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Subspace Iteration for Eigenproblems
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We discuss a novel approach for the computation of a number of eigenvalues
and eigenvectors of the standard eigenproblem Az = Az. Our method is based
on a combination of the Jacobi-Davidson method and the QR-method. For that
reason we refer to the method as JDQR. The effectiveness of the method is
illustrated by a numerical example.

1. INTRODUCTION

The computation of eigenvalues and eigenvectors for the standard eigenproblem
was considered a solved problem 15 years ago, as far as matrices of modest
order were concerned. The situation for large matrices, say of order n = 2,000
or more, was less satisfactory, since these matrices can not be treated by the
standard direct approaches: reduction to special form, plus QR-iteration on
this special form. This requires O(n3) arithmetic operations, and apart from
storage considerations, it is clear that this puts limits on n. For very large
sparse symmetric matrices, the iteration method of Lanczos [9] was more or
less accepted around 1980, due to pioneering work of Paige [10]. Various effects
in the convergence of eigenvalue approximations in the Lanczos process have
been analysed in great detail in [16]. Similar methods for unsymmetric matrices
were available, but their behavior is still less well understood: Arnoldi’s method
[1], the two-sided Lanczos method [8], and Davidson’s method [4].

In the past five years we have seen great progress in the further devel-
opment of these three methods. The two-sided Lanczos process was further
stabilized by including a so-called look-ahead technique [11], but the method
is still not very popular because of the non-orthogonal transformations and
projections involved. Arnoldi’s method was not so popular because of the in-
creasing computational complexity per iteration step, but Sorensen [15] has
solved this problem elegantly with an implicit restart technique by which the
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dimensions of the searchspaces can be kept modest. The method of Davidson
was the inspiration for a new technique, which comes down to the combination
of a key element in Davidson’s algorithm with a very old, but not very well-
known, technique of Jacobi [7], which was published 150 years ago. The novel
technique was given the name Jacobi-Davidson and published in [14].

Before we give a short overview of the methods of Lanczos, Arnoldi, David-
son, and Jacobi-Davidson, we will first discuss a motivating example of very
large sparse unsymmetric eigenvalue problems.

Then we will discuss briefly the novel iteration technique, based on the
Jacobi-Davidson method, and we will give an example of its use.

2. AN EXAMPLE OF VERY LARGE EIGENPROBLEMS
Although large eigenproblems arise in many scientific problems, we have been
particularly motivated by the NWO-sponsored project on MHD-problems!.
In this project we study the dynamics of plasmas in a magnetic field with
computational models. The results are applied for further understanding of
the stability of Tokomak fusion reactors and of coronal loops, as well as of
solar flares.

The interaction of plasma and a magnetic field is governed by essentially
the flow equations for fluids combined with the Maxwell equations, and this
system has the form

dp

9t -V (pV)

ov

PW = —p(V-V)V-Vp
+VxB)xB

3

8—2 = —(V-V)p—pV -V +
(v = 1)n(V x B)?

OB

o = Vx(VxB)-Vx(nV xB)

with V-B=0.

The last equation is considered as an initial condition on B. One of the ap-
proaches, taken in our project, is to consider small perturbations of the un-
knowns with respect to some known equilibrium, and this leads to a linear
system for the first order perturbations. The solution for this linearized system
is assumed to be of the form e, and this leads to a large linear generalized
eigenproblem.

1 This project has been funded by the NWO ‘dwarsverbandcommissie MPR’; the project-
leader is Prof. Hans Goedbloed (FOM)
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FiGure 1. Eigenvalues for MHD problem

Due to the kind of discretization we use, partly finite differences, and

partly Fourier series, this leads to block tridiagonal matrices, with typically
100 — 2,000 blocks, of size 80 — 320 each. This amounts to matrices of orders
in the range 8,000 — 640, 000.
The matrices have eigenvalues that can be grouped in very large ones (associ-
ated with ‘Sound waves’), very small ones, and intermediate ones (associated
with ‘Alfvén’ waves), and we are interested in the Alfvén spectrum. In Fig-
ure 1 we see the entire spectrum, the middle part of Figure 2 shows the ‘Alfvén’
spectrum (note the different scales).

The order and the structure of these matrices makes standard direct meth-
ods unpractical, and therefore we consider iterative methods. Similar problems
have been solved up to orders of a few tens of thousands with the methods of
Lanczos (with a code of Cullum et al [3]) and by Shift and Invert Implicitly
Restarted Arnoldi method [15]. The applicability of these methods is limited,
due to the fact that inversion of matrices is required, and this becomes too
expensive for the very large problems that we are interested in. As we will see,
inversion of matrices is essential for these methods in order to obtain conver-
gence for the Alfvén spectrum.

3. SUBSPACE METHODS

For simplicity we will restrict ourselves to the standard eigenproblem Az = Az,
with A a general matrix, and our task is to compute a few eigenvalues.
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FIGURE 2. Alfvén part of spectrum

Suppose we are given a suitable low-dimensional subspace, spanned by wuq,

..y Um. Let U,, denote the n X m matrix with u; as its i-th column. Let

us further assume that the vectors u; form an orthonormal basis. Then the
Galerkin approach is to find a vector y € IR™, and a 6, such that

AUmy - gUmy 1 {ula s 7um}

Since the u; are orthonormal, this leads to an eigenproblem for a matrix of
order m:

Uy AUy — 0y =0,

where U}, denotes the adjoint of U,,. In applications we have that m < n.

