s observation� k � �� �� � � � � N � only a�ects the kth agent�s
decision indirectly via the information sub�eld it induces on the space of in�
trinsic variables� that is� if Yk is the ���eld on Y k� hk induces the sub�eld
�hk	���Yk� on � � U � Consequently� it is unnecessary to model the observa�
tions explicitly�
The measurability constraints on �k� k � �� �� � � � � N � replace the observation
equations as the sole determinants of the relationship among the uncertain
inputs� the control actions and the information that determines the control
actions� Thus� within the intrinsic model�s framework� the control process can
be viewed as a feedback loop that maps information into control actions via
the control laws� and control actions into information via the measurability
constraints� The principal advantage of Witsenhausen�s intrinsic informational
characterization of nonsequentiality is that it provides a theoretical framework
that is appropriate for the investigation of Problems P� � P� posed in Section
��

Formally� Witsenhausen�s intrinsic model� ��	� ��	� has three components� An
information structure I� a design constraint set  c� and a description of nature�s
randomized control policy�

�� The information structure I ��
�
N� ��� B�� �Uk�Uk���k� k � �� �� ���� N

�
���



speci�es the system�s allowable decisions and distinguishable events�

�i� N � N is the number of agents in the system excluding nature�

�ii� ��� B� is the measurable space from which �� nature�s random action�
is selected� �� is a set and B is a ��algebra of subsets of ���

�iii� �Uk� Uk�� k � �� �� ���� N� is the measurable space from which uk� the
kth agent�s control action is selected� It is assumed that the singletons
of Uk belong to Uk� and that the cardinality of Uk� is greater than
� �see ��	�� The measurable product containing the agents� collective
actions� u �� �u�� u�� ���� uN�� is denote by �U�U� ��

�
!N
i��U

i��N
i��U

i
�

�iv� �k� k � �� �� ���� N � is the information sub�eld of the product ���eld
B � U characterizing the kth agent�s set of distinguishable events�

�� The design constraint set  c constrains N�tuples of the agents� control poli�
cies � �� ���� ��� ���� �N �� �k � ���U��k�� �Uk�Uk�� k � �� �� ���� N � called
designs� to a nonempty subset of  �� !N

i�� 
i� where  k� k � �� �� ���� N �

denotes the set of all �k�Uk� measurable functions�

� A probability measure P on ���B� speci�es the randomized control policy
used by nature�

Note that the intrinsic model does not exclude the possibility of an agent em�
ploying a mixed �i�e�� randomized� decision policy� or a policy which occasion�
ally dictates that the agent not act� To model the mixed policy� randomizing
devices can be included as factors in ��� B� P�� and the e�ects of the devices�
outputs can be speci�ed in �k� k � �� �� � � � � N � To model the occasional
inaction� the agent can be allowed to make decisions that have no e�ect�

�� The Generic Stochastic Control Problem

We are concerned with the following generic stochastic control problem�
	P
 Given an information structure I� a design constraint set  c�

a probability measure P on B� and a bounded� nonnegative�
B�U�measurable reward function V� identify a design � in  c�
that achieves
sup���c E

�
� �V ��� u

�
��	 exactly� or within � 	 ��

In the above problem� the notation u�� indicates that u �� �u�� u�� ���uN� de�
pends on � through �� that is� uk � �k��� u� for all k � �� �� � � � � N �

Several issues associated with Problem �P� arise� Since the problem may
not be sequential it need not be deadlock�free �i�e� for some design two or more
control actions may be mutually dependent� or well�posed �i�e� some design
� �  c may not possess an expected reward E

�
� �V ��� u

�
��� so that optimization

may not be possible� as demonstrated by the following two examples�
Example ��� Consider a system consisting of three agents and nature� Assume

� � U� � U� � U� � f�� �g � ����

B � U� � U� � U� � f
� f�g � f�g � f�� �gg � ����

�� �
�

��� U�

��
�� u�� u�� u�

�
� �"u�u� � �

�
�
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where "ui denotes the binary complement of ui � f�� �g� i � �� �� � that is�
"ui � �� # ui� mod �� i � �� �� �

Consider the following design � ��
�
��� ��� ��

�
�

��
�
�� u�� u�� u�

�
�

�
�� if �"u�u� � �
�� otherwise�

����

��
�
�� u�� u�� u�

�
�

�
�� if �"u�u� � �
�� otherwise�

����

��
�
�� u�� u�� u�

�
�

�
�� if �"u�u� � �
�� otherwise�

��
�

Then� when � � � occurs� �� depends on u� and u�� �� depends on u� and u��
and �� depends on u� and u�� Consequently� no agent can act and a deadlock
occurs� �

Example ��� Consider a system consisting of two agents and nature� Let

� � U� � U� � f�� �g � ����

B � U� � U� � f
� f�g � f�g � f�� �gg � �����

�� � �� � B � U� � U�� �����

Consider the following design � ��
�
��� ��

�
��
�
�� u�� u�

�
�

�
�� if u� � �
�� if u� � ��

�����

��
�
�� u�� u�

�
�

�
�� if u� � �
�� if u� � ��

����

Then� at � � � the closed�loop equations

u� � ��
�
�� u�� u�

�
� u� � ��

�
�� u�� u�

�
�����

fail to possess a unique solution

u�� ��
�
u�

�

� � u�
�

�

�
�����

as

� � ����� �� ��� � � ����� �� �� �����

and
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� � ����� �� ��� � � ����� �� �� �����

both satisfy ������ A similar situation arises at � � � where

� � ����� �� ��� � � ����� �� �� ���
�

and

� � ����� �� ��� � � ����� �� �� �����

both satisfy ������ In this case the reward V��� u��� induced by any � under �
is not unique� the expectation E�

� �V ��� u���	 does not exist and Problem �P�
is not well�posed� �

Therefore� it is important to identify conditions on the information struc�
ture to ensure that Problem �P� is deadlock�free and well�posed� Since there
exist problems of the form �P� where some� but not all� nontrivial designs are
deadlock�free and possess expected rewards �see ��	� Appendix A�� two classes
of conditions can be considered� ��� conditions based on the problem�s design�
independent properties �that is� properties that hold for all � �  �� and �ii� con�
ditions based on the problem�s design�dependent properties �that is� properties
that may hold only for speci�c designs � �  �� We examine these conditions
separately in the following two sections�

�� Design�Independent Properties

In this section we present the properties the information structure I must pos�
sess to ensure that Problem �P� is well�posed and deadlock�free for all designs
� �  �

���� Properties DF� S� SM�

To ensure that Problem �P� is deadlock�free� it is su�cient to require that its
information structure� I possesses Property DF �deadlock�freeness��
Definition ��� ���	� ��	�� An information structure I possesses Property DF

�deadlock� freeness� if for each � � ���� ��� ����� �N � �  and for every � � ��
there exists an ordering of ��s N control laws �s����� �s����� ���� �sN ��� such that
no control action usn���� n � �� �� ���� N � depends on itself or the control actions
that follow� �

Property DF generalizes the usual notion of causality since it does not as�
sume that the actions� order is �xed independently of the random input � � �
and the design � �  � To ensure that Problem �P� is well�posed we must
guarantee that every design � �  induces a unique outcome u�� �or a unique
reward V ��� u��� �� for every decision � of nature and that the expected reward
E�
� �V ��� u�

�
� �	 is also de�ned� These requirements lead to Properties S and

SM de�ned below�
Definition ��� ���	�� An information structure I possesses Property S �solv�
ability� when for each design � �  and every � � � there exists a unique
u�� � U satisfying the closed�loop equations�
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uk � �k��� u�� k � �� �� ���N� ����� �

When Problem �P��s information structure possesses Property S� every de�
sign � �  induces a unique closed�loop solution map

P�
� � � U via the

closed�loop solutions fu�� � U � ���� u��� � u��g� Hence� we have
P�

��� �
u�� and therefore Problem �P��s reward V ��� u��� can be uniquely de�ned as
V ���

P�
���� for all � �  � The expected reward E�

� �V ���
P�

����	 is also de�
�ned when the map

P�
� �� U is B�U$ measurable�

Definition ��� ���	�� An information structure I possessing Property S
possesses Property SM �solvability � measurability� when for each � �  the
induced map

P�
� �� U is B�U$ measurable� �

In general� it is not known whether Property S implies Property SM� How�
ever� in two important cases S implies SM�
Theorem ��� ���	� �	�� Property S implies Property SM when either of the
two conditions is satis�ed�

�i� Uk� k � �� ����N � are countable sets� or
�ii� ��� B� and �Uk� Uk�� k � �� �� ��N � are Souslin measurable spaces� �
Most measurable spaces of interest are Souslin ���	� For example� countable

spaces� standard Borel spaces ���	 and Blackwell spaces ���	 where all singletons
are measurable are Souslin spaces� Furthermore� spaces of the form �X� B�X���
where is X is Borel� or more generally an analytic subset of Rn� and B�X� is
the Borel ���eld of X� are Souslin� Consequently� for most cases of interest
Properties S and SM are equivalent� Property DF implies property SM� this
will become clear from the results of Section ���� In general� Property SM does
not imply Property DF as the following example shows�
Example ��� Consider the information structure I of Example ��� This
information structure posseses Property S� Since Uk� k � ����� are �nite� by
Theorem ���� I possesses Property SM� However� as shown in Example ��� I
does not possess Property DF� �

Since Properties DF� S and SM ensure that the generic stochastic control
problem �P� is deadlock�free and well�posed� it would be desirable to determine
properties of the information structure I that guarantee Properties DF� S and
SM� This leads to Properties C and CI discussed below�

���� Properties C and CI�

Property DF suggests that deadlocks cannot arise if for each � � � and each
design � �  the agents can be ordered in a such way that each agent�s in�
formation depends only on � and its predecessors� actions� To formalize this
observation we adopt the following notation� For all k � �� � � � �N � we de�ne
Sk to be the set of all k�agent orderings� that is� all injections of f�� �� ���kg into
f�� �� ���� Ng� For all j � �� �� �� ���N � and k � j� j#�� ����N � we let T k

j � Sk � Sj
denote a truncation map that returns the ordering of the �rst j agents of a
k�agent ordering� that is� T k

j restricts s � Sk to the domain f�� �� ���jg or to 

when j ��� For all s �� �s�� s�� ���� sk� � Sk� and k � �� �� ���N � we de�ne Ps to
be the projection of �� U onto ���!k

i��U
si�� that is

��




Ps��� u� �� ��� usi � ���� usk�� P���� u� � ��� �����

Finally� for all s � Sk� k � �� �� ���� N � we denote by F�T k
k���s�� the ���eld of

intrinsic events that is induced by the actions of nature and the �rst k�� agents
in s� Then� the intuitive notion of causality can be formalized as a constraint
on Problem �P��s information structure as follows�

Definition ��� ���	�� An information structure I possesses Property C

�causality� when there is at least one map � � � � U � SN such that for all
s �� �s�� s�� ��� sk� � Sk� k � �� �� ���N �

�sk �
�
TN
k � �

	��
�s� 	 F

�
T k
k���s�

�
������

Definition ��� ���	�� An information structure I possesses Property CI

�causal implementability� when there exists at least one map � � �� U � SN
such that for all k��������N� and ��� u� � �� U �

�sk �
h
PTN

k��
�s�

i�� �
PTN

k��
�s���� u�

�
	

	

�

�
h
PTN

k��
�s�

i�� h
PTN

k��
�s���� u�

i

�����

when s �� �s�� s�� ���sN � � ���� u�� �

We now intuitively interpret each of the above de�nitions� The function �
maps every intrinsic outcome ��� u� � ��U into an N�agent decision �action�
order��
TN
k � �

	��
�s� is the set of intrinsic outcomes that are mapped by � into deci�

sion orders where the order of the �rst k agents is s � Sk� �
sk�

�
TN
k � �

	��
�s�� s �

Sk� is the ���eld of intrinsic events that agent sk can distinguish� given that
the order of the �rst k agents� as determined by �� is s� Property C en�
sures that there exists an order function �� such that for all possible orderings
s � Sk� k � �� �� ���N � the events that agent sk can distinguish� �given that the
ordering of the �rst k agents� as determined by �� is s�� are events that can
be induced by the decisions of nature� and the sk agent�s predecessors in s�
Property CI�s interpretation proceeds along similar arguments� As before� � is
a function that maps every intrinsic outcome ��� u� � � � U into an N�agent
ordering�h

PTN
k��

�s�

i�� �
PTN

k��
�s���� u�

�
�
h
PTN

k��
�s�

i��
�w� us� � ����� usk��� �����

is the cylinder set induced on �� U � when the intrinsic outcome is ��� u�� by
the actions of nature and the �rst k�� agents in s �� �s�� s�� ���� sN � � ���� u��
The ���eld

