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This text is a written version of the talk that | gave at the occasion of the 50th
anniversary of the SMC. It describes some results of an article in preparation
with R.F. Coleman (University of California at Berkeley). | thank Rutger Noot
for discussions that led me to a proof of a special case of Theorem 3.2, and

Richard Taylor for a discussion concerning the general case.

1. RAMANUJAN’S T-FUNCTION

Let A be the formal power series with integer coefficients defined by the prod-
uct:
A=Y "r(n)g" =q- J](1-qM)*.
n>1 n>1

The function n — 7(n) thus defined is the famous Ramanujan 7-function. We
can interpret ¢ as the function z — exp(2wiz) from the complex upper half
plane H = {z € C| ¥(z) > 0} to C. Then A defines an analytic function on H,
sending z to A(exp(27iz)). This function A has a lot of symmetry. Recall that

the group SLy(R) acts on H by fractional linear transformations:

ab _az+b

cd) "7 ¢z +d’
The function A is then “invariant” for the action of the subgroup SLy(Z) of
SLy(R) in the sense that for all ( s) in SLy(Z) one has:

az+b
A
(cz+d>

(cz + d)2A(2).
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This formula means in fact that the expression A(z)(dz)% is a SLy(Z)-invariant
section of the 6th tensor power of the line bundle of holomorphic differentials
on H, which makes it by definition a modular form of weight 12 for SLo(Z).
The fact that the constant term in the formal power series giving A equals zero
means that A is a cusp form. The complex vector space of cusp forms of weight
12 is of dimension one, hence A is an eigenform for certain operators that are
naturally defined on the vector spaces of modular forms. This implies that the
Dirichlet series associated to A has the following Euler product expansion over

all prime numbers p:

7(n) _ 1
Z e _1;[1_7.(2,) )

—s 11
n>1 p~*+p-p

valid for s in C with R(s) big enough. Ramanujan conjectured that for all
prime numbers p one has |7(p)| < 2p''/2. This was proved, in two steps, by
Deligne. The first step (1968) is the construction, for every prime number [,
of an l-adic Galois representation pa ;: Gal(Q/Q) — GL2(Q;) which is contin-
uous, unramified at all primes p # [ and has the property that for all p # [ the
Frobenius element pa ;(Frob,) has trace 7(p) and determinant p*!. The repre-
sentation pa; occurs in fact in the dual of the [-adic cohomology of a motive
over Q with good reduction at all primes. The second step (1974) is the proof
of the conjecture of Weil implying that the eigenvalues of such a pa ;(Frob,) are
algebraic numbers all of whose archimedean absolute values are equal to p'*/?
(the exponent is half of the degree of the cohomology group in which the dual
of pa,; occurs). Since 7(p) is the sum of the two eigenvalues of pa ;(Froby)
(take any I # p), it follows indeed that |7(p)| < 2p*'/2.

2. MORE GENERAL EIGENFORMS

Deligne showed in fact that the analog of Ramanujan’s conjecture for arbitrary
cuspidal eigenforms is true. Let N > 1 and k be integers and let e: (Z/NZ)* —
C* be a character. A modular form of level N, weight k and character € is then

a holomorphic function f:H — C such that

F(E5) =@+ atre

for all (% 2) in SLy(Z) with N dividing ¢, and such that for every (% 2) in
SL3(Z) the function

H—-C, 2z (cz4+d)7"f <%>
cz
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has a limit for |3(z)| tending to infinity. Such a modular form is called a cusp
form if all these limits are zero. For a modular form f one has f(z+1) = f(z2),

implying that f can be written as a power series in g:

f= Z anqg™.
n>0

The set M(N,k,e) of modular forms with fixed N, k and € is a C-vector
space of finite dimension (this follows from an interpretation of it as the space
of global sections of some holomorphic line bundle on some compact Riemann
surface). The dimension of M (N, k, ) can be calculated by the Riemann—Roch
formula, except when k = 1; for k < 0 it is zero. The M (N, k,e) are equipped
with certain operators T}, (n > 1), called Hecke operators, defined in terms of
the action of SL2(Q) on H. These T;, commute with each other, so it makes
sense to look at their common eigenspaces. There is a simple relation between
the eigenvalues of a non-zero common eigenform f and its Fourier expansion
f =2 ,>0anq": one has a;T,(f) = a,f. This relation implies that a; is non-
zero and that the common eigenspaces are of dimension one. An eigenform is
called normalized if a; = 1.

Suppose now that f is a normalized cuspidal eigenform of some level IV,
weight k and character e. Then T,,(f) = a,f. The Dirichlet series associated
to f has the Euler product expansion:

an 1
Zﬁ_l;ll—appfs—f—

= e(p)p*lp 2’

valid for s in C with R(s) big enough (for p|N one defines ¢(p) := 0). It
can be proved, for example by using the theory of moduli spaces for elliptic
curves, i.e., modular curves, that the a, are algebraic integers generating a
finite field extension K of Q. For every prime number [ one has a continuous
representation py;: Gal(Q/Q) — GLa(K ®(Q) which is unramified at all primes
p not dividing [N and has the property that for such primes py,;(Frob,) has

k—1

trace a, and determinant e(p)p The eigenvalues of ps(Frob,), i.e., the

roots in C of the polynomial 2? — a,z + e(p)p*~1!, have absolute value equal

k—1)

to p*=1)/2 hence we have |a,| < 2p*=1/2, Let us note that we have |a,| =

2p(k=1)/2 if and only if the polynomial 2 — apr + e(p)p* ! has a double root.

3. THE PROBLEM WE WANT TO SOLVE

The kind of question we ask ourselves can now be easily formulated: can it

(k—1)

happen that |a,| = 2p /2 for some cuspidal normalized eigenform f =
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> anq™ and a prime number p not dividing the level of f? Stated like this, the
answer is yes. Let f be a cuspidal normalized eigenform of weight one. Then
the ps; have finite image, and Chebotarev’s density theorem implies that there
exist infinitely many prime numbers p such that p;;(Frob,) is the identity
element. If we consider only forms of weight at least two, the situation is very
different. Of course, for the modular form A the problem is trivial: |7(p)| is

11/2

an integer, hence it can not be equal to the irrational number 2p For a

general cuspidal normalized eigenform f = Y a,¢™ with character ¢ this type
of argument does not work: there can be prime numbers p such that (p)p* ! is
a square in the field K generated by the a,. Only very little seems to be known
about these fields K. Douglas Ulmer obtained the following result as a kind of
by-product in his article “A construction of local points on elliptic curves over

modular curves”, International Mathematics Research Notices 1995, No. 7.

3.1 THEOREM (ULMER). Let p be a prime number. Suppose that the Birch—
Swinnerton-Dyer conjecture for elliptic curves over function fields of character-
istic p is true. Then for every cuspidal normalized eigenform [ = Y an,q™ of

level prime to p and of weight 3, one has |a,| < 2p.

Ulmer also noted that one should be able to prove by his method that Tate’s
conjecture implies the analog of his result for all weights & > 3. (This conjecture
claims that the dimension of the Q-vector space of codimension r cycles on a
smooth projective variety over finite field of characteristic p equals the order
of its zeta function at r.) Indeed, we have the following result, obtained by a
different method. This method can be described briefly by saying that it uses
that the motive over I, that one considers is actually the reduction modulo p of
a motive over Z,. The existence of this unramified lift forces certain restrictions

on its corresponding Hodge filtration on the crystalline cohomology.

3.2 THEOREM (COLEMAN-EDIXHOVEN). Let p be a prime number. Let f =
> ang™ be a cuspidal normalized eigenform of weight k > 2 and of prime-to-p
level. Suppose that the crystalline Frobenius at p is semi-simple. Then one has
|a,| < 2p(k—1)/2.

The crystalline Frobenius in this statement is given by the crystalline realization
of the reduction modulo p of the rank two motive associated to f. This will
become more explicit in the next two sections, when we discuss the proof. We
remark that for f of weight two this crystalline Frobenius element is known to
be semi-simple because the category of abelian varieties up to isogeny over a

fixed finite field is semi-simple. Hence the following corollary.
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3.3 COROLLARY. Let f = > a,q™ be a cuspidal normalized eigenform of
weight two and character €. Let p be a prime number not dividing the level

of f. Then the polynomial z? — a,z + ¢(p)p has simple roots.

For f of general weight k > 2 the semi-simplicity of the crystalline Frobenius
element at a prime not dividing the level of f is a consequence of Tate’s con-
jecture mentioned above: see the first three lines of Section 2 of Milne’s article
“Motives over finite fields”, Proceedings of Symposia in Pure Mathematics,
Volume 55, Part 1.

Theorem 3.2 has the following interesting consequence.

3.4 COROLLARY. Let N > 1 and k > 2 be integers, with N cube free, i.e., N is
not divisible by any third power of a prime number. Ifk > 2 suppose that Tate’s
conjecture mentioned above is true. Then the Hecke algebra of type (N, k), i.e.,
the sub-Z-algebra generated by the Hecke operators and the diamond operators
of the endomorphism algebra of the C-vector space of modular forms of level

N and weight k is reduced.

