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A quarter century ago Morris Kline at the Courant Institute in New York
published a monumental survey entitledMathematical Thought from Ancient to

Modern Times� In a section entitled the �The loss of truth� Kline characterized
mathematics at the end of the century in the following way�

By the end of the nineteenth century� the view that all the axioms
of mathematics are arbitrary prevailed� Axioms were merely to be
the basis for the deduction of consequences� Since the axioms were
no longer truths about the concepts involved in them� the physical
meaning of these concepts no longer mattered� This meaning could�
at best� be a heuristic guide when the axioms bore some relation to
reality� Thus even the concepts were severed from the physical world�
By ���� mathematics had broken away from reality	 it had clearly
and irretrievably lost its claim to the truth about nature� and had
become the pursuit of necessary consequences of arbitrary axioms about
meaningless things 
page ����
�

Kline placed here the origins of a divide between pure and applied mathematics�
a division which� he asserted� did not for the most part exist much before the
beginning of the present century�

One might� and I don�t doubt that many contemporary mathematicians
would� question Professor Kline�s sympathies in such matters� but it does seem
to me that the present�day division between pure and applied mathematics
did not exist in anything like its current form throughout most of the ��th

century� In England� for example� many of the people whom we today think
of as creative physicists� such as George Gabriel Stokes� James Clerk Maxwell�
or William Thomson 
Lord Kelvin
� were in fact products of the Cambridge
Mathematical Tripos system� which� in their days� placed intense emphasis
on mathematical dexterity� Stokes thought of himself as a mathematician for
much of his career� Yet he was equally� indeed� deeply involved with optical
experiments� and these two aspects of his work were tightly bound together�
The situation in France throughout most of the century was similar�
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Towards the beginning of the ��th century the distinction between math�
ematical and physical work would not have been so clear as it later became�
not least because so many mathematical problems arose directly out of� and
remained tightly bound to� physical problems� Most such problems arose in the
mechanics of point masses and continua� and� after circa ���� in optics as well�
By the ����s electricity and magnetism had given rise to new sorts of problems
involving integral representations� and by the ����s� with the advent of �eld
theory� the connections between integral representations and partial di�eren�
tial equations had also become signi�cant� Issues arose in optics concerning
solutions to the wave equation produced a great deal of novel� and physically
signi�cant� mathematics at the hands of Helmholtz and Kirchho�� among oth�
ers� New problems arose during the century out of physics in which questions
involving the conditions to be satis�ed by vector functions under speci�c trans�
formations and particular constraints� this during a period in which the concept
of the vector �eld was itself just beginning to take shape� Helmholtz� for exam�
ple� was the �rst to produce an expression� one that soon became an important
tool in hydrodynamics� for the conditions to be satis�ed under the require�
ment that the integral of a �ux vector through a surface be preserved under
quite general deformations� The �rst general considerations of the transforma�
tion properties of vector functions were developed by the Irish mathematician
James MacCullagh in the ����s in his attempt to probe the underlying equa�
tions for the optics of crystals�

One could go on� listing at some length the many mathematical novelties
that arose during the century in tight connection with a physics which was quite
tightly connected to the laboratory� Rather than doing so� I have instead chosen
several episodes from physics during the century in each of which mathematical
developments are very powerfully bound to novel physical discoveries� I have
chosen these episodes with an eye both to their novelty� for each case represents
a new way of treating a physical problem� or a new physical problem altogether�
and also to the particular character of the mathematics involved� since each
case required developing mathematical structures that were not in common
use among physicists� and that in some instances raised speci�c mathematical
problems�

Our �rst example concerns optics� and� in particular� questions that� we
might say in retrospect� concern the propriety of certain solutions to wave
equations	 our second concerns the physical implications that arise when one
has integral equations but not partial�di�erential analogs of them	 our sec�
ond case concerns the physical implications that arise when one has integral
equations but not partial�di�erential analogs of them	 and our third involves
prototypical di�erences� clearly evident by the end of the ��th century� between
an eager young physicist anxious to get a solution by any means possible� and
the rigor demanded by an older mathematical colleague 
not� of course� that I
wish to suggest all mathematicians who demand rigor are old� and all physi�
cists anxious to get results are young�
� Here� in these three concrete cases�
we will be able to see just how tightly meshed physics and mathematics were
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Figure �

during this stunningly creative century� In ���� a young graduate of the �Ecole
Polytechnique named Jean Augustin Fresnel created a new optics based on the
assumption that light is a wave form� Figure � is adapted from Fresnel�s dia�
gram� In it� C represents the source of a spherically� symmetric front AMm�

that is intercepted by a screen AG� Adapting Huygens�s principle� Fresnel con�
ceived that each point on the front itself emits a spherical wave� albeit with
an amplitude that decreases with inclination to the line joining that point to
the source C� Introducing z as the distance along AM from the edge A of the
di�ractor� Fresnel could then represent the amplitude Q of a disturbance with
wavelength � sent to an arbitrary screen point P in the following way�
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Fresnel could at once conclude from this that the square of the resultant from
all of the secondaries on the front� pairing up all terms with cosine amplitudes
and all terms with sine amplitudes� can be computed from the following sum
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There were two major di�culties with this result� One was how to establish
an appropriately general coordinate system for calculation� This arises in the
simplest case when the di�racting object� or aperture� has two edges� for then
two limits are involved� and this in e�ect requires computing a surface� The
other� which arises in all cases� including that of the semi�in�nite plane� where
only one boundary occurs 
and where� accordingly� the surface just mentioned
reduces to a line
� is simply how best to calculate useful values for these in�
tegrals� Fresnel sought the quickest route to application� and that was by
numerical integration 
instead� e�g�� through series� though Cauchy later de�
veloped divergent series for these integrals
� In an astounding computational
tour de force� Fresnel actually tabulated the integrals in steps of �� from �
to � by means of a method discovered in his posthumously published letters�
Using Fresnel�s own formulas� I have recalculated his tables with a machine�
and I �nd that that his computational errors amount to a mean of only ������
Further� the di�erences between his values and more accurate ones computed
using the series later produced by Cauchy still amount to only ������

The appearance in physical equations of solutions that could only be eval�
uated by series expansions or by numerical integrations was by this time not
altogether unusual� They emerged quite directly in astronomical problems� and
they were soon also to appear in problems involving elasticity and heat �ow�
Nevertheless� what was unusual was the presence of such things as a funda�
mental expression of the underlying physics� For Fresnel�s integrals� unlike�
say� Legendre polynomials in astronomy� or� later� Fourier series in thermal
processes� were not at all produced as solutions to given di�erential equations�
On the contrary� they were asserted by him without his having had in hand the
partial di�erential equation that they were meant to be solutions of� much less
the methods and techniques necessary to solve such a thing under appropriate
sets of boundary conditions� Fresnel� one might say� had discovered the solu�
tion to what would later be termed the reduced wave equation� or what was
known after ���� as the �Helmholtz equation�� without having any idea at all
what that equation was�

Let us now turn to our second episode� one that nicely illustrates� by means
of a rather famous case� what may happen when only integral expressions�
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Figure �� Maxwell�s equations

and not their partial�di�erential relatives� are available� Many readers will be
familiar with �Maxwell�s equations� for electromagnetism 
Figure �
� These
four� partial di�erential equations came to have something like their present
form by the early ����s� and had in fact been produced by Heinrich Hertz and
Oliver Heaviside nearly a decade before that�

The second of these partial di�erential vector equations is often called the
�Amp�ere Law� because it determines the magnetic �eld and� therefore� the
mechanical forces that one closed� current�bearing circuit exerts on another
one� As presented above the law also contains a term in the rate of change of
the E 
electric
 �eld with time� indeed a very famous term� for it was the one
said to have been introduced by Maxwell himself sometime around ������� It
represents the so�called �displacement current� 
here in vacuo
�

There are many interesting aspects to this story� but I want to concentrate
on one only� Physicists often ask why it took so long for their ��th century
predecessors to realize that the �Amp�ere Law� actually had to have this extra
term in it� for otherwise it would be in con�ict with the long�known� elementary
fact that open currents can produce collections of charge� i�e� with the continu�
ity equation that links changing charge density to electric current� Speci�cally�
if we write the �Amp�ere Law� without the extra term and just take its di�
vergence� we see at once� that� in virtue of the continuity equation for charge�
charge density could never change anywhere�
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which� in virtue of the �rst Maxwell equation� is just the equation of continuity�

Clearly� inserting the �displacement�current� term into the Amp�ere Law solves
our problem� Why then did it take so long for physicists to see the problem
and to resolve it by this straightforward� essentially mathematical maneuver�
The short answer is rather simple� In order to know that a problem of compat�
ibility exists you must in the �rst place have the Amp�ere Law in this form� i�e�
as a partial�di�erential expression� Neither Maxwell nor anyone else did until
the late ����s� speci�cally ����� when Maxwell �rst began explicitly to pro�
duce integral forms of �eld equations for electrodynamics� Until then the pre�
vailing view in Britain among the mathematically�minded held that Amp�ere�s
force� law� which had originally been developed for interactions between cir�
cuit elements� had no intrinsic physical meaning� and that the only physically�
signi�cant expression was obtained by integrating the elementary interaction
about two closed circuits� That is� only integral expressions of the interaction
were taken� in Britain� to be signi�cant� Under such a view the problem of
compatibility between the equation of continuity simply did not exist�

The issue arose only when� in ���� and later� Maxwell began further to de�
velop the �eld approach to electromagnetism� which considered all actions to
take place through point to point in�uence� and therefore to have its true and
proper representation in partial di�erential equations� Such expressions� and
not their integral forms� were now taken to be fundamental� Under these con�
ditions the compatibility problem did exist� and Maxwell even acknowledged
a form of it in ���� � but at the time he speci�cally limited his analysis to
closed circuits� so that� even then� the problem did not exist in anything quite
like its stark� modern form� In fact� recent historical work has shown� I think
quite persuasively� that Maxwell�s �displacement current� did not emerge out
of considerations grounded in the formal structure of the emerging �Maxwell
equations�� but rather out of Maxwell�s engagement in the early ����s with a
mechanical model for the medium whose behavior constitutes the electromag�
netic �eld� Here� one might say� mathematical structures were bound to� and
derived their signi�cance from� physical considerations�

Mathematical were� as this case illustrates� hardly neutral in what they had
to say about the physical assumptions of those who used them� and what they
could and were used to do� Indeed� the particular mathematics used� and even
the precise mathematical moves made� may be tightly bound to the underlying
physical imagery� My �nal example� which concerns Heinrich Hertz� illustrates
this and other points concerning the relationship between ��th century math�
ematics and physics rather well�

In order to follow what I want to say about Hertz we must begin with his
mentor� Hermann von Helmholtz� This is not the place to go into details� but
it is important for us to see that Helmholtz� particularly after �� �� based his
physics and its correlated mathematics on the notion that interactions between
objects are determined by only two things� �rst� the states of the objects at
a given instant� and second� the distance between the objects at that same
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moment� These states are for the most part not considered to be reducible
to anything else	 they are qualities of objects that can be assigned numerical
values� 
Such� e�g�� as a state of charge or a state of conduction� or even a state
of strain�
 Then� according to Helmholtz and his group� which included the
young Heinrich Hertz after �� �� a particular interaction is represented by a
so�called potential function that embodies 
albeit not unproblematically
 the
energy stored in the bipartite system formed by the objects in particular states
at a given distance from one another�

There are two aspects to this way of thinking and working that I want now to
illustrate� First� the insistence on the bipartite character of all interactions car�
ried with it the consequence that� in many instances� mathematical structures
were not to be deployed in traditional ways even for problems that bore close
similarities to ones that were thought already to be well understood� Second�
the emphasis on �nding appropriate potential functions� though constraining
in certain circumstances� also provided mathematical tools that a resourceful
young investigator like Hertz could deploy where others� as we shall see� could
perceive no way forwards�

The Hertzian episode that we shall examine involves elasticity� and as for�
mulated by him it was not a traditional one in this by then 
the ����s
 highly�
mathematical subject� Hertz� always particularly interested in bipartite inter�
actions� wanted to �nd out what deformations occur� and what stresses arise�
when two bodies are pressed together either by an external force or by forces of
impact� Traditional problems in elasticity involved only one deformable body	
what the body touched was considered to be immutable or simply to be given

as� for example�� a wall with a �exible beam embedded in one end� or a sphere
whose surface is subject to a given stress
� The kind of problem Hertz had
in mind was di�erent� and it required him to invent some way to retrieve a
simulacrum of the usual situation from his own in order to deploy the mathe�
matics of stress that he had learned from the contemporary German master of
elasticity� Gustav Robert Kirchho�� This was not simple to do	 and Kirchho��
reading essentially with a mathematician�s eye� did not like what he saw�

Hertz had �rst of all to create a system of coordinates that� on the one
hand� would express the contact of the two bodies as they press together� and�
on the other hand� that could also be used to calculate stresses and defor�
mations� These two desiderata do not mesh nicely� The former 
expressing
bodily contact
 demands a system that depends upon the relation between the
two bodies	 the latter 
calculating stresses and deformations
 demands a �xed
surface for boundary conditions� These requirements are in apparent con�ict
because the one seems to demand a moveable system of coordinates� whereas
the other seems to require a �xed one� and this was no doubt one reason for
the comparative neglect of the problem among traditional elasticians�

Hertz�s clever solution� which would not 
and in fact did not
 appeal to
rigorous elasticians� was this� he made the system of coordinates itself approx�
imate and mutable	 he made it something that depended upon the physical
character of the interaction� This was not an easy solution� as is amply evi�
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dent from Kirchho��s having required Hertz extensively to rewrite his initial
explanation of it� The essential idea was this� When two elastic bodies press
together� Hertz argued� the resulting deformation will usually be limited to a
small region near their surface of contact� Far away from that region they will
remain undeformed� but not unmoved� these far regions will move closer to�
gether very nearly as rigid bodies� So� Hertz decided� the appropriate thing to
do is to introduce two systems of coordinates� Each system is rigidly connected
to the undeformed region of one of the two bodies and moves with it� As the
bodies press together� then� their respective systems of coordinates also move
together through some distance� and one goal of the theory was to �nd a way
to compute that distance�

It happens that the original manuscript for the article that Hertz wrote to
do so exists today� and it is covered with emendations written by Kirchho��
who examined the piece for possible inclusion in Borchardt�s Journal f�ur die

reine und angewandte Mathematik� Much of the original passage in the MS was
actually crossed out by Kirchho� and then entirely rewritten by Hertz� Hertz�s
original wording had treated the new coordinate systems as conveniences for
calculation and explained very little about them� The new one carefully ex�
plained them� Kirchho�� with the late ��th century mathematician�s eye for
rigor� had insisted on a much more careful explanation of what were� after all�
entirely novel and admittedly approximate coordinate systems� It was not that
Hertz introduced an approximation after having laid out the exact conditions
of the problem� which was the traditional procedure� Rather� he began with
an approximation for the problem�s elementary mathematical structure� This
was evidently su�ciently novel to be disturbing to a rigorous elastician like
Kirchho��

Kirchho��s emendations did not cease here� There was one other paragraph
of this kind which Hertz did not �nd it easy to accept� For Kirchho� insisted on
very large alterations indeed to Hertz�s mathematics� or� better put� he insisted
on Hertz putting in mathematics that was missing� that Hertz had jumped over
via qualitative argument� The nub of Kirchho��s objection was� it seems� this�
Aside from the complexity introduced by his novel coordinate�systems� Hertz�s
analysis had the following structure� He �rst provided a partial�di�erential
equation and a set of boundary conditions� He then 
following what was by this
time becoming his common practice
 introduced a possibly�suspect 
because
unexamined
 potential function and went from that function directly� that is
without analytical proof of any kind� to expressions for the elastic displace�
ments� arguing along the way that the relevant conditions of the problem were
ipso facto satis�ed� Kirchho� rejected almost all of Hertz�s original argument
here and himself wrote out several pages of direct analytical demonstration�
but reaching in the end precisely the same results that Hertz had� Kirchho��s
emendations were used by Hertz verbatim in the printed version� without any
mention that they di�ered considerably from what he had originally submitted�

This episode goes beyond the speci�cs of the Hertz�Kirchho� disagreement
and has something to tell us about relations in late century� in Germany at
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least� between someone focused on experiment and the generation of empirical
novelty� and someone focused more on mathematical rigor� Despite the fact
that Kirchho� had himself done seminal work in producing the laws for radi�
ant energy� by the ����s he was preeminently concerned with the development
of rigorous mathematical structures� particularly in the theory of elasticity�
Indeed� Boltzmann wrote of Kirchho� that he strove to �avoid bold hypothe�
ses�� to �build equations that correspond to the phenomenal world as truly as
possible and quantitatively correctly� unconcerned with the essence of things
and forces�� This forms a striking contrast to Hertz�s� and indeed to Kirch�
ho��s close friend and colleague� Helmholtz�s� attitudes� For neither of them
was at all concerned to avoid �bold hypotheses�� and both had� if not a lax�
nevertheless what one might characterize as an instrumental attitude toward
mathematics�

Historians generally do not much like to draw lessons from history	 the
past is for the most part so di�erent from the present that it is dangerous to
make comparisons� and I will not violate this professional canon� The entire
organization of science and mathematics� its scale� its connections with the
broader social and cultural polity� are today considerably di�erent from what
they had been in most European countries in the ��th century� Physics it�
self has evolved in ways that make the sorts of experimental discoveries and
mathematical analyses produced by Hertz� working almost entirely alone� or
Fresnel� who produced wave optics in still more primitive conditions� nearly
inconceivable today outside� at least� of certain areas of mathematics itself�

During the ��th century� as in the previous two� most mathematical work�
as well as most work in quantitative natural science� was not inherently col�
laborative� and it tended also to be comparatively homogeneous� Although
mathematicians and natural scientists have� since the origins of the modern
way of thinking and doing in the � th century� always had other practitioners
in mind� nevertheless they rarely worked together� though there are several no�
table exceptions� In experimental work� which �rst became widespread near the
end of the ��th century� the investigator usually had assistants� but he rarely
had collaborators� Work on paper was even more isolated� at least in a punc�
tual fashion� in that investigators as it were came into one another�s individual
spaces primarily through correspondence and the occasional formal meeting�
This began to change� at �rst in France� towards the end of ��th century� and
the existence of departments and institutes in Germany by the middle of the
��th century made close and ongoing contact between investigators much more
common� Nevertheless� throughout most of the century fundamental work in
both physics and mathematics still tended to be done in this punctually isolated
fashion�

This is no longer generally so� at least in physics� and to some extent
in mathematics as well� The near�instantaneity of electronic communications
has displaced the old� stately world of preprint circulation	 results are spread
rapidly� and isolation has become comparatively rare� Fresnel would not today
work alone at an optical bench	 he would be part of a large� nicely�funded
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team� and his apparatus would no doubt cost several billion dollars� while he
would certainly not have bothered developing clever numerical techniques for
integrating his equations	 he would have used a computer� Many of us have�
and will continue to� bene�t from these changes� In any case we live in this
new world and cannot take ourselves out of it� It has clearly produced changes
in the ways in which physics and mathematics are practiced� perhaps even in
the meaning of what it is to make a novel discovery� Whether these changes
are good or bad is not a question for a historian to answer� but I will say this
much� For me� the world of the ��th century physicist and mathematician has
a deep� even profound sort of attraction� It was a world in which the individual
stood a good chance of making a signal contribution to physics or mathematics
without being a member of a heterogeneous team engaged in a mega�project
of some sort� It was a world in which one person� working essentially alone�
could create an altogether new way of thinking and working� That� I think� is
an unlikely event today� There may be no Hertz or Fresnel or even Einstein
for the �st century historian� though there may still be a Hilbert or Riemann
or Klein�
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