�sk �
h
PTN

k��
�s�

i�� �
PTN

k��
�s���� u�

�
�����

denotes the trace of the skth agent�s information �eld on this cylinder set� Re�
quirement ����� constrains the cylinder set ����� to be a subset of all events
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containing ��� u� in the skth agent�s information �eld �sk � that is� no event
containing ��� u� may depend on usk � usk�� � ���� usN � Therefore� Property CI
ensures that for all outcomes ��� u� � � � U � there exists an order s ��
�s�� s�� ���� sN � � ���� u� such that for all k � �� �� � � �N � the skth agent�s
information at the point ��� u� depends only on the actions of nature and its
predecessors in s�

The signi�cance of Properties C and CI stems from the following results�
Theorem ��� ���	�� If an information structure I possesses Property C then�

�i� I possesses property SM�
�ii� I possesess property DF� �

Theorem ��� ���	�� Let I be an arbitrary information structure� Then�
�i� I possesses property SM if I posseses property CI� and
�ii� I possesses property DF if and only if I possesses property CI� �

Part �i� of Theorems ��� and �� ensures that when Problem �P� satis�es
either Property C or Property CI then it is well�posed� Theorem ��� provides
a su�cient condition� whereas Theorem �� provides a necessary and su�cient
condition for deadlock�free operation of nonsequential systems� The reason for
this di�erence is the following� The requirement expressed by ���� in the def�
inition of Property C imposes certain measurability constraints on the order
function � �Lemma �� ��	�� however� there are order functions � for which I
possesses property CI and which do not satisfy the measurability constraints
imposed by Property C� Such an order function is given in the following exam�
ple�
Example ��� ���	�� Consider a nonsequential information structure I of the
form

N � �

� � U� � U� � U� � f�� �g �

B � U� � U� � U� � f
� f�g � f�g � f�� �gg �

�� �
�

�
�
��� u� � �u� � �

�
�
�
��� u� � �u� � �

�
��� U

�
�

�� �
�

�
�
��� u� � "�u� � �

�
�
�
��� u� � "�u� � �

�
��� U

�
�

�� � f
� f��� u� � � � �g � f��� u� � � � �g ��� Ug � �����

where "� is the binary complement of � � f�� �g�
The order function � de�ned by

���� u�� u�� u�� �

��


��� �� �� when � � �
�� �� ��� when �u� � �
��� �� �� otherwise

���
�

is such that I possesses property CI but not property C� Eq� ���� fails when

k � �� s �  � S�� because
�
T �
� � �

	��
�� �

�
��� u� � �u� � �

�
�� F�
� �

B � f
� Ug� �

Since Property C implies Property DF �Theorem ���� and Property DF
implies Property CI �Theorem ��� the following is clear�
Theorem ��� ���	�� Property C implies Property CI� �

���



Furthermore� since there exist nonsequential information structures I� and
order functions � such that I possesses Property CI but not Property C� �Ex�
ample ����� Property CI may not imply Property C� and general proofs that
Property CI implies Property C must be constructive� It is not known� in gen�
eral� whether Property CI implies Property C� the implication however� holds
in the following cases�
Theorem ��� ���	� ��	�� Property CI implies Property C whenever N � �� �
Theorem ��	 ���	�� Property CI implies Property C whenever � and Uk� k �
�� �� ����
N � are countable sets� and B contains the singletons of �� �

Theorem ��
 ���	�� All constant order functions � such that I possesses
Property CI are order functions such that I possesses Property C� �

An information structure I is said to be sequential when Property CI holds
for some constant order function �� Therefore� by Theorem ���� Property CI
implies Property C when I is sequential�

We conclude this section by noting that the motivation and development of
Properties DF� S� SM� C and CI was done independently of any properties of
the reward function V� Consequently� the results presented in this section apply
to nonsequential stochastic controlled systems as well as games� The results of
this section imply that a game with a �nite number of decisions� chosen from
decision spaces that satisfy the constraints imposed by the intrinsic model�
has an extensive form� ���	� if and only if its information structure possesses
Property CI�

�� Design�Dependent Properties

The real world imposes independent constraints on the information available
to a system�s agents� Thus� problems that do not satisfy property CI arise
in practice� Nevertheless� many of those problems� admissible designs possess
expected rewards and deadlock�free implementations� For example� when cast
as decision problems� many routing� �ow control and concurrency control prob�
lems are such that some protocols �designs� are deadlock�free whereas others
are not ����	� ���	�� Thus� it is important to determine necessary and su�cient
conditions for individual designs to possess expected rewards and deadlock�
free implementation� and to restrict optimization to the set of all designs that
possess the above characteristics�

The above considerations motivate the development of the design�dependent
analogues of Properties DF� S� SM� C and CI� These analogues are Properties
DF%� S%� SM%� C% and CI%� respectively� Their development parallels that of
Properties DF� S� SM� C and CI and will not be presented here� The precise
de�nition of Properties DF%� S%� SM%� C% and CI%� the subtleties that arise
in their construction from their design�independent analogues� as well as their
implications� are presented in detail in ��	� ��	� Here we only remark that a
design ��s possession of Properties DF% and SM% guarantees that � possesses a
deadlock�free implementation and an expected reward� respectively� Further�

���



more� ��s possession of Property C% or Property CI% ensures that � possesses
Property DF% and SM% ��	� Thus� optimization of real�world nonsequential
systems may be performed among those designs that possess Properties CI% or
C%�

Design�dependent properties provide a �ner characterization of a design�s
closed�loop solvability and deadlock�freeness than design�independent proper�
ties� This happens because� as pointed out at the beginning of this section�
there are many designs whose deadlock�freeness and closed�loop solvability can
not be characterized using any design�independent property� Such a situation
is presented in the following example�
Example ��� ���	�� Consider the nonsequential information structure I with

N � � �����

� � U� � U� � U� � f�� �g � �����

B � U� � U� � U� � f
� f�g � f�g � f�� �gg � ����

�� � f
� f�� u� � � � �g � f��� u� � � � �g ��� Ug � �����

�� �
�

�
�
��� u� � max �"�"u�"u�� u�u�� � �

�
��

��� u� � max �"�"u�"u�� u�u�� � �
�
��� U

�
� �����

�� �
�

�
�
��� u� � �u� � �

�
�
�
��� u� � �u� � �

�
��� U

�
� �����

where "� and "ui� i � �� �� � denote the binary complement of �� ui � f�� �g� i �
�� �� � respectively�

Consider the designs � �� ���� ��� ��� and &� �� �&��� &��� &��� de�ned as fol�
lows�

����� u�� u�� u�� �

�
�� if � � �
�� otherwise�

�����

����� u�� u�� u�� �

�
�� if max �"�"u�"u�� u�u�� � �
�� otherwise�

���
�

����� u�� u�� u�� �

�
�� if �u� � �
�� otherwise�

�����

&����� u�� u�� u�� �

�
�� if � � �
�� otherwise�

������

&����� u�� u�� u�� � ����� u�� u�� u��� ������

&����� u�� u�� u�� � ����� u�� u�� u��� ������

For k ������ �k and &�k both induce the same information sub�eld e�k� that is�

e�k �� ��k	���Uk� � �&�k	���Uk�� �����

The graph G� of �� de�ned by

G� �� f��� u� � u � ���� u�g � ������

is found to be

���



G� � f��� �� �� ��� ��� �� �� ��g � ������

The graph of &� is

G	� � f��� �� �� ��� ��� �� �� ��� ��� �� �� ��g � ������

Equation ������ implies that &� does not possess Property S%�� Furthermore�
it is known ���	� Theorem �� that an information structure I possesses Property
S if and only if all � �  possess Property S%� Consequently� no information
structure �including I� that can be associated with &� can possess Property S�
that is� no information structure

"I �� f���B�� �Uk�Uk�� "�k� k � �� �� g� ������

such that

�&�k	���Uk� � e�k 	 "�k� k � �� �� � ����
�

can possess Property S�
On the other hand� Eq� ������ implies that the design � possesses Prop�

erty S%� Furthermore� it can be shown that the order function � � G� � SN
de�ned by

���� u�� u�� u�� �

�
��� � ��� if ��� u�� u�� u�� � ��� �� �� ��
��� �� �� if ��� u�� u�� u�� � ��� �� �� ��

������

is such that � possesses property C%�� Consequently� by the results of ��	 �Thm�
��� � possesses properties DF% and SM%�

However� since &� does not possess Property S% and ����� holds� � cannot
be associated with any information structure possessing Property S� let alone
properties SM� CI or C� �

	� Optimization

In centralized stochastic control the dynamic programming algorithm �see for
example ���	� ���	� is an approach to optimization� Dynamic programming
provides a recursive decomposition of the optimization problem and is based
on the following fact ��
	� ���	�� If the future control laws are �xed� then� given

