Formal Description of Programming Concepts - I1 289
D. Bjgrner (ed.)

North-Holland Publishing Company
© IFIP, 1983

FORMAL PROOF SYSTEMS FOR PROGRAM EQUIVALENCE

J.A. Bergstra J.W. Klop
Department of Computer Science Department of Computer Science
University of Leiden Mathematical Centre

Wassenaarseweg 80 Kruislaan 413
2300 RA Leiden 1098 SJ Amsterdam
The Netherlands The Netherlands

We explore conservative refinements of specifications. These
form an appropriate framework for a proof theory for program
equivalence that is based on a logic for partial program
correctness.

We propose two formalized proof methods for program equiva-
lence (inclusion). Both are sound w.r.t. the most general se-
mantics of first order specifications. In spite of being in~
complete the methods cover many natural examples.

0. INTRODUCTION

This paper aims at a detailed study of program equivalence, seen from the point of
view of Hoare's logic for program correctness. Because program inclusion is just
halfway program equivalence we can safely restrict our attention to program in-
clusion. This moreover has the advantage of connecting closely to the theory of
programming using stepwise refinements as described in BACK [2].

Our work can be seen as belonging to the subject of axiomatic semantics for pro-—
grams. Its novelty lies in the precise mathematical analysis of the situation, in
addition to a rather strict adherence to first order proof systems and first order
semantics for data type specifications.

Deriving program equivalence from program correctness properties is not a new idea,
of course. It occurs in compiler correctness proofs, for instance HEMERIK [12],
and RUSSELL [16], as well as in the general theory of program correctness as in
HAREL, PNUELI & STAVI [11], COUSINEAU - ENJALBERT [9].

Because of our interest in a proper theoretical analysis, we try to minimize the
semantical problems by working with while- programs only; this by no means trivial-
izes the problem. We expect that the present theory can be generalized to more
powerful programming concepts, although not without some effort.

It appears to us to be a worth-while but nontrivial project to relate our proof
systems to the methods of algebraic semantics, as explained e.g. in GUESSARIAN
[101.

One might expect a close relationship between the present work and MEYER-HALPERN
[14], which also describes program equivalence from the point of view of first
order logic. It is an important difference however that their paper focuses on se-
mantics, whereas our main interest is in proof systems.

In the sequel of this introduction an intuitive account is given of the key de-
finitions that underly the paper.

Intuition. Suppose that for Sl’ 82 € WP(Z) we have
) Alg(Z,T) E S1 c 82 (semantical inclusion)

and that we wish to prove this fact. Now obviously, (1) implies

290 J.A. Bergstra and J.W. Klop

(2) Alg(z,T) E {pisyla} = Alg(Z,T) E {p}s {a}, for all p,q ¢ L(Z).

However, there is no reason to expect that the reverse iTplicati?n (2) = (1) will
hold, since (2) states only roughly that S C S,, where rough%y refers to the
limited expressive power of L(Z). (In fact, one can show that indeed (2) # (1))
Now consider

(3) v(',T') 2 (£,T) Vp,q ¢ L(E")
Alg(z',T") F {pls,{q} = Alg(z',T") k {pls {q}.

Clearly (1) = (3) = (2). (For (1) = (3), note that if (',T") = (£,T), then the
reducts of (I',T')-algebras to I form a subset of Alg(Z,T); hence Alg(Z,T) E
s,Cs, = alg(@',T") F 8 L S,.)

In fact we will restrict our attention to a subclass of all refinements (2) of
(%,T), namely to the conservative refinements (®) of (I,T), for reasons which will
be clear later. So consider

) v(EZ',T) & (1,T) Vp,q ¢ L(Z")
Alg(z',T") E {p}Sz{q} = Alg(z',T") E {p}S]{q}.

Now we have (1) = (3) = (4) = (2); and it can be shown that (4) = (1). The con-
clusion is that one can treat the 'semantical' inclusion (1) by considering only
first order properties of S;, S (i.e. asserted programs {p}Si{q}, i=1,2),
provided one is willing to consider not only (I,T), but all its (conservative)
refinements.

This observation prepares the way for an approach via Hoare's logic of proving
asserted programs. First of all, define

(5) s, C

Saee,m S, iff Vp,q e L(T)

HL(Z,T) {p}Sz{q} = HL(I,T) F {p}Sl{q}

(prooftheoretical inclusion)
and consider

(6) V(E',T") & (Z,T) S (derivable inclusion)

1B, 52
the prooftheoretical analogue of (4). Indeed, it will turn out that this 'deri-
vable' inclusion, written as HL(Z,T) F Sy C Sy, implies the semantical inclusion
(1). This is our first "proof system" for proving semantical inclusion; we will
prove that (6), as a relation of Sl’ SZ’ is semi-decidable in T.

Of course the proof system given by (6) is sound, i.e. (6) = (1); otherwise it
did not deserve the name. Some simple program inclusions that are in its scope,
are program equivalences like 'loop-unwinding', and the kind of program equiva-
lences considered in MANNA [13]. This proof system is not yet complete, however.
In order to prove semantical inclusion (1), it is sufficient that:

(7 ety e (@D Ve, e @', s C S

HL(E",T") "2°

(Notation: HL(Z,T) I s, c 32’ in words: forced inclusion.)

