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We present a method for computing the eigenelements of a symmetric matrix
A. This method consists in expressing A in the form A = QXQT, where Q is
an orthonormal matrix and X has nonzero components only on main and cross
diagonals. The convergence analysis, a comparison with the subspace method
and a numerical experiments on a parallel machine are set out.

1. INTRODUCTION

The numerical solutions of the eigenvalues and the corresponding eigenvectors
of a large matrix arise in numerous scientific applications. The most pop-
ular methods developed to solve this problem are the Jacobi algorithm, the
QR algorithm, the Givens method, the Housholder transformation [8,9] and
the methods based on projection techniques on appropriate subspaces such as
Lanczos and Davidson methods [6,10]. An other way to solve this problem is
to factorize the matrix A in the form A = WZW ! where W and Z have the
form of the matrices introduced by Evans et al. [4,5] for the W Z factorization.
This method and its parallel implementation are presented in [1,2].

Let A be a symmetric matrix of order n with n real eigenvalues A1, ..., A,.
We assume that the multiplicity of each A; is < 2 and that |A| > |Ag] > ... >
|[An]- The method, presented in this paper, consists in expressing A in the
form A = QX Q7T, where Q is an orthonormal matrix and the matrix X having
nonzero components only on main and cross diagonals. We will say that X is
a crosswise matrix. Such matrices and those introduced by the W Z factoriza-
tion, present similar characteristics with diagonal matrices. Indeed, for solving
a linear system Xy = b or for computing the eigenvalues of X they require
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O(n) time steps. On the other hand, the associated sequence of computational
operations is suitable for the parallel systems [5,9].

Our method consists in computing m = L"Tflj orthonormal matrices Q;, 1 <

i < m, such that X = (Q1Q2...Qm)TA(Q1Q2...Qnm) is a crosswise matrix.
At each step k, we solve a nonlinear system, by using a subspace method, in
order to find the matrix Q). As corollary of this method, we prove that any
symmetric matrix having n real eigenvalues each of multiplicity < 2 is similar
to a crosswise one.

The paper is organized as follows. First, we present an algorithm for com-
puting the two dominant eigenelements of A. We expose its characteristics
and we show why it leads into the factorization A = QXT(Q. Next, we prove
the convergence of the algorithm. Finally, we show, via numerical tests on a
parallel machine, that our algorithm is faster than the subspace method.

2. THE METHOD

The method consists in computing an orthonormal matrix @ and a crosswise
matrix X such that A can be expressed as A = QX Q7. It requires m = L%J
steps. At step 1, we compute an orthonormal matrix @ such that A1) =
QT AQ, is symmetric and of the form below

agll) 0 . 0 a&)
0 a%) . ag1)71
A = o) ; (1)
0 agzlf)u e agll,nfl 0
agln) 0 .. 0 a%ﬁ%

That is, aﬁ-) = aﬁ) = agllj) = aﬁ) =0for2<j<n-—1 Let Q1 = (q1,---,¢n),
here ¢; € R*, 1 < i < n, is the i-th column of ;. Let < u,v > denotes
the scalar product of v and v and ||u|| the Euclidian norm of u. Then A =
Q1 AMQT with @, orthonormal and A of the form (1) imply the following

two systems

(1) (1)

Aq = 0%1)(]1 + a%n)% S
AQn = alln q + anann Ag; = (1)
q; = Q. qk
(1) <qi,qn> = 0 , (S2) ! ; ki
llq |l =1 V2<j<n-—1
llgx.]] =1

Note that (S1) is a nonlinear system of 2n + 3 equations and 2n + 3 unknowns
( (1 (1) 1 (1)

ajy,ay,, = a,{,ann and the 2n components of ¢; and g, ). (S1) has no unique
solution. Indeed, if g1, g, are solutions of (S7) then any rotation of these two
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vectors is also a solution of (S1). Moreover any algorithm that computes a linear
combination of two eigenvectors can be used for solving (S;). The following
algorithm, used for computing the solutions ¢; and g, is a generalization of the
subspace method. Further we show how to deduce A1, A2 and the corresponding
eigenvectors from ¢; and ¢, and how to factorize A in the form 4 = QX Q7.

