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This paper traces the development of restricted-parameter-space estimation prob-
lems from the early 50's, when the emphasis was on maximum likelihood, to the
present when questions of admissibility and minimaxity of these and related es-
timators are being addressed. Open problems are pointed out.

1. INTRODUCTION
This paper is based on an invited talk presented at the SMC50 Mathematics
Congress which was held on the occasion of CWI’s 50th anniversary in February
1996. It is concerned with problems of estimation in restricted parameter
spaces, in particular with some of this problem’s history and development.
The problem arose, in the early 1950’s, out of a practical problem in which
two probabilities 8; and 05, known to satisfy #; < 65, needed to be estimated.
Maximum likelihood estimation was used for this purpose. Later, maximum
likelihood estimators (MLEs) were shown to be inadmissible for squared error
loss. That is, it was shown that there exist estimators which are better than
the MLE in the sense that their expected loss, as a function of the parameter to
be estimated, is nowhere larger and somewhere smaller than that of the MLE.
This then led to the search for dominators for these inadmissible estimators, as
well as for admissible estimators with “good” properties. One such property is
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that of minimaxity, where an estimator is minimax when there does not exist
an estimator with a smaller maximum expected loss.

In Section 2, the early results on MLE are sketched. Section 3 contains
results on admissibility, for squared error loss, of the MLE and related classes
of estimators. Results on minimaxity, for (scale-invariant) squared error loss,
are given in Section 4. Other questions concerning estimation problems in
restricted parameter spaces, as well as some remarks on methods of proof, can
be found in Section 5. Open problems are mentioned throughout the paper.

Given the restrictions on time (a half-hour talk) and space in this journal,
it is not possible to give a complete account of the literature on the subject, nor
of the various open problems. But the quoted references together with their
references should provide a good coverage of the subject.

2. MAXIMUM LIKELIHOOD ESTIMATORS
Sometime in the early 1950’s, somebody came for advice to the Statistical Con-
sultation Service of the Mathematical Center in Amsterdam with a practical
problem which led to the following question. Suppose we have two independent
random variables X; and X5, where, for ¢ = 1,2, X; is Bin(n;, ;) and suppose
we know that 6; < 6. How does one estimate 8 = (61,62) ? The client was
given the maximum likelihood estimator - (él, ég), where 8; = Xi/ni,i=1,2
if Xl/nl S X2/TL2 and él = éz = (X1 +X2)/(TL1 +TL2) if not.

Professor Hemelrijk, at the time Head of the Statistical Consultation Ser-
vice at the Mathematical Center, then asked me to look at possible generaliza-
tions of this problem. This led to the study of the k-sample problem, where

Xij,g=1,...,n5,¢=1,...,k k > 2 are independent random variables and
the X;;,7 = 1,...,n; have distribution function F(x;0;), 6; € R,i =1,...,k.
The parameter space © for § = (0y,...,60;) was determined by inequalities

among the 6;, either by a complete ordering, i.e. © = {6|6; < ... < 6}, or
an incomplete one such as, e.g., k = 3 and © = {0|6; < 03,6, < 03}. The
question posed was to find the MLE, é, of 8. For definiteness, note that, here
and in the rest of this paper, estimators of a vector # which is restricted to ©
are functions from the sample space into the parameter space ©.

Conditions for the existence of the MLE, as well as algorithms for finding it
can be found in VAN EEDEN [34, 35, 36, 37, 38]. Examples of distributions for
the X; ; where these conditions are satisfied are the one-parameter exponential
family and the uniform distribution on the interval (0,6;). The algorithm for
the completely ordered case is what later became to be known as the pool-
adjacent-violators algorithm (PAVA). It says that 0; = éi+1 when t; > t;41,
where t = (t1,...,t;) is the unrestricted MLE of 6. For the incompletely
ordered case the algorithms are generalizations of PAVA or are PAVA-like al-
gorithms.

The completely ordered binomial case was also solved by AYER, BRUNK,
EwING, REID and SILVERMAN [1]. Further, BRUNK [9, 10] considered the
k-sample problem where the X;; have a one-parameter exponential family
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distribution. These authors give the PAVA for the completely ordered case and
an explicit formula for the general case.

Many of these as well as other results on MLEs for ordered parameters
can be found in BARLOW, BARTHOLOMEW, BREMNER and BRUNK [2] and in
ROBERTSON, WRIGHT and DYKSTRA [26]. Each of these books also contains
many results on problems of tests of hypotheses concerning ordered parameters.

3. QUESTIONS OF ADMISSIBILITY

In the early days of the development of the subject of restricted-parameter-
space estimation, there does not seem to have been much interest, if any, in
the properties of the MLE. It seems that it was not known at that point in
time that estimators which have “good” properties in unrestricted parameter
spaces lose many of these properties when the parameter space is restricted.
As an example, for X a A/(f,1) random variable and squared error loss, the
MLE of 6 for the parameter space {f] — 0o < < 0o} is unbiased, admissible,
minimax and it has a normal distribution. For the parameter space {660 > 0}
the MLE is biased and inadmissible, but still minimax. It does not have a
normal distribution and for 8 = 0 it is, for a sample Xi,...,X,,, not even
asymptotically normal. On the other hand, there are examples where the
MLE does not lose its admissibility property when the parameter space is
restricted. E.g., when X is Bin(n,6) with 6 € [0,a] for some known a € (0,1)
and n > 2,1 < an < 2, the MLE of 6 is admissible for squared error loss (see
CHARRAS [12] and CHARRAS and VAN EEDEN [13]).

The above quoted inadmissibility result for the lower bounded normal mean
case was (as far as I know) first proved by SACKS [29]. He obtained this result
from his necessary conditions for admissibility of estimators of the canonical
parameter in a one-parameter exponential family distribution. However, it was
not until the middle 1970’s that admissibility started to be studied in a more
systematic way. For instance, SACKROWITZ and STRAWDERMAN [28] show
that, for unweighted squared error loss, the MLE of completely ordered 6;, when
X; is Bin(n;,0;),i = 1,...,k, is admissible if and only if either Zle n; < 7;or
k=2andny =1lormng =1;0or k=3 and ny =ng = 1.

This result got me interested in the problem again which led to the PhD
thesis in 1979 of CHARRAS [12] and several papers (CHARRAS and VAN EEDEN
[13, 14, 15, 16]) based on it. The results in these publications deal with the
general problem of a probabilty space (X, A, Py), where § € © and © is a closed,
convex subset of R¥. Further, the family P = {P,f € ©} is dominated by
a o-finite measure. Conditions are given under which “boundary estimators”
are inadmissible for squared error loss, where a “boundary estimator” is an
estimator which takes, with positive probability for some 8 € ©, values on or
“near” the boundary of ©. In order to obtain their results, these authors start
with sufficient conditions for boundary estimators not to be (limits of) Bayes
estimators. They then add sufficient conditions for estimators which are not
(limits of) Bayes to be inadmissible. For some cases these authors also give
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dominators for inadmissible MLEs.

MOORS [24, 25] considers the same set-up. He assumes the problem to be
invariant with respect to a certain group of transformations and obtains inad-
missibility results by constructing dominators for boundary estimators (termi-
nology introduced by Moors).

For the one-parameter exponential family, BROWN [8] gives necessary con-
ditions for estimators of the expectation parameter to be admissible for squared
error loss.

These three sets of results jointly cover many cases of inadmissible MLEs
and other boundary estimators for restricted parameter spaces.

As already mentioned above, dominators for inadmissible boundary esti-
mators were obtained by Charras and van Eeden, as well as by Moors. Other
cases where dominators are known are the case of completely ordered bino-
mial probabilities, where SACKROWITZ [27] gives dominators for unweighted
squared error loss for the (inadmissible) MLE. SHAO and STRAWDERMAN [32,
33] give dominators for (inadmissible) truncated linear estimators for the lower
bounded normal mean and for the lower bounded scale parameter of a gamma
distribution. They use squared error loss. However, for many cases dominators
for inadmissible boundary estimators are not known. As an example, I do not
know any dominator, for squared error loss, for the MLE of a lower bounded
mean of a Poisson distribution. Further, the known dominators all seem to be
inadmissible, leaving open the problem of finding admissible dominators.

4. ADMISSIBLE MINIMAX ESTIMATORS

The first example I know of of an admissible minimax estimator for a restricted
parameter space is KATZ’s [21] estimator for the lower bounded mean of a nor-
mal distribution for squared error loss. His paper addresses the more general
problem of estimation of the lower bounded expectation parameter of an expo-
nential family, but his admissibility proof for the general case is incorrect (see
vAN EEDEN [39]).

Another case where an admissible minimax estimator for KATZ’s problem is
known is the case of a lower bounded scale parameter 6 of a gamma distribution
for scale-invariant squared error loss. For § > a > 0, VAN EEDEN [39] obtains
this estimator as the pointwise limit of a sequence of Bayes estimators. Further,
an admissible minimax estimator for # where X has density exp(—(z —#)),z >
6,6 > 0 was obtained by BERRY [3] for squared error loss.

These three cases are the only ones I know of where an admissible minimax
estimator is known for the restricted parameter space [a,00). I have been
working on the case of the mean 6 of a Poisson distribution with 6 > a >
0 and loss function L(d,0) = (# — d)?/6, but have not succeeded in finding
an admissible minimax estimator. However, the following reasoning gives the
minimax risk for this case. Let 6(x) = max(a, ). Then it is easily seen that
Supgs, o L(6(X),0) = 1, which gives an upper bound of 1 for the minimax
risk. Using the information inequality one can prove (as LEHMANN [22, pp.
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267-268], does for the case of the normal mean) that the minimax risk for this
problem is > 1, showing at the same time that the estimator ¢ is minimax. This
technique of obtaining the minimax risk for the parameter space [a, 00) might
well be applicable in other cases. Lower bounds such as, e.g., those obtained
by GAJEK and KALUSzZKA [19], GILL and LEVIT [20], and SATO and AKAHIRA
[30, 31], could be helpful here.

