
Volume � ��� ����	 pp
 ��� 
 ���

Unconstrained Constraint Programming

J�E�A� van Hintum

CWI� Department of Interactive Systems

P�O�Box ������ ���� GB Amsterdam� the Netherlands

e	mail
 hansh�cwi�nl

The expressive power and usability of a constraint system depends on two things�
the degree in which the constraint system is suited for the environment it is used
in and the ease with which a programmer may adapt the behavior of the con�
straint system to his own needs
 This article will show that theMade constraint
system is very well suited for the environment it is designed for �multimedia appli�
cations� and that the programmer is able to adapt the behavior of the constraint
system on all its three important tasks� triggering	 propagation and satisfaction

A central role in this article is played by the constraint network as this is also
the central part of the constraint system
 The more a programmer is able to
tune the action performed by the constraint system on the constraint network	
the more expressive constraints can be de�ned by that same programmer


�� Introduction

This paper discusses the constraint system developed for the Made program�
ming environment� Constraints can be of great practical use in multimedia
applications� but only if they are designed correctly for use in the multime�
dia area� Then� a multimedia constraint system may signi�cantly reduce the
amount of work needed to construct a multimedia application� constraints have
to be declared and de�ned once and are maintained automatically in every sit�
uation and at all times� This improves readability and maintenance of the
application� Made is a dedicated object oriented� multimedia programming
environment using the programming language mC�� �based on the C�� pro�
gramming language	 which provides the programmer with tools and utilities to
write multimedia applications easily� For a detailed description of Made the
reader is referred to 
�� �� �
� ����

The objective of theMade constraint system is to provide constraints which
do not require any adaptations to the objects which are to be constrained� This


��



means� that whenever a programmer wants to constrain a number of objects�
the speci�cation of these objects remains untouched� The programmer only
has to de�ne the new constraint objects and activate the constraint system�
This can be realized by delegation� which allows for the dynamical change of
the behavior of a member function without the requirement that the code of
the original function has to be adapted or prepared for this��

This discussion will be focused on constraint networks as these constraint
networks belong �among others	 to the most important parts every constraint
system� In section � the general concepts of constraint networks and satis�
faction methods within these networks are presented� Section 
 will relate
these general concepts to the requirements for constraint systems that stem
from multimedia environments� In section �� a concrete constraint system for
a multimedia environment� the Made constraint system� is discussed in de�
tail� Subsections will� consequently� deal with the terminology� construction�
propagation� triggering� solving and synchronization in and of the constraint
network� In section � some conclusions are drawn from this text�

�� Constraint Systems in General

Constraints specify dependency relations between �things�� The nature of these
�things� very much depends on the environment in which the constraints are
used� Typical areas in which constraints are used are user interface control

�� �
� �with check�buttons� radio�buttons� bars� boxes� etc�	� geometric layout

��� ��� ��� �with circles� rectangles� lines� points� etc�	� animation 
�� �with
timetables� sprites� still images� palettes� etc�	 and media synchronization 

�
��� �with timetables� media objects� error functions� etc�	� However� the precise
nature of these �things� is not relevant for this discussion� in the remainder
of this text� we will address these �things� as objects and assume that each
object has at least one property which has a value that can be changed in
some way by another object� A dependency relation is assumed between the
values of at least two properties� A dependency relation which is maintained
automatically by the constraint system is called a constraint� This maintenance
of the constraints is by the constraint system is done using constraint objects�
Constraint objects are imperative re�ections in a programming language of
the abstract notion constraint� Most constraint systems have organized the
constraint objects in one or more networks �which are called constraint networks
or constraint graphs	� Often� the objects whose properties are constrained �i�e�
the objects from which a property value is involved in a dependency relation	
are incorporated in the constraint network as well� Whenever the value of
a property which is incorporated in the constraint network is changed� the
constraint system has to make sure all constraints still hold� If this is not so�
the constraint system has to satisfy the constraints� Because of this constraint
satisfaction� the values of other properties may change� when their objects are
stored in the constraint network� the constraint system may have to satisfy

� In the Made environment all member functions can be delegated and delegated to�



�



other constraints in which these objects are involved as well� A constraint
network is said to be over�constrained if not all constraints in the network can
be satis�ed due to con�icts in the dependency relations� A network is said
to be under�constrained if the whole network of constraints can be satis�ed in
more than one way�

Nowadays� several constraint systems exist� These systems di�er mostly
in the type of constraint network they build and in the methods they use to
satisfy the constraints in the constraint network �satisfaction methods	� In the
remainder of this section we will discuss several satisfaction methods �section
���	 and di�erent kinds of constraint networks �section ���	�

���� Classi�cation of Satisfaction Methods

At present there are six prevailing satisfaction methods 
�� �� �� ��� ��� ���
�ignoring the satisfaction methods which are used in Arti�cial Intelligence 
���
���	� In this section each of these methods will be presented�

Propagation of known states �or Local Propagation	 is a satisfaction
method which propagates the results of constraint satisfaction one by one
through the nodes of the constraint network� Propagation of known states
is a satisfaction method which looks for one�step deductions� The constraint
system will look for constraints which can deduce new property values us�
ing only the already satis�ed constraint objects in the constraint network
�initially no constraint object is satis�ed and only the changed property
value can be used	� These constraints will then be satis�ed and added to
the part of the constraint network that is identi�ed as the part where the
dependency relations hold� This process continues until all constraints are
known to be satis�ed� If� however� not all constraints are satis�ed and none
of these constraints can be satis�ed in one step� this satisfaction method
will fail �and another� stronger method should be used	�

Propagation of Degrees of Freedom is a method which tries to prune as
many constraints as possible from the constraint network� The rationale
behind this scheme is the following� when the values of the properties of cer�
tain objects in the constraint network only depend on a few other property
values and if the former values can be computed once the latter collection
of values is known� all former objects �and their constraint objects	 can be
pruned from the constraint network� The constraint system will now only
consider the smaller �pruned	 constraint network� This reduced network
can be pruned repeatedly until no part of the network can be found to
prune� The remaining constraint network then has to be satis�ed using an�
other technique after which all the pruned parts can be satis�ed �in reverse
order	�

�Numerical	 Relaxation is a technique which is� usually� used when other
techniques �like propagation of known states	 fail to solve the problem�



�



This technique is also often used to solve cycles in the constraint network�
A prerequisite for the constraints to be relaxed is that they can be ap�
proximated by an equation �otherwise� even relaxation may fail to �nd a
solution and enter a never�ending loop	� Relaxation starts with guessing
an initial value for a property value� Using this initial value� the constraint
system satis�es the constraint network� After that� the constraint system
estimates the error of the initial guess �using the initial property value and
the computed property value	 and adjusts it using a linear function� The
adjusted value is taken as new initial guess and the constraint system starts
satisfying the constraint network again� This process is repeated until the
estimated error reaches a level lower than some prede�ned threshold� Be�
side the fact that this approach may take a long time� it may �nd only one
solution �where several may exist	�

Redundant View is not really a technique� it does not de�ne a way in which
information is propagated through a constraint network� A constraint sys�
tem which supports redundant views can choose among alternatives� Re�
dundant views are di�erent descriptions for the same dependency relation�
These redundant views may be helpful in two ways� �	 the constraint system
may deduce several property values from one other property value �given
the relations C � K � ��
� C � ����F � 
�	 and a value for C� the values of
both K and F may be computed	 and �	 the constraint system may com�
bine several dependency relations in order to deduce other property values
�given the above mentioned relations and a value for K� then the value of
F may be deduced from K � �����F � 
�	 � ��
	�

Prototyping is a technique that is based on the class hierarchy system� A
prototype contains methods and data which are used by several instances
of the prototype� By changing a method of a prototype� the behavior of all
the instances of the prototype is also immediately changed� Similarly� the
data of a prototype can be used to represent common properties� Changing
this data� the properties of all the instances are changed� Using one of these
methods� it is possible to do constraint programming� the behaviour of the
instances can be constrained by changing the methods or the values of the
data of the prototype� A di�erence with the class hierarchy mechanism is�
that there is no di�erence between the generator �i�e� the class	 and the
generated objects �the instances	� a prototype can be generator as well as
generated object�

Graph Rewriting andTermRewriting are both techniques which are based
on the dynamic alteration of �a copy of	 the constraint graph� Using the
rewrite technique� the constraint system starts with that part of the con�
straint graph which has been changed� The constraint system tries to
match subgraphs against a set of prede�ned rewrite rules� When the left�
hand side of such a rule matches the subgraph� that subgraph is replaced
by the right�hand side of the rewrite rule� This process is repeated until



�



no rule matches anymore� Rewrite rules may contain variables� patterns
which are �lled in during matching and applied during rewriting� The dif�
ference between term rewriting and graph rewriting is the fact that graph
rewriting can share subgraphs� within a graph several pointers to the same
subgraph may exist� When this subgraph is rewritten once� it is rewritten
for all its referees� Term rewriting does not know the notion of subterm
sharing� if the same subterm occurs more than once in a particular term�
this subterm has to be rewritten for every occurrence��

Constraint systems may combine several of the above mentioned methods
to be able to solve a variety of constraint networks� Redundant Views and Re�
laxation even require the presence of another technique because those methods
will� generally� not be able to solve arbitrary networks on their own� When
a constraint system has several satisfaction methods at its disposal� it may
sometimes choose which method to apply and even try another method when
the �rst choice fails�

���� Classi�cation of Constraint Networks

Constraint networks used by the di�erent constraint systems can vary in several
aspects 
�� �� ��� ��� ��� ��� ���� Most of these aspects deal with the nature
of the dependency relations� In the remaining part of this section� important
aspects of constraint networks are discussed�

Dependency relations can be directional�a�directional

The distinction between directional networks and a�directional networks is
also known as the di�erence between uni�directional and multi�directional
or one�way and multi�way systems� In directional �uni�directional	 systems�
the dependency relations between objects are directed� the property value
of one object in�uences the property value of another object �but not vice
versa	� In a�directional �multi�directional	 systems� the dependency rela�
tion has no speci�c direction� the property values of the di�erent objects
can in�uence each other� they are mutually dependent�

The fact that a constraint system supports a�directional constraint net�
works does not automatically imply that directional relations are supported
as well� directional and a�directional networks represent two totally di�er�
ent approaches�

Dependency relations may�may not form a cycle in the constraint network

Some constraint systems support cyclic structures in the constraint net�
work� Usually� the constraint system provides tools to satisfy the cycle and
tools to break the cycle�

� Note that Graph Rewrite Systems may produce di�erent results compared with Term

Rewrite Systems� Consider the rewrite rules

arg � �� arg � �� farg � arg � arg

For farg the GRS may produce either the result � or � whereas the TRS may produce

either �� � or � as both subterms arg are rewritten independently�








Dependency relations are weighted�have all equal priority

In non�priority systems �where the dependency relations have equal prior�
ity	 constraints are satis�ed without any distinction between the di�erent
constraints� In priority systems� the goal of the constraint system is to sat�
isfy the constraints with the highest priority �rst� After this is done con�
straints with a lower priority are satis�ed� The priority of a constraint may
vary from two to in�nity� When a constraint network is over�constrained�
the system will try to satisfy at least the most important constraints �those
with the highest priority	� In case of an under�constrained network� no
unique solution exists� Often the Result of Least Astonishment is used�
property values are chosen such that their value stays as close as possible
to the original value�

Dependency relations are ���� ��m or m�m

Some constraint systems allow only dependency relations that connect one
object on the one hand and a second object on the other hand ���� re�
lations	� These systems are sometimes called single�dependency systems�
Multi�dependency systems are systems which allow dependency relations
between one object on the one hand and several other objects on the other
hand �and vice versa	 or a number of objects on the one hand and several
objects on the other hand ���m� m�� and m�m relations	� The di�eren�
tiation between ��m and m�� relations can only be made in directional
systems�

A network is static�dynamic

When the constraints in the network have to be speci�ed in advance �i�e�
at compile�time	 the system is called a static constraint system� In static
constraint systems� constraints may neither be added or deleted nor acti�
vated�deactivated at runtime� In dynamic constraint systems� constraints
may be added� deleted� activated or deactivated at any moment at runtime�
Because of that� the constraint system must adjust the other constraints in
the network when one of the above�mentioned operations is performed�

A network is solved incremental�at once

An incremental constraint system will solve the constraints one by one�
i�e� �rst one constraint is considered and satis�ed before the system looks
at any of the other constraints� When a constraint is solved� the condi�
tions of the other constraints are narrowed� This means that the number
of possible solutions to satisfy the other constraints is reduced �similarly�
when a constraint is disregarded to search for other possible solutions� the
conditions of the other constraints are widened	� Other constraint systems
may consider all constraints at once and look for a solution which satis�es
all the constraints immediately �e�g� a system which tries to �nd a solution
for a set of �in	equations using matrices	�



�



A constraint system uses one�several constraint networks

Some constraint systems make a distinction between the network which
contains the dependency relations between the di�erent objects and the
network which contains the values computed by the constraint system� In
that case� the former network contains control information whereas the
latter network is used as data�scratch area�

As with the satisfaction methods� constraint systems may combine several
of the aforementioned aspects�

�� Constraint in Multimedia

The aspects of constraint systems mentioned above are a summary of available
types of constraint systems� In this section the relevance of the di�erent types
of systems to multimedia applications is examined� Multimedia applications
deal with two notions of information� multimedia data and multimedia infor�
mation� Multimedia data consist of the raw media chunks �physical entities	
whereas multimedia information de�nes the context in which the multimedia
data has to be used �logical entities	� Multimedia applications try to de�ne�
manipulate and present spatial and temporal information� Multimedia infor�
mation de�nes the when� where and how� Multimedia data de�nes the what

��� Constraints work on the multimedia information to help the programmer
with the de�nition� manipulation and presentation of multimedia data�

Constraints in multimedia applications have special demands regarding the
constraint system� Because multimedia is an area in which many di�erent
kinds of objects need to be managed simultaneously� the maintenance of the
relations between all those objects can become a complex and di�cult task�
Consequently� it is more advantageous if multimedia constraints run parallel
with the ongoing presentation and disturb this presentation as little as possi�
ble� This will ensure a presentation of the multimedia data that is as smooth
as possible� There is another reason for constraints to be solved in parallel� As
di�erent parts of the multimedia presentation may run parallel to each other�
the constraint system should disturb this parallelism as little as possible and
should therefore solve the constraints per parallel part of the presentation in
parallel� Furthermore� as multimedia presentations are often interactive� mul�
timedia constraints should be capable of interactively changing the status of
the constraints and the constraint network� A further consequence of the inter�
active nature of multimedia applications is that the constraint system must be
dynamic� i�e� constraints may be added� deleted� activated and deactivated at
runtime� Another important requirement is that dependency relations are best
formulated in a declarative way� whereas the usual representation in the pro�
gramming language is imperative� Therefore� it should be possible to specify
multimedia constraints in a declarative way� after which the constraint system
translates the declarative dependency relations into an imperative equivalent�

From the observations outlined above and from the summaries presented



�



in the previous sections� the following evaluation of the di�erent satisfaction
methods for multimedia applications can be made�

� The method known as Propagation of Known States� in contrast with
most of the other methods� can solve constraints in a parallel environment�
Because multimedia applications often use parallel execution schemes� prop�
agation of known states seems a logical choice� Propagation of known states
is very well suited to interact with the user of a multimedia application on
the di�erent actions to be taken by the constraint system� Changes to
objects due to constraint satisfaction occur one by one and the user can
easily follow the propagation �and changes of the di�erent objects	 within
the constraint network�

� Propagation of Degrees of Freedom is a method which requires the
constraint network not to be altered during constraint satisfaction� When
a constraint is satis�ed� no other constraints may be added� deleted or
�de	activated in the constraint network� This restriction means that this
method can hardly be used in a parallel environment� The main application
would have to be stopped during constraint satisfaction� In multimedia
applications this would mean that �rst the presentation is stopped� then
the constraints are satis�ed and �nally the presentation is resumed� Such
an approach would lead to very jerky presentations�

Another drawback of this method is that interaction would be more prob�
lematic as whole subgraphs are satis�ed at once� This would mean that
the user cannot get a clear insight in what is going on the the constraint
network �even if such an insight is desired	�

� The method of Relaxation requires its constraints to be numerical� How�
ever� constraints in multimedia applications can be applied to all kinds of
objects and the demand to force all multimedia constraints to be translated
to numerical dependencies would restrict a multimedia constraint system
too much� Relaxation tries to change the current situation �in which some
constraints are invalidated	 smoothly into a situation where all constraints
are satis�ed �which� hopefully� leads to a smooth adaptation of the pre�
sentation	� However� relaxation is a time�consuming technique to obtain
constraint satisfaction and this would leave the presentation in an invalid
situation for too long�

� Redundant Views can be used very well in a multimedia constraint sys�
tem� They may even help the constraint system to �nd solutions for com�
plex problems� However� it is the programmer who has to provide the
multiple views� The constraint system cannot� in general� deduce redun�
dant views itself �this would lie in the scope of AI	�

� Prototyping can also be used in multimedia constraint maintenance� How�
ever� prototypes only provide support for simple constraints� All objects
generated from a particular prototype share the same behavior� Its main
use is for some kind of equivalence constraint �variables having the same
value� functions having the same functionality� etc�	�



�



� Graph and�or Term Rewriting may be used by a constraint system in
a multimedia environment� However� rewriting� like relaxation� is a very
time�consuming technique�

It is not only the particular satisfaction method that may be more or less
suitable for multimedia constraint satisfaction� but the di�erent constraint net�
works may also have their pro�s and cons with respect to multimedia constraint
satisfaction� The next paragraphs present the minimal requirements for a con�
straint network in a multimedia environment� From these requirements it is
possible to deduce what kind of features a constraint network� which is used in
multimedia environments� should support�

� Constraints in multimedia applications should support both� directional
and a�directional constraint networks� Directional constraints are necessary
to model directed dependency relations� i�e� one property value depends
on another property value but not vice versa� These kinds of relations
are� for example� necessary to model a grid �the position of the objects
depends on the grid size� but the grid size is not dependent on the location
of the various objects	� A� directional constraints are needed to de�ne
interdependent relations� i�e� property values are dependent on each other�
An example of a� directional constraints is the multiple view situation�
where the same information is presented in more than one way� When
this information is changed in an arbitrary view� the other views must be
adapted accordingly�

� It must be possible to form cycles of constraints in the constraint network�
When a presentation is made� this presentation is constructed using several
media objects like sound� video etc� In most cases� the duration of the
di�erent objects is related to the duration of another set of objects� Even
very simple presentations already have to deal with cyclic dependencies
with respect to the duration of the di�erent objects�

� Priority systems are very helpful in constraint systems� Due to the generally
large amount of constraints in multimedia systems� there are bound to be
constraints which are in con�ict with each other� A priority system is a
way of resolving these con�icts�

� Dependency relations in multimedia systems should be m�m relations� This
means that a set of objects may be connected to several other objects via
a constraint object�

The multiple view is an example of the use of m�m relations� It may be
obvious that multiple view objects are ��m relations� the same information
is presented in several ways� However� multiple view require the stronger
m�m relations� It is rather common that the information to be presented
is made out of information collected from several objects� Therefore� there
is a need for m�m relations�

� Dynamic constraint systems are almost vital for multimedia systems� As
the multimedia applications are by nature very dynamic� the constraints



�



imposed on the di�erent parts of the program should be as dynamic as
possible� This will restrain expressive power of the constraints as little as
possible�

� An incremental constraint system is probably the only real constraint sys�
tem which produces workable results because of the often complex struc�
tures in multimedia applications� Trying to solve the constraint network
all at once may be to time�consuming or even be impossible�

�� The Theory of Constraint Satiafaction in Made

In the previous sections the general aspects of contraint systems in multimedia
environments were discussed� At this point� the attention will be focused on a
concrete system� the Made constraint system�

In this section� �rst the concepts of the Made constraint system are dis�
cussed ����	� together with the rationale of the di�erent choices made in the
design of the constraint system ����	� After that� the building ���
	� triggering
����	� propagation ����� ���	� solving ����	� anti�triggering ����	 and synchro�
nization ����	 of and inside the constraint network is presented�

���� Concepts in the Made Constraint System

Constrainable objects in Made can be added to the constraint graph in two
ways� as dependent objects or as independent objects� Independent objects are
objects which may trigger a constraint object� i�e� they may indicate to a spe�
ci�c constraint object that the constraint maintained by that object may need
to be re�satis�ed because changes to the property values of the independent
object may have an impact on the property values of other objects� These
latter objects are called the dependent objects� It is important to note that
an independent object of one constraint object can be a dependent object for
another constraint object�

Whenever an independent object triggers a constraint object� the changes
to the property values are propagated by that constraint object to the depen�
dent object�s	� This propagation can be done in two ways� using either eager
constraints or lazy constraints� Eager constraints will propagate changes of
independent objects immediately to dependent objects� Eager constraints are
especially useful when changes have to have an immediate e�ect �for instance�
when a property needs to be displayed on an output device �like a screen� a
speaker� etc�		� Lazy constraints can be used as some kind of bu�er to the
propagation� They will only propagate changes to the dependent objects if a
dependent object requests such an update �if a request is issued but no propa�
gation is bu�ered� the dependent object will proceed as if the request was never
made	� Situations where lazy constraints can be useful is where objects have
to be aligned to a grid� When the grid�size changes� only newly placed objects
use the new grid�size and are aligned to the new grid� already placed objects
are unchanged�



�



The constraint network in Made is merely a means to propagate changes
of the independent objects to the dependent objects� Propagation is one of
the three main tasks of a constraint system� Another task is the triggering
of the constraint objects� Because Made provides an object oriented envi�
ronment� the objects in mC�� have to obey the OO paradigm� changes to
property values have to occur via the object�s interface� Thus every time a
constrained property value is changed� a member function of an independent
object is invoked� This enables the mechanism to trigger the constraint ob�
ject� The member function of the independent object which changes the prop�
erty value� and consequently triggers a constraint object� is called a triggering
member function� Dependent objects anti�trigger the constraint object via the
anti�triggering member function� Anti�triggering a constraint means that a de�
pendent object makes a request to a constraint object to update its property
values if necessary�

The actual maintenance of the constraints �i�e� adapting the property val�
ues of the dependent objects when the property values of the independent
objects have been altered	 is implemented by using delegation� The triggering
member functions of the independent objects and the anti�triggering member
functions of the dependent objects are delegated to special member functions
of the constraint object �so�called shadow functions	� When the application
invokes the �anti�	triggering member function� the runtime system will invoke
the shadow function instead� The purpose of these shadow functions is to
enable the constraint system to keep administration of the constraints in the
constraint network up to date� There are two types of shadow functions� inde�
pendent shadow functions �shadow functions for triggering member functions	
and dependent shadow functions �shadow functions for anti�triggering member
functions	�

The shadow function perform several actions� One of these actions is the
execution of the original �anti�	triggering member function� Furthermore� the
shadow function will activate a constraint function� The constraint function
is part of the third main task of the constraint system� satisfaction� In the
constraint function� the programmer speci�es the actions which must be per�
formed to maintain the dependency relation� Each constraint object must have
at least one constraint function associated with it�

���� Characterization of the Made Constraint System

The constraint system in Made is an a�priority dynamic incremental sys�
tem� using local propagation� that is capable of solving m�m� a�directional�
directional and cyclic relations� It combines the object oriented programming
paradigm� inherited from the mC�� language� and the declarative constraint
programming with multimedia considerations� This approach implies that the
constraint system has characteristics from both paradigms and has to make
concessions to both paradigms�

The Made constraint system uses the satisfaction method called propaga�



�



tion of known states� Although this may not be the most powerful satisfaction
method� it is the best possible option when the constraint system tries to solve
multimedia related constraints between objects which run parallel in di�er�
ent threads of control� It would be impractical to stop all objects for a while
to do constraint solving� This would be necessary if any other method than
propagation of known states is used�

The constraints in one thread are solved in parallel as much as possible too�
To do so� the constraint system creates separate threads for each constraint to
solve� Once the constraint is satis�ed the thread is destroyed�

The constraint system supports both directional and a�directional depen�
dency relations� Both directional and a�directional dependencies are realized
in the following hybrid approach� All dependency relations are directed in the
sense that the connection between �in	dependent objects and a constraint ob�
ject is always directed towards the constraint object� Invocation of the �anti�
	triggering member functions always activates the constraint object �due to
the delegation mechanism	� The a�directional aspect is realized by special con�
structs which allow a constraint object to check which independent object has
last triggered the constraint object� Depending on that result� the appropriate
actions can be taken�

It is also possible to de�ne cyclic constraint networks inMade � Constraints
in cycles are handled in a special way� Made does not use relaxation �because
relaxation is essentially limited to numerical problems	� Instead� the program�
mer has to de�ne the actions which have to be performed during the di�erent
satisfaction iterations of the cycle� During each iteration� di�erent actions may
be taken� As the constraint system does not know when a cycle is solved� it is
the responsibility of the programmer to make sure that termination is assured�

The constraint network can be altered dynamically� Constraints may be
added and deleted at runtime� The constraint system furthermore also supports
m�m dependency relations�

���� Building the Constraint Network

The �rst step for a constraint system is to construct a constraint network on
which it can work� An application programmer must provide this information
for such a constraint network� For this purpose the programmer must supply
the following�

� a programmer must supply the various constraint class de�nitions which
de�ne the various independent and dependent shadow functions which are
supported by the instances of this constraint classes�

This information only has to be provided once for a multimedia application�
The following information has to be provided for every dependency relation
which is to be constructed�

� a new constraint class instance and the name of the constraint function
which is going to be the active constraint function for that instance has to


��



be speci�ed�

� for each independent object of this constraint object the triggering member
function and the name of the independent shadow function must be given�
The name of the independent shadow function is optional� If not provided
the constraint system will assume the same name for the triggering member
function and the independent shadow function�

� for each dependent object of this constraint object the programmer must
specify the anti�triggering member function and the name of the dependent
shadow function� The name of both the anti�triggering member function
and the dependent shadow function are optional� If� however� a dependent
shadow function is speci�ed� the programmer also has to specify the name
of the anti�triggering member function� If the name of the anti�triggering
member function is speci�ed and no name for the dependent shadow func�
tion is provided� the constraint system will assume the same name for the
anti�triggering member function and the dependent shadow function�

Using this information� the constraint system is able to determine all the nec�
essary information which is needed to trigger� propagate and solve constraint
networks�

Triggering�

� set up the delegation between the triggering member function and the asso�
ciated independent shadow function �thus� whenever the triggering member
function is called� the independent shadow function is invoked instead	�

� set up the delegation between the anti�triggering member function and the
associated dependent shadow function �thus� whenever the anti�triggering
member function is called� the dependent shadow function is invoked in�
stead	�

Propagation�

� store which independent and dependent objects are connected to which
constraint objects�

Satisfaction�

� store the name of the active constraint function�

In �gure �� these three tasks of the constraint system are visualized� The
cylinder� shapes represent the constraint objects� The boxes in these cylinders
show the available constraint functions� The checked box represents the con�
straint function which is active� The active constraint function determines the
way in which a constraint object reacts on the triggering of an independent
object� The arrows in the diagram represent the dependency relations between
independent�dependent objects and constraint objects� This information is


��



used to plan how propagation �ows through the constraint network� The sin�
gle lines between the di�erent member functions show which member function
is delegated to which other member function� These delegations are there to
be able to trigger the constraint object�

To make the maintenance of the constraint network somewhat more e��
cient� the total constraint network �from now on referred to as the global net�
work	 can be split up in several smaller constraint networks �the sub�networks	�
Every time a constraint object� independent object or dependent object is
added to the global constraint network� the constraint system determines whether
the object is already present in one of the existing sub�networks� If so� the
new object is placed in that existing sub�network� If not� a new sub�network
is created� The reverse� that two sub�networks need to be merged into one
sub�network if an object is linked into another sub�network� is also possible�
In other words� the global constraint network is divided into disjunct sub�
networks� Although this approach creates a little overhead when an object is
added to the constraint network� it can reduce the time needed to satisfy �part
of	 the sub�networks�

After the constraint network is in place� the constraint system is ready to
be triggered by an independent object�

CF-1
CF-2

CF-2
CF-3

CF-1

IO-1

IO-2

DO-1

DO-2

DO-3

DO-4

TMF

TMF-1
TMF-2

AMF

AMF

AMF

ISF

ISF-1

ISF-2

DSF

DSF

independent object
triggering member function

=
=

IO
TMF

DO
AMF

=
=

dependent object
anti-triggering member

function
CF
ISF
DSF

=
=
=

constraint function
independent shadow function
dependent shadow function

=
=

dependency
delegation

Figure �� A Constraint Network�

���� Triggering the Constraint Object

Whenever a triggering member function is invoked� not this function itself
but the independent shadow function will be executed� The triggering member
function is delegated to the independent shadow function� The shadow function
will perform a call�back to the original independent triggering member function�
The reason for this procedure may be clear� before the constraint system starts
to satisfy the constraints� the changes to the independent object should already
have taken place�

After the independent member function has returned control to the shadow


��



function� the shadow function now has to inform all the other constraint ob�
jects to which the original triggering member function is connected that they
are invalidated �and thus realizes the multiple dependency in the constraint
network	� Invalid constraint objects block the dependent shadow functions�
As long as these functions are blocked� the dependent object cannot release
any data� This construction is used to guarantee the dependent object does
not release any data which will soon be out of date� After the constraint is satis�
�ed� the constraint system will validate the constraint object once again� Only
the constraint objects which are directly connected to the independent object
are noti�ed� This approach is taken because only a subset of all the objects
which might become invalid during satisfaction will actually be invalidated�
Invalidating all constraints would block too many objects in the network� It
would also� in the case of a parallel environment� destroy most of the parallel
execution of the other objects�

After giving noti�cation to the other constraint objects� the shadow func�
tion triggers the constraint system �which continues in a separate thread	 and
returns control to the original caller of the triggering member function�

��	� Propagating changes in Non�Cyclic Constraint Networks

Once the constraint system is triggered� it starts to propagate the changes�
Because non�cyclic constraints are considered in this section� it is assumed
that there are no a�directional dependency relations in the network �an a�
directional dependency relation can be considered to be a cyclic dependency
where the cycle is formed by the object connected to the constraint object once
as independent object� the constraint object itself and the connected object as
dependent object again	� Cyclic constraint networks �and also a�directional
dependencies	 will be discussed in the next section ����	�

1-E

2-E

3-E 4-E

5-L

6-L 7-E 8-E

Figure �� An example of a constraint network with only directed
constraint objects� The Boxes are independent�dependent objects and
the cylinders are constraint objects� The arrows show the direction of
propagation� Dotted objects are not reached by propagation�

Propagation of changes in non�cyclic constraint networks is done using a
simple rule� constraints are satis�ed in such an order that they do not have to
be satis�ed twice� Consider �gure �� where each constraint object is labeled


�




with a number and a letter� The letter indicates whether the constraint is
eager �E	 or lazy �L	� The number is just for identi�cation� The constraint
system is triggered when changes occur in the object on the left hand side� If
constraint object ��E needs to be satis�ed due to changes of property values
of ��E� constraint object ��E will have to be satis�ed before the constraint
system will consider constraint object 
�E� This is because the execution of the
constraint function of ��E could lead to the invalidation of constraint object

�E �i�e� constraint object ��E may cause changes in the property values of
the dependent objects of ��E� which would invalidate constraint object 
�E	�
However� the relative order in which ��E and ��E are satis�ed is not laid down�

Lazy constraint objects will stop the propagation of changes� This can be
seen in �gure � at constraint object ��L� This constraint will bu�er the propaga�
tion process until one of its dependent objects explicitly requests propagation�
Constraint object ��L also stops propagation� This would mean that constraint
object ��E� although it is connected to constraint object ��E� will not be sat�
is�ed by the constraint system as a result of triggering by the left hand side
object�

The constraint system tries to determine the order �as just described	 in
which constraints are to be solved in advance� The fact that the constraints
can be solved in parallel makes it impossible to �nd an absolute order� Instead�
the Made constraint system determines a relative order� This relative order
is always valid and does not su�er from any race�conditions� To determine the
relative order the constraint starts by�

� �nding all those constraint objects in the network which are eager� and for
which the triggering object is an independent object�

� recursively �nding all the connected eager constraint objects� A constraint
object is considered to be connected if it has an independent object which
is also a dependent object to a constraint object found earlier�

� determining for each constraint found so far� how often an independent
object is also a dependent object of one of the other constraints that have
already been found�

These steps result in a table� which� in the case of �gure �� would look like�

constraint object count path

��E �
��E � via ��E
��E � via ��E� via ��E
��E � via ��E
��E � via ��E

All the found constraint objects are put in an execution�set� Furthermore�
a so�called blocked�set is �lled with the constraint objects found after step ��
Each constraint object is put in the blocked�set as often as its corresponding
count�number �in case of �gure �� this means that blocked�set will include ��E�

�E� 
�E� ��E� ��E 	� The execution�set and blocked�set can be determined in
advance� In theMade constraint system these sets are computed when they are


��



needed� Then they are stored for later re�use� When the constraint network is
dynamically changed� these execution�set and blocked� set may become invalid
and are destroyed �to be computed again when needed	�

Starting with those initial sets� the constraint system starts solving the
constraint network� During solving only those constraints whose constraint
objects are in the execution�set and not in the blocked�set may be satis�ed�
The constraints of the constraint objects that are stored in the execution�set
and not in the blocked�set can be satis�ed in parallel�

Once a constraint is satis�ed� that constraint object is removed from the
execution�set� Those constraint objects are also removed from the blocked�set if
one of their independent objects is a dependent object of the constraint object
that has just been removed from the execution�set� The constraint system is
�nished when the execution�set is empty�

A possible execution of the constraint system could be�

execution�set blocked�set satisfy
f ��E���E���E���E���E g f ��E���E���E���E���E g � f ��E g
f ��E���E���E���E g f ��E���E���E g � f ��E g
f ��E���E���E g f ��E���E g � f ��E g
f ��E���E g f g � f ��E���E g
f g

