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On Generalized Hexagons and a Near Octagon whose Lines 
have Three Points 

A. M. COHEN AND J. TITS 

Proofs are given of the facts that any finite generalized hexagon of order (2, t) is isomorphic 
to the classical generalized hexagon associated with the group 0 2(2) or to its dual if t = 2 and 

that it is isomorphic to the classical generalized hexagon associated with the group 3Di2) if t = 8. 
Furthermore, it is shown that any near octagon of order (2, 4; 0, 3) is isomorphic to the known 
one associated with the sporadic simple group HJ. 

l. INTRODUCTION 

In [7], one of us stated the uniqueness up to isomorphism and duality of the generalized 
hexagon of order (2, 2) (i.e. each line has three points and each point belongs to three 
lines). The proof remained unpublished but was recently communicated to the other 
author who observed that the same general idea, suitably adapted, also yields the 
uniqueness of the generalized hexagon of order (2, 8) and that of the near octagon of 
order (2, 4; 0, 3) (see definitions below). This paper presents those three results. 

It should be mentioned that, meanwhile, F. Timmesfeld ([6, (3.4)]) has outlined a 
characterization by group-theoretical means of the generalized hexagon of order (2-, 8') 
and of the dual of the classical hexagon of order (2, 2). 

By a result of W. Haemers and C. Roos [3], the only possible orders of a finite generalized 
hexagon with lines of length three are (2, l ), (2, 2) and (2, 8). It is easy to see that there 
is a unique generalized hexagon of order (2, l) and that it admits GL(3, 2) as a group of 
automorphisms. We shall not discuss this case any further. 

2. DEFINITIONS AND STATEMENT OF RESULTS 

Graphs are undirected, without loops or multiple edges. Subsets of the point set of a 
graph are often identified with their induced subgraphs. For y a point of the graph I' 
and a nonnegative integer i, the set of points in I' at distance i from y is denoted by 
I'J y). An i-path is a path of length i. 

An incidence system ( [!JJ, !f) is a set of points [!JJ and a collection .5f of subsets of [!JJ 

whose elements are called lines. To such a system we associate the collinearity graph I' 
whose vertices are the points and in which adjacency for two distinct vertices is collinearity. 

The following notion appears in [5]. A regular near 2d-gon of order (s, t; t 2, ••• , td_ 1) 

and of diameter d is an incidence system ( [!/J, !f) such that each line contains exactly s + l 
points, each point is on exactly t+ l lines, the following holds with t 1 = 0 and td = t: for 
any two points a, f3 E [!JJ with a E I'J/3) there are precisely l + t; lines through a bearing 
a single point of I';_ 1({3) while the other t-t; lines through a have no points in I';_ 1({3) 
or I';({3) but a (here, 0 ~ i ~ d), and the collinearity graph I' is connected (of diameter 
d automatically). A generalized 2d-gon of order (s, t) is a regular near 2d-gon of order 
(s, t; 0, 0, ... , 0) and of diameter d. 

The dual of a generalized 2d-gon ([!P, !f) is the incidence system (!f, [!JJ') where [!JJ' is 
the collection of subsets of .5f consisting of all members of X that have a point of [!JJ in 
common. It is easily verified that the dual of a generalized 2d-gon of order (s, t) is a 
generalized 2d-gon of order (t, s). 
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THEOREM 1. Up to isomorphism there are exactly two generalized hexagons of order 

(2, 2). Each of them is the dual of the other. 

THEOREM 2. Up to ipomorphism there is exactly one generalized hexagon of order (2, 8 ). 

THEOREM 3. Up to isomorphism there is exactly one near octagon of order (2, 4; 0, 3). 

The generalized hexagons of Theorem 1 are associated with the group G 2(2), and the 
one of Theorem 2 is associated with 3D4 (2); see [7] for a description. The near octagon 
is described in [2]; it is associated with the sporadic group HJ of Hall-Janko. 

The collinearity graph I' of a regular near 2d-gon of order and diameter as above is 
a distance-regular graph with intersection array {s(t + 1 ), s( t- t1), ••• , s( t - td-I); 1, 1 + t2, 

... , 1 + td-i. 1 + t} according to the definition in [1]. This means that for any i ( O ~ i ~ d) 
and any two points a, f3 EI' at mutual distance i, there are exactly l + t; points in 
TH (a) n I'1 (/3) and exactly s( t - t;) points in I'i+ 1 (a) n I'1 (/3) (here, t0 = -1 and, as above, 
t 1 =O). 

We shall restrict attention to the case of regular near 2d-gons with lines of size 3 (i.e. 
s = 2). It is easy to see that the above incidence system is completely determined by its 
collinearity graph if t2 = 0. Therefore, if we denote by K(i) the number of isomorphism 
classes of distance-regular graphs with intersection array i, the above theorems (without 
the duality statement, that is) can alternately be expressed by the following equalities: 

K(6, 4, 4; l, 1, 3) = 2, K(l8, 16, 16; 1, l, 9) = 1, K(IO, 8, 8, 2; 1, 1, 4, 5) = 1. 

In a distance-regular graph I' whose maximal cliques have size 3, lines are by definition 
maximal cliques. Note that this definition coincides with the one given above for any 
near 2d-gon whose collinearity graph is r. 

Suppose I' is the collinearity graph of a near 2d-gon of order (2, t; 0, t 3, ••• , td_ 1) with 
13 > 0 (remember that if d = 3, t3 = t by definition). If '}', 8 are two collinear points of r, 
we shall denote by y8 the line through y, 8 and by y * 8 the third point of y8. If y, 8 are 
points at mutual distance 3, then there are distinct'}'; E I'1 ( y) n I'2 ( 8) and 8; E I'1 ( 8) n I'1 ( '}';) 

(i = 1, 2, ... , t3 +1). Denote by ;8 the intersection of I', ( '}'; * 8;) over all i (1~i~t3 +1). 
Clearly I YBI,,;; 1. If I YBI = 1 for each pair '}', 8 with y E I'3( 8), we say that I' satisfies the 
regulus condition. This notion is taken from [ 4]. 

