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We discuss a novel approach for the computation of a number of eigenvalues
and eigenvectors of the standard eigenproblem Ax � �x
 Our method is based
on a combination of the Jacobi�Davidson method and the QR�method
 For that
reason we refer to the method as JDQR
 The e�ectiveness of the method is
illustrated by a numerical example


�� Introduction

The computation of eigenvalues and eigenvectors for the standard eigenproblem
was considered a solved problem �� years ago� as far as matrices of modest
order were concerned� The situation for large matrices� say of order n � �� ���
or more� was less satisfactory� since these matrices can not be treated by the
standard direct approaches	 reduction to special form� plus QR
iteration on
this special form� This requires O�n�� arithmetic operations� and apart from
storage considerations� it is clear that this puts limits on n� For very large
sparse symmetric matrices� the iteration method of Lanczos 
�� was more or
less accepted around ����� due to pioneering work of Paige 
���� Various e�ects
in the convergence of eigenvalue approximations in the Lanczos process have
been analysed in great detail in 
���� Similar methods for unsymmetric matrices
were available� but their behavior is still less well understood	 Arnoldi�s method

��� the two
sided Lanczos method 
��� and Davidson�s method 
���

In the past �ve years we have seen great progress in the further devel

opment of these three methods� The two
sided Lanczos process was further
stabilized by including a so
called look
ahead technique 
���� but the method
is still not very popular because of the non
orthogonal transformations and
projections involved� Arnoldi�s method was not so popular because of the in

creasing computational complexity per iteration step� but Sorensen 
��� has
solved this problem elegantly with an implicit restart technique by which the
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dimensions of the searchspaces can be kept modest� The method of Davidson
was the inspiration for a new technique� which comes down to the combination
of a key element in Davidson�s algorithm with a very old� but not very well

known� technique of Jacobi 
��� which was published ��� years ago� The novel
technique was given the name Jacobi
Davidson and published in 
����

Before we give a short overview of the methods of Lanczos� Arnoldi� David

son� and Jacobi
Davidson� we will �rst discuss a motivating example of very
large sparse unsymmetric eigenvalue problems�

Then we will discuss brie�y the novel iteration technique� based on the
Jacobi
Davidson method� and we will give an example of its use�

�� An example of very large eigenproblems

Although large eigenproblems arise in many scienti�c problems� we have been
particularly motivated by the NWO
sponsored project on MHD
problems��
In this project we study the dynamics of plasmas in a magnetic �eld with
computational models� The results are applied for further understanding of
the stability of Tokomak fusion reactors and of coronal loops� as well as of
solar �ares�

The interaction of plasma and a magnetic �eld is governed by essentially
the �ow equations for �uids combined with the Maxwell equations� and this
system has the form

��
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with r �B � ��

The last equation is considered as an initial condition on B� One of the ap

proaches� taken in our project� is to consider small perturbations of the un

knowns with respect to some known equilibrium� and this leads to a linear
system for the �rst order perturbations� The solution for this linearized system
is assumed to be of the form e�t� and this leads to a large linear generalized
eigenproblem�

� This project has been funded by the NWO �dwarsverbandcommissie MPR�� the project�
leader is Prof� Hans Goedbloed �FOM�
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Figure �� Eigenvalues for MHD problem

Due to the kind of discretization we use� partly �nite di�erences� and
partly Fourier series� this leads to block tridiagonal matrices� with typically
��� � �� ��� blocks� of size �� � ��� each� This amounts to matrices of orders
in the range �� ��� � ���� ����
The matrices have eigenvalues that can be grouped in very large ones �associ

ated with �Sound waves��� very small ones� and intermediate ones �associated
with �Alfv�en� waves�� and we are interested in the Alfv�en spectrum� In Fig

ure � we see the entire spectrum� the middle part of Figure � shows the �Alfv�en�
spectrum �note the di�erent scales��

The order and the structure of these matrices makes standard direct meth

ods unpractical� and therefore we consider iterative methods� Similar problems
have been solved up to orders of a few tens of thousands with the methods of
Lanczos �with a code of Cullum et al 
��� and by Shift and Invert Implicitly
Restarted Arnoldi method 
���� The applicability of these methods is limited�
due to the fact that inversion of matrices is required� and this becomes too
expensive for the very large problems that we are interested in� As we will see�
inversion of matrices is essential for these methods in order to obtain conver

gence for the Alfv�en spectrum�

�� Subspace Methods

For simplicity we will restrict ourselves to the standard eigenproblem Ax � �x�
with A a general matrix� and our task is to compute a few eigenvalues�
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Figure �� Alfv�en part of spectrum

Suppose we are given a suitable low
dimensional subspace� spanned by u��
� � �� um� Let Um denote the n � m matrix with ui as its i
th column� Let
us further assume that the vectors ui form an orthonormal basis� Then the
Galerkin approach is to �nd a vector y � IRm� and a 	� such that

AUmy � 	Umy � fu�� � � � � umg

Since the ui are orthonormal� this leads to an eigenproblem for a matrix of
order m	