The proof system embodied by (7) is stronger than that of derivable inclusion (6),
and we will give an example of program inclusion which requires the extra strength
of this last proof system.

Still, (7) is not 'complete'. One can prove, however, that the following 'cofinal'
inclusion is equivalent to semantical inclusion:

(8) v(',T") = (I,T) 3CE",T) = (2',T") 8, EHL(Z" ™ S,-

Formal Proof Systems for Program Equivalence 291

One could suspect that there is a multitude of such relations obtained by repeated
alternating quantlflcatlon vaV... from the basic relation EHL(E 1) (prooftheoret-
ical inclusion). It is a pleasant surprise, suggestxng the naturalness of the
notions involved, that this possible hierarchy does in fact not exist, and that
one has no more relations than in the following diagram:

HL(,D) + S| ES, \

derivable

inclusion (6) HL(Z,T) + S] ESZ

/ forced

inclusion (7)

18,
proof theoreri- u
cal inclusion
(5) X
cofinal semantical
\ inclusion e inclusion
30ET,THE 5,1 8 m
1 ZHL(2',TY) Z

inclusion in

some refinement %

1. PRELIMINARIES ABOUT PROGRAMS AND LOGIC

The notions of first order language, derivability (F) and satisfiability (k) are
supposed known.

In this paper we will exclusively deal with while-programs. For a signature I the
set WP(L) of while-programs over I is defined inductively as follows:

S ii=x :=t |Sl;Sz| if b then S, else S, fi | while b do § od,

1
where t ¢ Ter(Z), the set of terms over the signature I, b is a boolean (i.e.
quantifier free) assertion ¢ L(I), the first order language determined by I.

A specification is a pair (£,T) where T < L(I); the semantics of a specification
is just the collection Alg(Z,T) of I-structures A such that A E T. We write
Alg(z) for Alg(Z,d).

A,B ¢ Alg(Z,T) will be written as A = (A,...), B = (B,...) where A, B are the
underlying sets.

For A ¢ Alg(I) and S € WP(Z) with variables KpseeesX the meaning of S in A is a
partial function M (S): Ak 5 pkK, MA(S) can be deflneﬁ using conventional methods
of operational or denotatlonal semantics.

We wrlt_e> S(a) =3 for Mg (S) @) = +; if S(a) = b for some b we write s(Z) + (other-
wise S(a) t).
Important is the following

1.1. COMPUTATION LEMMA. Let X = X,,..-,% _and ¥ = y ,+-.,y . Let § = SGO) € WR(E)
. —— 1 1 k

(i.e. S contains precisely the vamabZes %) . N

Then for all n e N there Zs a quantfbfzgr free assertion CompS (x) =y in L(Z)

such that for every A e Alg(Z) and all a,b € A:

AE Compg (3 =B« [5G <nands@ =

Here g, E ave constant symbols demoting a, b and (S(z)| denotes the length of the

292 J.A. Bergstra and J.W. Klop

computation of S on a.

1.2. Preliminaries on Hoare's logic.

Let p,q € L(Z) and S € WP(Z). Then the syntactic object {p}S{q} is called an
'asserted program'. For A e Alg(Z), we define:

A {p}s{q} iff Va,B e A: S(@)¢ and SG) =B = (A F p(3) ~ a®)).

Furthermore we define
Alg(z,T) E {p}S{q} <= VA ¢ Alg(z,T) A E {p}s{q}.

Hoare's logic w.r.t. (I,T) is a well-known proof system designed to prove facts
like Alg(Z,T) F {p}s{q}. We will call this proof system HL(Z,T); it provides one
axiom (assignment axiom) and four rules:
(1) Assignment axiom scheme: {plt/x1} x:=t {p}
{p}S]{r} {r}Sz{q}

IYENERCY
{pAb}Sl{q} {pAlb }Sz{q}
{p} if b then S, else 8, fi {q}

(2) Composition rule:

(3) Conditional rule:

{pab} S {p}
{p} while b do S od {pnlb}

prp, {pI8{q;} q;>gq
{p}siq}

(4) Iteration rule:

(5) Consequence rule:

where (I,T) F p > p, and (,T) F q > q

These rules constitute an inductive definition of a relation HL(Z,T) - {pl}S{ql};
we assume familiarity with this proof system.

HL(Z,T) is sound in the following sense: for all p,q ¢ L(I) and S ¢ WP(I):
HL(Z,T) F {p}S{q} = Alg(z,T) k {pl}siql}.

1.2.1, DEFINITION. HL(Z,T) is logically complete iff for all p,q ¢ L(Z) and
S ¢ WP(Z): HL(Z,T) F {p}s{q} <= Alg(z,T) F {pl}siql}.

(In general, HL(Z,T) is not logically complete. The notion of logical completeness
is studied in BERGSTRA-TUCKER [61].)

2. REFINEMENTS OF SPECIFICATIONS

In this section we will collect some facts concerning the notion of refinement and
especially, conservative refinement. These notions will be of fundamental impor-
tance in the sequel. All the material in this section is standard in Mathematical
Logic and can be found (e.g.) in SHOENFIELD [17] and MONK [15].

