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We present a method for computing the eigenelements of a symmetric matrix
A
 This method consists in expressing A in the form A � QXQT 	 where Q is
an orthonormal matrix and X has nonzero components only on main and cross
diagonals
 The convergence analysis	 a comparison with the subspace method
and a numerical experiments on a parallel machine are set out


�� Introduction

The numerical solutions of the eigenvalues and the corresponding eigenvectors
of a large matrix arise in numerous scienti�c applications� The most pop�
ular methods developed to solve this problem are the Jacobi algorithm� the
QR algorithm� the Givens method� the Housholder transformation ����	 and
the methods based on projection techniques on appropriate subspaces such as
Lanczos and Davidson methods �
���	� An other way to solve this problem is
to factorize the matrix A in the form A WZW�� where W and Z have the
form of the matrices introduced by Evans et al� ����	 for the WZ factorization�
This method and its parallel implementation are presented in ����	�

Let A be a symmetric matrix of order n with n real eigenvalues ��� � � � � �n�
We assume that the multiplicity of each �i is � � and that j��j � j��j � � � � �
j�nj� The method� presented in this paper� consists in expressing A in the
form A  QXQT � where Q is an orthonormal matrix and the matrix X having
nonzero components only on main and cross diagonals� We will say that X is
a crosswise matrix� Such matrices and those introduced by the WZ factoriza�
tion� present similar characteristics with diagonal matrices� Indeed� for solving
a linear system Xy  b or for computing the eigenvalues of X they require
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O�n� time steps� On the other hand� the associated sequence of computational
operations is suitable for the parallel systems ����	�

Our method consists in computingm  bn��� c orthonormal matricesQi� � �
i � m� such that X  �Q�Q� � � �Qm�

TA�Q�Q� � � � Qm� is a crosswise matrix�
At each step k� we solve a nonlinear system� by using a subspace method� in
order to �nd the matrix Qk� As corollary of this method� we prove that any
symmetric matrix having n real eigenvalues each of multiplicity � � is similar
to a crosswise one�

The paper is organized as follows� First� we present an algorithm for com�
puting the two dominant eigenelements of A� We expose its characteristics
and we show why it leads into the factorization A  QXTQ� Next� we prove
the convergence of the algorithm� Finally� we show� via numerical tests on a
parallel machine� that our algorithm is faster than the subspace method�

�� The method

The method consists in computing an orthonormal matrix Q and a crosswise
matrix X such that A can be expressed as A  QXQT � It requires m  bn��� c
steps� At step �� we compute an orthonormal matrix Q� such that A��� 
QT
� AQ� is symmetric and of the form below
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Note that �S�� is a nonlinear system of �n�� equations and �n�� unknowns
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nn and the �n components of q� and qn�� �S�� has no unique

solution� Indeed� if q�� qn are solutions of �S�� then any rotation of these two
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vectors is also a solution of �S��� Moreover any algorithm that computes a linear
combination of two eigenvectors can be used for solving �S��� The following
algorithm� used for computing the solutions q� and qn� is a generalization of the
subspace method� Further we show how to deduce ��� �� and the corresponding
eigenvectors from q� and qn and how to factorize A in the form A  QXQT �

���� Algorithm for solving S�
Let u� � Rn and v� � Rn with ku�k  kv�k  � and � u�� v� � ��
p  �� �� �� � � � until convergence
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���� Characteristics of the algorithm

We present� without proving them� the most important characteristics of the
algorithm� The complete proof of the convergence is given in Section ��

At each iteration step p� the vectors up and vp verify � up� vp � � and
kupk  kvpk  ��

According to the de�nition of �sp the matrix
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is symmetric� Moreover� if n � � and u�� v� are carefully chosen �see Section
�� then Bp is invertible and B��p converges towards the matrix
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are two orthonormal eigenvectors associated to �� and ���
The angle �sp is de�ned in such a way that the Bp matrix is symmetric�

Nevertheless� to determine this angle other choices are possible� Generally
speaking� we denote �p this angle� If we take �p  �� �p � � in the algorithm
then we �nd the subspace method for computing the two dominant eigenvalues
of A� The novelty� in our algorithm� is the introduction of the rotation�

cos �p � sin �p
sin �p cos �p

	
�

which is� as it was� a relaxation factor of the subspace method� Thus� it allows
an acceleration of the algorithm convergence� Formally� if we de�ne the error