The solutions 6 are referred to as the Ritz values (approximations for eigen-
values of A), and U,y is the corresponding Ritz vector, with respect to the
subspace spanned by wuq, ..., Upy,.

A very popular choice for the subspace is the so-called Krylov subspace
K™(A;uy) = {uy, Auy, ..., A" tug ).

Note that this space is generated in the old Power iteration. After having
created an orthonormal basis for the Krylov subspace: vy = wuy,ve, ..., U,
with associated matrix V;,, we obtain the projected system

VEAViy — 0y = 0.
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If A* = A then it can be shown that V} AV,, is a tridiagonal matrix, and this
method is known as the Lanczos method [8]. For further details see [12].

If A is unsymmetric, then the matrix V% AV,, becomes upper Hessenberg
through Arnoldi’s orthogonalization procedure [1]. For further details see [13].

The convergence of the Ritz values in these Krylov subspace methods is
usually such that the exterior eigenvalues in the spectrum of A are well-approx-
imated first. The interior eigenvalues follow much later, and in order to force
an acceptable speed of convergence one has to consider the eigenproblem for
(A —7I)71, in order to find interior eigenvalues close to 7. This technique
is known as Shift-and-Invert, and is only practical when the shifted matrix
can be inverted at relatively low costs. Note that in these Krylov subspace
methods it is not necessary to invert the matrix explicitly, for the computation
of p= (A — 7I)"!q it is sufficient to solve p from (A — 71)p = q.

In 1975, Davidson [4] suggested an alternative for the Krylov subspace; his
idea can be described as follows. Suppose that we have already a subspace
of dimension m with orthonormal matrix U,,. Then we follow the Galerkin
approach, and we solve the eigenproblem for the projected problem

Uy AUy — 0y = 0.

For a pair (U,y,0) of interest, we compute the residual r = AU,y — 0U,y.
Originally, Davidson propsed his method for symmetric diagonally dominant
matrices, so let us assume to be in that situation, and let D4 be a diagonal
matrix equal to the diagonal of A. Then we compute v = (D4 — 0I)~!r, we
orthogonalize v with respect to the columns of U, and this gives us the new
column u,,4+1. After this step the procedure can be repeated.

The success of Davidson’s method can be heuristically explained by the
observation that for diagonally dominant matrices D4 — 01 is a good approxi-
mation for A—61, so that the computation of v is an approximation for a Shift-
and-Invert step. Apparantly, this is not a very satisfactory explanation, because
if we take a better approximation, in particular, v = (4 — 0I)"'r, then we see
that v = U,,y, so that we do not expand our subspace. Lack of understanding
made numerical analysts suspicious about this method, but notwithstanding
this, the method was used in various circumstances with great success, also for
unsymmetric systems, and with different approximations for A — 6. Another
observation, namely that for v = r, a very poor approximation for Shift-and-
Invert, we obtain formally the same results as with Arnoldi’s method, so that
some researchers viewed the method as a preconditioned Arnoldi method.

Recently, it was shown in [14] that the construction of an approximation
for the inverse A — 61 is a wrong point of view. Instead of this it was suggested
to follow an old proposal of Jacobi [7]. Jacobi made his proposal for strongly
diagonally dominant matrices as a correction mechanism for the eigenvector
approximation, the latter taken as the appropriate unit vector. In [14] this was
for arbitrary square matrices generalized as follows. Let (U,,y,6) be a Ritz
pair with respect to U,,. Now the idea is to look for the missing complement

of u = U,y in the orthogonal complement of u, denoted by u'.
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The restriction of A with respect to u' is given by
B = (I —uu")A(I —uwu™) with |julle =1.

The desired correction ¢ for u should satisfy A(u+t) = A(u+t), and after some
trivial manipulation we find that ¢ satisfies:

(B— )t =-—r,

for r = Au — Qu.

Since A is unknown, we approximate ¢ by the solution ¢ of (B — 191)15~ =
—r. The approximation ¢ is orthogonalized with respect to U,,, which gives
us an expansion vector um,4i1. In [14] it is proposed to solve the correction
equation (B — 0[)?: —r only approximately, for instance with a few steps of
(preconditioned) GMRES. Numerical evidence is given that this may lead to a
very effective iterative procedure, referred to as the Jacobi-Davidson method. If
the correction equation is solved accurately, then we get quadratic convergence,
for approximate solutions we often see linear convergence with a very small
convergence factor (i.e. fast linear convergence).

4. A NOVEL EXTENSION FOR THE JACOBI-DAVIDSON METHOD

In some circumstances the Jacobi-Davidson method has apparent disadvan-
tages with respect to Arnoldi’s method. For instance, in many cases we see
rapid convergence to one single eigenvalue, and what to do if we want more
eigenvalues? For Arnoldi this is not a big problem, since the usually slower
convergence towards a particular eigenvalue goes hand in hand with simultane-
ous convergence towards other eigenvalues. So after a number of steps Arnoldi
produces approximations for several eigenvalues.

