
Formal Description of Programming Concepts - II
D. Bj~rner (ed.)
North-Holland Publishing Company
© IFIP, 1983

FORMAL PROOF SYSTEMS FOR PROGRAM EQUIVALENCE

J.A. Bergstra
Department of Computer Science

University of Leiden
Wassenaarseweg 80

2300 RA Leiden
The Netherlands

J.W. Klop
Department of Computer Science

Mathematical Centre
Kruislaan 413

1098 SJ Amsterdam
The Netherlands

We explore conservative refinements of specifications. These
form an appropriate framework for a proof theory for program
equivalence that is based on a logic for partial program
correctness.
We propose two formalized proof methods for program equiva
lence (inclusion). Both are sound w.r.t. the most general se
mantics of first order specifications. In spite of being in
complete the methods cover many natural examples.

0. INTRODUCTION

289

This paper aims at a detailed study of program equivalence, seen from the point of
view of Hoare's logic for program correctness. Because program inclusion is just
halfway program equivalence we can safely restrict our attention to program in
clusion. This moreover has the advantage of connecting closely to the theory of
programming using stepwise refinements as described in BACK [2].

Our work can be seen as belonging to the subject of axiomatic semantics for pro
grams. Its novelty lies in the precise mathematical analysis of the situation, in
addition to a rather strict adherence to first order proof systems and first order
semantics for data type specifications.

Deriving program equivalence from program correctness properties is not a new idea,
of course. It occurs in compiler correctness proofs, for instance HEMERIK [12],
and RUSSELL [16], as well as in the general theory of program correctness as in
HAREL, PNUELI & STAVI [11], COUSINEAU - ENJALBERT [9].

Because of our interest in a proper theoretical analysis, we try to minimize the
semantical problems by working with while- programs only; this by no means trivial
izes the problem. We expect that the present theory can be generalized to more
powerful programming concepts, although not without some effort.

It appears to us to be a worth-while but nontrivial project to relate our proof
systems to the methods of algebraic semantics, as explained e.g. in GUESSARIAN
[I 0].

One might expect a close relationship between the present work and MEYER-HALPERN
[14], which also describes program equivalence from the point of view of first
order logic. It is an important difference however that their paper focuses on se
mantics, whereas our main interest is in proof systems.

In the sequel of this introduction an intuitive account is given of the key de
finitions that underly the paper.

Intuition. Suppose that for S1, s2 E WP(k) we have

(I) (semantical inclusion)

and that we wish to prove this fact. Now obviously, (!) implies

290 J.A. Bergstra and J. W. Klop

(2) Alg(l:,T) F (p}S2{q} Alg(E,T) F {p)S 1 {q}, for all p,q E L(l:).

However, there is no reason to expect that the reverse implication (2) =>(I) will
hold, since (2) states only roughly that S C s2 , where 'roughly' refers to the
limited expressive power of L(E). (In fact~ one can show that indeed (2) ./>(I).)
Now consider

(3) V(l:' ,T') ;, (l:,T) Vp,q E L(E')

Alg(E' ,T') F (p}S2{q} => Alg(E' ,T') F {p}Sl{q}.

Clearly (I) => (3) => (2). (For (I) => (3), note that if (E', T') " (E, T), then the
reducts of (E',T')-algebras to E form a subset of Alg(E,T); hence Alg(E,T) F
sl s s2 .. Alg(l:',T') F SI s S2")

In fact we will restrict our attention to a subclass of all refinements (;,) of
(l:, T), namely to the conseY'vative refinements (12) of (E, T), f.or reasons which will
be clear later. So consider

(4) V(l:',T') C: (l:,T) Vp,q c L(l:')

Al g (l: ' 'T') F { p} s 2 { q} => Al g (i: t 'T ') F { p} s I { q}.

Now we have (I)=> (3) => (4) => (2); and it can be shown that (4) => (1). The con
clusion is that one can treat the 'semantical' inclusion (1) by considering only
first order properties of s1, Sz (i.e. asserted programs {p}Si{q}, i = 1,2),
provided one is willing to consider not only (E,T), but all its (conservative)
refinements.

This observation prepares the way for an approach via Hoare's logic of proving
asserted programs. First of all, define

(5) s 1 SHL(E,T) s2 iff Vp,q E L(E)
HL(l:,T) f- {p}S2{q} => HL(E,T) f- {p}S 1[q}

(proo ftheoretica l inclusion)

and consider

(6) vci:• ,T'J e: (E,T) sl SHL(E' ,T'l s2 (derivable inclusion)

the prooftheoretical analogue of (4). Indeed, it will turn out that this 'deri
vable' inclusion, written as HL(E,T) f- s 1 ,S s 2 , implies the semantical inclusion
(I). This is our first "proof system" for proving semantical inclusion; we will
prove that (6), as a relation of s 1, s 2 , is semi-decidable in T.

