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In this paper we discuss some recent advances in modeling and identi�cation of
stationary processes	 We point out that identi�cation of linear state�space models
for stationary signals can be seen as stochastic realization of wide�sense stationary
processes in an appropriate background Hilbert space	 The geometric theory of
stochastic realization developed in the last two decades plays an important role in
this interpretation	 Identi�cation of models with exogenous inputs in conditions
of absence of feedback can also be formulated as a stochastic realization problem	
We discuss procedures for constructing minimal state�space models in presence
of inputs� based on a generalization of stochastic realization theory for time series
and we discuss geometric procedures for identifying �generically� minimal state�
space models with inputs	 This approach leads to numerical linear algebraic
algorithms which have been named �subspace methods� in the literature	 It
has important advantages over the traditional parametric optimization approach�
since it attacks directly the dynamic model building problem by system theoretic
methods and leads to procedures which are more transparent and more structured
than those traditionally used and found in the literature	

�� Introduction

Stochastic Realization theory deals with modeling of random processes� Given
a vector �say m�dimensional� process y � fy�t�g� one wants to �nd represen�
tations of y in terms of simpler and more basic random processes� such as
white noise� Markov processes etc� In particular it deals with procedures for
constructing models of stationary processes� of the following form�

x�t 	 
� � Ax�t� 	Bw�t�
y�t� � Cx�t� 	Dw�t�

� �
�

��



where fw�t�g is a vector normalized white noise process� i�e� Efw�t�w�s��g �
I��t� s�� Efw�t�g � �� � being the Kronecker delta function� This represen�
tation is called a �linear� state�space realization of the process y� It involves
auxiliary variables� i�e� random quantities which are not given as a part of the
original data� such as the state process x �a stationary Markov process� and the
generating white noise w� whose peculiar properties lead to representations of y
by models having the desired structure� Constructing these auxiliary processes
is part of the realization problem�

In this paper we shall present a survey of state�space realization of wide�
sense stationary second�order processes and discuss applications of the the�
ory to identi�cation� This may look like a very particular modeling problem
to deal with� and it should be said that there are other interesting areas of
stochastic modeling and other possible viewpoints to discuss the subject� see
e�g� ���� �� ���� The present choice has been motivated by the relative de�
gree of maturity reached by this research area and by the desire of showing the
practical applicability of the ideas involved to an important statistical problem�

One may add that wide�sense linear models like 
 are extremely important
in applications for a variety of reasons� including the relative simplicity of the
probabilistic treatment and the fact that most of the time in practice only
second order statistics are available to describe random phenomena� They are
the starting point for popular estimation and control algorithms like Kalman
�ltering� LQG control etc��

The model 
 is a state�space realization of a single stationary process y ��
More generally one may want to construct state�space models involving also
exogenous �input� variables� The mathematical problem of constructing linear
state�space representations of a stationary process has been studied in some
depth in the past three decades see �� 
�� 
� �� �� 
�� ��� ��� ����

On the other hand� system identi�cation� i�e� the statistical problem of
describing an observed time series by a linear dynamic model� in particular
by a state�space model of the type �
�� has traditionally been regarded as a
di�erent problem� We shall argue in this paper that stochastic realization
theory provides not only a rigorous and clear mathematical background for
identi�cation but that state�space identi�cation can be seen� in a very speci�c
sense� as essentially the same problem as stochastic realization�

Identi�cation can be approached from �at least� two conceptually di�erent
viewpoints�

Identi�cation by parametric optimization This is the traditional�optimization�
approach� based on the principle of minimizing a suitable scalar measure of the
discrepancy between the observed data and the data described by the probabil�
ity law underlying a certain chosen model class� Well�known examples of dis�
tance functions are the likelihood functions� or the average squared prediction�

� Wide�sense stationarity will be simply referred to as stationarity hereafter� Also all random
quantities encountered in this paper will be assumed to have zero mean�
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error of the observed data corresponding to a particular model� Except for
trivial model classes� these distance functions depend nonlinearly on the model
parameters and the minimization can only be done numerically� Hence the opti�
mization approach leads to iterative algorithms in the space of the parameters�
say in the space of minimal �A�B�C�D� matrix quadruples which parametrize
a chosen model class� In spite of the fact that this has been almost the only
accepted paradigm in system Identi�cation in the past three decades� ���� ����
this approach has several well�known drawbacks� among which the fact that the
cost function generally has complicated local minima which� for moderate or
large dimension of the model are very di�cult to detect� there is often inherent
insensitivity of the cost to variations of some parameters and corresponding ill�
posedness of the estimation problem� there are di�culties to take consistently
into account the �unknown� initial conditions� so that the methods only work
�asymptotically�� etc�

These limitations� it seems to us� are a consequence of the intrinsically
�blind� philosophy which underlies setting the problem as a parameter opti�
mization problem� For� almost all problems of control and�or estimator design
could be �and in the past have sometimes been� formulated as parametric opti�
mization problems after choosing a dynamic structure for the controller or the
estimator� Pushing this philosophy to the extreme� in principle one would not
need the maximum principle� Kalman �ltering� H� theory� etc� �in fact one
would not need system theory altogether�� since everything could be reduced
to a nonlinear programming problem in a suitable space of controller or esti�
mator parameters� It is very doubious however� whether any real progress in
the �eld of control and estimation could have occurred by following this type
of paradigm�

Identi�cation by �subspace methods� i�e� stochastic realization This approach
has more or less implicitely been suggested in the past by several authors
��� 
�� �� but is �rst clearly presented in ���� and is further analyzed and
extended in ��
� �� ��� The denomination �subspace method� is used in this
paper speci�cally referring to the prototype procedure described below�

Subspace methods are based on the idea of constructing �rst a state space
for the process y� starting from certain vector spaces� namely the future and
past spaces �at a certain instant of time� associated to the observations� The
state space is constructed by a geometrical operation on the data spaces� say
by orthogonal projection of the future onto the past� Successively� a well condi�
tioned basis is chosen in the state space e�g� by principal components �canonical
correlation� analysis� Once a basis� i�e� a state vector� is chosen� the parame�
ters A�C of the model are uniquely speci�ed� The �nal step of �nding the B
and D matrices requires solving a Riccati equation�

The philosophy of constructing the state space as a �rst step of the model
building procedure� is exactly the same underlying stochastic realization� the
only di�erence being that the latter is a representation problem formulated
in an abstract framework� where the future and past data spaces are Hilbert
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spaces spanned by linear combinations of random variables of the process� The
statistical problem of identi�cation must be formulated instead in terms of the
observed data� The basic mathematical structure of the two problems is how�
ever the same� In particular one recognizes by this similarity that the inherent
nonlinearity of model identi�cation has to do with the quadratic nature of the
spectral factorization problem� It is well�known that spectral factorization for
state�space models involves the solution of a Riccati equation �or more gener�
ally of a linear matrix inequality�� a problem which has been object of intensive
theoretical and numerical studies in the past three decades� The non linear�
ity of the stochastic system identi�cation problem is hence of a well�known
and well understood kind and is much better dealt with by the explicit meth�
ods of Riccati solution developed in system theory rather than by non�speci�c
optimization algorithms� In essence� the new paradigm for identi�cation of
state�space models is to use the procedures of geometric� stochastic realization
theory suitably translated into algorithms of numerical linear algebra operating
on the data�

As it will be discussed in Sections � and �� the abstract Hilbert space op�
erations of stochastic realization theory will have �concrete� counterparts in a
Hilbert space H generated by shifted tail sequences of the observed data� In
this setting the operations of stochastic realization may be regarded as statisti�
cal operations on the observed data� So we obtain a statistical model building
theory which is perfectly isomorphic to the abstract probabilistic realization
theory�

Classical Stochastic Realization

The m�m spectral density matrix of a purely�non�deterministic �p�n�d� here�
after� zero�mean stationary process y is the matrix function

��z� �

�X
t���

��t�z�t

where
��t� �� Efy�t	 k�y�k��g � Efy�t�y����g�

It is well�known that the spectral density matrix of a process admitting a
state�space realization is a rational function of z� This fact follows easily by the
classical Kintchine and Wiener formula for the spectrum of a �ltered stationary
process ���� �
��

Proposition ���� The transfer function W �z� � C�zI � A���B 	 D of any
state space representation ��� of the stationary process y	 is a spectral factor
of �	 i�e�

� In this paper� as it will be explained in a moment� the adjective �gometric� is used
with a predominant meaning of �coordinate�free�� It has nothing to do with Di�eren�
tial Geometry�
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W �z�W �
�z�� � ��z�� ���

Indeed it can be checked directly that� writing

��z� � ���z� 	 ���
�z�� ���

where ���z� � �
����� 	 ��
�z�� 	 ����z�� 	 � � � is the �causal� �i�e� analytic

outside of the unit circle� component of ��z�� one has

���z� � C�zI �A��� �C � 	



�
����� ���

where

���� � CPC � 	DD�� �C � � APC � 	BD�� ��

P � P � being a solution of the Lyapunov equation P � APA� 	 BB�� In
other words� the spectrum of a process y described by a state�space model �
�
is a rational function expressible in parametric form directly in terms of the
parameters of the realization� The explicit computation of the spectrum is due
to Kalman and Anderson ���� ���

�Classical� stochastic realization theory �� �� 
�� 
�� was developed in the
late sixties� It deals with the inverse problem of computing the parameters
A�B�C�D of a state space realization starting from a suitable parametrization
of the spectrum or covariance function of the process�

By the above proposition� this inverse problem is a parametric version of
the minimal spectral factorization problem where one looks for rational spectral
factors W �z� � C�zI � A���B 	 D� of minimal degree� of a spectral density
matrix ��z�� Of course one assumes here that the process y is p�n�d� and has
a spectral density which is a rational function of z � ej��

Spectral factorizability of rational matrix functions has been e�ectively
characterized in the sixties by Kalman� Yakubovich and Popov ��� ��� �
mainly in the context of stability theory� The �rst application of the Kalman�
Yakubovich�Popov theory to factorization of spectral density functions and
to stochastic realization �called �stationary covariance generation�� is due to
Anderson �� ���

The main result of the theory states that the minimal degree spectral factors
of ��z�� assumed given in the parametric form �� are in one�to�one correspon�
dence with the symmetric n�n matrices P solving the Linear Matrix Inequality
�LMI�

M�P � ��

�
P �APA� �C � �APC �

�C � CPA� ����� CPC �

�
� � ���

in the following sense�
Corresponding to each solution P � P � of ���� consider the full column rank

matrix factor

�
B
D

�
of M�P ��
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M�P � �

�
B
D

�
�B�D�� ���

�this factor is unique modulo right multiplication by orthogonal matrices� and
form the rational matrix

W �z� �� C�zI �A���B 	D� ���

Then ��� is a minimal realization of a minimal analytic spectral factor of ��z�
and all minimal factors can be obtained in this way�

Under some mild regularity conditions ��� is equivalent to an Algebraic
Riccati Inequality �ARI� �� 
��� These inequalities have been much studied
both from a theoretical and a numerical viewpoint� They play an important
role in many areas of system theory such as stability theory� dissipative systems
and are central in H� control and estimation theory� It seems to be much
less appreciated in the scienti�c community that they play a very basic role
in modeling of stationary random signals as well� Certain solutions of the
LMI �or of the ARI� have special probabilistic properties and are related to
Kalman��lter or �innovations�type� realizations� We shall refer the reader to
the literature ���� 
�� ��� ��� for a full discussion of these aspects of the problem�

Geometric Stochastic Realization

The classical �wide�sense� realization theory is purely distributional as it says
nothing about representation of random quantities in a truly probabilistic sense
�i�e� how to generate the random variables or the sample paths of a given
process� not just its covariance function�� This was implicitely pointed out by
Kalman already in ����� In the last two decades a geometric or coordinate�free
approach to stochastic modeling has been put forward in a series of papers by
Lindquist� Picci� Ruckebusch et al� ��� ��� ��� �� �� �� which aims
at the representation of random processes in this more speci�c sense� This
motivation is also present in the early papers by Akaike �
� ���

A main point of the geometric approach is that a stochastic state�space
system is de�ned in terms of the conditional independence relation between
past and future of the signals involved� This relation is intrinsically coordinate�
free and in the present setting involves only linear subspaces of a given ambient
Hilbert space of random variables� typically made of linear functionals of the
variables of the process y to be modeled �but in some situations other random
data may be used to construct the model��

It is by now very well understood how to construct state spaces and build
realizations in a �constructive� manner by a series of geometric operations
involving subspaces of the background Hilbert space available to the modeler�
It is one of the main goals of this paper to persuade the reader that these
geometric procedures form the conceptual basis of �subspace� algorithms for
identi�cation and that their numerical implementation can be done directly
and naturally via modern numerical linear algebra for subspace computations�
The crucial �rst step to make this possible is a proper identi�cation of the
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Hilbert space of random data in which modeling takes place� This will be the
goal of the next section�

It should be said that most results in the stochastic realization literature
are about modeling of �time series� but in most practical situations there are
exogenous �input� signals whose e�ect needs to be taken into account in the
modeling phase� In this paper we shall discuss some generalizations of the
basic ideas of realization theory which extend the geometric modeling theory
to random processes in presence of inputs� Some preliminary results in this
direction have been presented in ��� while a more complete discussion is to
appear in the forthcoming paper ����

Finally� it should be said that the idea of formulating state�space identi�ca�
tion as a stochastic realization problem is not entirely new and has been present
in the literature for some time� In particular Faurre �
�� 
� 
�� seems to be the
�rst who systematically attempts to formulate identi�cation as stochastic real�
ization� His context is however still heavily coordinate�dependent� It is actually
the geometric viewpoint and the vector space �actually the Hilbert space� char�
acterization of the state space as a subspace of a certain data space that allow
systematic introduction of numeric Linear Algebra and e�cient computational
tools to solve the problem�

�� The Hilbert space of a time series

In this section we shall build the basic Hilbert space structure in which the
geometry of subspace identi�cation will be de�ned�

For reasons of clarity and mathematical simplicity� we shall initially consider
an idealized situation in which the observed data

f� � � � u��� u�� u�� � � � � ut� � � �g f� � � � y��� y�� y�� � � � � yt� � � �g ���

with ut � R
p � yt � R

m � form an in�nitely long time series originating in
the remote past at ��� The �nite data length situation will be discussed
in Sections � and �� The geometric approach of this article is based on the
following basic �statistical� assumption on the data�

Assumption ���� For N �� and for any � � �	 the time averages




N 	 


N�t�X
t�t�

�
ut��
yt��

��
ut
yt

��
� � � �
��

converge and the limits are independent of the initial time t��

This assumption can be read as a kind of �statistical regularity� of the �fu�
ture� data� It is of course unveri�able in practice as it says something about
data which have not been observed yet� Some assumption of this sort about
the mechanism generating future data seems however to be necessary to even
formulate the identi�cation problem�

�





In a continuous�time setting� functions admitting an �ergodic� limit of the
sample correlation function 
�� have been studied in depth by Wiener in his
famous work on Generalized Harmonic Analysis ���� ���� Although a systematic
translation of the continuous�time results of Wiener into discrete�time seems
not to be available in the literature� it is quite evident that a totally analogous
set of results holds also for discrete� time signals� In particular it is rather easy
to show� by adapting Wiener�s proof for continuous time� that the limits of the
time averages 
�

lim
N��




N 	 


N�t�X
t�t�

�
ut��
yt��

��
ut
yt

��
�� ���� �

�
�uu��� �uy���
�yu��� �yy���

�
� � �� �

�

form a matrix function � of positive type� in other words a bona��de stationary
covariance matrix sequence� We shall call � the true covariance of the time
series fyt� utg�

Now� for each t � Z de�ne the p�� and m�� matrices

u�t� �� �ut� ut��� ut��� � � �� �
�a�

y�t� �� �yt� yt��� yt��� � � �� �
�b�

and consider the sequences u �� fu�t� j t � Zg and y �� fy�t� j t � Zg� These
sequences will play a very similar role to two jointly stationary processes u and
y� as referred to in the previous section�

De�ne the vector spaces U and Y of scalar semi�in�nite real sequences ob�
tained as �nite linear combinations of the components of u and y�

U �� f
X

a�ku�tk� ak � R
p � tk � Zg �
��

Y �� f
X

a�ky�tk� ak � R
m � tk � Zg �
��

These vector spaces can be seen as the row spaces of two in�nite block�Hankel
matrices having as block rows the semi�in�nite entries u�t� and y�t� of �
��
where t is running over Z�

Notations �� In what follows the symbols 	� 	 and 
 will denote vector sum�
direct vector sum and orthogonal vector sum of subspaces� the symbol X� will
denote the orthogonal complement of a �closed� subspace X of a Hilbert space
with respect to some prede�ned ambient space� Given a collection fX� j� �
Ag of subsets of a Hilbert space H we shall denote by spanfX� j� � Ag the
closure in H of the linear �real� vector space generated by the collection� The
orthogonal projection onto the subspace X will be denoted by the symbol

E��jX� or by the shorthand EX� The notation E�zjX� will be used also when
z is vector�valued� The symbol will then denote the vector with components
E�zkjX�� k � 
� � � �� For vector quantities� jvj will denote Euclidean length �or
absolute value in the scalar case��

�
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The vector sum U 	 Y will originate our basic ambient space� This space
can be naturally made into an inner product space in the following way�

First� de�ne the bilinear form h�� �i on the generators of the space by letting

ha�
�
u�k�
y�k�

�
� b�
�
u�j�
y�j�

�
i ��

limN��
�

N��

PN
t�� a

�

�
ut�k
yt�k

� �
ut�j
yt�j

��
b � a���k � j�b�

�
�

for a� b � Rp�m �the prime denotes transpose�� and then extend it by linearity
to all elements of U 	 Y �

Let a �� fak� k � Zg be a sequence of vectors ak � R
p�m � with compact

support in Z� and let a� �� fa�kg� A generic element � of the vector space U 	 Y
can be represented as

� �
X
k

a�k

�
u�k�
y�k�

�
�� a�

�
u
y

�

Introducing the in�nite block�symmetric positive semide�nite Toeplitz matrix

T �

�
������

���� ��
� � � � ��k� � � �
��
�� ���� ��
� � � � � � �

���
� � �

���
��k�� ����
� � �

�
�����	

�
��

constructed from the �true� covariance sequence f�������
�� � � � ���k�� � � �g of
the data� the bilinear form 
 on U 	 Y can be represented by the quadratic
form

h�� 	i � ha�
�
u
y

�
�b�

�
u
y

�
i �

X
kj

a�k��k � j�bj � a�T b�

We shall hereafter identify elements whose di�erence has norm zero �this means
h�� �i � � � � � ��� From the expression above it can be seen that the bilinear
form is nondegenerate �unless � � � identically� and de�nes a bona��de inner
product� In the following we shall assume that for every k� the square block�
Toeplitz matrix Tk in the upper left�hand corner of T � is positive de�nite� By
closing the vector space U 	 Y with respect to convergence in the norm induced
by the inner product �
�� one obtains a real Hilbert space H �� U 	Y �the
wedge now means closed vector sum�� This is the basic data space on which
hereafter the models will be de�ned�

If in the limits of the sum �
� t � � is replaced by an arbitrary initial
instant t� the limit does not change� so that

ha�
�
u�k�
y�k�

�
� b�
�
u�j�
y�j�

�
i � ha�

�
u�t� 	 k�
y�t� 	 k�

�
� b�
�
u�t� 	 j�
y�t� 	 j�

�
i

�
�



for all t�� This is wide�sense stationarity in the present setting� The shift
operator 
 de�ned on the family of semi�in�nite matrices �
��� by setting


a�u�t� � a�u�t	
� t � Z� a � Rp 
a�y�t� � a�y�t	
� t � Z� a � Rm �

is then a linear map which is isometric with respect to the inner product �
�
and can be extended by linearity to all of H� The family f
t j t � Zg with

�� �� 
�� forms a group of unitary operators on H which will be called the
shift�

This Hilbert space framework for time series has been introduced in ��
�� It
is shown in this reference that the �stationary Hilbert space� �H� 
� is isomor�
phic to the standard stochastic Hilbert space setup widely used in the L��theory
of second�order stationary random processes ��
� �� ���� By virtue of this iso�
morphism one can formally think of the observed time series � as an ergodic
sample path of some Gaussian stationary stochastic process �u�y� de�ned on a
true probability space and having joint covariance matrices equal to the limit
�

� of the sum �
�� as N ���

Linear functions and operators on the tail sequences u and y correspond
to the same linear functions and operators on the random variables of the
processes u and y� In particular the second order moments of the two ran�
dom processes can be computed in terms of the tail sequences u and y� by
substituting expectations with ergodic limits of the type �
�� Since second
order properties are all what matters in this paper� one may even regard the
tail sequences u and y of �
�� as being the same object as the two underlying
stochastic process u and y� The usual probabilistic language can be adopted in
the present setting provided one identi�es real random variables as semi�in�nite
strings of numbers having the �ergodic property� described at the beginning
of this section� This will be done hereafter in the rest of this paper� The inner
product of two semi�in�nite strings � and 	 in H corresponds in particular to
the expectation Ef�	g� For reasons of uniformity of notatin we shall denote
the inner product as expectation�

h�� 	i � Ef�	g� �
��

In the following Ef�g will be allowed to operate on matrices� taking inner
products row by row�

This uni�cation of language permits to carry over in its entirety the ge�
ometric theory of stochastic realization derived in the abstract L� setting of
���� ��� ��� to the present framework� One may just reinterpret everything in
the current setting� starting from the de�nition of U�

t � Y
�
t � U

�
t � Y

�
t � the past

and future subspaces of the �processes� u and y at time t� These are de�ned
as the closure of the linear vector spaces spanned by the relative past or future
�random variables� u�t� and y�t�� in the metric of the Hilbert space H� We
shall use the notations

U�
t �� spanfu�s� j s � t g

Y�
t �� spanf y�s� j s � t g

�
�



U�
t �� spanfu�s� j s � tg

Y�
t �� spanf y�s� j s � tg

Note that� according to a widely accepted convention� the present is included
in the future only and not in the past� The only di�erence to keep in mind
here is the di�erent interpretation that representation formulas like 
 have in
the new context� The equalities involved in the representation�

x�t 	 
� � Ax�t� 	Bw�t�
y�t� � Cx�t� 	Dw�t�

�
��

are now to be understood in the sense of equalities of elements of H� i�e� as
asymptotic equality of sequences in the sense of Ces!aro limits� In particular the
equality signs in the model 
� do not necessarily imply that the same relations
hold for the sample values yt� xt� wt at a particular instant of time t� This is
in a certain sense similar to the �with probability one� interpretation of the
equality sign to be given to the model 
� in case the variable are bona� �de
random variables in a probability space�

Modeling and estimation of stationary processes on in�nite or semi� in�nite
time intervals� naturally involves various linear operations on the variables of
the process which are time�invariant� i�e� independent of the particular instant
of time chosen as a �present�� In this setting it is possible �and convenient� to
�x the present instant of time to an arbitrary value say t � � and work as if
time was �frozen� at t � �� At the occurrence one then �shifts� the operations
in time by the action of the unitary operator 
t on the data� In particular�
the future and past subspaces of the processes y and u will often be referred
at time t � � and denoted Y� and Y�� For an arbitrary present instant t we
have

Y�
t � 
tY�� Y�

t � 
tY��

Consider the orthogonal projection E� � jX� of a �row� random variable �
onto a subspace X of the space H� In the probabilistic L� setting this has the
well�known interpretation of wide� sense conditional expectation given the ran�
dom variables in X �of a true conditional expectation� in the case of Gaussian
distributions�� In this setting the projection operator has an immediate and
useful statistical meaning�

Assume for simplicity that X is given as the rowspace of some matrix of
generators X � then the projection E� � jX� has exactly the familiar aspect of
the least squares formula expressing the best approximation of the vector �
as a linear combination of the rows of X � For� writing E� � jX � to denote
the projection expressed �perhaps nonuniquely� in terms of the rows of X � the
classical linear �conditional expectation� formula leads to

E� � jX � � �X ��XX ���X� �
��

which is the universally known �least squares� formula of statistics� The pseu�
doinverse � can be substituted by a true inverse in case the rows of X are
linearly independent�

�




�� Input�Output models

It is known ��� ��� �
� 
� that identi�cation of a causal input�output relation
in the presence of feedback is an ill�posed problem �this is true of course in the
absence of any speci�c information on the structure of the feedback link� and
in this case the problem is better formulated as the identi�cation of the joint
process �y� u� on the basis of the joint corresponding observed time�series� This
in turn falls into the general setup of time�series identi�cation� In this paper
we shall discuss speci�cally the case when there is absence of feedback from y
to u� in the observed data� This concept will be formalized below�

Feedback�free processes

The appropriate setup for discussing feedback�free models is the theory of feed�
back and causality between stationary processes !a la Granger ����� See also
�

� �� ��� �
� 
�� We shall rephrase it in the language of conditionally or�
thogonal subspaces� The notation A � BjX means that the two subspaces
A�B  H are conditionally orthogonal given a third subspace X� i�e�

h��EX��  �EXi � � for � � A�  � B� ����

When X � �� this reduces to the usual orthogonality A � B� Conditional
orthogonality is orthogonality after subtracting the orthogonal projections onto
X� This concept is discussed in depth in ���� ����

One says that there is absence of feedback from y to u in the sense of
Granger� if the future of u is conditionally uncorrelated � which is the same as
independent in the Gaussian case� from the past of y� given the past of u� In
our Hilbert space setup this is written as�

U�
t � Y�

t jU
�
t ��
�

where U�
t � Y

�
t � U

�
t � Y

�
t are the past and future subspaces of the processes u

and y at time t�
This conditional orthogonality condition will be another basic assumption

held throughout this paper� It is quite easy to see that� in conditions of absence
of feedback� the �causal estimation error� process

ys�t� �� y�t��E�y�t�jU�
t��� ����

coincides with y�t��E�y�t�jU� and hence is uncorrelated with the whole history
of the input process u�

ys�t� � U for all t ����

see ���� Hence the process ys may be called the stochastic component of y�
It also follows that the stochastic process yu de�ned by the complementary

projection
yu�t� �� E�y�t� jU� t � Z

is uncorrelated with ys� It will be named the deterministic component of y�
In the present feedback�free setting there is a natural� unique� �input� out�

put� linear model

�
�



y�t� � yu�t� 	 ys�t� � E� y�t� ju�s� s � t � 	 ys�t� ����

where E� y�t� ju�s� s � t � is the best �in the sense of minimum variance of
the error� estimate of the output y�t� based on the past of u up to time t�
Under some regularity conditions on the input process to be made precise
later on� this estimate is described by a causal and stable linear convolution
operator� Identifying the model ���� means identifying both the input�output
�deterministic� part �described by a transfer function W �z�� and the additive
�noise� process ys� This last component is always present and may well be the
most important for a realistic description of the output�

It is obvious that state�space descriptions for the process y can be obtained
by combining two separate state�space models for ys and yu� For example� a
�forward� innovation representation of y is obtained by combining together the
�forward� innovation representation of ys

xs�t 	 
� � Asxs�t� 	Bses�t� ��a�

ys�t� � Csxs�t� 	 es�t� ��b�

where es�t� is the one�step prediction error of the process ys based on its own
past� i�e� the �forward� innovation process of ys� and the �deterministic� state�
space model for yu

xu�t 	 
� � Auxu�t� 	Buu�t� ���a�

yu�t� � Cuxu�t� 	Duu�t�� ���b�

The process es has then the meaning of conditional innovation of y ����
By combining together ��� and ����� the state�space innovation model of

the process y �with inputs� has the following canonical structure��
xs�t 	 
�
xu�t 	 
�

�
�

�
As �
� Au

� �
xs�t�
xu�t�

�

	

�
�
Bu

�
u�t� 	

�
Bs

�

�
es�t�

y�t� �


Cs Cu

� � xs�t�
xu�t�

�
	Duu�t� 	 es�t� ����

Models of this kind are naturally interpreted as state�space realizations of
the familiar ARMAX�type �input�output� relations y � W �z�u	 G�z�e �here
we have W �z� � Du 	Cu�zI �Au���Bu and G�z� � Ds 	Cs�zI �As�

��Bs �
often used in the identi�cation literature�

It may happen that� even if the realizations of the two subsystems �stochas�
tic and deterministic� are minimal� ���� may give redundant descriptions of
the signals in certain particular cases� as there may be loss of observability
when the transfer functions W �z� and G�z� have common poles and common
corresponding eigenspaces�

�
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These cases are highly non�generic and in practice one need not worry about
this unlikely event in black�box identi�cation� However� in certain structured
problems there may be some a priori knowledge about the way the input or the
noise enter in the system and there may be noise e�ects which one speci�cally
wants to model as being subject to the same dynamics as the input� In these
cases there is actually a need to use models which allow for common dynamics�

�� Constructing the State space of the �stochastic	 component

The theme of this section will be a review of geometric realization theory for
the stochastic component of y� Since there will be no input processes in this
section� for notational simplicity the subscript �s� will be dropped�

The geometric theory centers on the idea of Markovian Splitting Subspaces
for the process y� This concept is the probabilistic analog of the deterministic
notion of state space of a dynamical system and captures at an abstract level the
property of �dynamic memory� that the state variables have in deterministic
system theory� Once a stochastic state space is given the construction of the
auxiliary random quantities which enter in the model and in particular the
state process is fairly obvious� The state vector x�t� of a particular realization
can be regarded just as a particular basis for the state space� hence once a
state�space is constructed� �nding state equations is just a matter of choosing
a basis and computing coordinates�

Let y be a stationary vector process and Y the relative Hilbert space of
linear functionals� Let X be a subspace of some large stationary Hilbert space
H of wide�sense random variables containing Y� De�ne

Xt �� 
tX� X�
t �� 	s�tXs� X�

t �� 	s�tXs�

Definition ���� A Markovian Splitting Subspace X for the process y is a
subspace of H making the vector sums Y� 	X� and Y� 	X� conditionally
orthogonal �i�e� uncorrelated� given X	 denoted	

Y� 	X� � Y� 	X� jX� ����

The conditional orthogonality condition �� can be equivalently written as

E�Y� 	X� jY� 	X�� � E�Y� 	X� jX� ����

which gives the intuitive meaning of the splitting subspace X as a dynamic
memory of the past for the purpose of predicting the joint future�

The subspace X is called proper� or purely�non� deterministic if

�tY
�
t 	X

�
t � f�g� and �t Y

�
t 	X

�
t � f�g�

Obviously for the existence of proper splitting subspaces y must also be
purely non deterministic ���� Properness is� by the Wold decomposition the�
orem� equivalent to the existence of two vector white noise processes w and �w
such that�

Y� 	X� � H��w�� Y� 	X� � H�� �w�

�
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Here the symbols H��w�� H��w� etc� denote the Hilbert subspaces linearly
generated by the past and future of the process w� The spaces

S �� Y� 	X� and S �� Y� 	X� ����

associated to a Markovian Splitting subspace X� play an important role in the
geometric theory of stochastic systems� They are called the scattering pair
of X as they can be seen to form an incoming�outgoing pair in the sense of
Lax�Phillips Scattering Theory �����

Definition ���� Given a stationary Hilbert space �H� 
� containing Y	 a scat�
tering pair for the process y is a pair of subspaces �S�S� satisfying the following
conditions	

�� 
�S  S and 
S  S	 i�e� S and S are invariant for the left and right
shift semigroups �this means that St is increasing and St is decreasing with
time��


� S 	 S � H

�� S � Y� and S � Y�

�� S�  S or	 equivalently	 S
�
 S

The following representation Theorem provides the link between Markovian
splitting subspaces and scattering pairs�

Theorem ��� 
���� The intersection

X � S � S ��
�

of any scattering pair of subspaces of H is a Markovian splitting subspace�
Conversely every Markovian splitting subspace can be represented as the inter�
section of a scattering pair� The correspondence X� �S�S� is one�to�one	 the
scattering pair corresponding to X being given by

S � Y� 	X� S � Y� 	X�� ����

The process of forming scattering pairs associated to X should be thought of
as an �extension� of the past and future spaces of y� The rationale for this
extension is that scattering pairs have an extremely simple splitting geometry
due to the fact that

S � S jS � S ����

which is called perpendicular intersection� It is easy to show that Property
�� in the de�nition of a scattering pair is actually equivalent to perpendicular
intersection� This property of conditional orthogonality given the intersection
can also be seen as a natural generalization of the Markov property�� Note

� In which case S �X�� S �X� and X �X�
�X� �

�
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that A � B jX � A � B  X but the inclusion of the intersection in the
splitting subspace X is only proper in general� For perpendicularly intersecting
subspaces� the intersection is actually the unique minimal subspace making
them conditionally orthogonal�

Any basis vector x��� �� �x����� x����� � � � � xn����� in a ��nite� dimensional�
Markovian splitting subspace X generates a stationary Markov process x�t� ��

tx���� t � Z which serves as a state of the the process y� If X is proper� the
Markov process is purely non deterministic�

Denote by Wt� �Wt the spaces spanned by the components� at time t� of
the generating noises w�t� and �w�t�� of the scattering pair of X� Since

St�� � St 
Wt� ����

we can write�

Xt�� � St�� � St�� � �St � St���
 �Wt � St��� ���

Since St is decreasing in time� we have St � St��  Xt and by projecting the
shifted basis 
x�t� �� x�t 	 
�� onto the last orthogonal direct sum above� the
time evolution of any basis vector x�t� �� �x��t�� x��t�� � � � � xn�t��� in Xt can be
represented by a linear equation of the type x�t	
� � Ax�t�	Bw�t�� It is also
easy to see that by the p�n�d� property� A must have all its eigenvalues strictly
inside of the unit circle� Naturally� by decomposing instead St�� � St 
Wt

we could have obtained a backward dierence equation model for the Markov
process x� driven by the backward generator �w�

To complete the representation� note also that by de�nition of the past
space� y�t� � �St�� � St�� Inserting the decomposition �� and projecting y�t�
leads to a state�output equation of the form y�t� � Cx�t� 	 Dw�t�� Here one
could also obtain a state�output equation driven by the backward noise �w� the
same noise driving the backward state model obtained before�

As we have just seen� any basis in a Markovian splitting subspaces produces
a stochastic realization of y� It is easy to reverse the implication� In fact the
following fundamental characterization holds�

Theorem ���� ���	 ��� The state space X � spanfx����� x����� � � � � xn���g of
any stochastic realization ��� is a Markovian Splitting Subspace for the process
y� Conversely	 given a �nite�dimensional Markovian splitting subspace X	 to
any choice of basis x��� � �x����� x����� � � � � xn��� �� in X there corresponds a
stochastic realization of y of the type ����

Once a basis in X is available� there are obvious formulas expressing the coef�
�cient matrices A�C and �C in terms of the processes x and y�

A � Ex�t 	 
�x�t�� P�� ����

C � Ey�t�x�t�� P�� ����
�C � Ey�t� 
�x�t�� ����

���



where P is the Gramian matrix of the basis �equal to the state covariance
matrix�� The matrices B and D however are related to the �unobservable�
generating white noise w and require the solution of the LMI�

Stochastic realizations are called internal when H � Y� i�e� the state space
is built from the Hilbert space made just of the linear statistics of the process
y� For identi�cation the only realizations of interest are the internal ones�

A central problem of geometric realization theory is to construct and to clas�
sify the minimal state spaces� i�e� the minimal Markovian splitting subspaces
for the process y�

The obvious ordering of subspaces of H by inclusion� induces an ordering
on the family of Markovian splitting subspaces� The notion of minimality is
most naturally de�ned with respect to this ordering� Note that this de�nition is
independent of assumptions of �nite�dimensionality and applies also to in�nite�
dimensional Markovian splitting subspaces� i�e� to situations where comparing
dimension would not make much sense�

Definition ���� A Markovian splitting subspace is minimal if it does not con�
tain �properly� other Markovian splitting subspaces�

The study of minimality forms an elegant chapter of stochastic system the�
ory� There are several known geometric and algebraic characterizations of min�
imality of splitting subspaces and of the corresponding stochastic state� space
realizations� Since however the discussion of this topic would take us too far
from the main theme of the paper we shall refer the reader to the literature
���� ����

Contrary to the deterministic situation minimal Markovian splitting sub�
spaces are non unique� Two very important examples are the forward and
backward predictor spaces �at time zero��

X� �� EH
�

H� X� �� EH
�

H� ����

for which we have the following characterization �����

Proposition ���� The subspaces X� and X� are the unique minimal splitting
subspaces contained in the past H�	 and	 respectively	 in the future H�	 of the
process y�

A basis in the forward predictor space X� originates a stationary state�space
model in which the state variables are linear functionals of the past history
of the process y� i�e� x�t� � Y�

t � In other words the state coincides with
its best estimate �the orthogonal projection �� E�x�t� jY�

t � given the past of
y� It follows that the dynamical equations 
 describe in this case a steady�
state Kalman predictor and the input white noise w � w� is the steady state
innovation process of y�

��




�� Stationary realization of the deterministic component

In order to construct the state�space of realizations of the deterministic compo�
nent yu which are driven by the �not necessarily white� process u� it is necessary
to generalize the geometric theory of stochastic realization of the previous sec�
tion� In order to streamline notations� we shall here too� drop the subscript u
and whenever possible �x t � ��

Assume that y and u are two jointly stationary p�n�d� processes of dimen�
sions m and p� We shall call a model of the type

x�t 	 
� � Ax�t� 	Bu�t� ���a�

y�t� � Cx�t� 	Du�t� ���b�

a deterministic realization of y with input process u� Models of this kind
reduce to the standard �Markovian� stochastic models when� of course� u is
white noise� As usual a realization is called minimal if the dimension of the
state vector is as small as possible� For minimal realizations it must necessarily
hold that �A�B�C� is a minimal triplet� If A has all eigenvalues inside the unit
circle �j��A�j � 
�� both x�t� and y�t� can be expressed as functionals of the
in�nite past �and present� of u� i�e� x�t� � U�

t and y�t� � U�
t��� Realizations

with this property will be called causal�
The following technical assumption of �su�cient richness� of the input pro�

cess will facilitate the geometric constructions of this section�

Assumption ���� For each t the input space U admits the direct sum decom�
position

U � U�
t 	U�

t ��
�

An analogous condition � namely U�
t �U

�
t � �� is discussed in ��
� where it is

shown that it is equivalent to strict positivity of the spectral density matrix of
u on the unit circle� i�e� �u�ej�� � cI� c � �� or to all canonical angles between
the past and future subspaces of u being strictly positive �or� in turn� to all
canonical correlation coe�cients between past and future of the input process
being strictly less than one�� A slightly stronger version of this condition is
found in ��� Chapter II� Sect� ��

It will also be assumed all through this section that y�t� � U�
t�� � this is the

feedback�free property�� Because of this property and in virtue of assumption
�
� y�t� has a unique representation as a causal functional

y�t� �
tX

��

Wt�k u�k�� ����

where "W �z� �
P��

� Wkz
�k is analytic in fjzj � 
g� Indeed� "W �z� is just the

transfer function of the Wiener �lter y�t� � E�y�t�jU�
t��� and can be expressed

as
"W �z� � ��yu�z�G�
�z��T ��G�z���

���



where G�z� is the outer �or minimum�phase� spectral factor of �u and the
symbol � � �� means �analytic part�� see e�g� ��� Chapter II� It is evident that
"W �z� is analytic and� because of nonsingularity of �u on the unit circle� unique

almost everywhere� Hence the feedback�free assumption implies that the input�
output map relating u to y must be a causal map� It follows that a minimal
state�space realizations of y must necessarily be causal� Our interest here will
henceforth be on causal realizations�

The oblique projection of a random variable 	 � U onto U�
t along U�

t will
be denoted by EjjU�

t

�	 jU�
t �� If u is a white noise process� this is the ordinary

orthogonal projection onto U�
t �

Definition ���� We shall call a subspace X  U� a �causal� oblique splitting
subspace for the pair �Y� � U�� if

EjjU� �Y� 	X� jU�� � EjjU� �Y� 	X� jX�� ����

Note that this condition is a generalization of the conditional orthogonality
condition �� of the Markovian case� For the reason explained a moment ago� we
shall only consider causal splitting subspaces in this paper so the �incoming�
subspace S will always be �xed equal to U�� The oblique predictor space
X��� �� EjjU� �Y� jU�� is an example of oblique splitting subspace which is

obviously contained in U��
Write

y�t� � �HWu��t� 	 �W�u��t� ����

where�

�HWu��t� ��

��X
��

Wt�ku�k�� �W�u��t� ��

tX
�

Wt�ku�k�� ���

Evidently �HWu��t� � U� and �W�u��t� � U� for t � �� For t � � the
random variable �HWu��t� is the oblique projection of y�t� onto U� and hence
X��� � spanf �HWu��t� j t � �g� It is easy to see that X��� is contained
in all causal oblique splitting subspaces X  U�� or� equivalently said� is the
�unique� minimal causal oblique splitting subspace�

The following results are �deterministic� counterparts of the characteriza�
tions of Markovian splitting subspaces stated in the previous section� Proofs
can be found in ��� ���

Proposition ���� Let X be an oblique splitting subspace and de�ne the cor�
responding �extended future space�

�S �� Y� 	X�

Then
X � EjjU� ��S jU�� � EjjU�

�U� j �S� � �S �U��

�This may be read as �oblique intersection� of �S and U� ��

���



This representation result in particular applies to the extended future space
�Y� � Y� 	 �X����� �which is in a sense the �minimal� possible extended
future space �S��

Theorem ���� The oblique predictor space can be computed as the intersection

X��� � �Y� 	U�� �U�� ����

Note that it is in general not true that X��� � Y� �U� as the inclusion

EjjU� �Y� jU�� � Y� �U�

is proper� unless some special condition is satis�ed� The reader should be
warned of the fact that some statements in the paper ��� may be seen as an
endorsement of this erroneous intersection representation�

Proposition ���� Let the symbols have the same meaning as in Proposition
���� Then

�S � ��S �U�� 	 ��S �U��� ����

This intersection representation extends the formula �S � ��S � S� 
 ��S � S���
known for �orthogonal� splitting subspaces ���� ����

The following argument� based on the decomposition �� shows how state
space realizations can be constructed by a procedure based on the geometry
of oblique splitting subspaces� The reader may appreciate the similarity of the
reasoning with that used in the �stochastic� construction of Section ��

Denote byUt the p�dimensional subspace ofU�
t spanned by the components

of u�t�� By Assumption �


U�
t�� � U�

t 	Ut

and by the decomposition �� we can write

�St�� �U
�
t�� � ��St�� �U

�
t � 	 ��St�� �Ut�� ����

Now pick a basis vector x�t�� say of dimension� n in Xt and let x�t	 
� be the
corresponding vector shifted by one unit of time� The n scalar components of
x�t 	 
� span �St�� �U