For Jacobi-Davidson the obvious approach would be to restart with a differ-
ently selected Ritz pair, with no guarantee that this leads to a new eigenpair.
Also the detection of multiple eigenvalues is a problem, but this problem is
shared with the other subspace methods.

A well-known way out of this problem is to use a technique, known as defla-
tion. If an eigenvector has converged, then we continue in a subspace spanned
by the remaining eigenvectors. A problem is then how to re-use information
obtained in a previous Jacobi-Davidson cycle.

In [5] an algorithm is proposed by which several eigenpairs can be computed.
The algorithm is based on the computation of a partial Schur form of A:

AQr = Qr Ry,

where @ is an n X k orthonormal matrix, and Ry, is a k X k upper triangular
matrix, with & < n. Note that if (z,\) is an eigenpair of Ry, then (Qrz, A) is
an eigenpair of A.

We now proceed in the following way in order to obtain this partial Schur
form for eigenvalues close to a target value 7.
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Step I: Given an orthonormal subspace basis vy, ..., v;, with matrix V;, com-
pute the projected matrix M = V;*AV;. For the ¢ x ¢ matrix M we compute
the complete Schur form M = US, with U*U = I, and S upper triangular.
This can be done with the standard QR algorithm [6].

Then we orden S such that the |s;; — 7| form a nondecreasing row for
increasing ¢. The first few diagonal elements of S then represent the eigenap-
proximations closest to 7, and the first few of the correspondingly reordened
columns of V; represent the subspace of best eigenvector approximations. If
memory is limited then this subset can be used for restart, that is the other
columns are simply discarded. The remaining subspace is expanded according
to the Jacobi-Davidson method.

After convergence of this procedure we have arrived at an eigenpair (g, \)
of A: Aq = Aq. The question is how to expand this partial Schur form of
dimension 1. This will be shown in step II.

Step II: Suppose we have already a partial Schur form of dimension k, and we
want to expand this by a convenient new column g:

Al =[Qeal | 3 |

with @*¢ = 0.
After some standard linear algebra manipulations it follows that

(I = QrQp)(A—A(I — QrQ)g =0,

which expresses that the new pair (g, A) is an eigenpair of

A= (I-QeQpAI — QrQj).

This pair can be computed by applying the Jacobi-Davidson algorithm (with
Schur form reduction, as in step I) for A.

Some notes are appropriate:

1. Although we see that after each converged eigenpair the explicitly deflated
matrix A leads to more expensive computations, it is shown in [5], by
numerical experiments, that the entire procedure leads to a very efficient
computational process. An explanation for this is that after convergence
of some eigenvectors, the matrix A will be better conditioned, so that the
correction equation in the Jacobi-Davidson step is more easily solved.

2. The correction equation may be solved by a preconditioned iterative solver,
and it is shown in [5] that the same preconditioner can be used with great
efficiency for different eigenpairs. Hence, it pays to construct better pre-
conditioners.

3. In [5] a similar algorithm for generalized eigenproblems Az = ABz is pro-
posed, based on partial QZ reduction [6].
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FIGURE 3. Computed eigenvalues

5. AN EXAMPLE

We will now briefly describe results for the sketched approach for a generalized
eigenproblem Az = ABz, associated to the MHD problems discussed in Section
2. In view of the problems that we actually want to solve, our example is just
a ‘toy problem’ of very modest dimension, n = 416. For more information on
this particular problem, see for instance [2].

In Figure 1 we see the complete spectrum for this case; Figure 2 shows the
so-called Alfvén part of the spectrum. Note the different scales from which
it is obvious that the Alfvén spectrum is an interior part of the spectrum,
and without Shift-and-Invert it is almost impossible to compute this part with
Krylov subspace methods. The 20 eigenvalue approximations, that we have
computed with the QZ-variant of our algorithm, are shown in Figure 3. The
computations have been carried out in about 15 decimal digits accuracy on
a SUN workstation. The target value, indicated in picture 3 by a ‘+’, was
7 = —.1+ .5¢. The maximum dimension of the subspaces for the Jacobi-
Davidson part of the algorithm was fixed to 15. As soon as we arrived at
that dimension, the subspace was shrinked, as described in Step I above, to
10. An eigenpair was considered to be converged as soon as the norm of the
residual for the normalized eigenvector approximation was below 1072, For the
preconditioner in the solution process for the correction equation, we used the
exact inverse of A — 7B (for fixed 7). The correction equations were solved
approximately, namely with only 1 step of GMRES. The complete converge
history, norms of the residuals of eigenapproximations versus the total amount
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FIGURE 4. Convergence history

of floating point operations, is shown in Figure 4. Each time when the curve
hits the 1079 level, indicated by the dotted horizontal line, the algorithm has
discovered a new eigenvalue. In our case that has happened 20 times, after

which we have stopped the algorithm.

For more examples and a more thorough discussion, see [5].
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