Of course the proof system given by (6) is sound, i.e. (6) =>(I); otherwise it
did not deserve the name. Some simple program inclusions that are in its scope,
are program equivalences like 'loop-unwinding', and the kind of program equiva
lences considered in MANNA [13]. This proof system is not yet complete, however.
In order to prove semantical inclusion (1), it is sufficient that:

(7) 3(E' ,T') t> (E,T) V(l:",T") <> (E' ,T') S C S - I -HL(l:",T") 2"

(Notation: HL(E,T) 11- s 1 ~ s 2, in words: forced inclusion,)

The proof system embodied by (7) is stronger than that of derivable inclusion (6),
and we will give an example of program inclusion which requires the extra strength
of this last proof system.
Still, (7) is not 'complete'. One can prove, however, that the following 'cofinal'
inclusion is equivalent to semantical inclusion:

(8) \I (l:' , T') !> (E, T) 3(E",T") /2 (E' ,T')

Formal Proof Systems for Program Equivalence 291

One could suspect that there is a multitude of such relations obtained by repeated
alternating quantification V3V, •• from the basic relation SHL(E T) (prooftheoret
ical inclusion). It is a pleasant surprise, suggesting the natu~alness of the
notions involved, that this possible hierarchy does in fact not exist, and that
one has no more relations than in the following diagram:

SI ~HL(l:,1') 8 2
proof theoreci-

c.:il inclusion
(5)

derivable

inclusion (6)

forced

inclusion (7)

cofinal seinantical

inclusion ~ inclusion
3():',T')~ O:,T)
8 1 ~HL(i:: 1 1 T') 8 2
inclusion in

some rl!finement ~

I. PRELIMINARIES ABOUT PROGRAMS AND LOGIC

(8) (I)

The notions of first order language, derivability (~) and satisfiability (F) are
supposed known.

In this paper we will exclusively deal with while-programs. For a signature E the
set WP(E) of while-programs over E is defined inductively as follows:

S ::= x := t ls 1;s2 ! if b then s1 else s 2 fi I while b do Sod,

where t € Ter(E), the set of terms over the signature E, bis a boolean (i.e.
quantifier free) assertion E L(E), the first order language determined by E.

A specification is a pair (E,T) where Tc L(E); the semantics of a specification
is just the collection Alg(E,T) of E-str\lctures A such that A F T. We write
Alg(E) for Alg(E,~).

A,B £ Alg(E,T) will be written as A= (A, •••), B = (B, •••) where A, Bare the
underlying sets.

For A£ Alg(E) and S £ WP(E) with variables x 1, ••• ,xk the meaning of Sin A is a
partial function MA(S): Ak + Ak. MA(S) can be defined using conventional methods
of operational or denotational semantics.

We write S(!) = b for MA(S)(I) = b; ifs(!) = b for some b we write S(!) • (other
wise S (!) +) •

Important is the following

I.I. COMPUTATION LEMMA. Let;= x1 , ••• ,~and y = y 1, •.• ,yk. Let S = S(;) € WP(E)
(i.e. S contains preeiseZy the variables i).
Then for aZZ n E JN there is a qu.antifi~r_,free assertion Comp5 n(;) =yin L(E)
suah that for every A E Alg(E) and aZZ a,b E A: '

.... I
A F CompS,n(§;) = ~ - S(a) I s: n and S(a) =b.

HePe i, ~ are constant symbo Zs denoting -; , b and IS(~) I denotes the Zength of the

:292 J.A. Bergstru and J. W. Klop

computation of S on ~-

1 .2. Preliminaries on Hoare's logic.

Let p,q E L(l::) and SE WP(r.). Then the syntactic object {p)S{q} is called an
'asserted program'. For A E Alg(l::), we define:

A I= {p}S{q} iff v!,'b E A: S(;)+ and s(;~) = b => (A I= p(;) q(~)).

Furthermore we define

Alg(l::,T) I= {p}S{q} - VA E Alg(l:,T) A I= {p}S{q}.

Hoare's logic w.r.t. (l:,T) is a well-known proof system designed to prove facts
like Alg(l::,T) I= {p}S{q}. We will call this proof system HL(l:,T); it provides one
axiom (assignment axiom) and four rules:

(I) Assignment axiom scheme: {p[t/x]} x:=t {p}

(2) Composition rule:

(3) Conditional rule:

(4) Iteration rule:

(5) Consequence rule:

{p}S 1{r} {r}S 2{q}

{p}Sl ;S2{q}

{pAb}S 1{q} {pAlb }S2{q}

{p} if b then s1 else s2 fi {q}

{pAb} S {p}
{p} while b do Sod {pAlb}

{p}S{q}

where (l::,T) I- p-+ p1 and (l:,T) I- q1 -+ q.

These rules constitute an inductive definition of a relation HL(l:,T) I- {p}S{q};
we assume familiarity with this proof system.

HL(l:,T) is sound in the following sense: for all p,q E L(E) and SE WP(r.):
HL(l:,T) I- {p)S{q} => Alg(l:,T) I= {p}S{q}.

l .2.1. DEFINITION. HL(l::,T) is logically complete iff for all p,q E L(r.) and
SE WP(l::): HL(l::,T) I- {p)S{q} - Alg(l:,T) I= {p}S{q}.

(In general, HL(E,T) is not logically complete. The notion of logical completeness
is studied in BERGSTRA-TUCKER [6J.)

2. REFINEMENTS OF SPECIFICATIONS

In this section we will collect some facts concerning the notion of refinement and
especially, conservative refinement. These notions will be of fundamental impor
tance in the sequel. All the material in this section is standard in Mathematical
Logic and can be found (e.g.) in SHOENFIELD [17] and MONK [15].

