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1. INTRODUCTION

The topic of this talk will be the lasting interest of L.E.J. Brouwer’s notion
of choice sequence for the philosophy of mathematics. In the past here has
been done a good deal of work on choice sequences, but in the last decade the
subject is a bit out of fashion, for several reasons, which I shall not go into
here. In this retrospective I want to take a look with you at a special aspect
of choice sequences, namely their interest as an important “case-study” in the
philosophy of mathematics.

How does mathematics arrive at its concepts, and discover the principles
holding for those concepts? This is a typically philosophical question, more
easily posed than answered. A procedure which certainly has played a role and
still plays a role might be described as

informally rigorous analysis of a concept

That is to say,

— given an informally described, but intuitively clear concept,
— one analyzes the concept as carefully as possible, and attempts to formulate
formally precise principles characterizing the concept.

This is full of vague words such as “intuitively clear”, “informal”, “rigorous”
etc. Instead of plunging myself deeper into the morass of vagueness and im-
precision by trying to explain in general terms what I mean by these words, I
shall give some examples below.

But before doing this, let me point out that usually an informal concept
serving as basis for such an analysis is not found in nature but suggests itself
on the basis of a good deal of mathematical experience only.

Also it is good to point out that many mathematicians in the course of their
work are never called upon to make such a concept analysis, since there is always
a vast amount of work to be done based on sharply delimited, well-understood
mathematical notions. Nevertheless, the study of mathematical-concept anal-
ysis is of obvious interest for the philosophy and history of mathematics.
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2. EXAMPLES

— FEzample 1. The notion of natural number, formally characterized by in-

duction. Natural numbers are historically at the basis of mathematics, the
analysis of the concept culminated in the work of Dedekind and Peano,
formally characterizing them by the validity of induction in full generality.

— Ezample 2. The e—6—definition of continuity of functions may be obtained

by reflecting on the idea of a smooth curve, a curve which makes no
“Jumps”.

— FEzample 3. The notion of area for a wide class of pointsets in the plane. A
few intuitively obvious properties for the notion of area lead to a complete
and unique characterization. (“Area ” should conform to the standard
euclidean definition of the area of a rectangle, should be additive, monotone
and take only positive values.)

FEzxzample 4. The notion of humanly computable function, or algorithm, has

been analyzed by Turing and leads to the mathematically precise notion of

a recursive function (= Turing—computable function, A-definable function,

etc.). A similar analyis is possible of the notion of mechanically computable

function, leading to the same formal concept.

— FEzample 5. The notions of a random sequence and independency of random
sequences. An analysis in our sense (not completely satisfactory) of this
concept has been carried out by the probability theorist R. von Mises; in
recent years M. van Lambalgen has published on this([6, 7, 8]. I shall not
discuss any details here, since this would certainly carry us too far. Van
Lambalgen argues that even if we can develop probability theory on an ax-
iomatic basis, starting from the notion of a probability measure, instead of
starting from the notion of random sequence, we still have to face the ques-
tion “what is a random sequence” when confronted with the applications
of probability theory.

This example shows some similarities with our next and final example:
— Ezample 6. Choice sequences. The details of this example will follow later.

For contrast, I shall also briefly discuss a “non—example”: the notion of “set”, as
it figures in the modern practice of axiomatic set theory. Basis for my discussion
are two papers by PENELOPE MADDY ([9, 10]) and M1CHAEL HALLETT’s book
(14)).

The justifications for axioms of set theory are of two kinds, in Maddy’s ter-
minology “intrinsic” and “extrinsic” ones. The intrinsic arguments argue from
the intuitive understanding of the concept of set; the extrinsic (pragmatic,
heuristic) arguments are based on, e.g., the desirability of certain mathemat-
ical consequences, intertheoretic consequences, explanatory power. In the use
of extrinsic justifications there is an analogy with the natural sciences: experi-
menting with the consequences helps us to choose the “right” axioms. Extrinsic
arguments are brought forward, not only for fancy axioms stating the existence
of certain very large cardinals, but also for the basic axioms of the well-known
Zermelo—Fraenkel axiomatization. This happens even for an axiom looking so
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uncontroversial as the extensionality axiom; most authors regard it as intrin-
sically justified, but some give also extrinsic reasons: the extensional notion of
set is simpler, clearer and more convenient than its non—extensional (“inten-
sional”) counterpart (sets as properties).