2.1. Algorithm for solving S

Let u® € R* and v° € R* with ||u®]| = ||v°]| = 1 and < u%,2° >= 0;
p=20,1,2,... until convergence
T = [AuP (72,0 = |AVP [l 13,5 =< AuP, AvP >59p = \ /97,73, — 73
V3.0
tan 6 = ;
Pt

p+1 s _gings 1 P
n _ C.OS Gp sin Gp P 0 Au ‘
pPtl sinf®  cosB? — e My AvP
p p Yi,p7p Yo

2.2. Characteristics of the algorithm
We present, without proving them, the most important characteristics of the
algorithm. The complete proof of the convergence is given in Section 3.

At each iteration step p, the vectors uP and vP verify < uP,v? >= 0 and
[JuP|| = [lvP|| = 1.

According to the definition of ¢, the matrix

. 1
s s 0
B C.OS Gp —sin Gp T :
p sinf;  cosf, R 1.2

TL,p7p Tp

is symmetric. Moreover, if n > 3 and u°,v° are carefully chosen (see Section

3) then B, is invertible and B;l converges towards the matrix

1 1
() o
ol )

whose eigenvalues are A\; and Ap. Furthermore, v = lim w?,v = lim v? are
p—)()o p—>00

the solution of Si;i.e. g1 =wu, ¢, = v, and

U+ 7rv
e = ——
\/l—f—r%,
U + rov
€y = ———
\/l—f—r%,

where

259



_ b —af) + (=)
™ = 9 1) )
A1p

Cabil —al) = (A =)
T2 = 9 (1) )
A1p

are two orthonormal eigenvectors associated to A1 and As.

The angle 6 is defined in such a way that the B, matrix is symmetric.
Nevertheless, to determine this angle other choices are possible. Generally
speaking, we denote ), this angle. If we take 8, =0, Vp > 0 in the algorithm
then we find the subspace method for computing the two dominant eigenvalues
of A. The novelty, in our algorithm, is the introduction of the rotation

cosf, —sinb,
sind, cosb, ’

which is, as it was, a relaxation factor of the subspace method. Thus, it allows
an acceleration of the algorithm convergence. Formally, if we define the error

E(0p) = Vllurt! —ur[? + [lor+! — o2,

here the sequences (u?) and (v?) being obtained with a rotation angle equal to
6,,Vp then we show in Section 3 that

Wp > 1, E(0) > E(6)).

E(0) is the error at the p-th iteration when applying the subspace method. This
shows that our algorithm converges more rapidly than the subspace method.
On the other hand, it is possible to compute an angle 9;’” for which the algo-
rithm is the faster. However, this choice has many disadvantages.

S
p7
to construct an orthogonal matrix Q such that A = QX Q7 with X a crosswise
matrix.

Finally, when 6, is defined as in the algorithm, i.e. equal to 6, it permits

PROPOSITION 1. Let A be a symmetric matriz having n real eigenvalues each
of multiplicity < 2 . Then A can be factorized in the form A = QXTQ where
Q ts an orthonormal matriz and X a crosswise matriz.

PRrROOF. First, we compute an orthonormal matrix ); and a symmetric matrix

Ay of order n — 2 such that A = QlA(l)Qf with

agll) 0 ... 0 agln)
0 0
A(l) = A1 ?
0
a&) 0 ... 0 a%ﬁ%
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ij))lgi,jgn be the elements of A() and Q1 = (g1,...,q,). In that way,

A= QlA(l)Q? is equivalent to the two systems S; and Ss.
The previous algorithm gives the solution of the nonlinear system (S;).

(1 (1) (1)

Having computed (g1, ¢n, a1, , a1, ,ann), We determine the vectors ¢;,2 < j <
n — 1 by the Gram-Schmidt method [6,8]. From (S2) we get

where (a(1

af) =< qu,Ag; >, 2<jk<n—1.

Similarly we decompose the symmetric matrix A; of order n — 2 in the form

Ap = QAP QT with

ag22) 0O ... 0 agi)lfl
0 0
A2) = : A :
. 2 . ’
0 0
agQi_l 0O ... 0 af_)l ne1

) )

where Ay is a symmetric matrix of order n — 4 and so on. Clearly, the method

is recursive and results after m = | 21| steps in

I, 0 0 I,.1 O 0
Q=1 0 Q2 0 0 Qp 0
0 O I 0 0 I
and
1 1
afy) o o af)
Qg9 Ao n—1
X = ;
2 2
ag,i—1 agl—)l,n—l
o o

here I}, denotes the identity matrix of order k.

Note that a decomposition A = JXJ~! can be achieved using the Jacobi
method [9]. In this case, the problem size remains unchanged, i.e. equal to n,
at each step.

3. CONVERGENCE ANALYSIS

In this section, we show that the method previously described converges. The
proof consists in demonstrating that the sequences (u?), (v?) and the matrix B,
converge and that A, A2 and the eigenvectors can be expressed as a function
of u = lim v?,v = lim v? and of lim B,.

p—00 p—0o0 p—0o0

LEMMA 1. Vp > 0,< u?,v? >=0 and |[u?]| = ||vP|| = 1.
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PROOF. According to the algorithm, |[u°|| = [|v°]] = 1 and < u%,v° >= 0.
Now we show by induction that Vp > 0,< uP™! vP*!l >= 0, and ||uPt!| =
|[vP*1]| = 1. By definition

p+1 s o s 1 p
in _ [ cos 9p sin 9p E— 0 Au
pPt1 sin 6% cos 0® __3p  Dlp AvP .
p p Y1,pVp Yp

Let
wf _ 711p 0 AuP
w? - _ Yp Ji,p AvP .
2 Y1,p7p Tp
Therefore,
upPtl cosfy —sinf; w?
Pt ~\ sin®®  cosf® wh )
P p 2
So,
P — T1,p _
“wl“ - ||Au1’||
and
1
|wy|? = ?(712,,,“14”””2 +73, = 273, < AuP, AvP >
= _2(712,1)’)/5,1) - 712)) =1
P

On the other hand,

<wi,wh >= (71,9730 — ¥3,p71,p) = O-

Y1,p7p
Since
8 M 8
< cIOSO§7 —smgp >
sinf, cosf,
is a rotation, we deduce that < uP*1,vP*!l >=0 and |[uPt| = |[vPT!]| = 1.

LEMMA 2. The matriz B, is symmetric.

PRrOOF.
. 1
s _ s 0
B - o3 o, sin 6, g :
P sinf®  cos@? —Tee  Mp
p p TL,p7p Tp
cos 0; ~3,p sin 0; _ Mup sin 9;
— Ti,p RENET I LI
sin 917 _ 78,pCOs 0p Y1,p COS 0p
T1,p TpV1,p Tp
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H 8 H 8 8
. Y1,psin @ sin @ v3,p cOs 0
B, symmetric <= —— . P_ = P

Tp Tip TpV1p
< tanf, = 7273’17 ,
Mp T
Let (eq,...,e,) denotes an orthonormal basis composed of the eigenvectors of

n n

A. Let u?P = 2 apie; and vP = Z Bp,ie; be the decompositions of the vectors
i=1 i=1

uP and vP in this basis. Let

y J— . R . .
61’,]‘ = ap,iflp,j — Op,jBp,i-

A

p+1 _ J &P
LEMMA 3. 6i7j = 'y—péi’j'
PROOF. According to the definition of uP*! and v?*! we get
-~ cosf® 43 ,sinf? ~1.p sin 62
W= (api( L+ ) = By ") e,
i—1 Tip T1,p7p Tp
n .
sin@?  y3pcosf] v1,p cos 03
oP T = Z(ap,i( E— EY + Bpi——2) Nies.
i1 T1,p Y1,p7p Yp
Consequently,
cosf> 3 psind’ Y1,psin 0,
apr1i = (api(— £) = Bp,i ¥
T,p Y1,p7p Tp
sin@®  v3p,cosf? Y1,p COs 07
Bp+1i = (api(——" = )+ Bp,i 2)A;
Tip Y1,p7p Tp
Let
_costy  y3psin, ‘ _ Mpsinby
zp=—2 4+ DYy =2
T1,p Tp
sinfl, 3, cosfy . Y1,p cos b,
Zp = — : =
! Tip MY Tp