2.1. DEFINITION (refinements)
(i) If i::' ~ i:: and T' ~ T we write (r.',T') ~ (r.,T) and call (l::' ,T') a refinement
of (l::,T). Here T = {p-E L(L) IT I- p}.
We will always suppose that T, T' are consistent.
(ii) Let A be some algebra. Then l:A is the signature of A and TA is the theory of
A: TA = {p E L(EA) IA I= pl.
Note that A I= p-. Alg(l:A,TA) I= p.
(iii) Let (l:,T) be a specification. Then T is complete if Vp E L(l:), T I- p or
T f- Ip.

Formal Proof Systems for Program Equivalence 293

2.2. DEFINITION (conservative refinements)
Let (E' ,T') ;;, (l:,T) be ~refinement_such that: Vp < L(E} T' 1- p ._ T f- p. In
other words, such that T' n L(E) = T. Then this refinement is called conser>vative
over (E,T).
(So a conservative refinement does not yield more theorems in the 'original'
language L(E) .)
Notation: (E' ,T') i;, (l:,T).

2.2.J. Note that if T is complete: (l:',T');;, (l:,T) ~ (l:',T') i;, (E,T).

2.3. DEFINITION. (Expansions and restrictions). Let i:• ~E.
(i) If (E' ,T') is a specification, then the restr>iction of (l:',T') to the sig
nature E is (l:,T) where T = T' n L(l:).
(ii) If A' € Alg(E' ,T'), then the r>estr>iction of A' to E is obtained by deleting
all constants, functions, predicates in A' corresponding to symbols in E' - r. The
resulting A is also called a r>educt of A'; and A' is called an expansion of A. We
will also write A~ A'.

2.3.1. Note that if A' ;;, A, then (EA''TA,) ~ (EA,TA).

In the sequel we will always deal with conservative refinements (~).They have the
pleasant property that two refinements (E.,T.) ~ (E,T) (i = 1,2) can be joined to
a refinement (E 1 u i: 2, T1 u T2) ~ (E,T), ~ro~ided the requirement E1 n Ez =Eis
satisfied. This is a (strong) form of A. Robinson's Consistency Theorem (RCT).

2.4. ROBINSON'S CONSISTENCY THEOREM.

Let (E.,T.) ~ (i: 0,T0), i = 1,2, such that i: 1 n i: 2
(i) Tt u 1 T2 is consistent, and mor>eover>
(ii) (El u E2' TI u T2) I;>: (Eo,To).

PROOF. See Exercise 22.15 p.375 MONK [15] or BOOLOS - JEFFREY LS] p.244.

We conclude this section with a useful criterion for conservativity.

D

2.5. DEFINITION. Let (E' ,T') be a refinement such that every A E Alg(E,T) can be
expanded to an A' € Alg(E',T'). Then this refinement is called simpZe.

2.6. PROPOSITION. (Criterion for conservativity). Simpie r>efinements are conser>
vative.

PROOF. Suppose (E' ,T') is a simple refinement of (E,T), i.e. VA E Alg(E,T)
WE Alg(E',T') A';;, A. Let T If p for some closed assertion p. Then by Godel's
Completeness Theorem, A If p for some A€ Alg(E,T). So there is an A' E Alg(E',T')
such that A' ;, A. Hence A' I= Ip; and reasoning backwards we have T' If p. D

3. PROGRAM INCLUSIONS

We will now introduce the various notions of inclusion(~) between programs s1,
s2 E WP(E) which we will study, and prove some important facts about them.

Lets€ WP(E) and A= (A, •••) € Alg(l:,T). Let S contain the variables x1, ••• ,xn
(n;,I), Then MA(S):An +An is the partial function defined in Section I.

294 J.A. Bergstra and J. W. Klop

3.1. DEFINITION. Let sl' s2 E WP(i:).

(i) SemanticaZ ·inclusion:

(ii) Prooftheor>etical inclusion:

sl s: HL(l:,T) s2 iff for all p,q E L(l:): HL(E,T) f- {p}S2{q}

HL(l:,T) f- {p}S 1{q}.

(iii) Der>ivable inclus1:on:

HL(E,T) f- s 1 C s2 => V(E' ,T') le: (l:,T)

(iv) Por>ced inclusion:

HL(E,T) 11- s1 S s2 => 3(1:',T') 12 (l:,T)

(v) Cofinal inclusion: the inclusion s 1 S: s2 is cofinal, if

V(E',T') 12 (l:,T) 3(I",T") 12 (l:' ,T') 51 SHL(E",T") s2.

3.2. REMARK. (i) Note the direction of the implication in 3. I (ii). Intuitively:
s 1 is less defined than S2, so {p}S 1 {q} is more often trivially true.
(ii) The phrase 'derivable' in 3. I (iii) and the choice of the notation ' 1-
is justified by results in Section 5: it will be proved that derivable inclusion
w.r.t. (E,T) is semi-decidable in T.
(iii) In all cases 3.1 (i) - (v) there is the corresponding notion of equivalence,
defined in the obvious way; e.g. for forced equivalence:

It is clear that all inclusions ([) defined above are partial orders and that all
equivalences (=) are equivalenc.2relations, except for forced and cofinal in
clusion resp. equivalence. For the last case, 'cofinal', we will prove in Section
5 that cofinal inclusion coincides with semantical inclusion, hence cofinal in
clusion is indeed transitive.

3.3. PROPOSITION. For>ced inclusion is tr>ansitive. (Hence it is a partial or>der> and
forced equivalence is an equivalence relation.)