3. RECONSTRUCTION OF I' FROM THE GEOMETRY OF LINES HAVING 

NO POINT COLLINEAR WITH A GIVEN POINT 

In this section, (!J>, !£) is a (nonnecessarily finite) incidence system with collinearity 
graph I'. For w E iJ' and n EN, we denote by I' .,n(w) [resp. I' "'n(w )] the union of all I';(w) 
over i;?;n (resp. i,,;;n), and by Y,,"(!J>,S:;w), or simply Y,,n(w) [resp. Y"'"(w)], the 
incidence system consisting of that set and the lines (elements of !£) entirely contained 
in it. Our purpose is to show that, under certain conditions which are satisfied in the 
cases we are interested in, the system ( !J>, !£) can be recovered from the subsystem Y ,, 2 ( w ). 
The conditions in question are the following: 
(HO) Every point belongs to at least three lines and every line has at least three points. 
(HI) There is no n-gon (i.e. system of n distinct points p; and n distinct lines L;, with 
i E "l!../ n"l., such that L; n Li+ 1 = {p;} for all i) for n < 6, but any two points at distance 2 
are vertices of a hexagon. 
(H2) If a E !J>, every line having at least two points in I'3(a) meets I'2(a) [and hence is 
contained in r,,3(a)J. 

It is clear that the conditions are satisfied by thick generalized hexagons and by regular 
near 2d-gons of order (s, t; 0, t3, ••• , td-i) and diameter d if t3 # 0, s ~ 2 and t;;,; 2. 
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LEMMA I. Let i = 1 or 2. If the conditions (HO), (H 1 ), (H2) are satisfied, and if (J) E r!P, 
then the incidence system (r!P, 5£) is uniquely determined by the subsystem Y,,;(w). More 
precisely, if ( r!P', 5£') is another incidence system satisfying the conditions (HO), (HI), ( H2) 
and if (J) 1 E '!P', then every isomorphism Y,,;('!P, 5£; w)-? Y ,,,;('!P', 5£'; w') extends uniquely to 
an isomorphism ( '!P, 5£)-? ( r!P', 5£'), and the latter maps (J) onto w'. 

PROOF. Let D (resp. D') denote the distance in the graph of Y,.,;(w) [resp. Y.,;((J) )]; we first 
show that the following properties are equivalent: 
(Pl) a,bEI'i(w)andD'(a,b)=2; 
(P2) a,bEI',,.;(w), D(a,b)=4 and there is a line L of Y,,j(w) containing a and such 
that xE L-{a} implies D(b, x) =3. 

Suppose that (PI) holds and consider a hexagon having a and bas vertices [cf. (HI)]. 
Let L, L' be the sides of that hexagon which are contained in Y ,,,i( w) and contain 
respectively a and b. By (Hl) and (H2), every point of L-{a} is at distance 2 of L', 
hence at distance 3 of b, inside Y,,;( (J) ), and (P2) follows. Conversely, if (P2) holds, it 
follows from (HO) and (H2) that the distance of a and b in I' is 2, which, in view of the 
relation D(a, b) =4, is only possible if (PI) holds. 

Now, we see that the set I'i( w) precisely consists of those elements a of I',,.;( w) for 
which there exists b such that (P2) holds. Let then R denote the equivalence relation in 
I';( w) generated by all pairs (a, b) satisfying (P2). From the equivalence of (PI) and (P2), 
it follows that the map pr--? CP = I'1(p) n I';(w), with p E I'i_ 1(w ), is a bijection of I';_ 1(w) 
onto the set of equivalence classes of R, and that two points a, b of I'; ( w) are on the 
same line containing p if and only if a, b E CP and (a, b) does not satisfy (P2). Thus, we 
have reconstructed Y,.i_ 1(w). If i= 1, we are through. If i=2, we use induction. 

4. AUXILIARY RESULTS ON COVERS OF GRAPHS 

Given two graphs I', .1, we call a map f: I'-? .d sending points to points and edges to 
edges a cover of .1 whenever its restriction to I'1 ( y) is a bijection between the points of 
I'kr) and the points of .1 1(!(-y)) for each point y of I'. Note that the cardinality of 
} 1( y) only depends on the connected component of y. We call f an rn-cover of .d if 
111 ( y) I = m for each point y of I'. Two covers f 1 : I'1--"' .d 1 and f 2 : I'2 -? "1 2 are called 
isomorphic if there are graph isomorphisms <P: I'1-? I'2 and i./!: L11--'> "1 2 S'JCh that f2<P = i./!f1· 
Uniqueness of covers is always meant up to isomorphism. We shall often refer to r as 
a cover of .1 when in fact we have a map f: I'--'> .1 in mind. 

'The' fundamental group of a connected graph is the group of 'homotopy classes' of 
closed paths with a given origin, two such paths being 'homotopic' if each one of them 
can be deduced from the other by successive insertions or deletions of an oriented edge 
followed by its inverse. Each homotopy class contains a unique reduced path (path of 
minimum length in the class). In the sequel, we shall often use the word 'path' instead 
of 'reduced path'. The fundamental group made abelian is' canonically isomorphic with 
the first homology group H 1 of the graph, i.e. the group of !-cycles (linear combinations 
of oriented edges with zero boundary). 

Denote by H(n, 2) the n-cube over F2, i.e. the graph whose points are the vectors in 
F~ and where two points are adjacent if they differ in exactly one coordinate. A closed 
path of length 6 in H ( n, 2) is called an aperiodic hexagon if it circumscribes two adjacent 
squares. 

LEMMA 2. Let n be an integer ~2. 
(a) The graph H(n, 2) has a unique 2-cover H(n, 2) without 4-circuits. That cover is 
connected. 
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group 1T,(.H(n, 2)) of H(n, 2) is generated by closed paths of H(n, 2) 

1 with h an aperiodic hexagon. . . 
Tke H(n, 2) is bipartite. The involution T which e:x:.,changes the pairs of points 

iht' same images in H(n, 2) is an isomorphism. If r E H(n, 2), the points rand ry 

"1€' lflt' m distance two from all the poin,_ts which are at distance two from y; 

, is central in tlie full automorphism group of H(n, 2). 
d l ~f y, 0 E n, 2) are such that their images are opposite vertices of H ( n, 2), the group 

ail <Wtomorphisms of H(n, 2) fixing y (and hence Ty) is a symmetric group on n letters 

whose eioen ( resp. odd) elements fix ( resp. exchange) o and TO. 

PROOF. Let F be the group <ri. r2, ••• , rn I rJ == 1). Choose an origin o in H(n, 2). 