Several authors have attempted to justify the Zermelo—Fraenkel axioms by
analyzing the intuitive picture of the cumulative hierarchy. As shown convinc-
ingly by Hallett (in his book “Cantorian set theory and limitiation of size”) and
Maddy, many difficulties are glossed over in these “intrinsic” justifications, and
all in all, these attempts at concept analysis remain thoroughly unconvincing.

From the examples, and the non—example above, it will be clear that on
the one hand concept analysis has played, and may be expected to continue
playing, an important role in the development of mathematics, but on the other
hand that it is by no means the only way of introducing new concepts.

3. CHOICE SEQUENCES

Choice sequences were introduced by L.E.J. Brouwer around 1916, in order to
give an intuitively more satisfactory account (than hitherto) of the continuum in
the context of his intuitionistic mathematics ([12]). Before that time, Brouwer,
just like the french “empiristes” such as E. Borel, had viewed the continuum as
a primitive concept which could not be understood as the “set of its elements”.
The introduction of choice sequences restored this possibility (of having an
“arithmetic” theory of the continuum, in contemporary terminology).

A very interesting aspect of Brouwer’s notion was that choice sequences,
when taken seriously as mathematical objects, enforced the use of intuitionis-
tic logic, since some of the principles valid for choice sequences contradicted
classical logic. Thus they provided an alternative mathematical universe with
a deviant logic. Nowadays this is commonplace, in particular in topos theory,
but it was certainly not commonplace in Brouwer’s time.

A choice sequence in Brouwer’s sense is a sequence of natural numbers (to
keep it simple), which is not a priori given by a law or recipe for the elements,
but which is created step by step by the ideal mathematician (anyone of us
may serve as an approximation of the ideal mathematician); the process will
go on indefinitely, but is never finished. Brouwer’s discovery was that one
could use such “unfinished objects” in a meaningful way in (intuitionistic)
mathematics. It is not the individual choice sequence which matters, but the
principles which hold for all of them. Since continuous operations on sequences
can be carried out by operating on initial segments, choice sequences are closed
under continuous operations.

The subjective element in the construction of choice sequences, the conflict
with classical logic, and Brouwer’s little—understood argument for the so—called
“bar theorem” all tended to make choice sequences look mysterious or dubious
(Errett Bishop even talked of “mumbo—jumbo”).

People reacted in different ways. Some rejected intuitionism wholesale.
Others preferred developing constructive mathematics without choice sequences
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(A.A. Markov, E. Bishop). Logicians such as S.C. KLEENE ([5]) encoded the
mathematical practice involving choice sequences, and gave a relative consis-
tency proof (relative to a system in the intersection of intuitionistic and classical
mathematics).

Over the years Brouwer repeatedly indicated how one should think of the
individual choice sequence, but his detailed views seemed to oscillate.

Some intuitionists are of the opinion that further analysis of the individ-
ual choice sequence is unneccessary, nay, even impossible — there is a single
concept, and no room for meaningful “subuniverses” ([3, 2]). I follow here
another, “analytical” approach, which highlights the “intensional” aspects of
choice sequences.

A property of sequences, or an operation on sequences is said to be exten-
sional, if it only depends on the “course—of-values” of the sequence, that is to
say, for operations ® and properties P:

Vz(az = fz) - Pa = ®3, and Vz(azr = fz) — (P(a) « P(B)).

In this talk, intensional properties are simply non—extensional properties.

For example, suppose we consider sequences given by algorithms. The op-
eration which assigns to a sequence its algorithm is non—extensional. Usually
this introduction of non—extensionality is avoided by talking about the algo-
rithms themselves, instead of the sequences. But this way of avoiding non—
extensionality is not feasible in the case of choice sequences.

On the analytical approach, we try to analyze what it means to say that a
choice sequence is “given”, and what it means to assert that something holds for
all choice sequences. An algorithmic sequence is obviously “given” by describing
the algorithm, but how is a choice sequence “given”?

I shall endeavour to illustrate the analytical approach by one example, for a
rather extreme variant of choice sequence, the so-called lawless sequences ([16,
chapter 12], ).

Informally, we think of a lawless sequence of natural numbers as a process of
choosing values in N, started by the ideal mathematician (in the mind of which,
in Brouwer’s view, all mathematics is constructed); the process is started under
the a priori restriction that

— at any stage of the construction never more than an initial segment has
been determined, and that no restrictions have been imposed on future
choices;

— there is a commitment to determine more and more values (so the sequence
is infinite).

If we reflect on these stipulations, the following principle seems to be evident.

THE PRINCIPLE OF OPEN DATA

If P is a property of lawless sequences («, 8 will be used for lawless se-
quences), and P(c), then there is an initial segmentan = (a(0),...,a(n—
1)) such that
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VB3(@n = Bn — P(B)) or V3(Ym<n(am = Bm) — PpB)).