2.1. DEFINITION (refinements)

(1) If 7 2% and T' > T we write (£',T') 2 (Z,T) and call (L',T') a refinement
of (Z,T). Here T = {p ¢ L(Z)|T F p}.

We will always suppose that T, T' are consistent.

(ii) Let A be some algebra. Then I, is the signature of A and Ty is the theory of
A: T, = {p e L(ZHIA F pl.

Note that A | pe= Alg(Zy,Tp) F p.

(iii) Let (Z,T) be a specification. Then T is complete if ¥p ¢ L(Z), T F p or

T F Tlp.

Formal Proof Systems for Program E quivalence 293

2.2. DEFINITION (conservative refinements)
Let (TT,T') 2 (Z,T) be a refinement such that: Vp e L) T' F pe=T } p. In
Then this refinement is called conservative

other words, such that T' n L(Z) = T.
over (£,T).

(So a conservative refinement does not yield more theorems in the
language L(I).)

Notation: (Z',T') & (Z,T).

'original’

2.2.1. Note that if T is complete: (&',T') 2 (Z,T) = (Z',T') & (£,T).

2.3. DEFINITION. (Expansions and restrictions). Let I' 5 I.

(1) TIf (Z7,T') is a specification, then the restriction of (I',T') to the sig-
nature £ is (Z,T) where T = T' n L(Z).

(ii) If A" € Alg(Z',T'), then the restriction of A' to I is obtained by deleting
all constants, functions, predicates in A' corresponding to symbols in £' - Z. The

resulting A is also called a reduct of A'; and A' is called an expansion of A. We
will also write A < A",

2.3.1. Note that if A' 2 A, then (ZA,,TA,) 3 (ZA,TA).

In the sequel we will always deal with conservative refinements (B). They have the
pleasant property that two refinements (I,,T.) ® (I,T) (i = 1,2) can be joined to
a refinement (EI uzt,, T, uT)) & (£,T), provided the requirement Iy nz, =2=is
satisfied. This is a”(strong) form of A. Robinson's Consistency Theorem (RCT).

2.4. ROBINSON'S CONSISTENCY THEOREM.

(Z,vI,,T uT,)

1) (2,51,
>4 34

(24> Ty)

Let (Z.,T.) & (ZO,T), 1 =1,2, such that ¢, n L, = L.. Then
(i) Ty u'T, is consistent, and moreover
(ii) (Z] u 22, T] U TZ) [=3 (ZO,TO).
PROOF. See Exercise 22.15 p.375 MONK [15] or BOOLOS ~ JEFFREY (8] p.244. [0
We conclude this section with a useful criterion for conservativity.

2.5. DEFINITION. Let (Z',T') be a refinement such that every A ¢ Alg(Z,T) can be
expanded to an A' ¢ Alg(Z',T'). Then this refinement is called simple.

2.6. PROPOSITION. (Criterion for comservativity). Simple refinements are conser-—
vative.

PROOF. Suppose (I',T') is a simple refinement of (I,T), i.e. VA ¢ Alg(Z,T)

AT € Alg(Z',T') A" > A. Let T f p for some closed assertion p. Then by Gdodel's
Completeness Theorem, A ¥ p for some A ¢ Alg(Z,T). So there is an A' ¢ Alg(Z',T")
such that A' > A, Hence A' F Tp; and reasoning backwards we have T' ¥ p. [

3. PROGRAM INCLUSIONS

We will now introduce the various notions of inclusion (L) between programs Sl’
32 € WP(Z) which we will study, and prove some important facts about them.

Let S ¢ WP(Z) and A = (A,...) ¢ Alg(Z,T). Let S contain the varia?les XpseensXy
(n21). Then MA(S):An + AD is the partial function defined in Section 1.

294 J.A. Bergstra and J.W. Klop

3.1. DEFINITION. Let S], S2 e WP(I).

(1) Semantical inclusion:

Alg(Z,T) E S1 Cs, « MA(SI) S_MA(SZ), for all A ¢ Alg(%,T).

2

(ii) Prooftheoretical inclusion:

S, C iff for all p,q ¢ L(Z): HL(Z,T) {p}Sz{q} =

HL(Z, T)
HL(2,T) F {p}S]{q}.
(iii) Derivable inclusion:
HL(Z,T) F S Es, = v@E',1) e (1) §C

(iv) Forced inclusion:

HL(z',T') °

HL(Z,T) I- S1 c S2 « 3J(',T") & (I,T) HL(z',T') + s, C s,.

(v) Cofinal inelusion: the inclusion S, C S2 is cofinal, if

VELTO B (D 3ELTY B @) S By gy S
3.2. REMARK. (i) Note the direction of the implication in 3.1 (ii). Intuitively:
Sy is less defined than Sy, so {p}S;{q} is more often trivially true.

(1i) The phrase 'derivable' in 3. 1 (iii) and the choice of the notation ' | '
is justified by results in Section 5: it will be proved that derivable inclusion
w.r.t. (£,T) is semi-decidable in T.