Then the paths on H(n, 2) with origin o are naturally labelled by the elements of F The 

group 1T = 1Ti(H(n, 2)) of closed paths is the derived group F' of F (just observe that 

the abelian group F / F' of order in is naturally bijected onto the set of vertices 

of n, 2l). The first homology group H 1(H(n, 2)) = F'/ F" is obviously generated by 

4-circuits. Since the sum of an odd number of 4-circuits in H 1(H(n, 2)) cannot be zero, 

this homology group has a unique subgroup of index 2 containing no 4-circuits. But the 

subgroups of index 2 of 1T correspond bijectively to those of H 1(H(n, 2)) for any such 

subgroup of F' contains the commutator subgroup F". Thus 1T has a unique subgroup 

of index 2 without 4-circuits. This, however, amounts to saying that H(n, 2) has a unique 

connected ~-cover H(n, 2) without 4-circuits. As any nonconnected 2-cover consists of 

two distinct copies of H(n, 2) and therefore contains 4-circtiits, (a) is proved. 

The fundamental group 1T is the kernel of the natural homomorphism of F onto 

F1, where 

Fi= (ri, r2, ... , '"I r7 ==I, r;rj = rjr; for all distinct i,j), 

and iT = rr; ( H ( n, 2)) is the kernel of the natural homomorphism of F onto F 2, where 

= (ri, r2, ... , rn. s I rf = s 2, r;s == sr;, r;rj == rjr;s for all distinct i,j). 

Since 

(ri, r2, · · ·, rn I r7 = l, r;rjrk = rkr;rj for all distinct i,j, k) 

is clearly another presentation of F2 on the 'same generators' r r r as F th 
- . ,, 2, .•. ' n 1, e 

group iT is. ge~e:ated_ b~ all elements of the form ghg- 1 for g in F an.d h of the form 

r,r11V1r,r,. ~1th ~,J, k d1stmct. This means that h is an aperiodic hexagon, whence (b). 
{ c) This easily follows from the above. 

, (d) Taking'! as an origin in H(n,2~, the ~att~r can be des.cribed as the graph with 

H-rtex set F 1-:1' whose edges are all pairs {x1T, y1T} with x E r;yii- for some i (1 ~ i ~ n) 

Any pe,:mut~tion ~f n letters acting on F by penn~ting the generators is an automorphis~ 
presenmg ." and mduces an automorphism of H(n, 2) fixing y. It is clear that all such 
automorphisms preserve the pai {8 "} d h h · 

. . r , Tu an t at t e automorphism corresponding to a 
transpos1t10n cannot fix o (because H(n 2) has no 4- l ) 

N · , eye e . 
' ow, ~mce the group of all automorphisms of H(n, 2) fixing a given point is the full 

svmmetnc group and any auto h. f ~ ( · 
- i ,. ·1 'd.l d'! f II morp ism o H n, 2) induces an automorphism of H ( n 2) 

1 "., 1 . rea 1 y o ows. ' 

Suppose r is the collinearity ra h f 
( ., t. t t ) d fi . g. p o a rectangular near 2d-gon of order 
-, , :c, .•. , d -1 an x a point w I' L h 

I, 2, ... , l + t and the two points in I' m .f /t t. e 1 + t line~ thro~gh w be labelled 

in I'i(w; is uniquely determined by it~\:~~ ~n~J be labelled~o and_J1· Thus each point 
labels. e · omts of I'1 ( w) will be identified with their 
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We shall also attach labels to points in I'd(w). Let y be such a point. Label y by the 
vector in F~+c whose jth coordinate (1~j~1 + t) is 0, 1 according as jo or j 1 is the nearest 
point on line j through w. Two points of TA w) may have the same label. Nevertheless, 
this labelling is useful as is indicated by the lemma below. 

Denote by H 0(n, 2) for n odd the graph on the 2n-i vectors in F~ of even weight (the 
weight of a vector being the number of nonzero coordinates) in which two points are 
adjacent whenever their vector sum has weight n - 1. 

LEMMA 3. Suppose I' is the collinearity graph of a generalized 2d-gon of order (2, 2a) 
and w is a point of I'. Then the labelling makes each connected component Y of I'd ( w) into 
an my-covering of a graph isomorphic with H 0 (2a +I, 2), for some integer my. The sum 
2: my, extended over all connected components, is equal to 2<ad-a+d-2">. 

PROOF. If two points of I'd ( w) are adjacent in that graph, their labellings differ by 
precisely 2a coordinates; furthermore, the places in which the labels of two distinct 
neighbours of a given point y coincide with the label of y are not the same. These facts 
are consequences of the axioms of generalized 2d-gons. 

In order to prove the first assertion for a given component Y of I'd ( w ), we may assume, 
without loss of generality, that Y has a point labelled 00, ... , 0 and then the above 
observations and the fact that Y and H 0(2a + 1, 2) have the same valency 2a + 1 readily 
imply that the labelling of Y is a covering of H 0(2a +I, 2). The second assertion follows 
from a straightforward enumeration. 

5. PROOF OF THEOREM 1 

Here, I' is the collinearity graph of a generalized hexagon of order (2, 2). Fix a point 
w of I'. The idea is to show first that I'3( w) is one of two possible graphs and then that 
I'3( w) determines r uniquely. 

The points of r1 (w) and T3 ( w) are labelled as in Section 4, and we also label the edges 
of I'3( w) as follows: such an edge { y, 8} is labelled ij whenever y * 8 E I'1 ( ij), where 
ii E I'1 ( w ). In this case, we say that { y, 8} is of type i. Thus the type of an edge in I'3( w) 
is the line through w to which the edge is nearest. 

The proof consists of 12 steps and a proposition. 

STEP l. If {a, f3} and { y, 8} are distinct edges in T3 ( w) with the same label, then a, y 
have mutual distance ~2 inside I'3(w ). 

Clearly, the two edges are not adjacent. Moreover, y E I'1 (a) would imply the existence 
of the pentagon ay( y * 8) ii( a * {3)a where ii is the common label of {a, {3} and {'y, 8}. 

STEP 2. If in the path af3y8s of I'3(w) without repetition, the edges {a, /3} and {8, e} 
are of the same type, they have the same label. 

Let j 0 be the label of {a, 13} and let ? E I'1 ( y) n I'3 ( w) be distinct from {3, 8. Then { y, ?} 
has label j 1 by step I, so { 8, e} has label j 0 , again by step I. 