PROOF. Let sl,s2,s3 E WP(O, HL(E,T) lr sl s 52 and HL(l:,T) IC- s2 s s3. Then for
i = I ,2:

Now
Now

3(Ej_,Tj_) "" (l:,T) v(l:i,Til "" (l:j_,Tj_l si SHL(i:'.',T'.') si+i ·
l. l.

consider such (E!,T'.), i = 1,2. We may suppose that Ij n E:?_ = L
by Robinson's Cohsi§tency Theorem 2.4,

(* *) (' ' ' ') () E ,T = z1 u E2 , T1 u T2 "" l:,T .

Evidently, HL(E* ,T*) f- s1 _I; Sz and HL(E* ,T*) I- S2 !_; s3 .
By transitivity of derivable inclusion, therefore HL(l:* ,T*) I- s1 _i; s3. Hence
HL(l:,T) lr S1 S: s3 • 0

The main result of this section consists in establishing the various logical inter
relationships between the previously defined notions of inclusion (and equivalence),
as they are displayed in the diagram in the Introduction. There are only three non
trivial cases and two of them are dealt with in the following proposition.

3. 4. PROPOSITION. (i) F'orced inclusion implies co final inclusion.

Formal Proof Systems for Program Equii•alence

(ii) Semantiaal inclusion implies aofinal inclusion.
(See Proposition (5. I) for the other direction.)

PROOF. (i) Suppose HL(E,T) II- s 1 S s 2, i.e.:

(I) 3(E',T') 12: (l:,T) 'v'(E",T") 12: (E',T')

To prove:

(2)

Take (E' ,T') as in (I), and consider a (El,Tl) as
We may assume that E' n E1 = E. Then take (E 111 ,T'i)
and (E',T'); by RCT 2.4 this is possible.
(ii) To prove: Alg(E,T) I= s 1 S s2 =>

'v'(E' ,T') 12' (E,T) 3(E",T") 12: (E',T')

s1 SHL(E" T") s2
I' I

in (2).
in (2) as the union of

Suppose Alg(E,T) I= s 1 S Sz, and consider (l:' ,T') t': (E,T).
According to BERGSTRA- TUCKER [7] there is a (E", T") 12: (E', T') for which HL is
logically complete (See Def. 1.2.1).
Consequently: Sl~L(l:",T") s2. 0

'.!95

3.5. REMARK. All inclusions introduced above, except semantical inclusion, were
obtained by quantification over the 'basic' prooftheoretical inclusion C . This
suggests looking at all inclusions of the following general form: -HL

c'v'3'v' ... 3 <) 51 - HL(E,T 52 - 'v' El ,TI 12: (l:,T)

'v'(E3,T3) 12: (E2,T2) •.. 3 (E2n'T2n) 12: (E2n-l'T2n-l) s, SaL(E T) s2'
2n' 2n

d l .k · · s c'v'3'v' ... 'v's d d · · an i ewise 1 -HL(E,T) 2 , an the ual notions obtained by interchanging 3,A.

(Note that only alternating strings of quantifiers are interesting, since clearly
-V'v"v'-- = --'v'-- and likewise for 3.) So derivable inclusion w.r.t. (E,T) is
SHL(E,T)' forced inclusion is s~r(E,T)' and cofinal inclusion is s~~(E,T)' (Inclu-

sion in some refinement, S~L(E,T)' was not mentione1 in this Section, because it

seems to be of less importance).
Now it is easy to show (using RCT 2.4) that (dropping the subscript

HL(E,T)) c3'v' = c'v'3Y and c'v'3 = c3'v'~, which implies that only five essentially
different-inclusions exist, viz C1 where i = empty, 'v',3,'v'3,3'v'.

4. PROTOTYPE PROOFS

In this section we will define the notion of 'prototype proof', which will
play an important role in the sequel. Its main property is that every proof of
some {p}S{q} is a substitution instance of the prototype proof n(S) corresponding
to S. First we need an auxiliary concept.

4. I. DEFINITION. The class IWP(E) (with typical elements s*, s**, .•.) of inter
polated while-programs is inductively defined by

* **I * *· S : := S I {p}S I S {p} if b then s 1 else s 2 !2:_

while b do s* od.

Here S € WP(E). So the class of interpolated statements contains next to the usual
statements also asserted statements and statements interlaced with assertions in
an arbitrary way; but it contains also pPoofs of asserted statements. These will
be singled out by means of the following extended proof rules.

4.2. DEFINITION. By means of the following axioms and extended proof rules we can
derive proofs of asserted programs:

296 J.A. Bergstra and./. W. Klop

(I) Assignment axiom scheme: {p(t)} x := t {p}

{p}S~{r) {r}s;{q}
(2) Extended aomposition rule: --------

{ p}s 7 { r }s; { q}

(3) Extended aontitionaZ rule:

{pAb} 87 {q} {pAlb} s; {q}

{p} if b then {pAb} S~{q} else {pAlb} s;{q} fi {q}

{pAb} s*{p}
(4) Extended iteration rule:

(5) Extended aonsequence rule:

4.3. DEFINITION AND NOTATION.

{p} while b do{pAb} s*{p} ad {pAlb}

p + P1 {pl} s* {ql} ql + q

{p}{pl Js*lq1 }{q}

(i) Let PR(!,T) be the class of proofs (interpolated programs) which can be
derived using this axiom scheme and extended proof rules, such that in (5) only
implications provable from T are used.
(ii) Ifs*€ IWP(L), then a(S*) will denote the underlying program obtained by
erasing all {p} ins*.
(iii) Ifs*€ PR(E,T), then K(S*) will denote the set of implications p + p' used
in the derivation of S*, Note that these implications can be read of directly
from S*:

K(S*l = {p + p' [{p} {p'} .:. s*J.