�
t�� and� since �St��  �St� we have

��St�� �U
�
t �  Xt

so� by projecting x�t 	 
� onto the two components of the direct sum decom�
position ���� we obtain a unique representation of the type

x�t 	 
� � Ax�t� 	Bu�t��

� Here for the sake of illustration we assume that Xt is 	nite�dimensional�

���



Similarly� since y�t� � U�
t��� we have

y�t� � �St �U
�
t�� � ��St �U

�
t � 	 ��St �Ut�

and by projecting y�t� onto the two components of the direct sum above we
immediately obtain the state�output equation

y�t� � Cx�t� 	Du�t��

The following Theorem is the analog of Theorem ����

Theorem ���� The state space of any causal realization of y with input process
u is an oblique splitting subspace�

Conversely	 assume the joint spectral density of y and u is rational and that
the input process satis�es Assumption ���� Then the oblique predictor subspace
X��� is �nite dimensional� To any choice of a basis vector x�t� in a �nite�
dimensional oblique splitting subspace Xt	 there correspond unique matrices
�A�B�C�D� such that the representation

x�t 	 
� � Ax�t� 	Bu�t� ���a�

y�t� � Cx�t� 	Du�t�� ���b�

holds and the realization �� is causal	 i�e� j��A�j � 
�

Computations of the system matrices by oblique projections appear profusely
in recent papers dealing with the identi�cation of �deterministic� systems ����
��� ��� The theory of state space realization exposed in this section explains
the reason why this should in a sense be the natural type of computation in
this type of problems� See also ���� ���

�� Finite�interval Realization with inputs

The analysis in the previous Sections �� � and  is based on the idealized
assumption that one has access to a doubly in�nite sequence of data� In real
experiments only a �nite string of observed data

fu�� u�� � � � � ut� � � � � uN g f y�� y�� � � � � yt� � � � � yN g ���

is available� where� however� N may often be quite large� More speci�cally� we
shall assume that N is su�ciently large that replacing the ergodic limits 

 by
the �nite time averages of N 	 
 elements� yields good approximations of the
true covariances

f�������
������ � � � ���T �g� �
�

for some lag T �� N � This is equivalent to saying that N is su�ciently large
for the time averages 
� to be essentially the same as the inner products

Ef

�
u���
y���

��
u���
y���

��
g � ����

for � � �� � � � � T � Hence� for the purpose of theoretical analysis of the algo�
rithms� we may proceed as if we had two �nite sequences of random vectors

��



fu���� u�
�� u���� � � � � u�T �g� fy���� y�
�� y���� � � � � y�T �g� ���

where each u�t� and y�t� is still a semi�in�nite string of data of the type 
�� It
is of course to be understood that� when it comes to practical implementation�
the strnigs will be �nite and some approximations will have to be made� For
example the inner products will have to be replaced by �nite time averages�
These approximations are unavoidable and an analysis of their e�ects requires
a priori assumptions on the data� for example of the probabilistic type as it is
made in classical statistics� This is somewhat outside the scope of this paper
and will not be discussed further here�

Now� the state�space construction of Sections � and  was done in a station�
ary setting� where the state�space model has to represent the output process
on an in�nite time horizon� In a situation where only the �nite segment of
data � is available it is necessary to understand the relation between the data
and models which realize them on a �nite interval of time� Even if the ul�
timate goal of modeling and identi�cation is the construction of a stationary
model describing the data� when only a �nite segment of data is available it is
important to view model building as the construction of �nite�interval realiza�
tions� The reason is that this viewpoint only gives the correct way of dealing
with the unknown initial conditions that have unavoidably to be attached to a
stationary model on a �nite interval�

A �nite�interval realization describes the process on a �nite interval ��� T �
without bringing in the history of the process outside of ��� T � �i�e� no unknown
initial conditions�� However� even if the process is stationary� a �nite�interval
realization turns out to be in general a time� varying �nonstationary� system�
The notion of Markovian splitting subspace applies without di�culty to �nite�
interval realizations ��� �� �
�� For example� it is easy to see that the �nite�
interval predictor spaces for the �stochastic component of the� process y

"X
���
t �� EY���t�Y�t�T 	

"X
���
t �� EY�t�T �Y���t
 ���

are minimal Markovian splitting subspaces for the process y on the �nite in�

terval ��� T �� Chosing a basis "x�t� in the forward predictor space "X
���
t leads

to a state space realization which is a �transient Kalman �lter� �innovation �
representation of the process of the type

"x�t	 
� � A"x�t� 	 B�t���t� "x��� � �� ���

y�t� � C"x�t� 	D�t���t� ��

where the state "x�t� can be interpreted as the orthogonal projection onto
Y�
t of the state x�t� of any minimal stationary realization of y in a suitable

basis� Note that the Kalman �lter realization has the same �A�C� pair of
the stationary model� while B�t� �� K�t�R�t����� D�t� �� R�t���� are time�
varying� determined by the solution of a Riccati equation� The process ��t� ��
R�t������y�t��C"x�t�� is a normalized m�dimensional white noise process� the
normalized transient innovation process of y on ft � �g�

���



Doally� choosing a dual basis �x�t� in the backward predictor space "X
���
t

leads to a state space realization which is a backward �transient Kalman �lter�
�or a backward innovation � representation of the process� This �nite�interval
realization involves naturally a backward recursion for the state� i�e�

�x�t� � A��x�t 	 
� 	 �B�t����t	 
� �x�T � � ��
y�t� � �C�x�t� 	 �D�t����t�

���

on ft � Tg� where �B�t� �� �K�t� �R�t����� �D�t� �� �R�t���� are determined by a
backward Riccati equation and ���t� �� � �R�t������y�t�� �C�x�t�� is a normalized
m�dimensional white noise process� the normalized backward transient innova�
tion process of y on ft � Tg�

Note that these state space models are initialized at "x��� � � and to �x�T � �
� respectively�

Using state�space models here facilitates things greatly as the transient
Kalman �lter realizations above have exactly the same constant parameters
�A�C� and �C as the stationary model� Hence the �A�C� �C� parameters of a
minimal stationary realization of the process y can be computed exactly from
the �nite data � by the formulas

A � E"x�t	 
�"x�t�� P �t��� ���

C � Ey�t�"x�t�� P �t��� ���

�C � Ey�t� 
�"x�t��� ���

Here P �t� is the Grammian �covariance� matrix of the basis "x�t�� Note that this
computation does not require a preliminary estimation of the initial conditions�

One may compare with the fact that the parameters �A�C� �C� of a minimal
�deterministic� realization � of the spectral density � or of the covariance func�
tion ����� of y can be computed exactly from a �nite sequence of covariance
estimates 
� see �����

The above lies at the grounds of the success of Van Overschee and De Moor
�subspace� approach to time�series identi�cation ����� For a more detailed
analysis of the method one may consult ��
� ����

Now while subspace�methods identi�cation of �purely stochastic� systems
�i�e� of signals or time series� seems to be reasonably well�understood� for
systems which are driven by �inputs� or� exogenous variables� the picture is far
less clear� The various algorithms given in the literature are not based on clear
realization principles ���� ��� �� and some require a rather complicated analysis
to motivate ���� In particular the �nite�interval modeling issue seems to have
been largely overlooked� The theoretical grounds of stochastic realization in
presence of inputs have been clari�ed only recently ��� �� ���

Regarding this last point� it has been shown in ��� that when data are �nite�
the two �stochastic and deterministic� realization problems cannot be decoupled
and solved separately as it can instead be done for the stationary in�nite�
interval situation� This is an important point to keep in mind� especially for
what concerns the order estimation step of the identi�cation algorithm which

���



may perhaps sound surprising to practitioners used to neglect initial conditions
and only �think asymptotically��

The �nite history subspaces of H generated by the �nite stochastic data �
will be denoted

U���T 	 �� span fu�t� j � � t � T g

Y���T 	 �� span f y�t� j � � t � T g

The orthogonal complement of U���T 	 in U���T 	 	 Y���T 	 will be denoted by

U�
���T 	� so that U���T 	 
U

�
���T 	 � U���T 	 	Y���T 	� The practical computation of

U�
���T 	 will be addressed in Section ��

The following statement is straightforward�

Lemma ���� Let yu be described by the deterministic realization �
��� Then
the process

E�y�t�jU���T 	 � � E�yu�t�jU���T 	 � �� "yu�t�

is described by the same state�space model as yu but started at a dierent initial
state	 namely

"xu�t 	 
� � Au"xu�t� 	Buu�t� ���a�

"yu�t� � Cu"xu�t� 	Duu�t� ���b�

"xu��� � E�xu���jU���T 	 �� ���c�

It follows from this Lemma that the deterministic part of ����� namely the
system matrices �Au� Bu� Cu� Du� �in a suitable basis� can be identi�ed by using
a �deterministic� identi�cation procedure� based on the data f "yu�t�� u�t� jt �

� �� � � � � Tg� Once the system matrices �of a minimal realization� are computed
the estimate of the initial state "xu��� can also be reconstructed�

The identi�cation of the stochastic subsystem can be based on the projec�
tions of the output data onto the complementary subspace U�

���T 	� To this end�
we introduce the random vectors

"ys�t� �� y�t��E�y�t�jU���T 	 � � � t � T

These can be computed from the available data and actually we have

U�
���T 	 �� spanf "ys�t� j � � t � T g

The following Proposition� taken from ���� shows how the �nite�time estimate
"ys�t� relates to the stochastic component ys�

Proposition ���� Let #yu�t� �� yu�t�� "yu�t� �the �smoothing error� of yu�t��	
then

"ys�t� � ys�t� 	 #yu�t�� � � t � T� ��
�

���



Hence for �nite data length� the projection "ys�t� of the output on the com�
plementary subspace U�

���T 	 does not coincide with the stochastic component

ys�t�� as it would instead have happened for in�nite data length� The �ideal�
projection ys�t� is a�ected by an additional �smoothing error� term #yu�t� which
depends on the error in the estimate of the initial state of the deterministic
component� #xu��� �� xu���� "xu���� In fact�

#yu�t� � CuA
t
u#xu��� � � t � T�

This additional term is a source of di�culty in identi�cation of the stochastic
part since if it is not properly subtracted o� from the "ys�s� it tends to produce a
stochastic model of ys of a much higher dimension than the true order #n� In fact�
the estimated model will tend to include also the dynamics of the deterministic
subsystem� Therefore a preliminary step is necessary for the identi�cation of
the stochastic component� i�e� to �lter out #yu�t� somehow�

�� A general �subspace	 identification algorithm

In this section we shall brie$y examine some algorithmic aspects of the �nite
interval realization procedure� We shall �x a �present� time t � k at half way
between the extremes of the interval ��� T � �actually to �x notations we shall
just assume that T � �k � 
 � and organize our ��nite� data in �past� and
�future� block Hankel matrices of the form

Y �k �

�
����

y���
y�
�

���
y�k � 
�

�
���	 �

�
����

y� y� � � � yN
y� y� � � � yN��

���
���

���
yk�� yk � � � yk�N��

�
���	

U�k �

�
����

u���
u�
�

���
u�k � 
�

�
���	 �

�
����

u� u� � � � uN
u� u� � � � uN��

���
���

���
uk�� uk � � � uk�N��

�
���	 �

and

Y �
k �

�
����

y�k�
y�k 	 
�

���
y��k � 
�

�
���	 �

�
����

yk yk�� � � � yk�N
yk�� yk�� � � � yk�N��

���
���

���
y�k�� y�k � � � y�k�N��

�
���	

U�
k �

�
����

u�k�
u�k 	 
�

���
u��k � 
�

�
���	 �

�
����

uk uk�� � � � uk�N
uk�� uk�� � � � uk�N��

���
���

���
u�k�� u�k � � � u�k�N��

�
���	 �

���



The relative rowspaces� denoted Y�
k �U

�
k �Y

�
k �U

�
k are the �past� and �future�

spaces of the data at time k� In practice with data of �nite length� the inner
product in the Hilbert space H is approximated by the Euclidean inner product

h�� 	i ��



N 	 


NX
t��

�t	t

and this makes the stochastic realization procedures of the previous sections
very simple to implement as vector space computations in the Euclidean space
%RN �

The practical computation of U�
���T 	 can be done by an LQ factorization of

the data matrix

�
U
Y

�
generating U���T 		Y���T 	� � For simplicity of notations

we shall not indicate the �nite interval endpoint explicitely in the full data
matrices��

The LQ factorization has the form�
U
Y

�
�

�
Luu �
Lyu Lyy

� �
Q�u
Q�y

�
����

where Q�uQu � I� Q�yQy � I� Q�uQy � � and Luu� Lyy are lower triangu�
lar� This gives immediately the block Hankel matrices of the �nite�interval
deterministic and stochastic components of y as

"Yu � E�Y jU���T 	� � Y QuQ
�
u � LyuQ

�
u

and
"Ys � E�Y jU�

���T 	� � Y QyQ
�
y � LyyQ

�
y�

The formulas follow immediately by noting that the rows of Q�u form an or�
thonormal basis for the rowspace of U and those of Q�y an orthonormal basis

for the orthogonal complement U�
���T 	 in U���T 	 	Y���T 	�

In the basis constituted by the rows of U � we have E�Y jU � � LyuL
��
uuU � If

the data were in�nitely long� one could check causality from u to y �equivalently
absence of feedback from y to u�by checking whether the matrix Lyu is lower
triangular� This is however not necesarily true for data of �nite lenght� for the
reasons explained in the previous section�

For convenience� we also write the factorization ���� as
�
���
U�k
U�
k

Y �k
Y �
k

�
��	 �

�
���
L�� � � �
L�� L�� � �
L�� L�� L�� �
L�� L�� L�� L��

�
��	

�
���
Q��
Q��
Q��
Q��

�
��	 ����

where the Qi�s are orthogonal matrices�

���



Identi�cation of the Deterministic Part

Subspace methods to identify a stationary state space model for the determin�
istic component yu� may be based on computing the state "xu�t� of the system
�� at two time instants� say k and k 	 
 and then solve in the least squares
sense��

"xu�k 	 
�
"yu�k�

�
�

�
Au Bu

Cu Du

� �
"xu�k�
u�k�

�
� ����

for the coe�cient matrices Au� Bu� Cu� Du�
The theory of Section  works for �nite�interval realization as well� Here we

only have the �nite historyU�
k available but the state "xu�k� of a minimal causal

realization of "yu must still be a basis for the �nite interval oblique predictor
space at time k� This subspace in turn can be computed as the intersection of
the extended future �Y�

k � Y�
k 	U

�
k with the past space of u at time k� Below

we give an algorithm to compute a well� conditioned basis in the intersection
�Y�
k �U

�
k � based on the GSVD ���� ����

Note that in order to get the right constant parameters in the realization�
the basis at time k	 
 should be chosen so as to correspond to the stationarily
time�shifted stateE�xu�k	
�jU �� xu�k	
� � 
xu�k�� otherwise time varying
matrices Au� Bu� Cu� Du are obtained� This means that after applying the basis
selection algorithm at time k 	 
� a suitable linear transformation should be
applied to make "xu�k	
� coherent with the basis chosen at the previous instant
k�

Algorithm for computing a well conditioned basis for the subspace
"X � �Y� �U�	 based on the GSVD�

The basis can be chosen by using a variant of the subspace intersection al�
gorithm described in ����� This procedure also numerically determines the

dimension "n of "X�
Observe that from ���� we get the LQ decomposition

�
U�

�Y �

�
��

�
� U�

U�

Y �

�
	 �

�
L�� �
�L��

�L��

��
Q��
�Q��

�

where �Q�� is obtained by stacking the rows of Q�� over those of Q��� We have
deleted the subscript k� We shall assume that ��L��

�L��� has full row rank�
From the theory of Generalized Singular Valued Decomposition� ������� there
exist orthogonal matrices V� Z and a nonsingular X of appropriate dimensions�
such that

�L�� � X C V � � X diag�c�� � � � � c��V �� 
 � c� � � � � � c� � �

�L�� � X S Z � � Xdiag�s�� � � � � s��Z �� 
 � s� � � � � � s� � �

where CC � 	 SS� � I and � � pk� Setting

Q� �� CV �Q�� 	 SZ � �Q��

��




one has �Y � � XQ� and Q�Q � I � so that the rows of Q�� and "Q� form orthogonal
bases for the rowspaces U� and �Y�� respectively� Moreover� we have ci �
cos��i�� i � 
� � � � � �� where �i is the i�th smallest principal angle between the
rowspaces �Y� and U��

If 
 � cos���� � � � � � cos���n� � cos���n��� for some "n� the �rst "n rows of
V �Q� span the intersection �Y� � U� ����� Since this does rarely happen in
actual computations� we must pick "n in such a way that the �rst "n principal
angles are numerically zero�

Preprocessing of "ys
Note that ��
� can be written more compactly in vector form as

"ys � &u#xu��� 	 ys ���

where the boldface characters denote stacked vectors and &u is the observability
matrix of the deterministic system� The two terms on the right hand side are
uncorrelated and once the parameters �Au� Cu� of the deterministic subsystem
have been identi�ed� the matrix &u can be assumed to be known�

It seems that one may easily �lter out #yu from "ys by just pre�multiplying
the vector equation � by &u&�u where &�u is a matrix with rows spanning
the left nullspace of &u� With a procedure of this kind however a distortion is
introduced on the time series fys�t�� t � �� � � � � Tg which seems to be very hard
to remove� To keep control on the reconstruction errors� one needs to �lter out
the unwanted term #yu by a sequential algorithm� Below we shall describe an
algorithm ��� which in principle only distorts a small �nite initial segment of
the time series fys�t�� t � �� � � � � Tg�

Algorithm ���� Assume Au and As have no common eigenvalues� The fol�
lowing algorithm recovers the time series fys�t�� t � �� � � � � Tg exactly	 up to
the �rst � sample values�

�� Compute a left�coprime factorization of the rational matrix Cu�I�z��Au����
Let the m�m and m�n polynomial matrices in the unit backward shift z��	
D�z��� �

P�
� Dkz

�k	 and N�z��� �
P���

� Nkz
�k be such a left�coprime

factorization	 i�e� let

D�z�����N�z��� � Cu�I � z��Au��� ����


� Compute

'y�t� �� D�z���"ys�t� ����

so that 'y�t� � N�z���#xu��� 	 D�z���ys�t�� Since the �rst term has �nite
support t � �� � � � � � � 
	

'y�t� � D�z���ys�t� t � ��

���



�� Solve the following vector dierence equation in the unknown variable z�t�

D�z���z�t� � 'y�t� t � � ����

started with initial conditions z��� � z�
� � � � � z�� � 
� � �� Then z�t� �
ys�t�� t � ��

Identi�cation of the Stochastic Part

The identi�cation of the stochastic subsystem ��� is done by processing the
�stochastic� data matrix "Ys computed in the previous step and can be done
by the stochastic techniques described e�g in ���� �
��� A reliable method for
computing the state�space realization in stochastically balanced form is pre�
sented in ����� The algorithms of ���� are further streamlined in ���� �
�� As
explained in this last reference� identi�cation of the model in a stochastically
balanced canonical form is to be recommended in order to guarantee positivity
after truncations by retaining only the larger singular values �see Section � for
a discussion of the positivity problem� The state �basis� vector in the predictor
space should then be chosen to be the corresponding truncated subvector of
canonical variates�

�� Concluding remarks

There are questions about the statistical signi�cance �what are the uncertainty
bounds on the parameters and on the estimated transfer functions etc�� of the
subspace�realization approach to identi�cation which are often asked�

In order to address these questions we shall recall a result about subspace
identi�cation given in ��
� ���� Identi�cation by geometric stochastic realization
methods has there been shown to be equivalent to the following three�step
procedure�


� The �rst step is estimation of the �nite sequence of covariance matrices 

from the observed data�

�� The second step is identi�cation of a rational model for the covariance
sequence� This is a minimal partial realization �also called �rational exten�
sion�� problem� Given a �nite set of �experimental � covariance data

f������ � � � ��T g ����

one is asked to �nd a minimal value of n and a minimal� triplet of matrices
�A�C� �C�� of dimensions n� n� m� n and m� n respectively� such that

�k � CAk�� �C � k � 
� � � � � T� ����

� Recall that 
A�C� �C� is minimal if 
A�C� is completely observable and 
A� �C�� is completely
reachable�

���



The solution of the partial realization problem leads to �estimates� of the
parameters �A�C� �C� of a minimal realization of a rational spectral density
matrix of the process�

�� The third step is to compute a stationary state�space model �typically the
forward innovation model� by solving the Linear Matrix Inequality �� or an
appropriate equivalent Riccati equation� relative to the rational estimated
spectrum computed in step two�

The main di�erence with the mainstream statistical approach is that the es�
timation of �A�C� �C� is not done directly by optimizing a likelihood or other
distance functions but by just matching second order moments i�e� by solving
the equations ���

This way of proceeding is an instance of estimation by the method of mo�
ments described in the statistical textbooks e�g� �
�� p� ����� a very old idea
used extensively by K� Pearson in the beginning of the century� The underlying
estimation principle is that the parameter estimates should match exactly the
sample second order moments and is close in spirit to the wide�sense setting
that we are working in� It does not involve optimality or minimal distance
criteria between the �true� and the model distributions�

Are these estimates consistent� e�cient etc�( One should note that the
sample estimates of the second order moments �k may very well be �maximum
likelihood� or optimal in some sense� depending on which parent distribution
one imagines to have generated the data� Very generally the estimates "�k can
be chosen at least consistent �i�e� tending to the true second order moments as
the sample size goes to in�nity�� In this case the method gives automatically
consistent estimates of the true partial covariance sequence in the sense that
at least T true moments �k k � 
� �� � � � � T will be described exactly by the
model as N ���

Some argue that estimation by the method of moments is in general �non�
e�cient� and it is generally claimed in the literature that one should expect
better results �in the sense of smaller asymptotic variance of the estimates�
by optimization methods� Actually if the covariance estimates are maximum
likelihood estimates and the partial realization problem has a unique solution
�modulo similarity�� then� choosing �A�C� �C� in a canonical form� there is a
continuous map

f������ � � � ��T g � �A�C� �C�

which is even locally one�to�one� It follows by a well� known Theorem of
Zehna ���� that the canonical parameter estimates are also maximum like�
lihood� Hence in this case we have e�cient estimates�

Positivity

A warning is in order concerning the implementation of the subspace identi�ca�
tion methods described above in that some nontrivial mathematical questions
related to positivity of the estimated spectrum have been completely overlooked

���



in the discussion� This issue is thoroughly discussed in ��
� and here we shall
just give a short summary� The problem occurs only in identi�cation of the
stochastic component� here named y for short�

In determining a minimal triplet �A�C� �C� interpolating the partial sequence
���� so that CAk�� �C � � �k k � 
� �� � � � � T � we also completely determine the
in�nite sequence

f������������ � � �g ��
�

by setting �k � CAk�� �C � for k � T 	 
� T 	 �� � � �� This sequence is called a
minimal rational extension of the �nite sequence ����� The attribute �rational�
is due to the fact that

Z�z� ��



�
�� 	 ��z

�� 	 ��z
�� 	 � � � �




�
�� 	 C�zI �A��� �C � ����

is a rational function� In order for ��
� to be a bona �de covariance sequence�
however� it is necessary� but not su�cient� that the Toeplitz matrix

T �

�
����

�� �� �� � � � ��

��� �� �� � � � ���
���

���
���

� � �
���

��� ����� ���� � � � ��

�
���	 ����

be nonnegative de�nite� In fact� it is required that the function �the spectral
density corresponding to ��
��

��z� � �� 	
�X
k��

�k�zk 	 z�k� � Z�z� 	 Z�z���� ����

be nonnegative on the unit circle� This is equivalent to the function Z�z� being
positive real� Consequently� the partial realization needs to be done subject to
the extra constraint of positivity�

The constraint of positivity is a rather tricky one and in all identi�cation
methods which are directly or indirectly� as the subspace methods described in
the literature� based on the interpolation condition ���� it is normally disre�
garded� For this reason these methods may fail to provide a positive extension
and hence may lead to data �A�C� �C� for which there are no solutions of the
LMI and hence to totally inconsistent results�

It is important to appreciate the fact that the problem of positivity of
the extension has little to do with the �noise� or �sample variability� of the
covariance data and is present equally well for a �nite covariance sequence
extracted from a true �in�nitely long� rational covariance sequence� For there
is no guarantee that� even in this idealized situation� the order of a minimal
rational extension �
 of the �nite covariance subsequence would be su�ciently
high to equal the order of the in�nite sequence and hence to generate a positive
extension� A minimal partial realization may well fail to be positive because
its order is too low to guarantee positivity�

Neglecting the positivity constraint amounts to tacitly assuming that

��



Assumption ���� The �nite covariance data ���� can be generated exactly by
some �unknown� stochastic system whose dimension is equal to the rank of the
block Hankel matrix

H	 �

�
����

�� �� �� � � � �	

�� �� �� � � � �	��

���
���

���
� � �

���
�	 �	�� �	�� � � � ��	��

�
���	 � ���

where � � �T� ��

This assumption is not �generically satis�ed� and it can be shown ��
� that
there are relatively �large� sets of data ���� for which it does not hold� It
is not even enough to assume that the data is generated from a �true� �nite�
dimensional stochastic system� the rank condition is also necessary� Otherwise�
for a minimal triplet �A�C� �C� which satis�es the interpolation condition �����
the positivity condition will not be automatically ful�lled� and the matrix A
may even fail to be stable �
���
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