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This talk is a survey of two topics of recent interest in mathematical logic	 namely
linear logic and cardinal characteristics of the continuum
 I shall try to explain
enough about each of them to be able to point out how they are connected

Since the underlying ideas of the two topics are quite di�erent	 I regard the
existence of a connection as surprising


�� Linear Logic

What does an implication� A� B� mean� According to classical logic� A� B

is true if and only if either A is false or B is true �or both�� This is regarded as
specifying the meaning of implication because� quite generally� classical logic
�nds the meaning of a statement in the conditions for its being true�

According to constructive logic� as developed by Brouwer and Heyting� a
proof of A � B is a construction converting any proof of A into a proof of
B� This is regarded as specifying the meaning of implication because� quite
generally� constructive logic �nds the meaning of a statement in what is required
to prove it�

Two close relatives of the Brouwer�Heyting interpretation of implication are
Kolmogorov	s interpretation in terms of problems and the Curry�Howard inter�
pretation in terms of types� Kolmogorov regarded statements as representing
problems and interpeted A� B as the problem of reducing B to A� i�e�� of solv�
ing B given a solution of A� Curry and Howard pointed out a correspondence
between logical systems and type theories� where propositions correspond to
types �which can safely be regarded simply as sets for the purposes of this talk�
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and A � B is the type of functions from type A to type B� If we identify a
proposition with the type of its proofs �and identify constructions with func�
tions� then the Curry�Howard correspondence amounts to the Brouwer�Heyting
interpretation�

The Curry�Howard corespondence has been of interest recently in theoreti�
cal computer science� where one deals with data types and where A� B could
be the type of procedures with a formal variable of type A and a value of type
B�

The preceding comments about implication have analogs for other connec�
tives� For example� the conjunction A � B is de�ned classically as being true
whenever both A and B are true� It is de�ned constructively by saying that
to prove A � B one must give a proof of A and a proof of B� Under the
Curry�Howard correspondence� conjunction becomes the cartesian product of
types�

The �rst central idea of linear logic� introduced in the mid��	s by Girard�
is to keep track of how often a hypothesis is used in deducing a conclusion�
equivalently �via the Curry�Howard correspondence� one keeps track of how
often an input is used in computing an output� This and related concepts
seem �to me� more intuitive in the context of �ability to perform actions�
rather than �knowledge of facts�� for knowledge is �normally� permanent and
re�usable while abilities can be limited in the sense that someone who can do A
and can do B may not necessarily be able to do both� Although it is unclear in
the context of traditional set theory what it would mean for a function to use
an argument a particular number of times� the notion is considerably clearer
for algorithmic procedures �and is useful for memory management��

The formal development of linear logic is based on a sequent calculus� In
traditional logic� � � �� where � and � are lists of statements� means that the
conjunction of the statements in � entails the disjunction of the statements in
�� The �rst step toward linear logic is to abolish the rule of contraction�

�� A�A � �

�� A � ��

which formalized the idea that hypotheses can be re�used� One hypothesis A
is as good as two copies of it� The removal of the contraction rule results
in a system called a�ne logic� In it� a sequent � � � carries the additional
information that each hypothesis is to be used at most once�

Linear logic is obtained from a�ne logic by also abolishing the rule of weak�
ening�

� � �

�� A � ��

which formalized the idea that a hypothesis can be ignored� In linear logic�
� � � requires that each hypothesis in � is used exactly once�

There is also a non�commutative version of linear logic� abolishing the rule
of exchange�
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��� A�B��� � �

��� B�A��� � ��

Then � � � requires that the hypotheses be used in the order listed�
Girard and others have developed linear logic quite extensively� especially

its proof theory� but considerably less is known about non�commutative linear
logic� From now on� I shall talk only about the commutative system�

Linear logic	s insistence that hypotheses be used just once raises a question
about the meaning of conjunction� Should one use of A and one use of B
constitute one or two uses of A�B� Girard	s answer is that there are two sorts
of conjunction� for which he introduced the notations A � B and A�B� One
use of A � B consists of a use of A and a use of B� One use of A�B consists
of one use of A or one use of B� whichever the user wants� �Notice here the
beginning of an interaction between the hypotheses and a �user��� These two
conjunctions are governed by the rules of inference

� � A � � B

� � A�B

� � A � � B

��� � A�B
�

�These rules would be equivalent in the presence of contraction and weakening��
The interaction alluded to above� between a user requesting information and

hypotheses supplying information� or� in more customary terminology� between
questions and answers� leads to the second central idea of linear logic� namely
linear negation� the operation that interchanges questions and answers� An
answer of type A� is a question of type A and vice versa�

There have been several attempts to model semantically this sort of interac�
tion� I introduced a game semantics� where propositions �or types� are modeled
by games� whose rules specify how the questioner and answerer are to interact�
This semantics was modi�ed by Abramsky� Jagadeesan� Hyland� and Ong to
improve its correspondence with Girard	s proof theoretic system�

I shall not discuss these developments further here but instead concentrate
on a simpler semantics� a special case of de Paiva	s �Dialectica�like� semantics�
Here a proposition is represented by a triple A � �A�� A�� A� where A� is
the set of �questions of type A�� A� is the set of �answers of type A�� and
A � A��A� is a binary relation holding between any question and its �correct�
answers�

By a morphism from A to B� I mean a pair of functions � � B� � A� and
� � A� � B� such that� for all b � B� and a � A��

��b�Aa� bB��a��

In the presence of such a morphism� if you can answer questions of type A�
then you can also answer questions of type B� given a question in B� convert
it with � into a question in A�� produce an answer in A�� and convert it with
� into an answer in B� for the original question�

Linear negation is modeled by interchanging questions and answers and
interchanging correct and incorrect�
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A
� � �A�� A��	 �A��

The connectives � and � are modeled by

A�B � �A
B�

�
�B

A�

�
� A� �B��K��

where �f� g�K�a� b� i� f�b�Aa and g�a�Bb� and

A� B � �A�B��� � �A� �B�� A
B
�

�
�B

A�

� � C��

where �a� b�C�f� g� if either not f�b�Aa or bBg�a�� �In using the notation �� I
deviate from the standard notation for this linear implication� Unfortunately�
the standard notation� a dash with a little circle at the right end� is not in
standard TEX�� One pleasant consequence of these de�nitions is that a mor�
phism A � B is an answer �f� g� that is correct for every question �a� b� in
the sense of A � B� De Paiva showed that� with suitable interpretations for
the remaining connectives� Girard	s proof system is sound for this semantics�
In addition� as we shall see in the next section� parts of this semantics arise
naturally in a quite di�erent context�

�� Cardinal Characteristics of the Continuum

One of set theory	s earliest and most useful contributions to the rest of math�
ematics was the distinction between di�erent in�nite cardinals and especially
the distinction between countable in�nity �
�� and the cardinality of the con�
tinuum �c � 
���� This made it possible to do things in some in�nite situations
�countable ones� that would be impossible for continuum�sized ones� Examples
include the Baire category theorem and the countable additivity of Lebesgue
measure� Whenever� as in these examples� 
� and c behave di�erently� one can
ask where between these the behavior changes� Of course� if one believes the
continuum hypothesis �CH�� i�e�� c � 
�� then this question is trivial� But it
is consistent with the usual axioms of set theory �ZFC� that there are �many�
cardinals between 
� and c� and then it is reasonable to consider cardinals like
the following�

� cov�B� is the minimum number of meager sets �countable unions of nowhere
dense sets� whose union is R� �The �B� stands for Baire��

� add�B� is the minimum number of meager sets in R whose union is not
meager�

� d is the minimum number of functions N � N needed to eventually domi�
nate every such function�

� b is the minimum number of functions N � N such that no single function
eventually dominates them all�

These and many other cardinal numbers of a similar nature are called cardinal
characteristics of the continuum� and many connections �mostly inequalities�
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are known between them� there are also many independence results saying that
di�erent values of these characterisitics are consistent with ZFC�

For the cardinals de�ned above� the provable inequalities include


� � add�B� �

�
b

cov�B�

�
� d � �

�
� �

The characteristics for Baire category de�ned above have analogs for Lebesgue
measure� just replace �meager� with �measure zero� in the de�nitions and re�
place �B� with �L� in the notations� It is a surprising theorem of Bartoszy�nski
that add�L� � add�B�� This inequality �like each of the inequalities exhibited
above� can consistently be strict and can consistently reduce to equality�

The de�nitions of many of the cardinal characteristics and the proofs of
many of the inequalities between them �including all those mentioned above�
�t into the following framework� apparently �rst used by Miller and Fremlin
and explicitly formulated by Vojt�a�s�

For two sets A� and A� and a relation A � A� � A� �as in de Paiva	s
semantics described in the preceding section�� de�ne

k�A�� A�� A�k � minfjZj j Z � A�and��x � A���z � Z�xAzg�

Such �norms� include all the characteristics de�ned above�
Let M be the set of meager sets �or codes for meager F� sets�� Then

cov�B� � k�R�M���k�

add�B� � k�M�M� ���k�

Let �� be the eventual majorization ordering on NN � Then

d � k�NN �NN ����k�

b � k�NN �NN � ����k�

If there is a morphism A � B then kAk � kBk� All the inequalities
mentioned above can be deduced from this general fact by constructing explicit
morphisms� Since the inequalities all become trivial when CH holds� I once
hoped that the existence of morphisms might remain non�trivial and capture�
even in the presence of CH� the essential content of the proofs of the inequalities�
Yiparaki showed that this is not the case� CH provides morphisms as well
as inequalities� But it does not provide Borel morphisms �i�e�� morphisms
whose components � and � are Borel functions�� while the usual proofs of the
inequalities do produce Borel morphisms� So at the moment� Borel morphisms
seem to capture the essence of the usual proofs of these inequalities�

There are a few known inequalities involving three cardinal characteristics�
A nice example� due to Miller� is

add�B� � minfcov�B�� bg�
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�The reverse inequality follows from those displayed earlier�� The proofs of
this and similar examples can be formalized in terms of morphisms to objects
constructed by means of �the dual of� the following �sequential composition�
connective�

A�B � �A� �B
A�

�
� A� �B�� S��

where �x� f�S�a� b� i� xAa and f�a�Bb� This is closely related to de Paiva	s
interpretation of the � of linear logic� but it is not commutative� In fact� the
order of sequential composition is crucial in proofs of inequalities like the one
above� It essentially corresponds to the order of arguments and constructions
in proofs of inequalities� In many cases� it also corresponds to the order in
which forcing constructions should be iterated in order to produce models with
certain special properties� In other cases recently studied by Mildenberger�
forcing cannot detect the order of steps� or even the need for several steps� but
subtler� combinatorial arguments can�
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