Then for 1 <i,5 <n:

1
65)3'_ = NNi((zpap,i + YpBp,i) (2p0p,j + tpBp,j)
—(zpp,j + YpBp,i ) (2pQp,i + tpBp,i))
= Aidj(zpty — I‘/pzp)‘%),j
A
= : 8-
Tp
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n
LEMMA 4. Let (e1,...,e,) be an orthonormal basis of R™, © = inei and
i=1

y = ies. Then lolPlyllP— < 2,y >2= 3 (@i, — 29:)%
i=1 j<i
PROOF. A direct computation shows this lemma.

> (Aar) D8 )

Jj<i

D> (X)) (8);)°

Jj<i

LEMMA 5. v = , Vp > 1.

PROOF. We show this lemma by induction.
22 = A2 40 |2 < Au®, Ao® > .

On the other hand,

n

= E Aixg €4,
i=1
n

= E AiBo,iei.
i=1

According to Lemma 4, we get

=D AIN(67;)%.
J<i
Since [|[u°||? = |v°||? = 1 and < 4%, v° >= 0, we deduce that 2(6?,]-)2 = 1.
J<i

Now we assume that the lemma is true for an order p. Then

Yppr = [[AuwP TP AvP TP < AuP Tt AvP T S2= N CAZNZ (80T,
i<t

On the other hand, following Lemma 3

(Ai)? 1

S (88 5)7 = (AA)PPEI (8 )

i, 7p H p :

k=0

(6171)? =

Following the induction assumptions,

Uk+]
2
,Y —

k ?

with
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up =Y (Nidg)?*(67,)°

j<i

p
u
[T72 = 2= = )@,

Uo

k=0 j<i
Finally,
apryp — QAP
T S A 60,
Jj<i
Consequently,
D (X2 (80 )2
’)/2 _J<a
p+1 = :
D (AiX)2PE(8? )2
Jj<i

COROLLARY 1. If 6(2],1 # 0 and if n > 3 then A\j Ay # 0 and v, # 0. Further-
more, B, is invertible.

D)+ A2)(85)°
LEMMA 6. H, =3, +73, = &= ,Vp > 1.

D (iX)Pf(6);)? h

j<i

PROOF.

n
7, = A2 = 3" Nal,
=1

Yop = IAVPIP =D N5 .
i=1
Following Lemma 3 we have,
Ap,i = Xi(Tp—10p—1,i + Yp—10p-1,0),

Bp,i = Xi(zp—10p—1,; + tp—18p—1,:).
So,

H, = Z /\;'1(%27—1,1'(3”;27—1 + 2127—1) + 52—1,1'(3/2—1 + t;27—1)
i=1
+2(2p-1Yp—1 + 2p—1tp—1)p—1,:Bp—1,i)-

On the other hand, it is easy to show that
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Since 7;2;71 = 712,1)71’)/%,1)71 - ’)13?,1,71 we deduce that

2
72,;7—1

B) .
rYp—l

2
p—1

2
T +zp1 =

In the same way, we show that

’Yf 1
2 2 _ Tp—
Yp—1 Tt 1= "3
fol
and
2
Y3.p—1
Tp-1Yp—1 + 2Zp—1lp—1 = 2p .
p—1
Finally,
1 n n
2 ) 2 492
H, = 72—(72,;;—1 Z A1 i+ o1 Z AiBp_1,i— 273,p—1 %
p—1 i=1 i=1

n
* Z/\?ap—lyiﬂp—l,i)-
i=1

1 -
Let H, = ———H,,. A direct computation shows that
p—1

Hy = 3 (A )22 + A2) (87512,

i<j

Following Lemma 3 we get,

- 1
Hy = ———> (X)) (A7 +A7)(80,)%.
2 i<j
H Tk
k=0

Following Lemma 5 we get

) DA+ X))
Hp _ Hp _ 1<y

To-1 ST (AP (62;)?

1<j

LEMMA 7. Assume that 63, # 0 and n > 3 then
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a) lim v, = Mg,
p—)OO

b) lim H, = \? + \2
p— 00

¢) lim 67 =0,Yi>j and (i,5) # (2,1) ,
p—00 ©J

4) Tim [65,] =1,
p—00 ’

e) lim op; = lim 3,;, =0, Vi> 2.
p— 00 p— 00

PROOF. a) According to Lemma 5, we have

D (AiX)PED(8) )2

’yz — ]<l
Y Z(AW)?P(&?@Z
7<i
Z 2(p+1 ‘)2
)\ )\2 Z’J
= 2= :
Z 2(p+1 60)
— /\1/\2

Since, |%| <l,fori>j>3or(j=1andi>2), we have

Aidj

lim 2p 1) = .
PLOO()\l)\Q)
Therefore
2 (87;)? )
plLI{.lo ’)’p = ()\1)\2) (60 ) ()\1)\2) .

b) The same reasoning shows that

lim H, = A} + A2,

p—oo
¢) According to Lemma 3, 61" = )‘;—:"55’7]-. So
AR
i [ = 1T <1, Vi 5 () # (2

From d’Alembert’s criterion we get

lim 67, =0V i>jand (i,j) # (2,1).

p—00 Ry
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d) Now we show that lim |65 | = 1. According to Lemmas 4 and 5 we get
p—o00 ’

AMAs 1 1
P _ P — p 0
52,1 = - 62,1 =0 (A1 h2) 52,1-
H Yk
k=0
Since
p—1
I =, DX (s?,)2,
k=0 j<i

we deduce that
lim |65 ,]=1.
p—00 ’
e) A direct computation shows that, Vi > 2
55,10‘1771' = ‘5?,20412,1 - 5?,10‘17,2
and
bp,2Bp,i = 622517,1 - 621@1,2-
Since a1, @p 2, Bp,1 and By 2 are bounded, we deduce that

lim ap; = lim B,; =0 Vi> 2.
p—o0 p—o0

Now we show that B;l converges towards a matrix B~! whose eigenvalues are
A1 and Ay. The Bp_1 matrix is such that

1 uPt! [ AuP
Bp <v”+1>_<Av” :

So,
( < AuP uPtl > < AP 0Pt > )

B! =
< AuP vPtl > < AP Pt >

p

Consequently, if the sequences (uP) and (vP) converge, then the matrix B;l
will converge.
Lemma 8. lim E(6,) = 0.

p— 00
PROOF. Recall that
E0y) = lurtt —ur|? + |ortl —or|2 =

= 4-2(<urtl up > + < optl op >).
Let
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E(63)

M <up+1,up>+<vp+1,vp>

Z Qp,iQpt1,i + Z Bp,iBpt1,i-

i=1l,n i=1,n

A direct computation using Lemma 3 shows that

n

_ 1 1
B(8)) = === (YoMl + B0 + — DAk (N + A)E).

Following Lemma 6, we get that

lim E(6;) = 2.

p—)OO
PROPOSITION 2. The sequences (uP) and (vP) converge respectively towards
i1 T2
21 T22

U = ryie; + riges and v = ro1e1 + roses with an orthonormal

matriz.
PROOF. According to Lemma 7 we have, lim E(6,) = 0. It follows that (uP)
p—00

and (vP) are Cauchy sequences. Therefore, (u?) and (vP) converge respectively
to v and v. Since

n
-
u- = E Qyp €4
=1
and

n

P — Lo

v —E ﬂp,leﬂ
=1

with

lim op; = lim B,; =0, Vi > 2,
p—00 p—00

we deduce that

lim v? =u =ry1e; +7i2es
p—»OO

and

lim v? = v = r91e; + roges,
p—00

where
r1,; = lim oy,
p—00

and
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1“2,-:1im ﬂpi,izl,Q.