STEP 3. Set { i, k, I} = {I, 2, 3}. In I'3 ( w), a path af3y8s without repetition whose edges 
have types i, k, I, i respectively, extends to a single hexagon inside I'3( w) whose edge types 
are either i, k, l, i, k, I or i, k, I, i, l, k. 
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I[, h · · t E f3atdistance2frome.Let?EFbesuchthat{?}=I'1(e)n 
n t ere is a pom T/ a h · · th label r1 ( 71 ). Clearly T/ ~ {3. If we had T/ -1 a, then T/?15( o * e) ijT/• w ere zj is e common 

of {a Mand {8, e} (see step 2), would be a pentagon. Thus T/ =a. Supp~se ? E I'2(w ). 
Then,{a,a*n and {e,e*?} are edges of F3(w) with the same label. Without loss of 
generality we may take this label to be ko. By step 2, the label of {(3, Y} must then be ~o, 
but by (1) it must be k,. This is a contradiction, whence ~ E r3( w ). Step (3) now readily 

follows. 

STEP 4. Jn F3(w) each hexagon has two edges of each type l, 2, 3. 

By step I, no type could occur three times. 

A hexagon in F3( w) is said to be periodic (with respect to ~) if its edges have ty_r~s i, 
j, k, i, j, k and aperiodic (with respect to w) otherwise, i.e., if its edges have types z, J, k, 
i, k, j. 

STEP 5. A path a 1 a 2 a 3 in I'3( w) of length 2 contained in a periodic hexagon is not 
contained in a second hexagon. 

Let a 1a2a3a4 a 5a6a 1 be the periodic hexagon, with edges of types 1, 2, 3, 1, 2, 3 say. 
Without loss of generality, we may assume a second hexagon containing a,a2a3 to be 
either a 1a 2a 3a 4f3 1f3 2a 1 or a 1a 2a 3f3 1f3 2{33 a 1 with {3; 7'= aj. Application of step 4 yields a 
contradiction in the first case and determines the edge types of the second hexagon in 
the latter case, showing that there are two incident edges both of type 3, a contradiction. 

STEP 6. Let Q be a connected component of I'3(w) containing a periodic hexagon. Then 
every edge of n is in exactly two hexagons and every hexagon in n is periodic. 

Let a 1a 2a 3a4a 5a6a 1 be a hexagon in D with edge types i, j, k, i, j, k. From a 2 there 
starts a path a 2{3 1{32f3 3 without repetitions and of edge types k, j, i. Apply step 3 to obtain 
a hexagon a 1a 2/3 1/3 2{3 3f3 4 a 1• Note that a6 7'= {3 4 in view of step 5 and that this hexagon is 
periodic. Now any hexagon distinct from a 1a 2a 3a 4a 5a 6a 1 but containing °"i. a 2 must 
contain {3 1a 2a 1{34, so coincides with the second hexagon, by step 5. 

So far, we have shown that any edge contained in a periodic hexagon in {) belongs to 
exactly one other hexagon, which is periodic. As n is connected, step 6 readily follows. 

STEP 7. If il is a connected component of I'3 ( w) containing a periodic hexagon, then 
any path in n with edge types i, j, i, j, i, j, i, j ( i, j distinct) is an octagon. Moreover, the 
first and last edges of any path of type k, i, j, i, j, k ( i,j, k distinct) span distinct lines meeting 
in ri(w). 

Set {i,j, k} == {l, 2, 3} and let YoY1 y2 y3 y4 y5 y6 be a path in Q with edge types k, i, j, i, j, 
k. Then, clearly, all Y; (O,,;:;; i,,;:;; 6) are distinct. We show that Yo* y1 == y5 * y6 • For, letting 
13. E I'1 ( y3) n I'3( w) be such that {/3, y3} has type k, we get f3 * y3 E I'2(y0 * y 1) n F 2( y5 * y6 ). 

Smee { Ys, Y6}, {Yo, Y1}, {(3, y3} have the same label, say k0 , the points y0 * y 1 and y 5 * Y6 
must be on the same line through k0• So if y0 * y1 -I y5 * y6 , then Y4 y5 ( y5 * 1'6)( y0 * y 1) 
and 'Y41'JY2Y1 are 3-paths from Y4 to points of y0 y 1• Therefore, there exists a unique 
a E I'1( !'4) n I'i (Yo), and ay4 contains an edge of type k. But a is not in ['3( w ), for otherwise 
ay4y3'}'2'Y1 Yoa would be an aperiodic hexagon inn, contradicting step 6. Hence a E I'2 ( (J) ). 

Now ayo contains an edge of I'3( w) of type k, so a belongs to the line y0 y1 leading to 
a pentagon ay11'2Y3y4a, a contradiction. This proves that Yo* y1 and y 5 * y6 coincide, 
and settles the last statement of step 7. Now if y0 y 1020384 8506 is a path in {) with edge 
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types k, j, i, j, i, k, the statement already proven shows that y 5 * y6 = 55 * 86, hence that 
Ys'Y6 and 5s56 coincide. One cannot have y 5 "" 56, otherwise steps 6 and 3, applied to the 
path Y31'41's8s54, would imply that {83 , y3} is an edge of I'hu), yielding a pentagon 
1'11'2'}'383821'1· Thus, 'Ys = 85 and 850483821'11'21'31'41'5 is a closed path of a with edge types 
i, j, i, j, i, j, i, j. This proves step 7. 

If I'3( w) contains a periodic hexagon, then w will be called a periodic point of I', 
otherwise w will be called an aperiodic point. 

STEP 8. Let w be a periodic point of I'. If I" is a generalized hexagon of order (2, 2) 
containing a periodic point w', there is an isomorphism I'' I" mapping w tow'. Moreover, 
the group of automorphisms of I' fixing w is transitive on every set I';(w) (O:s;; i:t;;;3), and 
I'3(w) is connected. 