The reason is that if we can assert at some stage in our activity P(«a) for
a lawless sequence «, then the basis for our assertion can only be an initial
segment of «, and therefore any lawless sequence starting with the same initial
segment ought to have the same property.

A lawless sequence may be compared to the sequence of casts of a die. There
too, at any given stage in the generation of the sequence never more than an
initial segment is known. But in discussing random sequences, we are usually
interested in another notion of truth: instead of absolute truth, we have “true
with probability 1”. A random sequence of zero’s and one’s contains a zero
with probability one, but there is no absolute certainty that we will encounter
a one before this actually happens.

All this is very nice, but what can we say about the existence of lawless
sequences? Certainly we can assume that we can start creating some lawless
sequences, even as many as we like, but some experimenting soon reveals that
hat we need to get a mathematical theory at all, is that all possible initial
segments occur:

DENSITY PRINCIPLE

For each initial segment there is a lawless sequence starting with that
segment.

In order to guarantee this, we have to modify our notion of lawless sequence
a little: at the start, when generating a lawless sequence, we permit the stipu-
lation of a finite initial segment in advance. After that, things go on as before.
In the “model” of the casts of a die, this would amount to permitting initially
a number of deliberate placings of the die.

However, this modification of our notion weakens the justification for the
principle of open data. After this modification it may happen that, for two
lawless sequences a, 3, at some stage the same initial segment may have been
determined, while nevertheless there is a piece of information about these se-
quences which cannot be read off from these initial segments alone, namely
which parts of these initial segments had been fixed at the start. So we may
initially stipulate that a begins with 2,1 and 8 with 2,1,4, but in a later stage
for both sequences we know the initial segment 2,1,4,2,3 and nothing more.
One may well feel that we do not want to distinguish mathematically between
these two situations at later stages, or in other words, these differences should
not enter in the properties of sequences we are interested in. In short, we want
to abstract from these distinctions. If we do, we expect “open data” to hold.
In this way several mor eprinciples may be formulated which yield a formally
consistent non—classical theory, which, up to a point, completely characterizes
lawless sequences.

In this example, mathematical desiderata led us to introduce a complication
into the intuitive picture, and to weaken the link between the informal concept
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and the formal principles obtained by analyzing the concept. We have weakened
the intuitive basis in order to gain in mathematical manageability.

Of course this happens elsewhere too. Time and again objections have been
raised against unrestricted induction over the natural numbers, since natural
numbers as usually treated are not “conceptually uniform”: our grasp of a
small number like 9 is vastly different from our understanding of, say, 9%°,
The latter presupposes the understanding of exponentiation as an everywhere
defined operation on the natural numbers. In practice, we treat 9 and 99°
as “essentially the same”, i.e. we forget about (abstract from) the intuitive
differences. This is an abstraction with powerful consequences; the difficulties
encountered in the various attempts to take these differences seriously show how
essential the role of this kind of abstraction is. (To some extent the distinction
is taken into account in bounded arithmetic; but this undeniably interesting
theory is mathematically much more complicated than ordinary arithmetic.)

Similarly, certain intuitionists adopt a “holistic” view of the continuum, and
maintain that is neither desirable nor possible even to distinguish subdomains
such as the lawless sequences ([3, 2]).

However, if one does distinguish subdomains, according to how precisely a
sequence is given, there is a wealth of possibilities giving rise to consistent and
interesting formalisms. From a mathematical point of view, the main problem
is to discover which notions lead to a nice theory.

We mention two possibilities, more or less at random.

(A) Instead of stipulating, as for lawless sequences, that at every stage
future choices are completely unrestricted, we now permit at any stage either
to leave future choices completely free, or to restrict henceforth choices to a
law (definite recipe), at least if this option has not already earlier been chosen.

(B) We permit at any stage restriction of the continuation of the sequence to
lie with a definite (i.e., not depending on choice parameters) tree of possibilities;
later restrictions should be compatible with the restrictions chosen before. As
an extreme case the choices may be narrowed down to a law, as a single-branch
tree.

Lack of time prevents me from discussing the properties of the sequences
in these examples — not in themselves important — therefore I only mention
the result of the analysis: (A) and (B) have quite distinct properties, which
distinguish them from each other and from the lawless sequences.

But I hope this suffices to show that choice sequences provides very inter-
esting examples for experimentation with concept analysis, perhaps precisely
because these examples are far less familiar to us than say, “area” or “contin-
uous function”.
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