= 1R Pr
Therefore, ¢ = w and ¢, = v are a solutions of the system S;. Since,
rir  Ti2

lu|| = ||lv|l =1 and < u,v >= 0 the matrix (
T21  T22

) is orthonormal.

PROPOSITION 3. B;l converges towards a matriz B~ whose eigenvalues are
>\1 and AQ.

PROOF. Since the sequences (u?) and (vP) converge towards u and v, the
matrix Bp_1 converges towards the matrix

<Au,u> <Au,v>\ [z vy
<Au,v> <Avyu> ) \y z )’
Now, we show that the eigenvalues of B! are A; and A2. Recall that

L Y1,p cOS b, Y1,pSin b,
B = e sin 9; ~3,p COS 0; Yp COS 0; ~3,p Sin 0; .

p
Ti,p Ti,p Ti,p Ti,p

Following the algorithm, we have

2
s ’YI P + ’YP
cosf = ——————— (2)
P T1,pV/ Hp + 27
and
sin ) = e (3)

T1,pV/ Hp + 2'712-

Substituting cos# by (2) and sin3 by (3) gives the trace S, of B,

+y1,pcosty, = \/Hp+ 27,

S M s
cos b, N V3,pSin b,
T1,p T1,p

and the determining det(Bp_l) = 7p. The eigenvalues of Bp_1 are solutions of
the equation

A2 — SpA+det(B; ') = 0. (4)

The discriminant of eq (4) is A = H, — 2y, > 0 because B;l is symmetric.
The solutions of equation (4) are

1
Aip = 5(\/Hp + 27 + \/Hp — 27p)
and

1
Agp = 5(\/Hp + 27 — \/Hp = 29p).
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According to Lemma 7 a-b)

lim )‘LP = )\1

p—00
and

lim >‘2,p = >\2.
p—)OC

z—m—l—\/z z—m—\/z

PROPOSITION 4. Let ry = and r9 = ———————_ Then the
2y 2y
U+ ryv U+ rov .
vectors e} = — T and ey = — 2" 4re two orthonormal eigenvectors
1+ r% 1+ r%

associated respectively to the eigenvalues Ay and As.

ProOF. The matrix B;l converges towards the matrix B~} = < ; Z )

verifying

Bl<g):<jg)_ (5)

Now, we compute the scalar r for which w = u + rv is an eigenvector of A i.e.
Aw = Aw. From the eq (6) it follows that

Au = zu+yv
(53){ Av = yu+ zv
Therefore,
Aw = dw < zu+ yv + r(yu + zv) = A(u + rv).

So, we deduce the system

r+ry = A
(54){y+rz = r)

Hence, r is such that
2y +(z—z2)r—y=0. (6)

The discriminant of eq (6) is A = (z—2)? +4(y)2 > 0. f A =0 then z =
and y = 0. In this case, = is an eigenvalue of a multiplicity at least equal to 2
and v and v are two eigenvectors associated to the eigenvalue A = z. Now, if
A > 0 then

z—ac+\/K z—:v—\/z

" 2y B 2y

T2 = ’

u+ rov )
V1+r2 V1+7r2
is an eigenvector associated to an eigenvalue noted py (resp. p2). According
to the system Sy and Proposition 3, 1 = z+ry = A1 and ps = ¢+ 72y = As.

Furthermore, it is easy to verify that ||e1|| = ||e2|| = 1 and that < e;,es >=
0.

are the solutions of the equation. Finally e; = (resp. es =
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3.1. Choice of 0,
Recall that the error E(6),) is defined by

E*(0,) = |[uf*! —uP|? + 0P —oP|? =
= 4-2(<uPt uP >+ <Pt P >).
According to Lemma 6 we have

E0,) = <uPtluP >4 <oPtlopP >

n n
= <D Ail@papi+ zpBpilen, D apiei >
i=1 =1
n n
+< Z Ai(Ypop,i + tpBp,i)ei, Z Bp,iei >
i=1 i=1
xp, < AuP,uP > +z, < AvP uP >
yp < AuP 0P > +t, < AvP 0P >
T T T
cosf, < 1,p  73,p73,p + Ti,p 2,17)