Let n be a connected component of I'3(w) containing a periodic hexagon. As in the 
proof of Lemma 2, but now with n = 3, let F be the group with generators ri. r2, r3 and 
relations r~ = r~ = r~ =I, and identify the paths on a with origin a fixed point o with the 
elements of F. In view of steps 3 and 6 any path of the form gr;rjrkrirjrkg- 1 with i, j, k 
distinct and g E F, is an element of 7T1(fl), the fundamental group of n with respect to 
o. Let iT be the subgroup of 771(.0) generated by all these elements and let n be the cover 
of .n whose fundamental group is iT. Then the graph n can be described as the collection 
of points of a hexagonic lattice in the Euclidean plane whose edges are the pairs of points' 
at minimal distance (cf. Figure 2, but disregard labels). The three edge types correspond 
to thethree 'parallel classes' of edges. Let (i,j, k) be a cyclic permutation of(l, 2, 3). The map 
sending 1' E Q to t~ end point of the 2-path starting at y with edge types i, j if 1' has 
even distance to o and with edge types j, i otherwise is a type preserving automorphism 
of n; call it vk. It corresponds to a translation of the plane; in fact, these maps vk 
(k = 1, 2, 3) generate the full group T of translations stabilizing n. Together with the 
automorphisms of Q induced by central symmetries with respect to the Center of either 
a hexagon or an edge, these translations form the full group {; of type preserving 
automorphisms of n. It is regular on the vertices. Now .0 is the quotient of n by a 
subgroup, G say, of G. But G cannot contain a central symmetry, for otherwise a would 
contain either a triangle or a loop. Thus G c T. Due to step 7, the elements 4v; ( i = l, 2, 3) 
belong to G and the translations 2v; cannot belong to G. Hence [T: G] divides 16 and 
G contains no subgroup strictly larger than the one generated by 4vi. 4v2, 4v3 • It follows 
that G coincides with the latter and that the number of vertices of .n is [G: G] = 2[T: G] = 
32. In particular, .Q = I'3( w) and the group G / G acts on .n as a regular group of type 
preserving automorphisms. 

By the second statement of step 7, the incidence system Y = Y ,.2( w) as defined in 
Section 3 can be uniquely reconstructed from D. The first part of step 8 is therefore a 
direct consequence of Lemma l. The second statement follows by taking the automorph
isms of .n (not necessarily type preserving) induced from those of fl, extending them to 
automorphisms of Y and applying Lemma 1 once more. 

STEP 9. If w is aperiodic, I'3( w) is the-union of two connected components each of which 
is isomorphic to H(3, 2) (cf. Lemma 2). 

Due to steps 6 and 8, every hexagOQ in I'3(w) is aperiodic. Let a be a connected 
component of I'3(w ), and fix a point o in n. Define F as in the proof of Lemma 2 and 
identify the paths originating in o again by the elements of F. In view of step 3 and the 
aperiodicity of all hexagons in n, any path of th-e form grjrkr;ljr;r~-I with i,j, k distinct 
and g E Fis an element of TT1(.0) (identified with a subgroup of F).According to Lemma 
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2(b) this implies that 1T,(H(3, 2)) is contained in 11'1(.!2). It is easily seen that the sixteen 

elements 
p(a, b, c, d) = r~r~r~(r1 r2 r 1 r2 )d, a, b, c, d E {O, I}, 

form a set of coset representatives of 1T1( H(3, 2)) in F If d = 0 or if b =c.= 0, p( a, b, c, d) 
represents a path of length strictly smaller than 6. If d = c = 1 (resp. 1f d = b = l and 
c == 0), the coset of p(a, b, c, d) also contains 

a b+I ( a+l ) r 1 r2 r3 r2 resp. r 1 r2r1 , 

which again represents a path of length <6. Consequently, nor:e of the p(a, b, c, d), except 
p(O, O, O, O), can belong to 1T1(.(1), and we have 1T1(il) = 7T1(H(3, 2)), hence step 9. 

Let FJ{<.u) be as in step 9. For '}' E r3(w ), there is a unique point at distance 4 to 'Y 
within F3( w) with the same label as y. Denote this point by 'Yu· 

STEP I 0. Let (J) be aperiodic and let 'YE I'3 ( (J)). If 8 E r3 ( (J)) (J r, ( 'Y)' then 'Y * 8 is collinear 
with y" * 8" and a can be extended to an involutory automorphism of I' fixing I'o( w) u I'1 ( w) 
pointwise. 

Any 8 E I'3( w) n I'1( y) has distance 3 to yu inside I'3 ( w) and is therefore in I'3 ( y 0
"). 

However, among the three paths of length 3 joining 8 and 'Y", only two are inside I'3( w); 
therefore, the third one must be 8( y * 8)( 'Y" * au)y". This proves the first statement. 
Extending a to an automorphism of Y,,, 2(w), defined as in Section 3, by letting acr, for 
aEFi{<u), be the unique point in I'i(w)nI'1(a), and applying Lemma 1, we obtain the 
second statement. 

STEP 11. Let w be an aperiodic point. If five points of a hexagon in I' belong to I'3 ( w ), 
then so does the sixth. 

Let n 18 18 be a 3-path inside I'3(w). It has edge types either i,j, i or i,j, k with i,j, k 
distinct. In the latter case, applying step 3 to the path 'YYi 818 (resp. 88 1 y 1 'Y) extended 
by an edge of type i (resp. k) provides a 3-path from 'Y to 8 with edge types j, k, i (resp. 
k, i,j); thus, in that case, all three 3-paths joining 'Y and 8 are contained in I'3 ( w ). In the 
former case, application of step 3 to the path with edge types j, i, k, j originating from y 1 

leads to a second 3-path from 'Y to 8 with edge types k,j, k. Now, the third 3-path from 
y too must pass through points on the lines spanned by the edges oftypej with extremities 
y, o respectively and hence has no other points but 'Y and 8 in I'3(w). The conclusion is 
that a hexagon containing y and 8 has either 4 or 6 points in I'3 ( w ). This establishes step 11. 

STEP 12. If w is aperiodic, then every line through w is a periodic point of the dual I'* 
of I'. 

Let ll be a connected component of I'3(w) and let w* denote the line labelled 1 through 
w. Let y, 8 be adjacent points of I'3(w) such that {y, 8} has type 3. Then by step 10 there 
is a line e of I' on 'Y * 8 and -y" * li<T. Since e has a point on the line 3 through w, we 
have e E I'~(w*). Now 8, y" have distance 3 realized by two distinct paths of n, say 
8a,{3,-y" and 8a2f32'Ya, respectively. Note that 8a 1f3 1 'Yrrf32a 28 is a hexagon in .Q. Since 
the type of { y, 8} is 3, we may assume that the type of {8, a;} is i for i = 1, 2. Since the 
hexagon is not periodic by the hypothesis, it follows from step 4 and the fact that { y", 5 "'} 
has type 3, that { '}' 0 °, {3;} has type i for i = 1, 2, and that {a2, {3 2} has type 3. This means 
that the lines oa2, a2f32, f32i" of I' are points of I't(w*). In particular, the closed line-path 
e, '}'8, 8a2, a1f32, f32'Y", 'Y"8", e constitutes a hexagon of r* having exactly five points in 
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I'f(w*), namely all but e. Thanks to step l l it follows that I'f(w*) contains a periodic 
hexagon. 