If� during the satisfaction of the sub�network� a property value of an in�
dependent object �which is also a dependent object of one of the constraints
objects in the execution�set	 is altered� the change of this property value is im�
mediately processed in the current satisfaction process� This approach has the
advantage that the number of times �part of	 a sub�network is satis�ed� with
very little time inbetween� is reduced as much as possible� Of course� when an
object is removed from the execution�set and a property value of that object
is altered after its removal� the sub�network will have to be satis�ed twice in a
row�

��
� Propagating changes in Cyclic Constraint Networks

Propagation in cycles is di�erent from propagation in a network without any
cycles� Cycles can be introduced to the constraint network in two ways�

� a cycle is formed when two objects have an a�directional constraint between
them�

� a cycle is formed by a sequence of �a�	directional links so that a dependent
object of a former link is an independent object of the next link� Addition�
ally� a dependent object of the last link has to be an independent object of
the �rst link�

Cycles are detected automatically by the constraint system�


��



1-E 2-E 3-E

4-E

5-E

6-E
7-E

8-E 9-E

10-E
11-E

Figure 
� An example of a constraint network which contains cycles�

In �gure 
 a structure is presented containing two cycles �

�E� ��E� ��E�
��E� and 
��E� ��E� ���E�	� The triggering independent object is once again
found on the left hand side� The satisfaction of cycles is postponed as long
as possible� If a constraint object can be found which does not lie on a cycle
and does not have a dependent object which is an independent object of one
of the cyclic constraints� that constraint object is satis�ed �rst� If no such
a constraint object is found� the cycle is satis�ed� This implies that� in the
example� the constraint objects ��E� ��E and ��E are satis�ed �rst �where the
relative order between ��E and ��E is not laid down	� Next� either the cycle


�E� ��E� ��E� ��E� or 
��E� ��E� ���E� will be satis�ed� Again� the relative
order in which this is done is not laid down� When� for instance� the cycle

��E� ��E� ���E� is satis�ed� only these three constraint objects are considered�
Propagation of changes through the constraint network is resumed to other
objects only after the cycle is satis�ed� In the example ��gure 
	 the cycle

��E� ��E� ��� E� is satis�ed �rst� consequently the changes are propagated to
constraint object ���E which is then satis�ed� Finally the cycle 

�E� ��E� ��E�
��E� will be satis�ed�

Similar to the previous section� the constraint system starts by creating
an execution�set and a blocked�set using the information from the constraint
network itself�

constraint object count path

��E �
��E � via ��E
��E � via ��E� via 	�E
��E � via ��E

�E � via ��E
	�E � via 
�E
��E � via ��E
��E � via ��E� via ���E
��E � via ��E
���E � via ��E� via ��E� via ��E
���E � via ���E


��



The satisfaction process� in the case of cycles� is somewhat more compli�
cated� In addition to what was administrated in the case of directed constraints�
information also needs to be stored about which cycles are reached� Accounts
need to be kept of every time propagation reaches a cyclic constraint object�
This constraint object is added to the cycle�set�

execution�set blocked�set satisfy cycle�set
f ��E���E���E���E� f ��E���E���E���E� � f ��E g f g


�E�	�E���E���E� 
�E�	�E���E���E�
��E����E����E g ��E���E����E����E�

���E����E g
f ��E���E���E�
�E� f ��E���E���E�
�E� � f ��E� f ��E�

	�E���E���E���E� 	�E���E���E���E� ��E g ��E�
���E����E g ���E����E����E����E g ���E g

f ��E���E�
�E�	�E� f ��E���E�
�E�	�E� � f g f ��E�
��E���E����E����E g ��E���E����E����E� ��E�

���E g ���E g

At this point� no constraint can be satis�ed as all constraint objects in the
execution�set are also contained in the blocked�set� In this situation all paths
along which propagation has occurred have either reached the end of that path�
or a cycle in the network� Because the execution�set is not empty� the constraint
network is not totally solved� Thus there are still cycles in the network which
now need to be solved by the constraint system� The constraint system will
arbitrarily choose a cycle to solve by randomly choosing a constraint object
from the cycle�set�

This chosen constraint object will be considered to be the root of the cycle
for the duration of the solving of the cycle� All references to this root must be
removed from the blocked�set� When the constraint system solves a cycle� it
may only solve those constraint objects which are in the execution�set and not
in the blocked�set� An aditional requirement is that those constraint objects
must lie on a cycle�

When a constraint object is solved� this object is removed from the execution�
set� That same constraint object is then once more added to the blocked�set
as often as it has independent objects� The aforementioned cycle�set is also
maintained during the solving of a cycle� The task that every cyclic constraint
object which has been solved is added to a new current�cycle set is new�

The next table describes the situation when constraint object ��E is chosen
from the cycle�set�

execution�set blocked�set satisfy cycle�set current
cycle

f ��E���E�
�E� f ��E���E�
�E� � f ��E g f ��E� f ��E g
	�E���E���E� 	�E���E����E� ���E�
���E����E g ���E����E���E� ��E g

��E g
f ��E���E�
�E� f ��E���E�
�E� � f ��E g f ��E� f ��E�

	�E���E����E� 	�E����E����E� ���E� ��E g
���E g ��E���E���E g ��E g

f ��E���E�
�E� f ��E���E�
�E� � f ���E g f ��E� f ��E�
	�E����E����E g 	�E����E���E� ���E� ��E�

��E���E����E� ��E� ���E g
���E g ��E g


continued on next page�


��




continued from previous page�

execution�set blocked�set satisfy cycle�set current
cycle

f ��E���E�
�E� f ��E���E�
�E� � f g f ��E� f ��E�
	�E����E� g 	�E����E���E� ���E� ��E�

��E���E����E� ��E� ���E g
���E g ��E g

After this process has been completed the cycle has been traversed once
�this can be deduced from the fact that all constraint objects in the execution�
set are also contained in the blocked�set and the current�cycle is not empty	�
If some of the constraints in the cycle are invalidated during the solving of
this cycle� the cycle has to be traversed once again� In that case� the following
actions are taken�

� remove the root of the cycle from blocked�set

� remove current�cycle from cycle�set

� add current�cycle to execution�set

� make current�cycle empty

� start solving again �note that a situation is created which is similar to that
at the beginning of the table shown above� so at this point� the solving of
the constraint network recommences at the top of this table again	

If no updates are made� the following actions are now performed�

� remove current�cycle from cycle�set

� remove current�cycle from blocked�set

� remove those constraint objects from blocked�set for which holds that one
of its independent objects is a dependent object of one of the constraint
objects in current�cycle�

� make current�cycle empty

execution�set blocked�set satisfy cycle�set current
cycle

f ��E���E�
�E� f ��E���E�
�E� � f g f ��E g f g
	�E����E g 	�E g

At this point� we can solve a non�cyclic constraint ����E	�

execution�set blocked�set satisfy cycle�set current
cycle

f ��E���E�
�E� f ��E���E�
�E� � f ���E g f ��E g f g
	�E����E g 	�E g

f ��E���E�
�E� f ��E���E�
�E� � f g f ��E g f g
	�E g 	�E g

Again� the constraint system has reached a situation where it can only solve
a cycle� The root of the current cycle to solve is 
�E�


��



execution�set blocked�set satisfy cycle�set current
cycle

f ��E���E�
�E� f ��E�
�E�	�E� � f ��E g f ��E g f ��E g
	�E g ��E���E g

f ��E�
�E�	�E g f 
�E�	�E���E� � f ��E g f ��E� f ��E�
��E���E g 
�E g ��E g

f 
�E�	�E g f 	�E���E���E� � f 
�E g f ��E� f ��E�
��E�
�E g 
�E� ��E�

	�E g 
�E g
f 	�E g f ��E���E���E� � f 	�E g f ��E� f ��E�


�E�	�E g 
�E� ��E�
	�E� 
�E�
��E g 	�E g

f g f ��E���E�
�E� � f g f ��E� f ��E�
	�E g 
�E� ��E�

	�E� 
�E�
��E g 	�E g

In the current situation� the second cycle is traversed once� Again� if a
constraint object in the cycle is updated� the proper adjustements are made to
the apropriate sets and execution recommences from the top of the table� If
no updates have occurred� the remaining part of the network is solved�

execution�set blocked�set satisfy cycle�set current
cycle

f g f g � f g f g f g

As at this point the execution�set is empty� the whole constraint network is
solved�

If� for instance constraint object � is lazy ���L instead of ��E	� the former
cycle 

�E� ��E� ��E� ��L� would no longer be a cycle as constraint object ��
L does not propagate changes to constraint object 
�E� The order in which
constraint objects are satis�ed will be di�erent from the order in the example
presented above� First the constraint objects ��E� ��E� 
�E� ��E� ��E� ��E�
are satis�ed �not necessarily in this order	� Next the cycle 
��E� ��E� ���E� is
satis�ed� Finally� after the only cycle in the network is solved� ���E will be
satis�ed�

���� Solving the Constraint Network

In the previous section� the propagation of the changes through the constraint
network was discussed� However� propagation alone will not solve the constraint
network� During the process of propagation� constraint objects �solve� the
constraint relation� i�e� when propagation reaches a constraint object� it may
�if necessary	 execute its constraint function and see to it that the constraint
relation holds again� In Made � special constructs are introduced which assist
a programmer when writing constraint functions� There is one group of three
macros which are used for managing cycles in the network and there is another
group of macros which can be used to determine the order in which independent
objects triggered the constraint object�

This section starts with the �rst group of macros which de�ne tools to
manage cycles in a constraint network� Cycle� CycleDo and CycleBreak� These
macros may only be used in the constraint function and they are used as follows�


��



Cycle �

CycleDo � N� 	 Statements� �

CycleDo � N� 	 Statements� �

���

CycleBreak�

	�

The macro Cycle in a constraint function provides a context in which the
macros CycleDo and CycleBreak can be used� The CycleBreak macro allows a
programmer to instruct the constraint system to stop executing the constraint
function of a particular constraint object during the remaining iterations of the
cycle� As a cycle is considered solved when updates no longer occur during the
traversal of a cycle� the programmer can break the cycle by issuing a CycleBreak
command to the constraint functions of all the constraint objects in the cycle�

The CycleDo command allows the programmer to specify di�erent actions
which should be executed in di�erent iterations of the cycle� For this purpose
an iteration counter is associated with each CycleDo macro� The statements
of a particular CycleDo command are executed only if the cycle has iterated
at least the number of times as the iteration counter of the previous CycleDo
macro indicates �or � if no such macro exist	� However� the number must not
exceed that of the iteration counter of itself� Thus Statements� are executed in
iteration � to N� and Statements� are executed in iteration N��� to N��

The other group of macros �isDe�ned� unde�ne� lastUpdated� cmpUpdate
and update	 is used to determine and manage the order in which independent
objects have triggered the constraint object� When a constraint object has
more than one independent object it can be very useful to know which inde�
pendent object triggered the constraint object� as the constraint function may
have to perform di�erent actions in di�erent cases� Using the macros lastUp�
dated �shadowFunction
 and cmpUpdate �shadowFunction�� shadowFunction�
�
the constraint function can check the relative order in which shadow functions
were triggered� The macro update �shadowFunction
 allows the constraint func�
tion to re�order the ordering� It will shu�e shadowFunction in such a way that
it is marked as the last triggered shadow function� The macro isDe�ned �shad�
owFunction
 allows the constraint function to test whether a particular shadow
function is triggered at all� The last macro� unde�ne �shadowFunction
� can be
used to reset the information about the triggering history of a shadow function�

���� Anti�triggering the Constraint Object

The anti�triggering mechanism is very similar to the triggering mechanism�
Whenever an anti�triggering member function is invoked� not the function it�
self but the dependent shadow function will be executed� The anti�triggering
member function is delegated to the dependent shadow function� If the con�
straint object is invalidated the shadow function will �rst execute the constraint


��



function� Then it will perform a call�back to the original anti�triggering mem�
ber function�

Note that� in case of an eager constraint object� the constraint object will
never be invalidated when a dependent shadow function is executed� Note also�
that� when the constraint object is a lazy constraint object and no propagation
is bu�ered� the constraint object will not be invalidated� In this case no special
actions will be performed by the constraint system� The constraint system will
satisfy the constraint only if the constraint object is a lazy constraint object
and if propagation is bu�ered in the constraint object�

���� Synchronization in the Constraint Network

In the Made constraint system it is very easy to synchronize the constraint
actions within the constraint network itself� This synchronization results from
the propagation�scheme as de�ned in the Made constraint system� Thus� the
Made constraint system cannot only be used to implement constraints� it can
also be used to synchronize certain actions in the application�

By synchronizing constraint objects in the constraint network is meant that
the execution of the constraint function of two di�erent constraint objects can
be made sequential �i�e� one actions occurs before another action in time	�

In general� it is not possible to say in which order two constraint objects are
going to be satis�ed� Figure � shows an example� Constraint object A is always
satis�ed before constraint object B and C� However� the relative order between
constraint object B and C is not known �they can be solved in parallel� C before
B or B before C	� If it is desired that� for instance� constraint object B should
execute its constraint function before constraint object C� the programmer
can de�ne a directed dependency relation between constraint object B and
object X� The constraint system must then be noti�ed that object X has to
be a dependent object to constraint object B� As object X is an independent
object to constraint object C� constraint object B will always be satis�ed before
constraint object C�

A
B

CX

Figure �a� The evaluation order of constraint objects B and C is
unknown�

Although both independent and dependent relations can be used for syn�
chronization� there is one important reason why a dependent relation is used
�as opposed to an independent relation	� When a dependent relation is de�
�ned� no anti�triggering member function or dependent shadow function have
to be speci�ed �and thus no extra overhead is involved	� If an independent
relation would be speci�ed� at least a triggering member function and the con�
straint object to which the synchronization link was made should be speci�ed�


��



Furthermore this constraint object should have a special independent shadow
function �see �gure �b and �c	�

A
B

CX

Figure �b� Constraint object B executes its constraint function before
constraint object C� There is an overhead in terms of triggering member
functions and independent shadow functions�

A
B

CX

Figure �c� Constraint object B executes its constraint function before
constraint object C� There is no overhead�

�� Conclusions

TheMade constraint system uses a constraint network which is very well suited
for multimedia applications� It provides parallel satisfaction of constraints�
supports cycles in the constraint network� is capable of handling directional
as well as a�directional dependency relations and can adapt the constraint
network dynamically� Another important feature is� that objects that are to be
constrained do not have to be prepared for constraint satisfaction� Arbitrary
objects can be subject to constraint management by using of delegation�

The �exibility of the Made constraint system is partially due to the fact
that the system is able to combine the three basic tasks of a constraint system
�triggering� propagation and satisfaction	 without losing the ability to address
each of these tasks separately� As the programmer has the ability to adapt
each of these three tasks to its own needs� it is possible to write whatever
constraint is desired� Because the Made constraint system allows this to be
done at a high level of abstraction� the programmer does not need to know
all the minute details of the constraint system� Only the basic concepts of
propagation� triggering and solving have to be understood�

In other constraint systems� most of the underlying mechanisms of the con�
straint system are hidden from the programmer� This means that the program�
mer only has to know how to de�ne constraints and does not have to know how
propagation� triggering and solving are realized in that system� When the con�
straint system is implemented as some kind of black box� it is very hard to
tune the constraint system to the speci�c needs of the programmer �if that is
possible at all	� Therefore it is questionable if such a constraint system will
provide the programmer with the right equipment� In the latter case� it can
very well be the programmer who is constrained by the constraint system�


��



Acknowledgements

This research was carried out in the framework of the ESPRIT III project �
��
�Made 	� Thanks goes to the many co�workers in this project for their valuable
comments on the implementation�

References

�� Arbab F�� Hagen P�J�W� ten� Haindl M�� Heeman F�C�� Herman

I�� Reynolds G�J�� Siebes A� ����
	� Speci�cation of the Made Object
Model� ESPRIT Project �
�� �Made 	 deliverable T�OM� CWI�

�� Arbab F�� Herman I�� Reynolds G�J� ����
	� An Object Model for
Multimedia Programming� Computer Graphics Forum� �� �
	� pp� ������
�
The Eurographic Association�


� Bordegoni M� �����	� Multimedia in Views� report CS����
� CWI�
�� Borning A� �����	� The Programming Language Aspects of ThingLab� a

Constraint�Oriented Simulation Laboratory� in ACM Transactions on Pro�
gramming Languages and Systems� �� pp� 
�
�
��� ACM�

�� Borning A�� Duisberg R� �����	� Constraint�Based Tools for Building
User Interfaces� in ACM Transaction on Graphics� 	� pp� 
���
��� ACM�

�� Borning A�� Duisberg R�� Freeman�Benson B�� Kramer A�� Wolf

M� �����	� Constraint Hierarchies� Proceedings of OOPSLA���� pp ������
ACM�

�� Bulterman D�C�A� �����	� Managing the Adaptive Processing of Dis�
tributed Multimedia Information� in CWI Quarterly� 
 ��	� pp� 
���� CWI�

�� Cournarie E�� Beaudouin�Lafon M� �����	� Alien� A Prototype�Based
Constraint System� in Second Eurographics Workshop on Object Oriented
Graphics� pp �
����� Springer Verlag�

�� Davis E� �����	� Constraint Propagation with Interval Labels� in Arti�cial
Intelligence� ��� pp ����

�� Elsevier Science Publishers BV�

��� Freeman�Benson B�N� �����	� Kaleidoscope� Mixing Objects� Con�
straints and Imperative Programming� Proceedings of ECOOP� OOP�
SLA���� pp� ������ ACM�

��� Freeman�Benson B�N�� Maloney J�� Borning A� �����	� An Incre�
mental Constraint Solver� in Communications of the ACM� ��� pp� ����
�
ACM�

��� Hardman L�� Bulterman D�C�A�� Rossum G� van �����	� The Ams�
terdam Hypermedia Model� extending hypertext to support real multimedia�
CWI�

�
� Heeman F�C�� Herman I�� Reynolds G�J�� Ruiter M�M� de ����
	�
Implementation Speci�cation of the Made mC�� language� ESPRIT
project �
�� �Made 	 deliverable T�OM�S��� CWI�

��� Hentenryck P� van �����	� Constraint Logic Programming� in The
Knowledge Engineering Review� � �
	� pp� ��������

��� Hentenryck P� van� Simonis H� �����	� DINCBAS M�� Constraint Sat�
isfaction using Constraint Logic Programming� tech�rep� CS������ Brown


�




University�
��� Herman I�� Reynolds G�J�� Davy J� �����	�Made � A Multimedia Ap�

plication Development Environment� in proceedings of the IEEE Interna�
tional Conference on Multimedia Computing and Systems� IEEE CS Press�

��� Hintum J�E�A� van� Reynolds G�J� ����
	� Constraints Objects � initial
speci�cation� ESPRIT project �
�� �Made 	 deliverabl T�COO�S��� CWI�

��� Hintum J�E�A� van �����	� Implementation of the Constraint Objects�
ESPRIT project �
�� �Made 	 deliverable T�COO�P��� CWI�

��� Hintum J�E�A� van �����	� System Implementation of the Constraint Ob�
jects� ESPRIT project �
�� �Made 	 deliverable T�COO�P��� CWI�

��� Hintum J�E�A� van� Reynolds G�J� �����	� A Multimedia Constraint
System �or� do we have it Made 	� in proceedings EuroGraphics���� Com�
puter Graphics Forum� pp� �
������ The Eurographic Association�

��� Leler Wm� �����	� Constraint Programming Languages� their speci�ca�
tion and generation� Addison Wesley Publishing Company� Reading Mas�
sachusetts�

��� Mackworth A�K� �����	� Consistency in Networks of Relations� in Arti�
�cial Intelligence� �� pp� ������� North�Holland Publishing Company�

�
� Maloney J�M�� Borning A�� Freeman�Benson B�N� �����	� Con�
straint Technology for User�Interface Construction in ThingLab II� in pro�
ceedings of OOPSLA ���� pp� 
���
��� ACM�

��� Nelson G� �����	� Juno� a Constraint Based Graphics System� in SIG�
GRAPH� �
� pp� �
����
� ACM�

��� Rankin J�R� �����	� A Graphics Object Oriented Constraint Solver� in
Second Eurographics Workshop on Object Oriented Graphics� pp� ������
Springer Verlag�

��� Veltkamp R�C�� Arbab F� �����	� Geometric Constraint Satisfaction
with Quantum Labels� in Computer Graphics and Mathematics� pp� ����
���� Springer Verlag�

��� Vander Zanden B�T� �����	� Constraint Programming � A New Model
for Specifying Graphical Applications� in proceedings of CHI���� pp� 
���


�� ACM�


��


