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This is a written version of the talk delivered on Feb 6, 1996 at the SMC con-
ference, Amsterdam.
Last Summer, P. Vogel noted that the dimensions of the exceptional Lie algebras
are given by
(A+5)(A—6)

A(A—1)
for an appropriate value of A, as well as other uniform behavior of the exceptional
Lie algebras with regard to the parameter A. Inspired by this, P. Deligne conjec-
tured that there might be a tensor category explaining the behavior. Ronald de
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Man and | have provided additional computational evidence for his conjecture.
In my talk | will explain the conjecture by elaborating on a tensor category for
the general linear group, built up by means of braid-like combinatorial objects.

1. INTRODUCTION

The topic of this talk originates from joint work with Ronald de Man instigated
by Deligne, with whom we have been brought into contact by Van der Kallen.
The problem which I will address here is that of decomposing tensor powers
of “natural modules” for a series of simple complex Lie groups into irreducible
modules. The series I have in mind are indexed by a parameter n as follows:

n in GL,

n in O,

n in Spo,

? in G27 F4, Eﬁ) E77 ES

Here the final line corresponds with the “series” of exceptional groups. There
are some indications that, much like for the other series, there is a general
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pattern for the tensor power decompositions of the adjoint module for a series
of 9 groups, including the five exceptional ones. The purpose of my talk is to
put these indications into context.

2. MODULE DECOMPOSITION

The general pattern starts from a duality principle, which can roughly be ex-
plained as follows. Let W be a G-module. We shall take our scalars to be
the complex numbers C. Since G is simple (more generally, reductive), W is a
direct sum of G-irreducibles. How to find these irreducible constituents of W?
Since it is not very useful to separate one irreducible submodule from another
that is isomorphic to it, we usually restrict to the determination of the isotypi-
cal components, that is, the sum of all irreducible submodules isomorphic to a
given irreducible, and the multiplicities of each isotypical component, that is,
the number of copies of the irreducibles occurring in a direct sum decomposition
of the component.

The duality principle concerns the centralizer algebra A = Endg (W), the
algebra of all linear maps from W to itself which commute with every element of
G. The important fact that makes A so useful is that the isotypical components
of G in W are also the isotypical components of A. Moreover, if the dimension of
the A isotypical component is ab where a is the dimension of the A irreducible
involved and b its multiplicity, then b is the dimension of the corresponding
G-irreducible and a is its multiplicity.

We shall apply this principle to the d-th tensor power W = V®<_ For the
series of groups G mentioned above it is easier by far to determine the isotypical
components of A than to determine them as isotypical components of G. One
reason is that there is a crisp description of A, another is that the dependence
of A on m is minor, so that a great deal of the decomposition can be carried
out simultaneously for all n by a proper study of A. What is needed to find
the irreducibles for A and their multiplicities, is to find the central irreducible
idempotents of A. If e is such an idempotent, the dimension of the isotypical
component in W is Tr(e, W), its trace on the W, and the dimension of the
irreducible A-module is the square root of Tr(L., A), where L. stands for left
multiplication by e.

3. THE GL, EXAMPLE

In order to make these words come to life, I will devote some attention to the
case where G = GL,, and V is the natural n-dimensional GL,-module. So, V'
is an n-dimensional complex vector space, and GL,, can be viewed as the group
of all invertible linear transformations of V.

It is a classic fact that the centralizer algebra A = Endg(V) is the group algebra
of the symmetric group on d letters, Sym,, which acts on V¥¢ by permuting the
d components. Thus, the central irreducible idempotents of A are ey, certain
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elements indexed by partitions A of d, and we can write

vel=Pnev?,
A-d

where V), is the GL,,-module corresponding to A (uniquely determined, easy to
express in terms of heighest weights), and V* is the unique irreducible Sym -
module corresponding to A.

Thus, to find V) we need to explicitize A, its idempotents ey, and compute
traces.

4. TENSOR CATEGORY FOR GL,

Now the labor that has to be done to describe A as well as the necessary
traces of idempotents for finding the dimensions of the G-irreducibles and their
multiplicities, can be succinctly formulated in a nice combinatorial way. The
setting for this description is that of a tensor category. I will refrain from
even attempting a formal definition of this notion, but just continue with a
table connecting the notions in the language of tensor categories with those
of the combinatorial/pictorial setting and with the representation theory just
discussed.

tensor category realisation representation theory
object X d-set X G-module V®?
linear combination of linear combination of
morphism paths joining nodes permutations of d letters, in
X-Y X-Y End(V®d)
tensor X ®Y disjoint union X LY tensor V®(dte)
morphism straightening out paths morphism composition
composition
End(X) algebra generated by A
morphisms X — X

Thus, the semantic interpretation of an object X in the tensor category is a
G-module, but the object itself is nothing but a set of d points. These nodes
are represented as in graph theory: o o o stands for a 3-set. Actually, we
shall recognize only one object consisting of d nodes, so we have depicted the
only object that is a 3-set. In the tensor category, the tensor of two objects of
this kind is just the disjoint sum of the corresponding sets.