For the case of the parameter space [a,b],—00 < a < b < oo, CASELLA
and STRAWDERMAN [11], as well as ZinNz1Us [41], show that, for X N(6,1) and
squared error loss, there exists a unique admissible minimax estimator of 6.
This estimator is Bayes with respect to a prior with support {a,b}.

These results led to a sequence of papers on the problem where X;,...,X,
are independent, identically distributed with density f(z—6) or f(z/6)/0 where
6 € [a,b] and the loss function |d — 6| with p > 1. These cases were consid-
ered by Bishoff, Chen, Eichenauer-Herrmann, Fieger, Ickstadt, Ochtrop and
Waulfert. References to their papers can be found, e.g., in BISCHOFF and
FIEGER [5], BISCHOFF, FIEGER and OCHTROP [6] and BISCHOFF, FIEGER
and WULFERT [7]. The results of these authors are similar to those of Casella,
Strawderman and Zinzius : under certain regularity conditions on the density
of the X; and for small enough b — a, there exists a unique admissible mini-
max estimator and this estimator is Bayes with respect to a prior with support
{a,b}. It should be noted here that, for the case where p = 1, there does not
necessarily exist such a prior (see EICHENAUER-HERRMANN and ICKSTADT
17)).

The case where the X; have density f(z/6)/0 with 6 € [a,b],a > 0, and
scale-invariant squared error loss, is considered by VAN EEDEN and ZIDEK [40].
They obtain the “same” result again, except that now (b/a) — 1 needs to be
small.

Not much is known for larger values of b — a, except that the number of
points in the support of the prior increases as b — a increases. Approximations
to the minimax risk, as well as estimators which are approximately minimax
for b — a large were obtained by BICKEL [4] and by LEVIT [23] for the normal
mean case with squared error loss. Similar results for the scale problem with
scale-invariant squared error loss and log8 € [a,b] can be found in GAJEK and
KALUSZKA [18].

5. SOME REMARKS AND SOME MORE RESULTS

Nothing was said above about why boundary estimators are, in general, not
admissible. As an example of a proof, look at the case where X is N(6,1)
with € € [a,b]. The MLE, 6, is given by é(w) = z when = € [a,b], = a when
z < a and = b when & > b. To prove inadmissibilty, for squared error loss, it
is sufficient to prove that 6 is not Bayes. In order to prove this suppose that
6 is Bayes with respect to some prior on [a,b]. Then, because 0 is the mean
of the posterior distribution, the support of the posterior is {a} when z < a
and {b} when & > b. The contradiction then comes from the fact that, for
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this case, the prior and the posterior have, for all x and all priors, the same
support. This reasoning, which is the one used by CHARRAS [12] and CHARRAS
and VAN EEDEN [13], does not work for the example given above where X is
Bin(n, 8) with 8 € [0, a] for some a € (0, 1), because for this case the prior and
the posterior do not necessarily have the same support.

About how to find (admissible) minimax estimators. The problem is more
complicated than for unrestricted parameter spaces where, in general, finding a
Bayes estimator with a constant risk function solves the problem. For restricted
parameter spaces the risk function of a minimax estimator is, in general, not
constant. What one can try is use the result (see, e.g., LEHMANN [22], p. 256)
that, when the sequence of Bayes risks of a sequence of Bayes estimators has a
limit, r» < oo say, and 6 is an estimator whose risk function is upper bounded
by 7, then ¢ is minimax. This result was used by KaTz [21] for his normal
mean result and by VAN EEDEN [39] for her gamma scale result. In each of
these two cases the minimax estimator is the pointwise limit of the sequence
of Bayes estimators.

As a final remark, there are several problems concerning estimation in re-
stricted parameter spaces which I have not, or barely, touched upon in the
above but for which results have been obtained. To name a few of them : i)
minimax estimation of a vector § = (0y,...,0;) with k > 1; ii) loss functions
other than (scale-invariant) squared error; iii) the search for minimax estima-
tors within restricted classes of estimators, such as, e.g., truncated linear ones
- this might simplify the search without increasing the minimax risk too much;
iv) problems with nuissance parameters, such as, e.g., the problem of estimat-
ing 0, when, for ¢ = 1,2, X; is Poisson with mean 6;, #; < 0, and the X; are
independent; v) approximations to minimax estimators, either for restricted
parameter spaces which are “almost unrestricted”, or for large sample sizes.
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