PROPOSITION. In a generalized hexagon of order (2, 2) either all points are periodic or 
all points are aperiodic. Each instance corresponds to a single isomorphism class, and these 
classes are the duals of each other. 

PROOF. Suppose r contains two periodic points wand w'. Let i be the distance from 
w to w'. Since by step 8 the group of automorphisms fixing w is transitive on I';(w ), the 
graph I' contains a periodic point adjacent to w'. But then by the same argument, all 
neighbours of w' are periodic. By induction with respect to the length of a path from w' 
and in view of the connectedness of r, it follows that all points of r are periodic. 
Consequently, if I' contains a periodic point y as well as aperiodic points, then all points 
except for y are aperiodic. On the other hand, if u is the involutory automorphism of 
step I 0 defined with respect to a point of I'3 ( y ), then 'Yu is a periodic point distinct from 
y, which is absurd. Hence the first assertion. 

In view of steps 8 and 12 there are at most two isomorphism classes of generalized 
hexagons of order (2, 2). Since the classical generalized hexagon of this order is not 
isomorphic to its dual ( cf. e.g. [8, 5.9]), there are exactly two isomorphism classes (one 
could of course also derive this fact by verifying that any line through a periodic point 
is an aperiodic point of the dual). These two classes are each other's duals, due to step 12. 
The proposition is proved. 

Theorem 1 is a direct consequence of the proposition. 

REMARKS. Let r, w be as before and suppose (J) is aperiodic. The automorphism (T 

of step 10 is used by Timmesfeld in [6]. It clearly is central in the group of automorphisms 
fixing w. Since the full automorphism group is transitive (consider the subgroup generated 
by all u for w running through the points of I' to establish this), and I' has odd cardinality 
(namely 63), it follows that u is contained in the centre of a Sylow 2-subgroup of the 
full automorphism group. This fact may be used to identify I' as the dual of the classical 
generalized hexagon. Thus, the classical generalized hexagon is the one with periodic 
points. With the data provided by the steps of the proof it is not hard to explicitly describe 
the two generalized hexagons. We have done so in Figures 1 and 2. 

From step I 0 it follows that if w is an aperiodic point and if y E I'3 ( w ), then yw = { yu}. 
This implies that the regulus condition holds for the dual of the classical hexagon. But 
it is easily shown that, for hexagons of order (2, 2), the regulus condition is self-dual; 
therefore it also holds for the classical one. 

6. PROOF OF THEOREM 2 

Here, r is the collinearity graph of a generalized hexagon of order (2, 8). Fix (J) Er 
and label the points of I'1 ( w) and I'3( w) as above. By [ 4], any generalized hexagon of 
order (2, 8) in which the regulus condition holds, is the 3 0 4(2)-hexagon. We shall therefore 
content ourselves with the following proof of the regulus condition, in two steps. 

STEP 1. The graph I'3(w) is connected. Its labelling is a 2-cover of H 0(9, 2). For any 
y E I'3(w ), the unique point 'Yu of I'3(w) which is distinct from /' and has the same label 
belongs to I'3 ( y ). Moreover, if 5 E I'1( 'Y) n I'3(w ), then 5 E I'3 ( y 0 '). 

By Lemma 3, there is a map~ -l of I'J(w) onto H 0(9, 2) which is a 2-cover and which, 
restricted to any connected component of I'3( w ), is isomorphic to the labelling. Let y, 5 
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FIGURE I. The dual of the classical generalized hexagon of order (2, 2). Line segments represent lines of the 
generalized hexagon. The three vertices labelled i1k1 in the picture are to be identified in order to represent a 

point in I'2(w) n I'1(ij). Each occurrence of the vertex ijkl provides a line through the point i;kl· 

be two adjacent points of I'3(w); their images y, 8 are adjacent. Take a 3-path in H 0 (9, 2) 
from 8 to y and lift it to a 3-path in I'3( w) originating in o. The end point of that 3-path 
has the same label as y and is the end point of a 4-path starting at y. Therefore, it must 
be distinct from y, whence the first, second and fourth assertions of step 1. 

Since y and y" are not adjacent in I'3(w), their mutual distance is ~2. Suppose there 
exists o E I'1 ( y) n I'1 (yC7). Then necessarily o E I'2( w ), so that 'Y * o E I'3( w ). The latter 
point, being a neighbour of y, has distance 3 to 'YC7 in I'3(w). Thus ycro(o * y) can be 
completed to a pentagon, which is absurd. It follows that 'YO' e I'2 ( 'Y ), so that 'YO' E I\( 'Y ), 
whence the first statement. 

STEP 2. The graph r satisfies the regulus condition. 

Let { y, o} be an edge of I'i w ). Then {y", o"} is also an edge. The common label of 'Y 
and 'YO' coincides in a single place, say the ith, with the label of o and ocr. If j is the 
common value of those labels in that place, we have I'1 ('Yer * ocr) n I'1 ( w) = { ij}. By step 1 
the points 'Y * o and y" * 8" are distinct. Suppose they are nonadjacent. Then o"( y'" * o") 
ij( 'Y * o) is a 3-path, so that 80' E I'3( ')I* 8). As o" E I'3( ')I) by step 1, we get o<T E I'2( o), in 
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FIGURE 2. The classical generalized hexagon of order (2, 2). Conventions are as in Figure I, with the exception 
that the constituent I'0 (w)uI',(w)uI'2(w) is not included as it is identical to the one in Figure I. 

contradiction with step 1. The conclusion is that y * 8 and 'Yu * 5u must be adjacent and 
that ~ = (y * 8) * ('Yu * Su). Letting 8 range over I'1 ( y) n I'3( w ), we obtain 'Y.,. E wy and 
we are done. 

REMARK. Instead of ending the proof by referring to [ 4], we could also observe that 
(]' can be extended to an involutory automorphism of I' and apply Timmesfeld's Theorem 
[6; (3,3)] to the group generated by the 819 involutions(]' obtained by varying w over 
the points of r. 

7. PROOF OF THEOREM 3 

Here, r is the collinearity graph of a regular near 8-gon of order (2, 4; 0, 3). Fix w Er 
and label I'1(w), I'4(w) as above. We proceed in 8 steps. 