A morphism from one object X to another object Y has the semantics of
a (G-equivariant linear map from the G-module X to the G-module Y, but is
nothing else but a C-linear combination of permutations, where a permutation
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is a bunch of paths connecting nodes of X with nodes of Y, turning all nodes
into endpoints. In particular, morphisms only occur between objects having
the same size (and hence being equal). This observation is in accordance with
the well-known fact that, for n big with respect to d, a G-irreducible occurs in
V®4 for only one d.

Composition of morphisms is easily explained in terms of pictures. For
example, take the permutations (1,2) and (2,3). Their composition is seen to
be (1,3,2) by juxtaposition of the two individual pictures for (1,2) and (2, 3)
and then straightening out the resulting path from start to finish, forgetting
the intermediate stage:

12 (2,3) (1,32

So far, we have only given a very simple well-known presentation of the basis
of A consisting of the elements of Sym,, and a pictorial description of the mul-
tiplication of basis elements, which, remarkably but not surprisingly enough,
is monomial in the sense that the product of any two basis elements is a scalar
multiple of another basis element. Here the scalar multiple is always 1 (as the
basis is actually a group), but in future examples this will no longer be the
case.

5. ADDING DUALS

Rather than working out the idempotents of A in the classical case of GL,, on
V@4 T will handle a slightly more general and more interesting case, extending
the previous setting. We shall let the dual of V', denoted by V*, enter the scene.
In order to add it to the tensor category as an object, we charge the objects
handled so far with a +, replacing o in the pictures by @, and introduce the
object semantically known as V*, to the category as object ©.

The tensor is now as easy as it was before: just the disjoint union of sets. A
morphism between two objects is now slightly more subtle. Again it is a linear
combination of “basic morphisms”, which we can picture as oriented paths.
The orientation for a path means that it has a start and an end point. Now
a basic morphism from X to Y connects all the points with oriented paths in
such a way that we always have one of four cases:
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X Y X Y

@4—@

X Y X Y
© O
53 53
The semantics for the two morphisms at the bottom are evaluation and
coevaluation. Indeed, fixing a basis v; of V and its dual basis v} of V' (assuming
all modules to be finite dimensional), one can think of the former as the map
Yo vl @ Y vl (v;) from V@V to C = V0 and of the latter as the
map a — »_,avy ®v; from Cto V@ V* fora € C = V0. (Apparently, we also
do not distinguish between X ® Y and ¥ ® X.)
However, the description of End(X) for an object X is not yet complete.

For, when composing maps, closed paths will occur. We convene that a closed
path is equal to the scalar factor n.

EXAMPLE: V®V & V* FOR GL,
I shall take along an explicit example: W =V ® V ® V*. The corresponding
object is

X=0 @& o

A basis for A = End(X) = Endg(W) consists of the following 6 basic mor-
phisms:

1 o
@%@’ EB)C@
S—= D %)
e<—o 6<—0o

T 010
®, 40 ©—=0
€B>*<@ D &)
< =) @\V <@

16 o1

b 69’
@f@
S] 4<@

@ 49
@\=<@
@}/ ©

It is now straightforward to draw the full multiplication table of A from these
pictures. It is in accordance with the names already given and is fully deter-
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mined by the following relations:

o? =1,
72 =nr,
TOT =T,
(1) =oT,
(r0)? =710

Note that A = End(X) has been defined in terms of the tensor category, that
is, with fewer information than the full knowledge of G and its module W.

6. IDEMPOTENTS
Since A as an algebra is completely known, we can determine its irreducible
central idempotents.

First of all, from solving a set of linear equations, one finds that the center
of A is the linear span of

1, a=0—o0r0—7, b=o0T+4+7T0 —noTo —nr.

Then, from a set of quadratic equations, the irreducible central idempotents
are found to be:

The dimensions of the resulting A-components are:
dim (de;) =1, dim(Aep) =1, dim(Aes) =4,

as follows from the identity dim (Ae;) = Tr(L,;, A), and so the dimensions of
the corresponding A-irreducibles are 1, 1, 2, respectively.

7. TRACES AND DIMENSION
We still need to describe how to compute traces on W of elements of A in terms
of the tensor category, and similarly for dim (W). To begin with the latter, we
define

dim (X) = Tr(1x),
thus reducing everything to the computation of traces of morphisms ¢ €
End(X). Here is how that is done:

coeval o lx= eval
Tr(¢p, X)= 0 — XoX* — XoX* — 0.

Thus, for example, dim (V') = Tr(1y ) = a single closed path = n.
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But let us continue with W =V @ V ® V* and compute the traces of the
three idempotents of A. Using the above combinatorial rules, this a matter of
counting closed paths. For instance, for 7, we find

Tr(r,W)=-eval - 7® lyy+ - coeval = = n-n=n’

By linearity, we then find the traces of a and b, and subsequently those of the
idempotents e1, e3 and ez on W. We put the results in a table.

z Tr(z,VVeV*) Tr(zA)

1 ns 6
o n? 0
T n? 2n
oTO n? 2n
oT n 2
TO n 2
a —n? —4n
b —2n3% +2n 4 — 4n?
el n(n?+n—2)/2 1
€2 n(n? —n—2)/2 1
es 2n 4

The result for the decomposition into G L,-irreducibles for W =V @ V @ V* is

idempotent dim of GL,-irreducible its multiplicity

n(n? +n —2)
er _—_— 1
2
2_p—
o n(n? —n —2) 1
2
e3 n 2

A warning regarding small values of n with respect to d is in order. For example,
if n = 2, then the e; component has dimension 0. To complete the procedure
for a specific value of n, more work is needed than is described so far. This work
can be fully described in the tensor category. Very roughly speaking, it comes
down to modding out traceless morphisms (that, is morphisms ¢ : X — Y with
the property that the trace of any composition ¢ with a morphism ¢ : Y — X
has value 0) and forming the Karoubian closure of the resulting tensor category
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(that amounts to introducing objects corresponding to images and kernels of
idempotent morphisms).

In conclusion, we have a tensor category with a parameter n, which, for
each specific positive value of the parameter, gives the “generic” description of
the decomposition into irreducibles of each of the tensor powers formed from
the natural modules and their duals. After the specialisation to the specific
positive integer, however, adaption of the tensor category is possible (modding
out traceless morphisms and forming the Karoubian closure) so as to obtain
the complete picture.

8. THE OTHER TWO CLASSICAL SERIES

Similar results exist for O(n) and Sp(2n). Here an identification of ® and ©
(or V and V*) takes place, due to the existence of a G-invariant bilinear form
on the natural module V', which identifies V" and V* as G-modules. Thus, eval
gains an interpretation as the evaluation of the bilinear form in elements of
V ®V. As a consequence, the nodes no longer have a sign, and morphisms are
based on undirected paths. Closed paths may still occur (as there are paths
joining two nodes of the same object) and are again identified with the scalar
n (or 2n in case G = Spay,).

9. THE EXCEPTIONAL SERIES
Deligne’s conjecture concerns the tensor powers of the adjoint module L of the
following series of groups:

]-7 Al; A2'27 G2> D4'Sym3> F47 E6'27 E7> EB-
The full statement will appear in [2]. Here is a very rough description. Let

2 1 1 1
A= _57_37_2>_§>_1>__>__>__7__
2 372" 3 5

(%)

in the nine cases, ordered as above. Then, by an observation of Vogel,

dimL = _QW and
AN —1)
L®2 =L oL =(14Y,+Y))& (L+X,), where
. (A+5)(A—6)(A+3)(A—4)
dimX, =5 X 1) and
dimY, =_90_A=HA+5)

(A —1)(2)r 1)

Thus, we find an overall pattern that looks much the same as for GL,,. Like
the tensor category for that series, one would like to find a fitting combinatorial
description of the tensor power decompositions in which a map X — X!, the
evaluation L&® L — C using the Killing form, and a map L& L — L representing
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the Lie bracket are all represented. The existence of such a combinatorial
description, phrased in terms of tensor categories, is the content of Deligne’s
conjecture.

Since for the A in (*) all dimensions of the objects of the tensor category
will be nonnegative integers, one might speculate that the Karoubian closure of
the tensor category modulo traceless morphisms for each of the corresponding
specialisations, is Tannakian, and would thus lead to a “serial” definition of the
“nine” exceptional groups. As for other values of A, they usually will not lead to
integral dimensions, and so there is no indication as to what their significance
would be.

Let me conclude with three remarks concerning this phenomenon.

1. A very mysterious “semilinear” map X — X' seems to emerge. We have
used it in describing the other nontrivial irreducible in L?* (distinct from Y3).
It fixes certain objects like L and X5. It is semilinear in the sense that it fixes
the constant scalars but maps the parameter A onto 1 — X, that is, A\f =1 — X.
With this convention, we have, for irreducibles X,

dim (X*) = (dim X)*.

2. The tensor powers continue to decompose according to such regular patterns
for d = 3,4, as has been accounted for in [1], and by De Man for d = 5 (even
parts of d = 6,7).

3. The computations regarding these decompositions were made by use of
LiE, see [3]. Apart from the expected ingredients, such interpolations of the
dimensions of the computed decompositions for the inidividual groups from the
series, the values of the Casimir operators were used to find the appropriate
descriptions of the dimensions as elements of Q(A).
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