E��p� 
p
kup�� � upk� � kvp�� � vpk��

here the sequences �up� and �vp� being obtained with a rotation angle equal to
�p��p then we show in Section � that

�p � �� E��� � E��sp��

E��� is the error at the p�th iteration when applying the subspace method� This
shows that our algorithm converges more rapidly than the subspace method�
On the other hand� it is possible to compute an angle �optp for which the algo�
rithm is the faster� However� this choice has many disadvantages�

Finally� when �p is de�ned as in the algorithm� i�e� equal to �sp� it permits

to construct an orthogonal matrix Q such that A  QXQT with X a crosswise
matrix�

Proposition �� Let A be a symmetric matrix having n real eigenvalues each
of multiplicity � � � Then A can be factorized in the form A  QXTQ where
Q is an orthonormal matrix and X a crosswise matrix�
Proof� First� we compute an orthonormal matrix Q� and a symmetric matrix
A� of order n� � such that A  Q�A

���QT
� with
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where �a
���
ij ���i�j�n be the elements of A��� and Q�  �q�� � � � � qn�� In that way�

A  Q�A
���QT

� is equivalent to the two systems S� and S��
The previous algorithm gives the solution of the nonlinear system �S���
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n� � by the Gram�Schmidt method �
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Similarly we decompose the symmetric matrix A� of order n � � in the form
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where A� is a symmetric matrix of order n� � and so on� Clearly� the method
is recursive and results after m  bn��� c steps in
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here Ik denotes the identity matrix of order k�
Note that a decomposition A  JXJ�� can be achieved using the Jacobi

method ��	� In this case� the problem size remains unchanged� i�e� equal to n�
at each step�

�� Convergence analysis

In this section� we show that the method previously described converges� The
proof consists in demonstrating that the sequences �up�� �vp� and the matrix Bp

converge and that ��� �� and the eigenvectors can be expressed as a function
of u  lim

p��
up� v  lim

p��
vp and of lim

p��
Bp�
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Proof� According to the algorithm� ku�k  kv�k  � and � u�� v� � ��
Now we show by induction that �p � �� � up��� vp�� � �� and kup��k 
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is a rotation� we deduce that � up��� vp�� � � and kup��k  kvp��k  ��

Lemma �� The matrix Bp is symmetric�
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to u and v� Since

up 

nX
i��

	p�iei

and

vp 

nX
i��


p�iei�

with

lim
p��

	p�i  lim
p��


p�i  �� �i � ��

we deduce that

lim
p��

up  u  r��e� � r��e�

and

lim
p��

vp  v  r��e� � r��e��

where

r��i  lim
p��

	p�i�

and

�
�



r��i  lim
p��


p�i� i  �� ��

Therefore� q�  u and qn  v are a solutions of the system S�� Since�

kuk  kvk  � and � u� v � � the matrix

�
r�� r��
r�� r��

	
is orthonormal�

Proposition �� B��p converges towards a matrix B�� whose eigenvalues are
�� and ���
Proof� Since the sequences �up� and �vp� converge towards u and v� the
matrix B��p converges towards the matrix�

� Au� u � � Au� v �

� Au� v � � Av� v �

	


�
x y

y z

	
�

Now� we show that the eigenvalues of B�� are �� and ��� Recall that

B��p 



���p cos �

s
p ���p sin �

s
p

��p sin �
s
p

���p
�

���p cos �
s
p

���p

�p cos �
s
p

���p
�

���p sin �
s
p

���p

�
�

Following the algorithm� we have

cos �sp 
����p � �p

���p
p
Hp � ��p

� ���

and

sin �sp 
���p

���p
p
Hp � ��p

� ���

Substituting cos �sp by ��� and sin �sp by ��� gives the trace Sp of B��p

Sp  �p
cos �sp
���p

�
���p sin �

s
p

���p
� ���p cos �

s
p 

p
Hp � ��p

and the determining det�B��p �  �p� The eigenvalues of B��p are solutions of
the equation

�� � Sp�� det�B��p �  �� ���

The discriminant of eq ��� is �  Hp� ��p � � because B��p is symmetric�
The solutions of equation ��� are

���p 
�

�
�
p
Hp � ��p �

p
Hp � ��p�

and

���p 
�

�
�
p
Hp � ��p �

p
Hp � ��p��

���



According to Lemma � a�b�

lim
p��

���p  ��

and

lim
p��

���p  ���

Proposition �� Let r� 
z � x�

p
�

�y
and r� 

z � x�p
�

�y
� Then the

vectors e� 
u� r�vp
� � r��

and e� 
u� r�vp
� � r��

are two orthonormal eigenvectors

associated respectively to the eigenvalues �� and ���

Proof� The matrix B��p converges towards the matrix B�� 

�
x y

y z

	
verifying

B��
�

u

v

	


�
Au

Av

	
� ���

Now� we compute the scalar r for which w  u� rv is an eigenvector of A i�e�
Aw  �w� From the eq �
� it follows that

�S��

�
Au  xu� yv

Av  yu� zv
�

Therefore�

Aw  �w � xu� yv � r�yu� zv�  ��u� rv��

So� we deduce the system

�S	�

�
x� ry  �

y � rz  r�
�

Hence� r is such that

r�y � �x � z�r � y  �� �
�

The discriminant of eq �
� is �  �x� z�����y�� � �� If �  � then x  z

and y  �� In this case� x is an eigenvalue of a multiplicity at least equal to �
and u and v are two eigenvectors associated to the eigenvalue �  x� Now� if
� � � then

r� 
z � x�

p
�

�y
� r� 

z � x�p
�

�y
�

are the solutions of the equation� Finally e� 
u� r�vp
� � r��

�resp� e� 
u� r�vp
� � r��

�

is an eigenvector associated to an eigenvalue noted �� �resp� ���� According
to the system S	 and Proposition �� ��  x� r�y  �� and ��  x� r�y  ���

Furthermore� it is easy to verify that ke�k  ke�k  � and that � e�� e� �
��

���



���� Choice of �p
Recall that the error E��p� is de�ned by

E���p�  kup�� � upk� � kvp�� � vpk� 
 �� ��� up��� up � � � vp��� vp ���

According to Lemma 
 we have

�E��p�  � up��� up � � � vp��� vp �

 �

nX
i��

�i�xp	p�i � zp
p�i�ei�

nX
i��

	p�iei �

� �

nX
i��

�i�yp	p�i � tp
p�i�ei�
nX
i��


p�iei �

 xp � Aup� up � �zp � Avp� up �

yp � Aup� vp � �tp � Avp� vp �

 cos �p

�
��p

���p
� ��p���p

�p���p
�
���p��p

�p

	
�sin �p


���p���p
�p���p

� ���p���p
�p

�
���p
���p

�
�

where

��p � Aup� up �� ��p � Avp� vp �� ��p � Aup� vp ��

Let

Xp 
��p

���p
� ��p���p

�p���p
�
���p��p

�p
� Yp 

��p���p

�p���p
� ��p���p

�p
�

��p

���p
�

Then E��sp� is optimal for �p verifying

� �E��p�

��p
 �Xp sin �p � Yp cos �p  ��

So

tan �optp 
Yp

Xp

�

We deduce that

�E��optp � 
q
���p � ���p � E��p��

for all choice of �p�

���
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Figure �� Number of iterations for �p  � and for �p  �sp

�� Numerical tests and concluding remarks

In this section� we report numerical experiments for �p  �sp and �p  �� on a
�
 Transputers SuperNode machine with the C�net programming environment
����	� Because of the memory limitation �� Mo per processor� n is limited to
��
�

We call iteration the calculation of up��� vp�� from up� vp� From di�erent
tests on various matrices ��	 we have noted that

� The case �p  � requires� for n large� approximatively the double number of
iterations and the double execution time than the case �p  �sp as reported
in �gures � and �� We don�t know theoretically the relation between the
convergence factors in the two cases�

� The case �p  �� requires a very �ne accuracy �� For instance� for n  
��
n  �
� � � � only superior precisions to ���
 allow to give correct results�
On the contrary� for �p  �sp� �  ���� is su�cient� Also in this case� the
problem of the numerical stability of the algorithm has to be studied�

These numeric tests show that the method is more stable and converges
more rapidly than the subspace method� The analysis of the factor conver�
gence� the numeric stability and other variants of the algorithm are on the way�
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