This result implies that the discriminants of such Hecke algebras are non-zero.
Abbes and Ullmo relate, for prime level p, weight two and trivial character, the
discriminant of that Hecke algebra to the height of the modular curve Xy(p).
Finally, according to Mazur, Theorem 3.2 sheds some light on a question
that arises in the relation between p-adic modular forms and deformations of

Galois representations.

4. AN ELEMENTARY PROOF IN THE CASE OF WEIGHT TWO

We will now sketch an elementary proof of Theorem 3.2 for forms f of weight
two (“elementary” meaning elementary compared to the next section). So
suppose that f is as in Theorem 3.2, of weight two, and that 22 — a,z + £(p)p
has a double root A in Q for some prime number p not dividing the level of f.
Then of course we have A\? = ¢(p)p and 2\ = a,. Let K be the finite extension
of Q generated by the a,, and let Ok be its ring of integers. A construction of
Eichler and Shimura gives an abelian variety Ag over Q of dimension [K : Q]
and a morphism of rings Ox — End(Ag), such that the representations py;
are realized by the [-adic Tate modules of Ag. This abelian variety has good
reduction at p; let Az, denote the corresponding abelian scheme over Z,. Let
M := H},(Az,/Z,) be the first algebraic de Rham cohomology group of this
abelian scheme. It is a free Zj,module of rank 2[K : Q], equipped with its
Hodge filtration

M =TFil’M > Fil'M = H°(4z,, Q).
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The submodule Fil' M is a free of rank [K : Q] as Zymodule, and has the
property that Fil’ M /Fil' M is torsion free. The double root X of 22 —apz+e(p)p
is in Of, since it is integral and 2 is in K. In the endomorphism ring of A,

we have the Eichler—-Shimura relation:
0 = (Frob,, — Froby,)(Frob, — Frob,) = Frobg — a,Frob, +¢(p)p = (Frob, — A)?,

where Frob, denotes the Frobenius endomorphism and Frob; the Verschiebung,
multiplied by e(p). Now Frob, is semi-simple, meaning that it satisfies an
identity of the form P(Frob,) = 0 with P a polynomial with coefficients in Q
having simple roots. It follows that Frob, = X in End(AF,). Since O ® Z,
is a product of a finite number of discrete valuation rings, Fil' M is a locally
free module over it; it is in fact free of rank one. It follows that A does not
annihilate Fil' M ® FF,, since we have A? = ¢(p)p. But Fil' M ® F, is the same
as HO(A]FP,Ql), and on this module A acts as Frob,, hence it does annihilate.

This contradiction finishes the proof.

5. THE GENERAL CASE

In this last section we sketch the proof of Theorem 3.2. So let f be as in that
theorem, and suppose that p is a prime number not dividing the level of f
such that z? — a,z + £(p)p* ! has a double root A. Consider the representa-
tion pys,: Gal(Q/Q) — GL2(K ® Q,). Fontaine has constructed the so-called
“mysterious functor” D, from the category of finite dimensional representa-
tions over Q, of Gal(@p/(@p) to the category of filtered ¢-modules. A filtered
¢-module is a finite dimensional Q,-vector space M with a filtration Fil and
an endomorphism ¢. The morphisms are the obvious ones: the linear maps
respecting Fil and ¢. It is a theorem of Faltings (of which a special case was
proved earlier by Fontaine and Messing) that for X a motive over Q, with good
reduction the filtered ¢-module Dcris(Hit(X@p, @Qp)) is functorially isomorphic
to the crystalline cohomology group H? . (X, Q,) with its Hodge filtration and
Frobenius endomorphism. Most important for us is the consequence of this
theory that says that such filtered ¢-modules H? . (X, Q) are what is called
“weakly admissible”. To a filtered ¢-module M one can associate two poly-
gons: the Hodge polygon, depending only on the filtration, and the Newton
polygon, depending only on ¢. Weakly admissible means that the Newton
polygon lies above the Hodge polygon, and that these polygons have the same
endpoint. An equivalent formulation is the following. For M a filtered ¢-
module let ¢ty (M) be the p-adic valuation of the determinant of ¢, and let
tr (M) be the maximal i such that Fil*det M # 0. Then M is weakly admis-
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sible if and only if 1: ¢y (M) = tg(M) and 2: for all subobjects M' of M one
has ty(M'") <ty (M").

Consider now the weakly admissible filtered ¢-module M := De.is(ps,p). As
before, we have (¢—\)2 = 0 on M. Since we suppose that ¢ is semi-simple (i.e.,
¢ is the crystalline Frobenius mentioned in the theorem), it follows that ¢ = A.
Hence Fil*~' M is a subobject of M. We have ty(Fil* "' M) = [K : Q|(k — 1)
and ty(Fil* M) = [K : QJ(k — 1)/2. Since k > 2, this contradicts the weak
admissibility of M.
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