(iii) In all cases 3.1(i) - (v) there is the corresponding notion of equivalence,
defined in the obvious way; e.g. for forced equivalence:

HL(Z,T) S1 = S2 e HL(Z,T) I~ S] c 82 and HL(Z,T) I+ 52 [S1

It is clear that all inclusions (L) defined above are partial orders and that all
equivalences (=) are equivalence relations, except for forced and cofinal in-
clusion resp. equivalence. For the last case, 'cofinal', we will prove in Section
5 that cofinal inclusion coincides with semantical inclusion, hence cofinal in-
clusion is indeed transitive.

3.3. PROPOSITION. Forced inclusion is transitive. (Hence it is a partial order and
forced equivalence is an equivalence relation.)

PROOF. Let §,,5,,5, ¢ WP(Z), HL(Z,T) I §, C §, and HL(Z,T) I S, C S,. Then for
1=1,2: - -

1 1 " n A} 1
3E@TH B (I,T) V(YT B (25,T) S, EHL(Z" Tu)
Now consider such (£],T!), i = 1,2. We may suppose that Z; n Zé = z.
Now by Robinson's Consistency Theorem 2.4,

=", = ¢ vy, T U T B (5T,
Evidently, HL(Z* T) F s C Sy and HL (2 T) ~ s,Cs 3
By transitivity of derivable inclusion, therefore HL(Z T) = S € S . Hence
HL(Z,T) I+ $; E $4. O

The main result of this section consists in establishing the various logical inter-
relationships between the previously defined notions of inclusion (and equivalence),
as they are displayed in the diagram in the Introduction. There are only three non-
trivial cases and two of them are dealt with in the following proposition.

3.4. PROPOSITION. (i) Forced inclusion implies cofinal inclusion.

Formal Proof Systems for Program Equivalence 295

(ii1) Semantical inclusion implies cofinal inclusion.
(See Proposition (5.1) for the other direction.)

PROOF. (i) Suppose HL(Z,T) I- s, & Sy, i.e.:

(1) 3T B (2,T) VvE",T e (',T") s EHL(T" 1y S

To prove:

2 v Z Z,T 3, T B T
(2) () (z,T) (T ’Tl) e (EI,T]) S] EHL(ZT,TY) 52
Take (£',T') as in (1), and consider a (,T1) as in (2).
We may assume that L' n £! = I. Then take (Z",T") in (2) as the union of (Z ,T!)
and (£',T'); by RCT 2.4 téls is possible.
(ii) To prove: Alg(r,T) E S E 52 =
V(LT = (Z,T) 3(E,T") & (3',T'
5) ", ™) (z',T') s EHL(Zn,Tn) 52-
Suppose Alg(z,T) F $; L S,, and consider (2',T') & (I,T).
According to BERGSTRA TUCKER [7] there is a (Z" T") & (£',T") for which HL is
logically complete (See Def. 1.2.1).
Consequently: SIEHL(Z",T")S2' 0

3.5. REMARK. All inclusions introduced above, except semantical inclusion, were
obtained by quantification over the 'basic' prooftheoretical inclusion E . This
suggests looking at all inclusions of the following general form: HL

vav...3
15w, S2 = V(EI,T]) e (Z,T) B(EZ,TZ) =3 (EI’T1>

V(E3Ty) B (25T 30Ty, L =" A R
vav.

and likewise S EHL(Z T) ?, and the dual notions obtained by interchanging 3,A.

S

Yy e (X

(Note that only alternating strings of quantifiers are interesting, since clearly
~=¥YV¥-— = —-=¥Y-- and likewise for_3.) So derivable inclusion w.r.t. (I,T) is

C -
SHL(Z,T)? forced 1nc1u51onals EHL(Z 7)° and cofinal inclusion is EHL(E " (Inclu

sion in some refinement, EHL(Z 7y was not mentioned in this Section, because it

seems to be of less importance).

Now it is easz to show (u31n§ RCT 2.4) that (dropping the subscript
HL(Z,T)) C3Y = CV3Y and cva = C 3V i which implies that only five essentially
different inclusions exist, viz E where i = empty, V,3,v3,3v.

4. PROTOTYPE PROOFS

In this section we will define the notion of 'prototype proof', which will
play an important role in the sequel. Its main property is that every proof of
some {p}S{q} is a substitution instance of the prototype proof m(S) corresponding

to S. First we need an auxiliary concept.
* %k

4,1, DEFINITION. The class IWP(Z) (with typical elements S*, S ,...) of inter-
polated while-programs is inductively defined by

*

§* ::= 5 | {p}s™ | s¥{p} | if b then S| else s fi |
while b do §™ od.

Here S ¢ WP(Z). So the class of interpolated statements contains next to the usual
statements also asserted statements and statements interlaced with assertions in
an arbitrary way; but it contains also proofs of asserted statements. These will
be singled out by means of the following extended proof rules.

4.2. DEFINITION. By means of the following axioms and extended proof rules we can
derive proofs of asserted programs:

296 J.A. Bergstra and J.W. Klop

(1) Assignment axiom scheme: {p(t)} x :=t {p}

{pisi(x) (ris,la)
(2) Extended composition rule: -

{p}s|{r}sylal

(3) Extended contitional rule:

{prb} §7 {q} {prTIb} 55 {q}

{p} if b then {pab} §](q} else {pATb} syla} fi {q}

{pAb} S*{p}
(4) Extended iteration rule:

{p} while b do{prb} S*{p} od {pATib}

*
p>p; {p;} 8 {qlq >a

(5) Extended comsequence rule: "
{p}{pl}s {ql}{q}

4.3. DEFINITION AND NOTATION.

(i) Let PR(Z,T) be the class of proofs (interpolated programs) which can be
derived using this axiom scheme and extended proof rules, such that in (5) only
implications provable from T are used.