� A design � possesses Property S� when for every � � � there exists a unique u � U

satisfying the system of equations uk � �k��� u�� k � �� �� ���N 	
� A design � possesses property C� when P��G

� � � � 
 and there exists at least one map

� � G� � SN such that for all s �� �s�� s�� ���sk� � Sk and k ��
�
			
N


J �sk �

h
P
Tk
k��

�s�

i
�� �

P
Tk
k��

�s�

�
�TNk � ����s�

��
� F�T kk���s�� �

h
PTk

k��
�s�

i
�� �

PTk
k��

�s��G
��

�
�

where J �j is the jth agent�s infrormation partition induced by �
 J �j ���
��j ���uj� � uj � Uj

�
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the information available at the current step and the action taken at the present
step� the total conditional expected cost is independent of the past and present
control laws�

Decentralized sequential stochastic control problems are also amenable �in
theory� to recursive decomposition� Witsenhausen�s dynamic programming
algorithm� ��	� in terms of unconditional distributions provides such a decom�
position� but is often computationally forbidding�

Optimization of nonsequential stochastic controlled systems that are deadlock�
free and well�posed is complicated by the fact that dependencies among control
actions are dynamic� that is� the order of actions is not �xed in advance but
depends on the problem�s random inputs �the nature�s choice� and the design�
Such dependencies� at �rst glance�would preclude recursive decomposition of
nonsequential controlled systems� Nevertheless� it is possible� within the frame�
work of Witsenhausen�s intrinsic model� to reduce unconstrained nonsequential
problems to equivalent sequential problems� Such a reduction can be achieved
when Property CI and a mild measurability condition are satis�ed ��	�

To convert a N �agent nonsequential stochastic control problem into an
equivalent sequential one �within the framework of Witsenhausen�s intrinsic
model� the dynamic dependencies among control actions must be eliminated�
To eliminate these dependencies Andersland ��	 proceeds as follows� Starting
with the original N �agent intrinsic model� �cf� Section ��� he introduces one
additional agent and considers the following new �N#���agent intrinsic model�

�� The information structure is

&I ��
n
���B�� � &Uk� bUk�� &�k� � � k � N # �

o
�

where

�i� ���B�� are the same as in the original N �agent intrinsic model�

�ii� � &Uk� bUk� �

�
�U� U� for k � �
�Uk��� Uk��� for k � �� � ���� N # ��

Uk�Uk� k � �� �� � � � � N and U � !N
i��� U

i�U � �N
i�� U

i are the same
as in the original N �agent intrinsic model�

�iii� &�k �

�
B � f
� Ug � f
� Ug for k � �
�k�� � f
� Ug for k � �� � ���� N # ��

and �k� k � �� �� � � � � N � are the same as in the original N �agent intrin�
isic model�

�� The set of admissible control laws is & �� !N
�
i��

& i� where & k� k � �� �� ���� N#

�� denotes the set of all &�k�bUk measurable functions�

� The probability measure P on ��� B� is the same as in the original intrinsic
model�

The proposed new model has the following features�

���



�F�� Agents �� � � � � � N#� � are the same as agents �� �� � � � � � N � in the original
model�
�F�� Agent �� �the additional agent�� always acts �rst and its action in e�ect
simulates the actions �u�� u�� � � � � uN � of the agents of the original intrinsic
model via a B�U�measurable function� say �� that is� &u� �� &u�� � �����

�F� The sub�elds &�� and &�k� k � �� � � � � � N # �� are degenerate� thus� all
&� �� �&��� &��� ���� &�N
�� � & can be viewed as pairs ��� ��� where � is as above and
� is in  �cf� Section ��� Therefore� we write &� �� ��� �� � ��� ��� ��� � � � � �N��
�F�� The actions &uk� k � �� � � � � � N # �� of the N agents of the original

model are decoupled in the new model because �by the de�nition of &�k� k �
�� �� � � � � N # �� each &uk� k � �� � � � � � N # �� is selected as a function of � and
&u��&u� � &u���� Hence� we can write

�u���� �� �&u�� &u�� � � � � &uN
�� � ���� &u����
Within the framework of the above �N # ���agent intrinsic model Anders�

land formulates the following control problem�

� &P� Given the information structure &I � the design set & and a real nonnegative�
bounded� B � U� measurable payo� function V� identify a design ��� �� in
& that achieves

sup
������	�

E
�
V
�
�� �u����

�
�f	u�ug

�
&u���

�u����

�	
exactly or within � 	 ��

In the above problem� �f	u�ug denotes the indicator function of the set f�&u� u� � U � U �
&u � ug�

Problem �&P� has the following features�
�F�� Its expected payo� depends on � �  as well as on �the simulation� ��

�F�� Problem �&P� is sequential� This is true because according to �F�� agent �
always acts �rst� and according to �F�� the actions &uk� k � �� � � � � � N #�� are
decoupled�
�F�� The reward function for Problem �&P� is such that the expected payo�
can be maximized only when the action of �the simulation� � agrees with the
actions of the agents of the original �N �agent� intrinsic model� Consequently�

��optimal designs for Problem �&P� determine� via a simple correspondence�
��optimal designs for Problem �P��

The observations made in �F�� and �F�� have been formalized by Anders�
land in ��	 as follows�

Theorem 	�� ���	�� Problem �&P� is a sequential �N #���agent problem of the
form �P� when Uk� k � �� �� � � � � N � are countably generable� �

Theorem 	�� ���	�� When the information structure I possesses property CI
and Uk� k � �� �� � � � � N � are countably generable� the following is true� When�
ever the expected payo� of ��� �� � & is within � 	 � of optimal for Problem

�&P�� the payo� of � �  is within � of optimal for Problem �P�� �

The above theorems have the following implications�

���



�i� Most nonsequential problems of the form �P� can be reduced to sequential

problems of the form �&P� because most measurable spaces �X�X � �standard
Borel ���	� Souslin ���	� have countably generable X that contains the singletons
of X �
�ii� To determine an ��optimal design �� �� ������ ����� � � � � �N��� for the non�
sequential Problem �P� it is su�cient to determine an ��optimal design &�� ��

�&���	�� &����� � � � � &�N
���� for the sequential Problem �&P� and to set �� � �&����� � � � � &�N
�����


� Concurrency � Some Open Problems

The results of Sections ��� address Problems �P�� � �P�� and �P��� posed in
Section l� by determining properties of the information structure that guaran�
tee deadlock�freeness and well�posedness of nonsequential stochastic controlled
systems� and by providing an approach to the optimization of these systems�
To the best of our knowledge� within the framework of the intrinsic model�
concurrency of nonsequential systems has not been investigated so far� In this
section we discuss issues of concurrency in nonsequential systems� We present
a few ideas that lead to open problems the solution of which� we believe� will
shed light into the role of the system�s information gathering sources on the
system�s parallelism�

Nonsequential systems that are deadlock$free and well$posed can exhibit a
high degree of concurrency �parallelism�� The degree of concurrency that is ac�
tually achieved in a nonsequential system depends on the physical structure of
the information sources that provide the data required for each operation� e�g�
the system�s sensors or signaling network� Thus� to understand issues of con�
currency it is necessary to incorporate into the intrinsic model the observation
functions

hk � ��� U�B � U�� �Y k�Yk�� k � �� �� � � � � N� �����

that induce the sub�elds �k � �hk	���Yk� �� The motivation for incorporating
this additional detail into the intrinsic model comes from the following fact�
Identical sources that provide identical outputs given the outcome of one set
of operations may behave di�erently given the outcomes of a subset of these
operations� This is demonstrated by the following example�
Example 
�� ���	�� Consider the nonsequential system with

N � �� �����

� � U� � U� � f�� �g� ����

B � U� � U� � f
� f�g� f�g� f�� �gg� �����

Y � � Y � � fL�� L�g� �����

Y� � Y� � f
� fL�g� fL�g� fL�� L�gg� �����

� In this situation
 as pointed out in Section �
 a design � � � is of the form � ��
���� ��� � � � � �N � � �g� � h�� g� � h�� � � � � gN � hN � where gk � �Y k� Yk� � �Uk� Uk�� k �
�� �� � � � �N 	

���



and the following two pairs of observation functions�

h���� u�� u�� �

���
�

L�� when � � �� �and any u�� u��� or
u� � � �and any �� u��

L�� when � � �� u� � �� �and any u���

�����

h���� u�� u�� �

���
�

L�� when � � �� �and any u�� u��� or
u� � � �and any �� u��

L�� when � � �� u� � �� �and any u���

���
�

and

&h���� u�� u�� �

����
��

L�� when � � �� u� � �� �and any u��
L�� when � � �� u� � �� �and any u��
L�� when � � �� u� � �� �and any u��
L�� when � � �� u� � �� �and any u���

�����

&h���� u�� u�� �

���
�

L�� when � � �� �and any u�� u��� or
u� � � �and any �� u��

L�� when � � �� u� � �� �and any u���

������

respectively� Both pairs �h�� h�� and �&h�� &h�� induce identical information sub�

�elds �� � �h�	���Y�� � �&h�	���Y��� �� � �h�	���Y�� � �&h�	���Y��� that sat�
isfy property CI� However� only the system with observation functions �h�� h��

is deadlock�free� When � � �� &h� does not give an output until u� is known
and &h� does not give an output until u� is known� thus� u� depends on u� and
vice versa� and the system deadlocks� In this example �h�� h�� and �&h�� &h��
are di�erent physical realizations of the same function� The major di�erence
between these physical realizations is that when � � � &h� unnecessarily delays
reporting L� even though � � � implies L� independently of u

�� This delay in
reporting the observation results in a dramatic change in the system�s behavior�
�

Example ��� suggests that any design � satisfying Property CI% can have
a deadlock free implementation if and only if for any ��� u� � G� and any
ordering us����� us����� � � � � � usN ��� consistent with Property CI%� for all
k � �� �� � � � � N � given ��� us����� us����� � � � � � usk������� hsk provides an out�
put� The implementation of such information maps requires simultaneous mon�
itoring of several subsets of ��U � As the number of subsets of ��U requiring
simultaneous monitoring increases the complexity of implementation of these
information sources increases� In the case of Example ���� implementation of
h� �respectively h�� requires simultaneous monitoring of � and ��� u�� �respec�

tively � and ��� u���� On the other hand� implementation of &h� �respectively
&h�� requires only monitoring of ��� u�� �respectively � and ��� u���� Hence�
implementation of h�� that is� writing a program to implement h�� is more

���



complex than implementation of &h� in the sense that it requires more input
ports and processors�

The above example and discussion suggest that� �Qi� the relationship
between the physical realization of a system�s observation functions and its
deadlock$free operation should be formalized� and �Qii� a characterization of
the tradeo� between the system�s concurrency and the complexity of the phys�
ical realization of the system�s observation functions should be developed�

The precise relationship between deadlock�freeness and the physical real�
ization of a system�s observation functions will be developed elsewhere ���	��
To �nd an answer to the issues raised in �Qii� we can proceed in several steps�
First it will be important to �nd a simple characterization of '� the set of all
functions � from ��U to SN that satisfy Property CI� in terms of a function
from ��U to partial orders on the set A of N agents� For each ��� u� � ��U
as � runs through ' one obtains a set of total orders ���� u� on A� Let 
��� u�
be the strongest partial order on A compatible with all these total orders� Can
' be recovered from 
� That is� does the set ( of total orders generated by

 contain '� Under what conditions is ( � '� This is the causality prob�

lem posed by Witsenhausen in ��	� The solution to this problem� when the
spaces ���B�� �Uk�Uk�� k � �� �� � � � � N � are discrete ���	� will be presented
elsewhere ���	�� For more general spaces� Witsenhausen�s causality problem
remains unsolved� The advantage of having 
 is that we can use it to gen�
erate all total order functions � � � � U � SN that satisfy Property CI� as
well as all functions &
i� from �� U to partial orders on A such that for every
��� u� � � � U each &
i��� u� is compatible with ���� u�� � � '� and each
&
i��� u� is a weaker partial order than 
��� u�� Each of the functions � and
&
i in turn suggests a physical realization of the system�s observation functions
that result in a deadlock�free operation of the system� Furthermore� associated
with each of the above characterizations of the system�s observation functions
is the complexity of implementation �that is� the number of input ports and
processors required to realize the program implementing the observation func�
tion�� and the system�s speed of response �concurrency�� Thus� we can begin to
understand the tradeo�s between the system�s concurrency and the complexity
of the system�s information sources� Two open problems whose solution could
increase our understanding of the abovementioned tradeo�s are� �i� a character�
ization of the complexity of implementation of maximally concurrent systems�
i�e� systems where the information sources report the information without any
delay� and �ii� a characterization of the complexity of implementation of min�

imally concurrent systems� i�e� systems where the information sources induce
deadlock�free information structures and report information with maximum
delay� Within the intrinsic model�s framework� the precise formulation of the
problem of reconciling the con�icting goals of maximizing concurrency and
minimizing the required resources �parallel processes� remains open�
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