(Here "c" denotes the relation of being contained as a 'subword'.)
(iv) Ifs* € PR(!,T) and s* = {p} S~ {q}, then pre(S*) = p and post(S*) = q.
(v) Let s* E PR(L,T). Then s* is called a reduced proof, iff it contains no
occurrence of a triple {p} {q} {r}.
(By the transitivity of +, every proof may be supposed reduced, up to equivalence.)
(vi) Two interpolated programs s*, s** such that a(s*) = a(S**) =Sare called
matohing if at every place the same number of assertions occur ins*, s**.
(vii) Let s* = --{p}-- be an interpolated statement containing {p}. Then s**
= --{p} {p}-- is called a trivial expansion of s*.

In the following definition we will use a set of n-ary relation symbols {r. [i~O}.
If s* € IWP contains some of these r-symbols, [s*Jj will be the result of fe
placing each occurrence of r· ins* by r(i j) where (,):Jl2 +lil is the usual
bijective pairing function. tThis device merely serves to 'refresh' the r-symbols
where necessary.)

4. 4. DEFINITION.

(i) Let SE WP(E) involve the variables i (= x1, .•. ,xn). By induction on the
structure of S we define 11'(S) as follows:

(I)

(2)

11'(xi:=t)

11' (S 1 ;S 2)

(That is, 11 1 (81) and 11 1 (82) are concatenated, without infix. Moreover, the r-sym
bols in [11 1 (S 1)J0 are made distinct from those in Lrr'(S 2)J 1.)

Formal Proof Systems for Program Equivalence

(3) n' (if b then sl else s2 fi) =

{r0 (~)} if b then {r0 (~)Ab}[n' (S 1) J2 (r 1 Ci) l

else {r0 (it)Alb} [n'(s2)J 3 {r 1(;:)J

fi { r 1 Ci)}.

(4) n' (while b do S od)

{r0 (°it)} while b do {r0 (it)/\b} s* od {r0 (~)/\lb) {r 1 (;:)}

where s* [n' (S)J 4 and r 0 (;:) = post(S*).

(ii) Now n(S) = {r0 (it)} [n'(S)J0 {r 1 (;:)}.

n(S) is called the prototype proof of S.

4.5. EXAMPLE. Let S be: x 1 := 0;

x 2 := I;

while x 2 > x3

do if x 1 0

then x3 :=

else x 1 :=

fi

xl := xl+x2

0

x2+1

297

Then n(S) is as follows. (The assertions to the right of the vertical bar are for
use in Example 4.7. 1 .)

n (S)

x 1 :=0

x2:=!

{r 1 (x 1 ,x2 ,x)l

{r2(0,x2 ,x3)}

{r2(xl ,x2,x3)}

{r3 (x 1, l ,x3)}

{r 3 (xl ,x2 ,x3)}

{r6 (xl ,x2,x3)}

while x2 > x3 do

{r6 (x 1,x2 ,x3)Ax2>x3}

{r4(xl,x2,x3)}

if x 1=0 then

{r4 Cx 1,x2 ,x3)Ax 1=0}

{r5 (x 1 ,x2 ,o) l

{true}

(O=O}

{x 1=0}

{ x 1 =O A I=!}

{x 1=0 I\ x2=I}

{x1=0 A x2=1}

{x 1=0 I\ x2=1

{x 1=0 I\ xz=l

{x1=0 I\ x2=I

{x1=0 I\ x2=!

I\ x2>x 3}

I\ x 2>x3 l

I\ Xz>X3 I\ x 1=0}

I\ 0=0}

298

X3 :=O

{rs(xl,x2,x3)}

{r6 (x 1 ,x2 ,x)}

else

{r4 (x 1,x2 ,x3) /\ lx1 = 0)

{r7 (x2+I ,x2 ,x3)}

xl :=x2+!

fi

od

{r7(xl ,x2,x3)}

{r6 (xl ,x2,x3)}

{ r 6 (x 1 ,x2 ,x3) /\I x2>x3 }

{r8(xl+x2,x2,x3)}

xl :=xl+x2

{rs(xl ,x2,x3)}

{r9 (x 1 ,x2 ,x3)}

J.A. Bergstra and J. W. Klop

{x 1=o /\ x2=1 A x3=o}

{x1=0 /\ x2=1}

{x 1=0 /\ x2=1 A x2>x3 /\Ix!= 0}

{x2+I=O /\ x2=1 /\ x3=0}

{x1=0 /\ x2=1 /\ x3=0}

{x1=o /\ x2=!}

{x 1=0 "x2=I /\ lx2>x3}

{x 1+x2=I A x2=I A x3:e1}

{x1=! A x 2=J /\ x3:eJ}

{x 1=1 "x2=I "x3:e1}

4.6. DEFINITION.
p = p(xl' ... ,xn)
ed.)

* Let S
E L(l:).