STEP 1. The graph I'4(w) is isomorphic to H(5, 2) (cf. Lemma 2). 

The labels of two adjacent points y, 8 of I'4 ( w) differ in exactly one place; they coincide 
in four places as y * 8 has distance 2 to l + t3 = 4 points on four distinct lines through w, 
and the coordinates corresponding to the fifth line through w must differ, for otherwise 
this line through w would bear a point at distance 3 from y, 8 and this point would be 
a fifth point of I'1(w)nI'2(y* B), in contradiction with t3 =3. Thus the labelling is a 
2-cover of H(5, 2). Thanks to Lemma 2, we are done. 

STEP 2. Put l1; = {'YE I'3(w) I I'2( y) n {O;, I_~}= 0} for } .;;; i.;;; 5. Then r is the disjoint 
union of the l1; and each l1; is isomorphic to H(4,2) (cf. Lemma 2). 
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The points of ai are labelled by vectors in Fi whose coordinates are indexed by the 
numbers j ( 1,,,:; j.::; 5; j "f=. i) in such a way that the jth coordinate of the label of y E .!Ji is 
0, 1 according as Oj E I'2 ( y) or l j E I'2 ( y). Thus, the label of a point in {]i is obtained by 
deletion of the ith coordinate from the label of either one of its two neighbours in I'i w ). 
The defining properties of regular near octagons readily imply that any edge { y, 8} with 
y E {]i and 8 E I'3( w) must belong to {]i and that the labels of y and 8 differ in all but 
one coordinate. But for any even n, the graph on F~ whose edges are the pairs of points 
all of whose coordinates but one are different is isomorphic with the n-cube H(n, 2). 
Thus, J]i is a cover of H ( 4, 2) without 4-circuits. In particular, it has at least 32 points. But 
I'3(w) has 160 points in all, so each ni is a 2-cover of H(4, 2), hence the assertion. 

Let cr (depending on w) be the permutation of the set of vertices of I' defined as 
follows: if y E I'0(w) u I'1(w ), then y" = y; if y E I'2 (w ), then y" = y * 8, where w8y is the 
unique 2-path joining wand y; finally, if yEI'Jw) with i=3 or 4, y" is the unique 
second point of the connected component of y in I'J w) whose label coincides with the 
label of y. 

STEP 3. For any yEI'3(w), we have y"EI'3(y)uI'4(y). Moreover, if 
8EI'3(w)nI'1(y), then 8EI'3(y"). 

STEP 4. The graph r satisfies the regulus condition. Moreover, the map (T is an involutory 
automorphism of r. 

Proofs of step 3 and the first part of step 4 are omitted as they run parallel to those of 
step 1 (last two statements) and step 2 for Theorem 2. 

As for the involution <J, we first check that it carries lines in I'2 ( w) u I'3 ( w) to lines. 
Suppose Lis a line contained in I'2(w) u I'3(w ). Then there are a E I'3(w) and /3 E I'i(w) 
such that L = {a, (3, a * f3} with a * f3 E I'3 ( w). Without harming generality, we assume 
that a is in il5 and has label 0000 and that a * {3 has label 0111 in il 5• In view of the 
regulus condition, there is a unique point a' E wi:x (see Section 2). This point must be in 
I'3(w), distinct from a, and at distance 2 to each point of I'1(w) nI'2(a). Therefore, a' 
is contained in n5 and has the same label in ns as a. Thus, a'= aa. Moreover, if e E I'1 ( w) 
is such that wef3 is a 2-path, the points s * f3 and a" are adjacent. But e * f3 = f3a ( E I'2( w)) 
by definition, so {a", {3°} is an edge. Since a"* /3'7 is an element of I'1 ( e * /3) n I'1 (a"), 
it must be an element of il 5 distinct from a * f3 with label 011 l in .!J5 . Consequently, 
a.,.* /3.,. =(a* /3)" and L" is the line {aa, /3a, aa * {3"}. 

If {y, 8} is an edge with y E I'3( w) and 8 E I'4 ( w ), then there is a unique line on yo
containing a point of I'4 ( w) with the same label as 8. This point cannot be 5, for otherwise 
y and y" would be two neighbours of 8 in the same connected component of I'3 (w ). 
Therefore, 80- must be adjacent toy". Since <J clearly is an automorphism on I'iw), we 
conclude that cr is an automorphism of I'. This settles step 4. 

STEP 5. Let y E I'4 ( w) have label 00000. Then, the two points of I'4 ( w) labelled 11111 
are at distance 4 from y. One of them, call it 8, satisfies the relation I'1 ( y) n I'3 ( 8) c I'3 ( w), 
whereas the other, 80-, satisfies I'1 ( y) n I'3( 8a) c I'4 ( w ). If yy1 y 2 y 3 8 is any path of length 4 
joining y and o, one has Yi. y 2 E I'3(w) and y 3 E I'4 ( w ). 

Let o provisorily denote any one of the two points of I'iw) labelled 11111 (the other 
being oo-). We shall repeatedly make use of the fact that 

( *) the labels of two points of I'4(w) adjacent with a same point of 
I'3 ( w) differ in at most one place. 
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In particular, 5,5""EI'3(')1)uI'4 (')1). Let 'Y'YI'Y2 ')135 be a path, with possibly 'YI=')l2. If 
'Yi. ')13 E I'3(w ), (*)implies that ')12 E I'2(w) u I'3(w ). But 'Yi. ')13 are labelled 0000 and 1111, 
respectively, so their mutual distance in I'3( w) exceeds 2 and we must have ')12 E I'2( w ), 
in contradiction with the fact that the labels of 'YI and 'Y3 have no coordinate in common. 
Thus either 'YI or ')13 belongs to I'4(w ). We assume 'YJ E I'4(w ), the reasoning for the other 
case being similar. Since the labels of 'Y and 5 differ in all 5 coordinates, ( *) implies that 
'Yi. 'Y2 E I'3(w) and 'YI ¥- ')12, hence 5 E I'i w ). We have 'YI E I'3 ( 5); therefore, there are four 
minimal paths from 'YI to 5 and, by ( * ), each one of them starts with an edge in I'3 ( w) 
followed by a point of I'i w) n I'1 ( 5). From any such point there start four paths of length 
3 to 'Y each of which consists of its origin [in I'4(w) n I'I(5)], two vertices belonging to 
I'3(w) and, finally, y [again by(*)]. As any point of I'I(y)nI'3 (5) must belong to such 
a path, we have I'I( 'Y) n I'3(5) c I'3(w ), which is the first inclusion of step 5. The above 
discussion also establishes the last assertion and shows that any path Y'Yi Y2, with 'YI> Y2 E 

I'3(w ), can be completed to a path 'Y'YI ')12')135. Since I I'1( y2) n I'4 (w)j = 2, the same path 'Y'Yi '}'2 

can certainly not be completed to a path y2 y35""; therefore, one cannot have y 1 E I'3 (5""). 
Consequently, I'I( 'Y) n I'3(5"") c I'4(w ), which finishes the proof of step 5. 