(ii) TIf s* ¢ IW?(Z), then o(S*) will denote the underlying program obtained by
erasing all {p} in §*

(iii) If 8* ¢ PR(E T), then «(S8”) will denote the set of implications p ~ p' used
in the derivation of S*. Note that these implications can be read of directly
from S*:

k(s¥) = {p+p' | {p} {p'} = s}

(Here "c'" denotes the relation of being contained as a 'subword'.)

(iv) If S* ¢ PR(Z,T) and S* = {p} S* {q}, then pre(S*) = p and post(S8*) =

(v) Let $* ¢ PR(Z,T). Then S* is called a reduced proof, iff it contains no
occurrence of a triple {p} {q} {r}.

(By the transitivity of -+, every proof may be supposed reduced, up to equivalence.)
(vi) Two interpolated programs S* , 8** such that o(8¥) = o(5**) = S are called
matching 1f at every place the same number of assertions occur in S*, $¥

(vii) Let $* = ——{p}-- be an interpolated statement containing {p}. Then §** =

= —{p} {p}—- is called a trivial expansion of S .

In tge following definition we will use a set of Jrary relation symbols {rl|1>0}
If S° ¢ IWP contains some of these r—symbols, [S*]: will be the result of Fe-

* J 2
placing each occurrence of r: in S~ by T(i,i) where (,):N4 >N is the usual
bijective pairing function. tThlS device merely serves to 'refresh' the r~symbols
where necessary.)

4.4, DEFINITION.

(1) Let S € WP(Z) involve the variables % (= x ,...,xn). By induction on the
structure of S we define w'(S) as follows:
A = = * = o
n ™ (x,:=t) {ry) Et/xi]} ¥t {r(®)}.
. 1 . = 1 1
(2) T (SI’SZ) [(Sl)]O [m (82)]1.

(That is, 7'(S;) and 7'(S,) are concatenated, without infix. Moreover, the r-sym-
bols in [n'(Sl)]o are made distinct from those in Lw'(Sz)]].)

Formal Proof Systems for Program Equivalence 297

(3) m'(if b then S, else S, £i) =

{rg@®) if b then {ryGAIABII' (5], {r (O}

else {ryGOATbI 77 (5,)]y {r, (O}
£i {r (O}

(4) 7' (while b do S od) =

{ry@®} while b do {ry(Bb} 8% od (rgF)ATb} {r) (D)}
where 8% = [n'($)], and rOGZ) = post(s™).
(ii) Now m(8) = (xy(D)} 7' ()1, {r; .

m(S8) is called the prototype proof of S.

4.5. EXAMPLE. Let S be: X 1= 0;

*2

== 13

while x, > x

2 3

do if x = 0

then Xq 1% 0

else X, = +1

Xy
£i

od;

Kl = X1+X2

Then m(S) is as follows. (The assertions to the right of the vertical bar are for
use in Example 4.7.1.)

w(s) = ¢
——
{rl(xl,xz,x3)} {true}
{r2(0,x2,x3)} {0=0}
x1:=0
{r, (xp5xy,%3) {x,=0}
{r3(x1,1,x3)} {xl=0 A 1=1}
x2:=]
{r3(x],x2,x3)} {x1=0 A x2=1}
{r6<x1’x2’x3)} {x,;=0 A x,=1}
while X, > X4 do
{r6(x1,x2,x3)/\x2>x3} {x,=0 A x,=1 & x,>x%,}
{r, (2 ,x,,%3)) {x;=0 A x,=1 A x,>%X,}
if x1=0 then
{rA(xl,xz,x3)Axl=0} {xl=0 A xy=1 A X,>Ky A x1=0}

{rg(x;,%,,0)} {x,0 A x)=1 A 0=0}

298 J.A. Bergstra and J.W. Klop

x3:=0
{rS(Xl’XZ’X3)} {x,=0 A x,=1 A x3=0}
lrg (x,x,,x9) {x,=0 A x,=1}
else
{rA(xl’XZ’XB) A “lxl= 0} {x]=0 A x2=1 A Xy>Xg A ‘le = 0}
{r7(x2+1,x2,x3)} {x2+1=0 A x2=1 A x3=0}
x]:=x2+1
lryGxphxy,%q)) {x,=0 A x,=1 A x,=01
{rG(xl,xz,x3)} {x1=0 A x2=1}
£i
{rs(x],xz,x3)} {x1=0 A x2=1}
od
{rﬁ(xl’XZ’x3) A’1x2>x3} {x1=0 A x2=1 A "1x2>x3}
{re(xl+xz,x2,x3)} {xl+x2=l A x2=1 A x3Zl}
x1:=x1+x2
{rs(xl,xz,x3)} {x1=] A x2=] A x321]
{rg(x],xz,x3)} {x1=1 A x2=1 A x321}

4.6. DEFINITION. Let S IWP(I) contain the n-ary relation symbol r, and let
p = p(xl,...,xn) e L(Z). (Note: p may contain other variables than those display-
ed.)

Then ¢E(S*) is the result of replacing each r(tl,...,tn), occurring in S*, by

PpseesPy
p(t,sea.,t). Likewise we define ¢ (s .
1 n Tyseeesl

4.7. LEMMA. Let §* « PR(Z,T) be a reduced proof such that 6(8™) = S. Then
$:w(8) ~ S* for some substitution ¢ as in Definition 4.6. (So every proof is an
instance of the prototype proof.)

PROOF. Take S, S* as in the lemma. We may suppose S* and n(S) are matching; other-
wise only some trivial expansions (Definition 3.3) of S$* are required. Then we can
construct by induction on the structure of § a substitution as required. This con-
struction is entirely straightforward and routine; it will be left to the

reader. [J

4.7.1. EXAMPLE. Let S be as in Example 4.5; we use the abbreviations
"= g = = i= 1
S = if x| 0 then Xqt 0 else Xt x2+l fi
L 3 "
S while Xy Ky do S" od

= x. :=0: .=1. g'. o=

s = Xy 0; Xyt 1; 8'; X1.~x1+x2.

Then the following proof of {true}S{x1=1 A x,=1 A x,21}, written as a column of
asserted programs and implications, is a substitution instance of 7(8) as in Ex-
ample 4.5, via the substitution ¢ displayed there (see the assertions to the right

of the bar).

Formal Proof Systems for Program Equivalence 299

0.| true -+ 0=I
1. {O=0}x1:=0{x1=0}
0,1 2 {—':-EE}XI:=O{X1=O}
3 x1=0 - x1=0 A 1=1
2,3: 4 {E_lf_'.l_la_}x1:=0{x1=0 A 1=1}
5 {x1=0 A 1=1}x2:=1{x1=0 A x2=l}
4,5: 6 {Eﬂe_}x]wo; x2:=l {x1=0 A x2=1}
7 x1=0 A x2=l A KyPKy A x1=0 - x1=0 A x2=l A 0=0
8 {x1=0 A x2=1 A 0=0}X3:=0{XI=0 A x2=1 A x3=0}
7,8: 9 | {x=0 A x,=1 A x,>%4 A xl=0}x3:=0{x]=0 A xy=1 A x3=0}
10 {x2+1=0 A x2=1 A x3=0}x]:=X2+1{x1=0 A x2=l A x3=0}
11 x]=0 A x2=1 A Xy>Ry A XI#O - x2+1=0 A x2=1 A x3=0
10,11: 12 (x]=0 A x2=1 A Xp>Kg A xl#O}x1:=x2+l{xl=O A x2=l A x3=0}
9,12: 13 {x]=0 A xy=1 A X2>X3}S"{xl=0 A xp=1oA x3=0}
14 x]=0 A x2=1 A x3=0 > x1=0 A x2=1
13,14: 15 {x‘=0 A X=1 A x2>x3}S"{xl=O A x2=1}
150 16 | {x;=0 & x,=1}8"{x =0 A x,=1 A ’Ix2>x3}
6,16: 17 {E_Eg}xlz=0; x2:=]; S'{x1=0 A x2=1 A —|x2>x3}
18 Xl=0 A x2=1 /\'1x2>x3 > x1+x2=l A x2=1 A x321
19 {xl+x2=1 A x2=l A x321}x1:=x]+x2{xl=1 A x2=l A x321}
18,19: 20 {x1=0 A x2=1 A 'lx2>x3} x1:=x1+x2{xl=1 A x2=l A x32]}
17,20: 21 {ml_e_}S{X]=l A x2=l A x321}.

4.8. PROPOSITION. Let 10 = I u L gy 9 =70 es)). Then 20,1%) & (z,1).

PROOF. Take arbitrary p,q such that HL(Z,T) + {pl}S{q}. (E.g. take q = true.) Let
{pJS*{q} ¢ PR(Z,T) be the corresponding proof; we may suppose it matches m(S).
Now let A ¢ Alg(Z,T), so by soundness of HL we have A k {p}S{q}. Further, it
is not hard to see that the r,(¥) can be interpreted in A just like the matching
assertions in {p}s*{q}. * 0 0
Hence every A ¢ Alg(Z,T) can be expanded to an A~ ¢ Alg(ZO,T)
conservativity criterion 2.6, we have 20,10 = (z,7). O

. So by the

5. PROOF SYSTEMS

Our interest is in formal criteria that imply program inclusion. The diagram
described in the Introduction contains three such concepts: EV, C3Y and EVEI (in
the notation of Remark 3.5). Now [V= coincides with semantical program inclusion
(%,.4 plus 5.1) and therefore EEV is a sufficient criterion (3.4(i)) as well as

HL(Z,T) F 5, C S, is a semicomputable relation (5.2). It constitutes a formal
proof system of a convéntional nature. b is quite natural and suffices for many
examples. v v3

 (C) is not complete however (5.4(i)). The proof system |- (C'7) provides
a less effective but considerably stronger method (5.4(ii)). In fact |- is also
incomplete (5.3). Because C7V can hardly be considered a formal proof method, we
are left with the problem of finding useful extensions of | and |- . This seems
to us to te a research topic of considerable importance.