IWP(L) contain the n-ary relation symbol r, and let
(Note: p may contain other variables than those display-

Then qiPcs*)
r

is the result of replacing each r(t 1 , ..• ,tn),
P1•· .. ,p

p(t 1, ••• ,t). Likewise we define~ n(S~) .

occurring ins*, by

n r 1, ••• ,rn

4.7. LEMMA. Lets* E PR(E,T) be a reduaed proof suah
~:n(sy-::;-5* for some substitution~ as in Definition
instance of the prototype proof.)

that a(s*) = S. Then
4.6. (So every proof is an

PROOF. Take S, s* as in the lemma. We may suppose s* and n(S) are matching; other
wise only some trivial expansions (Definition 3.3) of s* are required. Then we can
construct by induction on the structure of S a substitution as required. This con
struction is entirely straightforward and routine; it will be left to the
reader. D

4. 7.1. EXAMPLE. Let S be as in Example 4.5; we use the abbreviations

S X j : =Q; X 2 : = J ; SI ; X] : =x j +x 2 •

Then the following proof of {true}S{x 1=1 /\ x2=1 /\ x321}, written as a column of
asserted programs and implications, is a substitution instance of n(S) as in Ex
ample 4.5, via the substitution ~ displayed there (see the assertions to the right
of the bar).

Formal Proof Systems for Program Equivalence

0. true + 0=1

0, I: 2

3

2,3: 4

5

4,5: 6

8

7,8:

10

11

10, 11: 12

9, 12: 13

14

13, 14: 15

15: 16

6, 16: 17

18

19

18, 19: 20

17,20: 21

{true}x1 :=O{x1=0}

x1=0 + x 1=0 /\ J=l

{!rue}x1 :=O{x1=0 /\ l=l}

!x1=0 /\ l=l}x2:=l{x 1=0 /\ x2=!}

{true}x1 :=0; x2 :=1 {x 1=0 A x2=1}

x 1=0 /\ x2=I /\ x2>x3 /\ x 1=0 + x 1=0 A x2=1 A O=O

{x 1=0 /\ x2=1 /\ O=O}x3 :=0{x 1=0 /\ x2=J A x3=0}

{x 1=0 /\ x2=1 A x2>x3 /\ x 1=0}x3:=0{x1=o /\ x2=J /\ x3=0}

{x2+1=0 /\ x2=I A x3=0}x 1:=x2+I{x1=0 /\ x2=I A x3=0}

x1=0 /\ x2=1 /\ x2>x3 A x 1fo + x2+I=O /\ x2=! A x3=o

{x 1=0 /\ x2=I /\ x2>x3 A x 1fO}x 1 :=x2+I{x 1=0 /\ x2=J /\ x3=0}

{x1=0 /\ x2=J /\ x2>x3}S"{x1=0 /\ x2=J /\ x3=0}

xl=O /\ xz=l /\ x3=0 + xl=O A x2=l

{x1=0 /\ x2=1 /\ x2>x3}S"{x1=0 A x2=1}

{ x 1 =O " x2 = 1 } s • { x 1 =0 /\ x2=1 " I x2 > x3}

{true}x 1 :=O; x2 :=l; S'{x1=0 A x2=! /\ lx2>x3}

x1=0 /\ x 2=I /\tx2>x3 + x1+x2=I /\ x2=1 /\ x3;;:J

{x1+x 2=I /\ x2=J /\ x3;;:1Jx1 :=x1+x2{x1=1 /\ x2=! /\ x3;;:1}

{x 1 =0 /\ x2= 1 /\ I x2>x3} x 1 :=x1 +x2 {x1 =I A x2=J /\ x3;;:1}

{true}S{x1=1 /\ x2=1 /\ x3;;:!}.

299

4.8. PROPOSITION. Let : 0 =: u :TI(S) and To= Tu K(n(S)). Then cz0 ,T0) ~ (Z,T).

PROOF. Take arbitrary p,q such that HL(Z,T) I- {p}S{q}. (E.g. take q = true.) Let
{p}S*{q) E PR(Z,T) be the corresponding proof; we may suppose it matche$1i(S).

Now let A E Alg(E,T), so by soundness of HL we have A F{p}S{q}. Further, it
is not hard to see that the r. Cit) can be interpreted in A just like the matching
assertions in {p}S*{q}. i 0 o

Hence every A E Alg(E,T) can be expanded to an A € Alg(: 0 ,T). So by the
conservativity criterion 2.6, we have czO,TO) ~ (Z,T). D

5. PROOF SYSTEMS

Our interest is in formal criteria that imply program inclusion. The diagram
described in the Introduction contains three such concepts: cv, c3V and cV3 (in
the notation of Remark 3.5). Now cV3 coincides with semantical program inclusion
(\/3.4 plus 5.1) and therefore c3V is a sufficient criterion (3.4(i)) as well as
c. -

HL(E,T) I- s 1 !; s2 is a semicomputable relation (5.2). It constitutes a formal
proof system of a conventional nature. I- is quite natural and suffices for many
examples. V V3

f- (C) is not complete however (5.4(i)). The proof system It- (C) provides
a less effective but considerably stronger method (5.4(ii)). In factl~ is also
incomplete (5.3). Because c3V can hardly be considered a formal proof method, we
are left with the problem of finding useful extensions of f- and It- . This seems
to us to ce a research topic of considerable importance.

300 J.A. Bergstra and J. W. Klop

5. I. PROPOSITION. Cofinal inclusion implies semantical inclusion, i.e.

'v'(l:' ,T') ('> (l:,T) 3(1.'',T") ~ (l:' ,T') SI SHL(l:",T") s2 =>

-+ -+ ..,.
PROOF. Suppose Alg(l:,T) !;I s 1 S s 2 • Choose A E Alg(l:,T), a,b €A with A I= s 1 (a) =

=band A !;Is(!)= b. Let k = [s 1 (~J[, i.e. A I= Compk S ("l) "S". One obtains a
02 -)- + -)- -)- >I I 0

signature by adding names a and £ for a and b. Then let i: = i: u i:rr(S 2),
T' =Tu K(rr(s 2)). One proves (I' ,T') ~ (I,T) just like Proposition 4.8. Moreover,

-+ -+ -+ -r-+ -+ -+ -+ +-+ let e Comp (a) = b /\ \Ix (x=a + r (x)) A 'v'x (rI (x) +I x=b). Here k,S I - 0 -
r (x) = pre(rr(S)) and r (x) = post(n(S2)) (see Definition 4.3). Then (i:' ,T' u {8}) 0 2 I
is consistent (a model is found by expanding A). Clearly

-r+ ++ .
HL(I' ,T' u {8}) {x=~}s 2nx=£}; it follows that

HL(I',T') I- {8} Ai=~}s2ni=b}.

Suppose (l:",T") e: (l:' ,T'), then T" u (8} is consistent and

Assume for a contradiction that SI !;HL(E",T") S2 then:

HL(l:" T") f- {8 A i=-;::}S {li=b}. , - I -

However in a model B of T" u { 8} this asserted program is incorrect because
B F Compk s (!) = b. D

, I - -

5.2. THEOREM. HL(l.,T) f- SI .s s2 and HL(l.,T) I- SI " s2 as predicates of (SI ,S2)
are sem"decidable in T.
PROOF. Let i: 0 = i: u l:rr(S) and TO= Tu K(rr(s 2)). (i:0 ,T0) is found effectively

. 2 0 0 ..,. + (E,T). Now we claim i:hat HL(l:,T) 1- s1 S s 2 - HL(l: ,T) I- {r0 (x)}S 1{r 1 (x)},

which implies the theorem because of the semidecidable character of Hoare's Logic.

To prove the claim: => is immediate. So assume HL (l:O, TO) I- { r O (i)} SI { r I (i)}.
_,. * -> 0 0 . Let {r0 (x)JS 1{r 1 (x)} E PR(l: ,T). Given some (l:',T') ~ (l:,T) assume

* . HL(E' ,T') I- {p}S 2{q}. Let {p}S 2{q} € PR(l:' ,T') be the corresponding proof which

* we may assume matching with rr(S 2). By Lemma 4.7, {p}S 2{q} is an instance of rr(S 2)

via some substitution 4. Applying the substitution 4 on {r0 (i)}S~{r 1 (~)}we obtain

a proof {p}HS~){q} in PR(l:',T'). Consequently HL(l:',T') 1-- {p}S 1{q}. D
Let A= (N, 0,S,P), i: = l:A and T =TA. These notation conventions will hoZd

until the end of this paper.

5.3. THEOREM. If- is incorrrplete. In fact there are s1,s2 E WP(l:) with Alg(l:,T) F
S 1 S s;outHL(l:,T) !If s1 S s2 •

PROOF. An essentially straightforward verification shows that Alg(l:,T) S S S s2
is a complete rrg predicate of (S 1,s2) whereas HL(l:,T) If- s1 !; s2 is a i: 2 pr~dicate
of (5 1 ,Sz). Recursion theory then tells that both predicates must differ. D
5.4. PROPOSITION. Let s1, s2 be· the folZowing programs over l::

S1= y:=O; S' where S'= while xrO do y:=Sy; x:=Px ad

s2= y:=x; x:=O

Formal Proof Systems for Program EquiPa/ence

then (i) HL(Z,T) If s 1 ~ s2 but (ii) HL(Z,T) If- s 1 ~ s2.

PROOF. (i) s 1 ~HL(Z,T) s2 because

(1) HL(Z,T) f- {x=zJS2{x=Ot>y=z}

(2) HL(Z,T) If {x=z}S 1{x=Ot>y=z}.

Here (2) requires a proof: suppose not (2), then

HL(Z,T) f- {x=zt>y=O}S 1{x=Ot>y=z}.

Hence there must be an invariant r(x,y,z) such that T f- ~l A ~ 2 11 ~ 3 where

~ 1 = x=z " y=O + r(x,y,z)

~ 2 = 3x' ,y' [x'fO /\ x=Px' " y=Sy' " r(x' ,y' ,z)J + r(x,y,z)

~ 3 = x=O " r(x,y,z) + y=z.

301

Also A I= ~l /\ ~2 " ~3· However, a simple proof shows then that A I= r(~.~·S) <=
<=> a+b=c, in contradiction with the non-definability of + in A.
(ii). Let A'= (JN, O,S,P,+). Because (f.,T) is complete, we have (ZA•,TA') I" (Z,T).
Using the method of prototype proofs,HL(l:A',TA') f- s1 ~ s2 is established as
follows: consider rr(S 2), this is

{r0 (x,y)}{r 1 (x,x)} y:=x {r 1 (x,y)}{r 2(0,y)} x:=O {r2(x,y)}{r3(x,y)}.