STEP 6. Suppose the labelled graph I'4 ( w) is given. Then: 
(a) if 'Y'YI is an edge of I', with y E I'iw) and 'YI E {Ji> the third point 'Y * 'YI of the line it 
spans is uniquely determined by y, the index i and the label of 'Yi ; 
(b) if' and r are two points of fl; at mutual distance 2 inside fl;, the (unique) edge of 
I'4(w) collinear with r is uniquely determined by the edge collinear with ,, the index i and 
the label of r. 

(a) Clearly, 'Y *'YI is the unique point of I'4 (w) connected with 'Y and whose label 
coincides with that of y except in the ith place. 

(b) Let {'YI?' be a path inside fl;. Assume without loss of generality, that i = 5 and that 
the labels of{, YI and(' are 0111, 0000 and IOll, respectively. Let g be the point of 
I'4 ( w) labelled 01111 and connected with ( (by hypothesis, that point is known). Denote 
by f the point of I'4(w) labelled 10111 and connected with('. Now, if 5 (resp. 8 1) is the 
(uniquely determined) point of I'4(w) labelled 11111 and connected with g (resp. with 
f}, it follows from step 5 that we cannot have 5 I = 5"": just take for y the point of I'i w) 
labelled 00000 and connected with y 1• Thus 5 = 5i. and f is the unique point of I'iw) 
with label 10111 and such that g5f is a path. Our assertion follows, in view of (a). 

STEP 7. The graph I'3(w)uI'iw)=(LJfJ;)uI'4(w) is unique up to label-preserving 
isomorphism and possibly a transposition of the two first types (or any preassigned odd 
permutation of the types). 

The labelled graphs I'4(w) and fl; are unique by steps 2 and 3. Let y, 5eI'4(w) have 
labels 00000, 11111, respectively, and satisfy the condition of step 5. Up to label-preserving 
isomorphism, there are two distinct choices for the pair ( y, 5), but in view of Lemma 2(d) 
one can pass from one to the other by an automorphism of the graph I'4 ( w) inducing 
any preassigned odd permutation of the types. Now, supposing 'Y and 5 given, we shall 
show-and that will prove our contention-that the graph I'4( w) u fl; is unique up to the 
label preser~ing automorphism of fl; [extended by the identity on I'4 (w )]. We assume, 
without loss of generality, that i = 5. Let '}'3 be the point of I'4 ( w) labelled 01111 and 
connected with 5. By the assumption made on y, 5, there exists an edge YI ')12 of fJ 5 whose 
vertices carry the labels 0000 and 0111 and are connected with y and y3, respectively. 
Applying step 6 repeatedly, one sees that this edge uniquely determines the graph structure 
of I'4(w) u fl 5• Now, our assertion follows from the fact that the two edges of fJ 5 with 
the given labels are permuted by a label-preserving automorphism of fJ 5• 
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STEP 8. The incidence system y ,,.2 ( w) defined as in Section 3 can be uniquely reconstructed 
from the graph r.,3(w) and its partition into I'3(w) and I'4(w). 

To prove this, we need only determine which 4-tuples of edges in I'3(w) span lines 
meeting in the same point of I'2( w ). 

Let { y, 8} be an edge of I'3(w ). Then y, 8 Ei2k for some k (1~k,,;;5), say~= 5. Assume, 
without loss of generality that the label of y is 0000 and that the label of 8 1s 1110. There 
are lines { y, y 1, ·/} and { B, 8', 82} with y 1, y2 , o 1, 82 E T4 ( w) such that y1 has label 00000, 
y 2 has label 00001, 8 1 has label 11100, and 82 has label 1110 l. Let i = ~, ~· There ar~ f~ur 
3-paths from 'Yi to 8\ one of them is y'y88' and the others are three d1stmct paths ms1de 
I'iw). 

Upon permuting, if necessary, the two first places of the labelling, we may assume that 
the labels of the points of the 3-paths joining y 1 and 81 inside I'4( w) are 

[
00100 10100] 

00000 1 0000 11 OOO 

01000 01100 

11100. (L) 

We denote the corresponding paths by y' yJ 8)8 1, where j = 1, 2, 3 is the number of the 
row in (L). Now the labels of the 3-paths joining y 2 and 82 inside I'4(w) cannot be 
anything but 

00001 [
01001 

00101 

10001 

11001] 
01101 

10101 

11101, 

and again, we denote the corresponding paths by y2 yJ8J8 2 • Observe that yJ * 8) and 
yJ * oJ belong to nj and that their labels in nj differ in exactly three places. 

By the regulus condition, there exists a point g; (i = 1, 2) connected with y * 8 and 
yJ * 8 j for all j. That point cannot belong to Thv) (because it is connected to y * 8) nor 
to T3(w) (because no point of I'3(w) can be connected simultaneously to points of Di. 
D2 and !13). Therefore, g; belongs to I'2(w). Being connected with y * 8, the point f 
coincides with ( y * 8)". Thus, ( y * o)" is connected with yJ * 8j for i = 1, 2. In particular, 
yJ * 8 J and yJ * oJ have distance at most 2 to each other. As their labels in {}j differ in 
exactly three places, they are adjacent (for otherwise, they would have distance 3 in Qj 
and distance at most 2 in I', a contradiction with the non-existence of circuits of length 
4 or 5). Consequently, ( y * 8)a- = ( y]* 8]) * ( y]* 8]), and y * 8 = ( y) * 8] ).,. * ( yJ * 8J)a-. 
Assertion (8) follows. 

Theorem 3 is a direct consequence of steps 7 and 8 and Lemma I. 

REMARK. The Hall-Janko group arises as the group of automorphisms generated by 
the 315 involutions <r for w ranging over the points of I'. 
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