300 J.A. Bergstra and J.W. Kilop

5.1. PROPOSITION. Cofinal inclusion implies semantical inclusion, i.e.
v(',T) = (Z,T) 3@, e (2,T) S CHL(Z" ™ S
Alg(z,T) F S E s,
> o> . ->
PROOF. Suppose Alg(Z,T) K s, C C S,- Choose A ¢ Alg(Z,T), a,b € A with A S]v (a) =

=Band A ¥ 5,3 =b. Let k = [$;(@)], i.e. A F Comp S](")

signature EO by adding names a and b for 3 and b. Then let I' = I

I

B. One obtains a
0

[R |

1T(S)’
T'" =Tu K('"(S)). One proves (z',T") & (£,T) _]ust like Proposltlon 4.8, Moreover

let 6 = Compk S (a) = b A Vx (x—a > 1,) A vx (r, & > —|x-b) Here
1
(x) = pre(n(S)) and r, (x) = post(Tr(Sz)) (see Def1n1t1on 4.3). Then (£',T'u{8})
is consistent (a model is found by expanding A). Clearly

->

HL(Z',T' u {8}) {;=—z_;}52{_l§=13} ; it follows that
HL(Z',T') b {8} AX=a}s,{1%8).

Suppose (Z'",T") & (I',T'), then T" u {6} 1s consistent and
HL(",T") F {6 Ax=a}s,(T%=B) .

Assume for a contradiction that S C then:

HL(E" T")
HL(Z",T") b {6 A%=3)s (T%=B) .

However in a model § of T" u {6} this asserted program is incorrect because
B E Comp, 5 (a) =b. O

5.2. THEOREM. HL(Z,T) S C S and HL(Z,T) + S H S2 as predicates of (SI’S)
are semidecidable in T.
PROOF. Let O-zruc: 7(S0) and T0 =Tu K(TT(S). (Zo TO) is found effectively
2
(£,T). Now we claim that HL(Z,T) S C 52 o= PII..(ZO T)+ {r (x)}S {r (x)}
which implies the theorem because of the semidecidable character of Hoare s Logic.
. 0.0 - >

To prove the claim: = is immediate. So assume HL(I ,T°) | {ro(x)}Sl(rl(x)}.
Let {r0(§)}ST{rl(§)} € PR(ZO,TO). Given some (Z',T') & (Z,T) assume
HL(z',T") {p}s,{q}. Let (p}S;{q} e PR(Z',T') be the corresponding proof which
we may assume matching with n(SZ) By Lemma 4.7, {p}S*{q} is an instance of 1T(S)
via some substitution ¢. Applying the substitution ¢ on {r (x)}S {r)} we obta:.n
a proof {p}4s(S){q} in PR(Z',T'). Consequently HL(Z',T') |— {p}S]{q}. 0

Let A = (1\1, 0,S,P), I = ZA and T = Ty These notation conmventions will hold
until the end of this paper.

5.3. THEOREM. & <s <ncomplete. In fact there are 5,8
S Cs But HL(Z,T) W S c S2

PROOF An essentially stralghtforward verification shows that Alg(Z T) 5 s. Cs
is a complete Hg predicate of (S1 S,) whereas HL(Z,T) I S1 C S2 is a Iy predlca%e
of (5y,S7). Recursion theory then télls that both predicates muSt d:.ffer O

5.4. PROPOSITION. Let 515 8, be-the following programs over %:

) € WB(D) with Alg(Z,T) k

S
S

1= ¥:=0; S' where S'= while x#0 do y:=Sy; x:=Px od
2= Yi=X; x:=0

Formal Proof Systems for Program E quivalence 301

then (i) HL(Z,T) ¥ Sl c 52 but (ii) HL(Z,T) Ik S1 [SZ'
PROOF. (i) S1 A

Lanz,m S, because
(@)) HL(Z,T) F {x=2}§,{x=0 A y=z}
(2) HL(Z,T) ¥ {x=2z}S {x=04y=z}.

Here (2) requires a proof: suppose not (2), then
HL(Z,T) F {x=z/\y=0}Sl{x=O/\y=z}.

Hence there must be an invariant r(x,y,z) such that T | ¢ A ¢y A ¢q where
¢1= x=z A y=0 + r(x,y,z)
$,= Ix',y' [x'#0 A x=Px' A y=S8y' A r(x',y',z)] + r(x,y,z)

¢3= x=0 A r(x,y,z) + y=z.

Also A E ¢y A ¢y A ¢3. However, a simple proof shows then that A E r(a,b,c) ==
<= a+b=c, in contradiction with the non-definability of + in A.