So we have to find a proof of {r0 (x,y)} s1 {r3(x,y)} in the theory

TA, u {r0 (x,y) + r 1(x,x),

r 1 (x,y) + r 2(0,y),

r 2(x,y) + r 3(x,y)}.

This is indeed possible:

y:=O

{r3 (0,x) /\ y=O}

{3x0[r3(o,x0) A x=x0 A y=OJ}

{3x0[r3 (o,x0) " x+y=x0JJ

while xfO do

y:=Sy

x:=Px

{3x0[r3 (o,x0) " x+y=x0 " xfOJ}

{3x0[r3 (o,x0) " Px+Sy=x0 A xfOJ)

302

od

J.A. Bergstra and J. W. Klop

{3x0[r3Co,x0) A x+y=x0J A x=O}

{3x0Lr3 Co,x0) A y=x0 A x=OJ}

{r3 (x,y)}.

REFERENCES.

[I] Back, R.J., Correctness preserving program refinements: proof theory and
applications, Mathematical Centre Tracts 131, Mathematical Centre, Amsterdam,
1980.

[2] De Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24,
Mathematical Centre, Amsterdam, 1973.

[3] De Bakker, J.W., Mathematical theory of program correctness, Prentice-Hall
International, London, 1980.

[4] Bergstra, J.A. & J.W. Klop, Proving program inclusion using Hoare's logic,
Mathematical Centre, Department of Computer Science, Research Report IW 176,
Amsterdam. 1981.

[5] Bergstra, J.A. & J, Terlouw, A characterization of program equivalence in
terms of Hoare's logic, Proceedings of the G.I. Jahrestagung Miinchen 1981,
Springer LNCS 123.

[6] Bergstra, J.A. & J.V. Tucker, Expressiveness and the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 149, Amsterdam, 1980. To appear in JCSS.

[7] Bergstra, J.A. & .J.V. Tucker, Two theorems about the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 165, Amsterdam, 1981.

[8] Boolos, G.S. & R.C. Jeffrey, Computability and Logic, Cambridge University
Press (1974, 1980),

[9] Cousineau, G. & P. Enjalbert, Program equivalence and provability, Mathemati
cal Foundations of Computer Science 1979, Proc. 8th Symp., Olomouc
(Czechoslovakia), Springer Lecture Notes in Computer Science 74, p.237-245.

[10] Guessarian, I., Algebraic Semantics, Springer Lecture Notes in Computer
Science 99, 1981.

[II] Harel, D., A. Pnueli & J. Stavi, A complete axiom system for proving deduc
tions about recursive programs, in Proc. 9th ACM Symp. Theory of Computing,
Boulder, 1977.

[12J Hemerik, C., Relaties tussen taaldefinitie en taalimplementaie, in Colloquium
Capita Implementatie van Programmeertalen, J.C. van Vliet (red.), MC Syllabus
42, Mathematical Centre, Amsterdam 1980.

[13] Manna, Z., Mathematical theory of computation, McGraw-Hill, New York, 1974.

[14] Meyer, A.R. & J.Y. Halpern, Axiomatic definitions of programming languages.
A theoretical assessment, Proceedings 7th ACM Symp. on Principles of Program
ming Languages, ACM, New York, 1980, p.203-212.

[IS] Monk, J.D., Mathematical Logic, Springer-Verlag (1976).

[16] Russell, B., Correctness of the compiling process based on axiomatic semantics,
Acta Informatica 14, p.1-20, 1980.

[17] Shoenfield, J., Mathematical Logic, Reading, Addison-Wesley (1967).

Formal Proof Systems for Program Equivalence 303

Lauer: You have mostly said that your method is related to stepwise refinement. And
I was wmdering how your inclusion relation relates to bottcrn-up developnents of
programs • Beceause I found, particularly with relation to deadlock freeness that it
is often the case that program fragments may involve deadlock. 'lhey are incorrect,
if you like, and only their ultimate ccrnbination yields the correct program.

Bergstra: I think your kind of problems are just too o::mplex for these methods.

Lauer: In other \,!Ords: it seems to be the case in sane developnents of programs
that you cannot always proceed fran correct programs to correct programs, but you
have to go fran incorrect to correct, ccrnbined programs .

Bergstra: Of course, this business has one feature. And that is that modularity
gets lost, sanehow. Here (c) you see that this condition is one big thing • It is
not really split up into subparts. So, if that is the case, then the correctness of
the programs is the end-effect of the v.hoile thing, and it has no modular structure •
But that does'nt very much prove that it is suitable for that situation.

~ I \\Ould like to know: v.hat is in fact the essential difference between this
method of proving program inclusion and the one v.hich was originally suggested by
de Bakker and Scott in '69? 'lhe problem is that, in fact, this method is not iocr

dular as you stated, and I even think is more difficult to use. And therefore I do
not see any particular advantage of introducing this method •

Bergstra: Yes \llell . . • 'Ihis is just a quite different analysis, arrl I am based on
the lst order semantics, and on these transformations of proofs • It may <Nell be the
case that it is essentially the same, but I have never been informed about that. de
Bakker says he does' nt know; scmehow - it may still be true, but nevertheless •
(Iaughter)

de Bakker: I just said: I don't know.