U�mAUmy � 	y � ��

where U�m denotes the adjoint of Um� In applications we have that m� n�
The solutions 	 are referred to as the Ritz values �approximations for eigen


values of A�� and Umy is the corresponding Ritz vector� with respect to the
subspace spanned by u�� � � �� um�

A very popular choice for the subspace is the so
called Krylov subspace

Km�A�u�� � fu�� Au�� � � � � A
m��u�g�

Note that this space is generated in the old Power iteration� After having
created an orthonormal basis for the Krylov subspace	 v� � u�� v�� � � �� vm�
with associated matrix Vm� we obtain the projected system

V �mAVmy � 	y � ��
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If A� � A then it can be shown that V �mAVm is a tridiagonal matrix� and this
method is known as the Lanczos method 
��� For further details see 
����

If A is unsymmetric� then the matrix V �mAVm becomes upper Hessenberg
through Arnoldi�s orthogonalization procedure 
��� For further details see 
����

The convergence of the Ritz values in these Krylov subspace methods is
usually such that the exterior eigenvalues in the spectrum of A are well
approx

imated �rst� The interior eigenvalues follow much later� and in order to force
an acceptable speed of convergence one has to consider the eigenproblem for
�A � 
I���� in order to �nd interior eigenvalues close to 
 � This technique
is known as Shift
and
Invert� and is only practical when the shifted matrix
can be inverted at relatively low costs� Note that in these Krylov subspace
methods it is not necessary to invert the matrix explicitly� for the computation
of p � �A� 
I���q it is su�cient to solve p from �A� 
I�p � q�

In ����� Davidson 
�� suggested an alternative for the Krylov subspace� his
idea can be described as follows� Suppose that we have already a subspace
of dimension m with orthonormal matrix Um� Then we follow the Galerkin
approach� and we solve the eigenproblem for the projected problem

U�mAUmy � 	y � ��

For a pair �Umy� 	� of interest� we compute the residual r � AUmy � 	Umy�
Originally� Davidson propsed his method for symmetric diagonally dominant
matrices� so let us assume to be in that situation� and let DA be a diagonal
matrix equal to the diagonal of A� Then we compute v � �DA � 	I���r� we
orthogonalize v with respect to the columns of Um and this gives us the new
column um��� After this step the procedure can be repeated�

The success of Davidson�s method can be heuristically explained by the
observation that for diagonally dominant matrices DA � 	I is a good approxi

mation for A�	I � so that the computation of v is an approximation for a Shift

and
Invert step� Apparantly� this is not a very satisfactory explanation� because
if we take a better approximation� in particular� v � �A� 	I���r� then we see
that v � Umy� so that we do not expand our subspace� Lack of understanding
made numerical analysts suspicious about this method� but notwithstanding
this� the method was used in various circumstances with great success� also for
unsymmetric systems� and with di�erent approximations for A � 	I � Another
observation� namely that for v � r� a very poor approximation for Shift
and

Invert� we obtain formally the same results as with Arnoldi�s method� so that
some researchers viewed the method as a preconditioned Arnoldi method�

Recently� it was shown in 
��� that the construction of an approximation
for the inverse A� 	I is a wrong point of view� Instead of this it was suggested
to follow an old proposal of Jacobi 
��� Jacobi made his proposal for strongly
diagonally dominant matrices as a correction mechanism for the eigenvector
approximation� the latter taken as the appropriate unit vector� In 
��� this was
for arbitrary square matrices generalized as follows� Let �Umy� 	� be a Ritz
pair with respect to Um� Now the idea is to look for the missing complement
of u � Umy in the orthogonal complement of u� denoted by u��
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The restriction of A with respect to u� is given by

B � �I � uu��A�I � uu�� with kuk� � ��

The desired correction t for u should satisfy A�u�t� � ��u�t�� and after some
trivial manipulation we �nd that t satis�es	

�B � �I�t � �r�

for r � Au� 	u�
Since � is unknown� we approximate t by the solution et of �B � 	I�et �

�r� The approximation et is orthogonalized with respect to Um� which gives
us an expansion vector um��� In 
��� it is proposed to solve the correction
equation �B � 	I�et � �r only approximately� for instance with a few steps of
�preconditioned� GMRES� Numerical evidence is given that this may lead to a
very e�ective iterative procedure� referred to as the Jacobi
Davidson method� If
the correction equation is solved accurately� then we get quadratic convergence�
for approximate solutions we often see linear convergence with a very small
convergence factor �i�e� fast linear convergence��

�� A novel extension for the Jacobi�Davidson method

In some circumstances the Jacobi
Davidson method has apparent disadvan

tages with respect to Arnoldi�s method� For instance� in many cases we see
rapid convergence to one single eigenvalue� and what to do if we want more
eigenvalues� For Arnoldi this is not a big problem� since the usually slower
convergence towards a particular eigenvalue goes hand in hand with simultane

ous convergence towards other eigenvalues� So after a number of steps Arnoldi
produces approximations for several eigenvalues�

For Jacobi
Davidson the obvious approach would be to restart with a di�er

ently selected Ritz pair� with no guarantee that this leads to a new eigenpair�
Also the detection of multiple eigenvalues is a problem� but this problem is
shared with the other subspace methods�

A well
known way out of this problem is to use a technique� known as de�a�
tion� If an eigenvector has converged� then we continue in a subspace spanned
by the remaining eigenvectors� A problem is then how to re
use information
obtained in a previous Jacobi
Davidson cycle�

In 
�� an algorithm is proposed by which several eigenpairs can be computed�
The algorithm is based on the computation of a partial Schur form of A	

AQk � QkRk�

where Qk is an n� k orthonormal matrix� and Rk is a k � k upper triangular
matrix� with k � n� Note that if �x� �� is an eigenpair of Rk� then �Qkx� �� is
an eigenpair of A�

We now proceed in the following way in order to obtain this partial Schur
form for eigenvalues close to a target value 
 �
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Step I	 Given an orthonormal subspace basis v�� � � � � vi� with matrix Vi� com

pute the projected matrix M � V �i AVi� For the i � i matrix M we compute
the complete Schur form M � US� with U�U � I � and S upper triangular�
This can be done with the standard QR algorithm 
���

Then we orden S such that the jsi�i � 
 j form a nondecreasing row for
increasing i� The �rst few diagonal elements of S then represent the eigenap

proximations closest to 
 � and the �rst few of the correspondingly reordened
columns of Vi represent the subspace of best eigenvector approximations� If
memory is limited then this subset can be used for restart� that is the other
columns are simply discarded� The remaining subspace is expanded according
to the Jacobi
Davidson method�

After convergence of this procedure we have arrived at an eigenpair �q� ��
of A	 Aq � �q� The question is how to expand this partial Schur form of
dimension �� This will be shown in step II�
Step II	 Suppose we have already a partial Schur form of dimension k� and we
want to expand this by a convenient new column q	

A 
Qk� q� � 
Qk� q�

�
Rk s

�

�

with Q�q � ��
After some standard linear algebra manipulations it follows that

�I �QkQ
�

k��A� �I��I �QkQ
�

k�q � ��

which expresses that the new pair �q� �� is an eigenpair of

eA � �I �QkQ
�

k�A�I �QkQ
�

k��

This pair can be computed by applying the Jacobi
Davidson algorithm �with

Schur form reduction� as in step I� for eA�
Some notes are appropriate	

�� Although we see that after each converged eigenpair the explicitly de�ated
matrix eA leads to more expensive computations� it is shown in 
��� by
numerical experiments� that the entire procedure leads to a very e�cient
computational process� An explanation for this is that after convergence
of some eigenvectors� the matrix eA will be better conditioned� so that the
correction equation in the Jacobi
Davidson step is more easily solved�

�� The correction equation may be solved by a preconditioned iterative solver�
and it is shown in 
�� that the same preconditioner can be used with great
e�ciency for di�erent eigenpairs� Hence� it pays to construct better pre

conditioners�

�� In 
�� a similar algorithm for generalized eigenproblems Ax � �Bx is pro

posed� based on partial QZ reduction 
���
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Figure �� Computed eigenvalues

�� An example

We will now brie�y describe results for the sketched approach for a generalized
eigenproblem Ax � �Bx� associated to the MHD problems discussed in Section
�� In view of the problems that we actually want to solve� our example is just
a �toy problem� of very modest dimension� n � ���� For more information on
this particular problem� see for instance 
���

In Figure � we see the complete spectrum for this case� Figure � shows the
so
called Alfv�en part of the spectrum� Note the di�erent scales from which
it is obvious that the Alfv�en spectrum is an interior part of the spectrum�
and without Shift
and
Invert it is almost impossible to compute this part with
Krylov subspace methods� The �� eigenvalue approximations� that we have
computed with the QZ
variant of our algorithm� are shown in Figure �� The
computations have been carried out in about �� decimal digits accuracy on
a SUN workstation� The target value� indicated in picture � by a ���� was

 � ��� � ��i� The maximum dimension of the subspaces for the Jacobi

Davidson part of the algorithm was �xed to ��� As soon as we arrived at
that dimension� the subspace was shrinked� as described in Step I above� to
��� An eigenpair was considered to be converged as soon as the norm of the
residual for the normalized eigenvector approximation was below ����� For the
preconditioner in the solution process for the correction equation� we used the
exact inverse of A � 
B �for �xed 
�� The correction equations were solved
approximately� namely with only � step of GMRES� The complete converge
history� norms of the residuals of eigenapproximations versus the total amount
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Figure �� Convergence history

of �oating point operations� is shown in Figure �� Each time when the curve
hits the ���� level� indicated by the dotted horizontal line� the algorithm has
discovered a new eigenvalue� In our case that has happened �� times� after
which we have stopped the algorithm�
For more examples and a more thorough discussion� see 
���
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