Yi,p YpV1,p Tp
: T1,p73,p 73,p71,p 73,p
sm0 _— = —
+ P ( YpV1.p Tp + 71,,,) ’

where
Tip =< AuP uP >, 1, =< AvP vP >, 13, =< AuP,vP >,
Let

X, = e T3pY3p  VpT2e oy TLpY3e  T3pYlp | T
p ’ P :

B T1,p Tp1,p Tp Tp1,p Tp T1,p

Then E(f;) is optimal for 6, verifying

OE(6
% = —Xpsinf, + Y, cosf, = 0.
p
So
Y,
tan Pt = —£
an X,

We deduce that

E(e;pt) = \/ 7—12,1) + 7—22,17 S E(ap)a

for all choice of 6,,.
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FIGURE 1. Number of iterations for 8, = 0 and for 8, = 9;

4. NUMERICAL TESTS AND CONCLUDING REMARKS
In this section, we report numerical experiments for ¢, = ¢, and 6, =0, on a
16 Transputers SuperNode machine with the C-net programming environment
[1,2]. Because of the memory limitation (1 Mo per processor) n is limited to
256.

We call iteration the calculation of uP*! vP+! from uP, vP. From different
tests on various matrices [7] we have noted that

— The case 8, = 0 requires, for n large, approximatively the double number of
iterations and the double execution time than the case §, = 67 as reported
in figures 1 and 2. We don’t know theoretically the relation between the
convergence factors in the two cases.

— The case , = 0, requires a very fine accuracy e. For instance, for n = 64,
n = 96,... only superior precisions to 107 allow to give correct results.
On the contrary, for 6, = 0,, € = 107! is sufficient. Also in this case, the
problem of the numerical stability of the algorithm has to be studied.

These numeric tests show that the method is more stable and converges
more rapidly than the subspace method. The analysis of the factor conver-
gence, the numeric stability and other variants of the algorithm are on the way.

273



140 T T 1
120 6, =0 o— /O -

O

100

Computation g L
time
(in s¥100) 60

40

20 -

0 50 100 150 200 250 300
Problem size

FIGURE 2. Computation time (in s¥100) for 6, = 0 and for 6, = 63, = 1078

600

500 total time ©— .
communication time —

400 T

Time /
(in s) 300 .

200 - .

100 - .

0 | |
0 50 100 150 200 250 300
Problem size

FIGURE 3. Time (in sec) for 6, = 65,¢ = 1072

REFERENCES

1. A. BENAINI, D. LAYMANI (1994). Generalized WZ factorization on a
reconfigurable machine, J. Parallel Algorithm and Application 3, 1-10.

2. A. BENAINI, D. LAYMANT (1994). Parallel block W Z factorization. Proc.
Intern. Conf. Parallel and Distributed Systems, IEEE Computer Society.

3. G. J. Davis, G. A. GEIST (1990). Finding eigenvalues and eignevectors
of unsymmetric matrices using distributed memory architectures. Parallel
Computing, 13, 199-209.

274



10.

. J. D. EvaNs ET AL. (1992). A systolic array design for matrix system
solution by the symetric bordering method. Parallel Computing 18, 195—
205.

J. D. Evans (1981). The parallel solution of banded linear equation by the
new quadrant interlocking QIF method. Int. J. Comp. Math. 9, 151-162.
G. H. GoLus, C. F. VAN LOAN (1983). Matriz computations. The Johns
Hopkins Univ. Press.

R. T. GReEGORY, D. L. KARNEY (1967). A collection of matrices for
testing computational algorithms. John Wiley.

. D. B. O’LEARY, P. WHITHMAN (1990). Parallel QR factorization by
Householder and modified Gram-Schmidt algorithm. Parallel Computing
16, 99-112.

J. J. Mobr (1984). Parallel algorithms and matriz computation. Oxford
Applied Math. and Comput. Science Series.

H. D. SiMoN (1984). The Lanczos algorithm with partial reorthogonal-
ization, Math. Comput. 42, 115-142.

275