(ii). Let A' = (N, 0,S,P,+). Because (Z,T) is complete, we have (Z41,TA") B (Z,T).
Using the method of prototype proofs, HL(IA',TA') F S, c S2 is established as
follows: consider ﬂ(Sz), this is
{ryG e G0 yi=x {r G Hr, (0,91 x:=0 {r,(x,y) Hry G,y).
So we have to find a proof of {ro(x,y)} 8, {r3(x,y)} in the theory
Tyr U {rgGey) + rp (%),
rl(x,y) - r2(0,y),
rz(x,y) - r3(x,y)L
This is indeed possible:
{ro(x,y)}{rl(x,x)}(rz(O,X)}{r3(0,X)}
y:=0
{r3(0,x) A y=0}
{Exo[rB(O,xo) A x=Xy A y=01}
{3x0[r3(0,x0) A x+y=x0]}
while x#0 do
{3x0[r3(0,xo) A xty=xqy A x#01}
= 0
{ax0[r3(o,x0) A Px+Sy X, A x#0]}
y:=8y
{Sxo[r3(0,x0) A Prry=xy A x#0]1}
X:=Px

{3x0[r3(0,x0) A X+Y=X0]}

J A. Bergstraand J.W. Klop

{on[rB(O,xo) A x+y=x0] A x=0}
{ExoLr3(O,xO) A y=xy A x=01}

{rB(x,y)}.

REFERENCES.

L1l

L2

£3]

[4]

[5]

[6]

73

£s]l

£ol

[10]

[111]

12}

[13]
[14]

[15]
[16]

[17]

Back, R.J., Correctness preserving program refinements: proof theory and
applications, Mathematical Centre Tracts 131, Mathematical Centre, Amsterdam,
1980.

De Bakker, J.W., Recursive procedures, Mathematical Centre Tracts 24,
Mathematical Centre, Amsterdam, 1973.

De Bakker, J.W., Mathematical theory of program correctness, Prentice-Hall
International, London, 1980.

Bergstra, J.A. & J.W. Klop, Proving program inclusion using Hoare's logic,
Mathematical Centre, Department of Computer Science, Research Report IW 176,
Amsterdam 1981.

Bergstra, J.A. & J. Terlouw, A characterization of program equivalence in
terms of Hoare's logic, Proceedings of the G.I. Jahrestagung Minchen 1981,
Springer LNCS 123.

Bergstra, J.A. & J.V. Tucker, Expressiveness and the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 149, Amsterdam, 1980. To appear in JCSS.

Bergstra, J.A. & J.V. Tucker, Two theorems about the completeness of Hoare's
logic, Mathematical Centre, Department of Computer Science Research Report
IW 165, Amsterdam, 1981.

Boolos, G.S. & R.C. Jeffrey, Computability and Logic, Cambridge University
Press (1974, 1980).

Cousineau, G. & P. Enjalbert, Program equivalence and provability, Mathemati-
cal Foundations of Computer Science 1979, Proc. 8th Symp., Olomouc
(Czechoslovakia), Springer Lecture Notes in Computer Science 74, p.237-245.

Guessarian, I., Algebraic Semantics, Springer Lecture Notes in Computer
Science 99, 1981.

Harel, D., A. Pnueli & J. Stavi, A complete axiom system for proving deduc-

tions about recursive programs, in Proc. 9th ACM Symp. Theory of Computing,
Boulder, 1977.

Hemerik, C., Relaties tussen taaldefinitie en taalimplementaie, in Colloquium
Capita Implementatie van Programmeertalen, J.C. van Vliet (red.), MC Syllabus
42, Mathematical Centre, Amsterdam 1980.

Manna, Z., Mathematical theory of computation, McGraw-Hill, New York, 1974.

Meyer, A.R. & J.Y. Halpern, Axiomatic definitions of programming languages.
A theoretical assessment, Proceedings 7th ACM Symp. on Principles of Program-
ming Languages, ACM, New York, 1980, p.203-212.

Monk, J.D., Mathematical Logic, Springer-Verlag (1976).

Russell, B., Correctness of the compiling process based on axiomatic semantics,
Acta Informatica 14, p.1-20, 1980.

Shoenfield, J., Mathematical Logic, Reading, Addison-Wesley (1967).

Formal Proof Systems for Program Equivalence 303

QUESTIONS AND ANSWERS

Lauer: You have mostly said that your method is related to stepwise refinement. And
I was wandering how your inclusion relation relates to bottom—-up developments of
programs . Beceause I found, particularly with relation to deadlock freeness that it
is often the case that program fragments may involve deadlock. They are incorrect,
if you 1like, and only their ultimate corbination yields the correct program.

Bergstra: I think your kind of problems are just too complex for these methods.

Laver: In other words: it seems to be the case in same developments of programs
that you cannot always proceed fram correct programs to correct programs, but you
have to go fram incorrect to correct, carbined programs.

Bergstra: Of course, this business has one feature. And that is that modularity
gets lost, somehow. Here (¢) you see that this condition is one big thing. It is
not really split up into subparts. So, if that is the case, then the correctness of
the programs is the end-effect of the whoile thing, and it has no modular structure.
But that does'nt very much prove that it is suitable for that situation.

Apt: I would like to know: what is in fact the essential difference between this
method of proving program inclusion and the one which was originally suggested by
de Bakker and Scott in '69? The problem is that, in fact, this method is not mo—
dular as you stated, and I even think is more difficult to use. And therefore I do
not see any particular advantage of introducing this method.

Bergstra: Yes well ... This is just a quite different analysis, and I am based on
the 1st order semantics, and on these transformations of proofs. It may well be the
case that it is essentially the same, but I have never been informed about that. de
Bakker says he does'nt know; somehow — it may still be true, but nevertheless.
(Laughter)

de Bakker: I just said: I don't know.

